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Abstract. The verification of liveness properties is an important challenge in the
design of real-time and hybrid systems.
In contrast to the verification of safety properties, for which there are several
solutions available, there are really few tools that support liveness properties such
as general LTL formulas for hybrid systems, even in the case of timed automata.
In the context of finite-state model checking, K-Liveness is a recently proposed
algorithm that tackles the problem by proving that an accepting condition can be
visited at most K times. K-Liveness has shown to be very efficient, thanks also
to its tight integration with IC3, a very efficient technique for safety verification.
Unfortunately, the approach is neither complete nor effective (even for simple
properties) in the case of infinite-state systems with continuous time.
In this paper, we extend K-Liveness to deal with LTL for hybrid systems. On the
theoretical side, we show how to extend the reduction from LTL to the reachabil-
ity of an accepting condition in order to make the algorithm work with continuous
time. In particular, we prove that the new reduction is complete for a class of rect-
angular hybrid automata, in the sense that the LTL property holds if and only if
there exists K such that the accepting condition is visited at most K times. On
the practical side, we present an efficient integration of K-Liveness in an SMT-
version of IC3, and demonstrate its effectiveness on several benchmarks.

1 Introduction

Hybrid systems are an ideal modeling paradigm to represent embedded systems since
they combine discrete behaviors, useful to model protocols and control components,
with continuous behaviors, useful to model physical entities such as time, tempera-
ture, speed, etc. Hybrid systems are becoming increasingly interesting in order to apply
formal methods to the design of safety-critical systems in different domains such as
aerospace, railways, and automotive.

The verification of liveness properties on hybrid systems is very challenging be-
cause infinite paths must be considered. In particular, we focus on Linear-time Tem-
poral Logic (LTL), which is suitable to represent many safety and liveness properties.
The standard approach to verify if a model M satisfies an LTL property φ builds the
automaton M¬φ equivalent to the negation of φ and check if the accepting state of the
product M ×M¬φ can be visited infinitely often.
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In the context of finite-state model checking, many efficient algorithms reduce live-
ness properties to one or more safety properties. For example, K-LIVENESS is a re-
cently proposed technique that proves that the accepting state is visited finitely many
times by checking that it is visited at most K times for increasing values of K. The
latter can be easily reduced to a reachability problem. K-Liveness has shown to be very
efficient, thanks also to its tight integration with IC3, probably the current most effec-
tive technique for safety verification. Unfortunately, the approach is neither complete
nor effective (even for simple properties) in the case of infinite-state systems with con-
tinuous time.

The main problem of techniques based on the reduction to safety is that they rely
for soundness or completeness on the existence of a lasso-shape counterexample, but
in the case of infinite-state systems such as hybrid systems, there may be infinite traces
that do not correspond to any lasso-shape fair path. Moreover, the model may include
Zeno paths where time converges, which must be excluded when checking the liveness
properties. Techniques based on abstraction refinement can prove that a property holds,
but in general the refinement is not guaranteed to converge.

In this paper, we provide a new method that, by forcing the progress of time beyond
symbolic bounds, links the number of iterations of K-LIVENESS to the time elapsed
in the counterexamples, rather than to the number of transitions. We prove that the re-
duction is complete for initialized Rectangular Hybrid Automata (RHA) with bounded
non-determinism even in the presence of parameters. We implemented the techniques
on top of HYCOMP [1], a tool for the verification of hybrid systems. The verification
of reachability is based on an SMT version of IC3 that integrates predicate abstraction
in an efficient way. An experimental evaluation demonstrates the efficiency of the ap-
proach on several benchmarks. To the best of our knowledge, this is the first effective
tool that verifies general LTL properties on Hybrid Automata.

The paper is organized as follows: Section 2 presents some basic notations on RHA,
LTL, and SMT-based techniques to verify hybrid systems; we also give a brief overview
of IC3 and K-LIVENESS; in Section 3, we present the new approach to the LTL verifi-
cation of hybrid systems; in Section 4, we overview the related work; in Section 5, we
describe the implementation, the experimental evaluation, and we present the results;
finally, in Section 6 we draw some conclusions and discuss future directions.

2 Background

2.1 Hybrid and Timed Automata

Hybrid systems have a discrete part, which ranges over the nodes of a graph, and a
continuous part, which ranges over an Euclidian space Rn. Although the approach pre-
sented in this paper can be applied to any hybrid system that can be encoded into a
symbolic transition system, the theoretical results are restricted to the parametric ver-
sion of Rectangular Hybrid Automata [2]. A Parametric Rectangular Hybrid Automaton
(PRHA) is a tuple H = 〈P,Q,Q0, E,X, flow, init, inv, jump, guard, update〉 where:

– P is a finite set of parameters,
– Q is the (possibly infinite) set of locations,



– Q0 ⊆ Q is the (possibly infinite) set of initial locations,
– E ⊆ Q×Q is the (possibly infinite) set of discrete transitions,
– X is the finite set of continuous variables,
– flow : Q→ X → R is the flow function,
– init : Q→ X → R(P ) is the initial function,
– inv : Q→ X → R(P ) is the invariant function,
– jump : E → 2X is the jump function,
– guard : E → X → R(P ) is the guard function,
– update : E → X → R(P ) is the update function,

where R is the set of (possibly unbounded) real intervals and R(P ) represents the set
of parametric intervals, whose endpoints are either a constant, or ±∞, or a parameter
in P (e,g., [0, 0], (1,+∞), (−∞, p]). We can see parametric intervals as function from
an evaluation of the parameters to the intervals of R. So, if c is an assignment to the
parameters in P and I ∈ R(P ), then I(c) is a real interval.

A Rectangular Hybrid Automaton (RHA) is simply a PRHA with P = ∅. A (Para-
metric) Timed Automaton (TA) is an RHA (resp. PHRA) such that, for all q ∈ Q, for
all x ∈ X , flow(q)(x) = [1, 1], init(q)(x) = [0, 0], and for all e ∈ E, for all x ∈ X ,
update(e)(x) = [0, 0]. A (P)RHA H is initialized iff for every edge 〈q, q′〉 ∈ E, for
all x ∈ X , if flow(q)(x) 6= flow(q′)(x), then x ∈ jump(〈q, q′〉). H has bounded non-
determinism iff for all x ∈ X , for all q ∈ Q, for all e ∈ E, init(q)(x), flow(q)(x), and
update(e)(x) are bounded.

As in [3], we use a variable pc 6∈ X∪P as a control variable that ranges over the set
Q of locations (properly encoded in R). Moreover, we use a variable time to represent
the elapsing time and let VH = {time, pc} ∪ P ∪X . A state is an assignment to VH ,
i.e., a function VH → R. We can see a state also as a tuple 〈q, s, c, t〉 where q ∈ Q, s is
an assignment to X , c is an assignment to P , and t is an assignment to time. A path of
a PRHA H is a sequence of states 〈q0, s0, c0, t0〉, 〈q1, s1, c1, t1〉, . . . such that:

– for all i, j ≥ 0, ci = cj = c, for some c;
– t0 = 0 and for all i ≥ 0, ti ≤ ti+1; let δi = ti+1 − ti;
– for all i ≥ 0, if δi > 0, then qi−1 = qi and, for all x ∈ X , si+1(x)−si(x)

δi
∈

flow(qi)(x) (note that, in more general classes of hybrid automata, this would re-
quire a condition on all time points);

– q0 ∈ Q0 and, for all x ∈ X , s0(x) ∈ init(q0)(x)(c);
– for all i ≥ 0, if δi = 0, then
• 〈qi, qi+1〉 ∈ E,
• for all x 6∈ jump(〈qi, qi+1〉), si+1(x) = si(x);
• for all x ∈ X , si(x) ∈ guard(〈qi, qi+1〉)(x)(c);
• for all x ∈ jump(〈qi, qi+1〉), si+1(x) ∈ update(〈qi, qi+1〉)(x)(c);

– for all i ≥ 0, for all x ∈ X , si(x) ∈ inv(qi)(x)(c).
Given a sequence of states σ = σ0, σ1, . . ., we denote with σ[i] the i+ 1-th state σi

and with σi the suffix sequence starting from the σ[i].
A path whose sequence t0, t1, . . . of time points does not diverge is called Zeno

path (non-Zeno otherwise). A state s is Zeno or time-locking iff there is no non-Zeno
path starting from s. A state s is reachable iff there exists a non-Zeno path σ such that
σ[i] = s for some i ≥ 0.



2.2 LTL

We use Linear-time Temporal Logic (LTL) [4] to specify properties on a PRHA H .
The atomic formulas Atoms are predicates over the variables VH . Besides the Boolean
connectives, LTL uses the temporal operators X (“next”) and U (“until”). Formally,

– a predicate a ∈ Atoms is an LTL formula,
– if φ1 and φ2 are LTL formulas, then ¬φ1, and φ1 ∧ φ2 are LTL formulas,
– if φ1 and φ2 are LTL formulas, then Xφ1 and φ1Uφ2 are LTL formulas.

We use the standard abbreviations: > := p ∨ ¬p, ⊥ := p ∧ ¬p, Fφ := >Uφ,
Gφ := ¬F¬φ, and φ1Rφ2 := ¬(¬φ1U¬φ2).

Given an LTL formula φ and a sequence σ of states of H , we define σ |= φ, i.e.,
that the path σ satisfies the formula φ, as follows:

– σ |= a iff σ[0] |= a – σ |= φ ∧ ψ iff σ |= φ and σ |= ψ
– σ |= ¬φ iff σ 6|= φ – σ |= Xφ iff σ1 |= φ
– σ |= φUψ iff for some j ≥ 0, σj |= ψ and for all 0 ≤ k < j, σk |= φ.
Given a PRHA H and an LTL formula φ over VH , we focus on the model checking

problem of finding if, for all non-Zeno paths σ of H , σ |= φ.
Note that, although the predicates can contain references to the time variable, the

logic is interpreted over discrete sequences of states.
The problem is in general undecidable for PRHA and decidable for some fragments

such as initialized RHA with bounded non-determinism [2].

2.3 Transition Systems

A transition system M is a tuple M = 〈V, I, T 〉 where V is a set of (state) variables,
I(V ) is a formula representing the initial states, and T (V, V ′) is a formula representing
the transitions. In this paper, we shall deal with linear rational arithmetic formulas,
that is, Boolean combinations of propositional variables and linear inequalities over
rational variables. A state of M is an assignment to the variables V . We denote with
ΣV the set of states. A [finite] path of M is an infinite sequence s0, s1, . . . [resp., finite
sequence s0, s1, . . . , sk] of states such that s0 |= I and, for all i ≥ 0 [resp., 0 ≤ i < k],
si, s

′
i+1 |= T . Given two transitions systemsM1 = 〈V1, I1, T1〉 andM2 = 〈V2, I2, T2〉,

we denote with M1 ×M2 the synchronous product 〈V1 ∪ V2, I1 ∧ I2, T1 ∧ T2〉.
Given a Boolean combination φ of predicates, the invariant model checking prob-

lem, denoted withM |=fin φ, is the problem to check if, for all finite paths s0, s1, . . . , sk
of M , for all i, 0 ≤ i ≤ k, si |= φ.

Given a LTL formula φ, the LTL model checking problem, denoted with M |= φ,
is the problem to check if, for all (infinite) paths σ of M , σ |= φ.

The automata-based approach [5] to LTL model checking is to build a transition
systemM¬φ with a fairness condition f¬φ such thatM |= φ iffM×M¬φ |= FG¬f¬φ.
This reduces to finding a counterexample as a fair path, i.e., a path of the system that
visits the fairness condition f¬φ infinitely many times. In case of finite-state systems,
if the property fails there is always a counterexample in a lasso-shape, i.e., formed by a
prefix and a loop.



2.4 SMT-based Verification of Reachability for PRHA

Given a PRHA H , we encode H into a transition system MH in order to apply SMT-
based verification techniques for infinite-state systems. Such kind of encoding has been
widely used in the literature (e.g., [12, 13]). MH = 〈VH , IH , TH〉 is defined as follows:

– IH
def
= (time = 0) ∧∧

q∈Q
∧
x∈X x ∈ init(q)(x) ∧ x ∈ inv(q)(x).

– TH
def
= (TIMED∨UNTIMED)∧∧q∈Q inv(q)(X)∧inv(q)(X ′)∧∧p∈P p

′ = p, where
UNTIMED

def
= δ = 0 ∧

∧
〈q,q′〉∈E(pc = q ∧ pc = q′) ∧

∧
x∈X guard(q)(x)∧∧

x 6∈jump(〈q,q′〉) x
′ = x ∧

∧
x∈jump(〈q,q′〉) x

′ ∈ update(q)(x)

TIMED
def
= δ > 0 ∧ pc′ = pc ∧

∧
q∈Q

∧
x∈X(pc = q → (x′ − x) ∈ δ · flow(q)(x))

δ
def
= time′ − time.

There is a one-to-one mapping between the states of H and those of MH , and also
between the paths ofH and those ofMH . We say that a path ofMH is Zeno [non-Zeno]
iff the sequence of assignments to time does not diverge [resp., diverges].

Given a PRHA H , assuming that H does not have Zeno states, a state s is reachable
in H iff MH 6|=fin ¬s (where s is seen as a formula).

2.5 IC3 and K-LIVENESS

SAT-based algorithms take in input a propositional (with Boolean variables) transition
system and a property, and try to solve the verification problem with a series of satisfi-
ability queries. These algorithms can be naturally lifted to SMT in order to tackle the
verification of infinite-state systems.

IC3 [6] is a SAT-based algorithm for the verification of invariant properties of
transition systems. It builds an over-approximation of the reachable state space, using
clauses obtained by generalization while disproving candidate counterexamples.

We recently presented in [7] a novel approach to lift IC3 to the SMT case, which
is able to deal with infinite-state systems by means of a tight integration with predicate
abstraction (PA) [8]. The approach leverages Implicit Abstraction (IA) [9], which al-
lows to express abstract transitions without computing explicitly the abstract system,
and is fully incremental with respect to the addition of new predicates.

In this paper, we focus on K-LIVENESS [10], an algorithm recently proposed to
reduce liveness (and so also LTL verification) to a sequence of invariant checking. Dif-
ferently from other reductions (such as [11]), it lifts naturally to infinite-state systems
without requiring counterexamples to be in a lasso-shape form. K-LIVENESS uses a
standard approach to reduce LTL verification for proving that a certain signal f is even-
tually never visited (FG¬f ). The key insight of K-LIVENESS is that, for finite-state
systems, this is equivalent to find a K such that f is visited at most K times, which in
turn can be reduced to invariant checking.

Given a transition system M , a Boolean combination of predicates φ, and a positive
integer K, for every finite path σ of M , let σ |=fin ](φ) ≤ K iff the size of the set
{i | σ[i] |= φ} is less or equal to K. In [10], it is proved that, for finite-state systems,
M |= FG¬f iff there exists K such that M |=fin ](f) ≤ K. The last check can be
reduced to an invariant checking problem. K-LIVENESS is therefore a simple loop that
increases K at every iteration and calls a subroutine SAFE to check the invariant. In



particular, the implementation in [10] uses IC3 as SAFE and exploits the incrementality
of IC3 to solve the sequence of invariant problems in an efficient way.

3 SMT-Based Verification of LTL for PRHA

3.1 K-LIVENESS for Hybrid Automata

K-LIVENESS is not complete for infinite-state systems, because even if the property
holds, the system may visit the fairness condition an unbounded number of times. Con-
sider for example a system with an integer counter and a parameter p such that the
counter is used to count the number of times the condition f is visited and once the
counter reaches the value of p, the condition is no more visited. This system satisfies
FG¬f because for any value of p, f is visited at most p times. However, K-LIVENESS
will obtain a counterexample to the safety property ](f) ≤ K for every K, by setting p
to K.

Similarly, K-LIVENESS does not work on the transition system representing a TA.
In particular, a fair Zeno path forbids K-LIVENESS to prove the property: for every K,
the fairness is visited more thanK times, but in a finite amount of (real) time. Removing
Zeno paths by adding an automaton to force progress is not sufficient for PTA and in
general hybrid systems. In fact, in these systems a finite amount of time can be bounded
by a parameter or a variable that is dynamically set. Therefore, in some cases, there is
no K to bound the occurrences of the fairness, although there is no fair non-Zeno path.

In the following, we show how we make K-LIVENESS work on hybrid automata.
The goal is to provide a method so that K-LIVENESS checks if there is a bound on the
number of times the fairness is visited along a diverging sequence of time points. The
essential point is to use a symbolic expression β based on the automaton structure to
force a minimum distance between two fair time points. We use an additional transition
system Zβ , with a condition fZ , to reduce the problem of proving that H |= φ to
proving that MH × M¬φ × Zβ |= FG¬fZ . In Section 3.2, we prove that the two
problems are equivalent for any positive β. In Section 3.3, we define β so that K-
LIVENESS is not deemed to diverge and, on the contrary, must converge for some class
of automata.

3.2 Linking the fairness to time progress

In this section, we define the transition systemZβ that is later used to make K-LIVENESS
converge. We first define a simpler version ZB that works only for timed automata.

Consider the fair transition system M = MH ×M¬φ resulting from the product
of the encoding of an PRHA H and of the negation of the property φ. Let f be the
fairness condition of M . We build a new transition system ZB(f, time) that filters the
occurrences of f along a time sequence where time values are distant more than B
time units. ZB(f, time) is depicted in Figure 1. It has two locations (represented by
a Boolean variable l) and a local real variable t0. The initial condition is l = 0. The
fairness condition fZ is l = 1. The system moves or remains in l = 0 keeping t0
unchanged. It moves or remains in l = 1 if f is true and time ≥ t0 + B and sets t0 to
time.



l = 0t0 = 0 l = 1

t′0 = time

f ∧ time ≥ t0 +B
t′0 = time

f ∧ time ≥ t0 +B
t′0 = time

t′0 = time

Fig. 1. Monitor ZB(f, time).

l = 0t0 = 0 l = 1

t′0 = t0, X
′
0 = X0

f ∧ time ≥ t0 + β(x0)
t′0 = time ∧ x′0 = x

f ∧ time ≥ t0 + β(x0)
t′0 = time ∧ x′0 = x

t′0 = t0, X
′
0 = X0

Fig. 2. Monitor Zβ(f, time,X).

We reduce the problem of checking whether φ holds in H to checking that the
fairness condition fZ cannot be true infinitely often in MH ×M¬φ × ZB , i.e. MH ×
M¬φ × ZB |= FG¬fZ .

Theorem 1. If B > 0, H |= φ iff MH ×M¬φ × ZB |= FG¬fZ .

Proof. If there exists a non-Zeno path π of MH that violates φ, then there exists a fair
path π′ of M¬φ so that π × π′ is a fair non-Zeno path of M ×M¬φ. We can build a
matching path πZ of ZB . In fact, if the path πZ [i] is in l = 0, there are infinitely many
j ≥ i such that π′(j) |= f¬φ and we can pick one moving to l = 1 with time(j) >
time(i) +B since π is non-Zeno.

If a path π of M ×M¬φ × ZB visits fZ infinitely often, then for infinitely many
points i ≥ 0, πi |= f¬φ and there exists j ≥ i such that πj |= f¬φ ∧ time > t0 +
B. Therefore the projection of π over MH corresponds to a fair non-Zeno path of H
violating φ. ut

We generalize the construction of ZB considering as bound on time a function
β over some continuous variables of the model. The new monitor is Zβ(f, time,X)
shown in Figure 2. It has a local variable x0 for every variable x occurring in β. X0

is the set of such variables. Now, when t0 is set to time, we set also x0 to x and this
value is kept until moving to l = 1. The condition on time is now time > t0 + β(X0).
It is easy to see that we can still prove that if β(X) is always positive, then H |= φ iff
MH ×M¬φ × Zβ |= FG¬fZ .

We say that the reduction is complete for K-LIVENESS for a certain class H of
automata iff for every H ∈ H there exists βH such that H |= φ iff there exists K
such that M ×M¬φ × ZβH |=fin ](fZ) ≤ K. Thus, if H |= φ, and the reduction
is complete, and the subroutine SAFE terminates at every call, then K-LIVENESS also
terminates proving the property.

3.3 The K-ZENO algorithm

The K-ZENO algorithm is a simple extension of K-LIVENESS which, given the problem
H |= φ, builds M =MH ×M¬φ ×Zβ and calls K-LIVENESS with inputs M and fZ .
As K-LIVENESS, either K-ZENO proves that the property holds or diverges increasing
K up to a certain bound. The crucial part is the choice of β, because the complete-
ness of the reduction depends on β. Note that the reduction may be complete, but the
completeness of K-ZENO still depends on the completeness of the SAFE algorithm.



loc1
ẋ = 1
x ≤ 1

loc2
ẋ = 1

b := ¬b

Fig. 3. Example of TA.

As for TAs, we take as β the maximum among the con-
stants of the model and 1. For example, consider the TA
in figure 3 (it is actually a compact representation of the
TA where loc1 is split into two locations corresponding to
b = > and b = ⊥). It represents an unbounded number
of switches of b within 1 time unit. The model satisfies the
property FGpc = loc2. Taking β = 1, K-ZENO proves
the property with K = 1. In fact, starting from the loca-
tion loc1, after 1 time unit, the automaton cannot reach loc1 anymore. For PTAs, we
consider as β the maximum among the parameters, the constants of the model and 1.

We generalize the above idea to consider PRHA with bounded non-determinism.
We also assume an endpoint of a flow interval is 0, it cannot be open (must me included
in the interval). Guards and invariants of PRHA are conjunctions of inequalities of the
form x ./ B where ./∈ {≤,≥, <,>}. Hereafter, we refer to one of such inequalities
as a constraint of the PRHA.

For every constraint g in the form x ≤ B or x < B (guard or invariant) of HA,
we consider the minimum positive lower bound rg for the derivative of x, if exists. For
example, if we have three locations with ẋ ∈ [1, 2], ẋ ∈ [0, 3], ẋ ∈ [−1, 2], we take
rg = 1 (since 0 and−1 are not positive). We consider the minimum lower bound vg for
the non-deterministic reset of x. For example, if we have three transitions with resets
x′ ∈ [1, 2], x′ ∈ [0, 3], x′ ∈ [−1, 2], we take vg = −1. In case g is in the form x ≥ B
or x > B, we define rg and vg similarly by considering the maximum negative upper
bound of the derivative of x and the maximum upper bound of the reset of x. We define
the bound βg(x0) as follows: βg(x0) = max((B − x0)/rg, (B − vg)/rg).

Finally, as β we take the maximum among the βg for all g in the automaton H for
which rg exists and the constant 1. Note that this coincides with the β defined above for
TA and Parametric TA, where rg is always 1 and vg is always 0 and x0 is always non
negative.

3.4 Completeness for Rectangular Hybrid Automata

In this section, we restrict the focus to PRHA that are initialized and have bounded non-
determinism. Moreover, we restrict the LTL formula to have the atoms that predicate
over pc only. In this settings, we prove that the reduction to K-LIVENESS defined in the
previous section is complete.

Given a PRHA H = 〈P,Q,Q0, E,X, flow, init, inv, jump, guard, update〉 and an
LTL formula φ with transition system M¬φ = 〈V, I, T 〉 and fairness condition f¬φ, we
build a new PRHA H¬φ = 〈P,Q′, Q′0, E′, X, flow′, init′, inv′, jump′, guard′, update′〉
where:

– Q′ = {q × s ∈ Q×ΣV | q ∈ Q, s |= q};
– Q′0 = {q × s ∈ Q′ | q ∈ Q0, s |= I};
– E′ = {〈q × s, q′ × s′〉 ∈ Q′ ×Q′ | 〈q, q′〉 ∈ E, s, s′ |= T};
– for all q × s ∈ Q, flow′(q × s) = flow(q), init′(q × s) = init(q), inv′(q × s) =

inv(q); for all 〈q × s, q′ × s′〉 ∈ E′, jump′(〈q × s, q′ × s′〉) = jump(〈q, q′〉),
guard′(〈q×s, q′×s′〉) = guard(〈q, q′〉), update′(〈q×s, q′×s′〉) = update(〈q, q′〉).



It is easy to see that H |= φ iff H¬φ |= FG¬f¬φ iff MH¬φ × Zβ |= FG¬fZ .
In order to prove that the reduction to K-LIVENESS is complete, we prove the fol-

lowing lemma.

Lemma 1. Consider an initialized with bounded non-determinism PRHA H . Suppose
MH¬φ × Zβ |= FG¬fZ . Let KH and NH be respectively the number of edges and
locations of H¬φ. Then MH¬φ × Zβ |=fin ](fZ) ≤ (KC ·NC) + 1.

Proof. We prove the lemma by induction on KH . Suppose KH = 0, i.e., there is no
edge. Therefore, there cannot be a reset of the variables and, therefore, the time spent
along a path of MH¬φ × Zβ must be less than β(X0) where X0 is the initial value of
X . Thus, fZ cannot be visited twice.

Suppose KH ≥ 1. First, note that, since MH¬φ × Zβ |= FG¬fZ , MH¬φ × Zβ
cannot have fair non-Zeno paths. Therefore, for every fair path σ of MH¬φ , there must
be a constraint (or more than one) of H¬φ that eventually blocks the transition to fZ in
Zβ . Suppose fZ is visited at least once (although for a finite number of times). Then,
there must exist an edge e of H¬φ that is eventually no more taken along σ. Therefore,
σ, after a certain point t, will coincide with a path of MH′ where MH′ is the encoding
of a PRHA H ′ obtained from H¬φ by removing e and setting as initial state the state
reached by σ at point t. Therefore MH′ × Zβ |= FG¬fZ and H ′ has KH − 1 edges.
Thus, by induction fZ must be visited less or equal than (KH − 1) ·NH + 1 times.

Finally we have to show that the number of times fZ is visited before t is less
than or equal to NH . Suppose by contradiction, fZ is visited NH + 1 times. Then,
at least one fair location of H¬φ is repeated so that we have a fair loop in the graph
of H¬φ. Due to the definition of Zβ , for any constraint g in the form x ≤ B (and
similar for the other cases), if x has a positive derivative and is not reset, g must become
false between two fair states. Thus, either g is not used along the loop or x is reset or
the derivative may be non positive. Since H is initialized, if the lower bound of the
derivative becomes non positive, x must be reset. Therefore, every variable involved
in a constraint along the path must be reset or the derivative can remain non-positive
never violating the constraint. This means that there would be an infinite fair non-Zeno
loop, which contradicts the hypothesis. We conclude that the number of times fZ can
be visited along σ is less than (KH − 1) ·NH + 1 +NH = (KH ·NH) + 1. ut

Theorem 2. If H |= φ, then there exists K such that MH ×M¬φ ×Zβ |=fin ](fZ) ≤
K.

Proof. Since there exists a one-to-one mapping between the paths of MH ×M¬φ×Zβ
and those ofMH¬φ×Zβ , by Lemma 1,MH×M¬φ×Zβ |=fin ](fZ) ≤ (KH ·NH)+1
where KH and NH are respectively the edges and locations of H¬φ. ut

good
ẋ = 0
ẏ = 1

bad
ẋ = 1
ẏ = 1
x ≤ 1

y := 0

y > 0

Fig. 4. Stopwatch automaton

If the hybrid automaton falls outside of the class of ini-
tialized PRHA with bounded non-determinism, K-ZENO
is still sound, but no longer guaranteed to be complete.
A simple counterexample is shown in Figure 4, in which
the stopwatch variable x is not reset when its dynamic
changes. The automaton satisfies the property (FGgood),
because the invariant on x and the guard on y make sure



that the total time spent in bad is at most 1 time unit. However, K-ZENO cannot prove
it with anyK because time can pass indefinitely in good, while x is stopped. Therefore,
it is always possible to visit bad and fZ an unbounded number of times. Finally, note
that K-ZENO is able to prove other properties such as for example that the stopwatch
automaton satisfies the formula GFgood.

4 Related Work

There are many works that focus on the verification of safety properties on hybrid sys-
tems [14–19], see [20] for a recent survey. We concentrate on the problem of liveness
and deal with a semantics based on infinite paths.

The problem of checking time progress is well known and efficient solutions for
TAs are based either on transforming the automaton in a strongly non-Zeno automa-
ton [21], forcing the original TA to move to an additional (non-accepting) location in
case of Zeno behavior, or on checking if from all reachable states, time can elapse from
the 1 time unit [22]. In UPPAAL, this is achieved by taking the product of the model
with a monitor automaton that changes state every c time units (where c is a “constant
set to a good value w.r.t. the rest of the model”) [23]. This approach is also used by
DIVINE [24], an explicit-state model checker that is capable of verifying LTL prop-
erties over UPPAAL models. The monitors that we use in K-ZENO can be seen as a
generalization of this approach. As discussed, using a constant is not enough for PTAs
and (P)RHAs. Our method uses as bounds for time progress symbolic expressions over
variables that change along a path.

A well-known reduction of liveness to safety is presented in [11]. The approach
uses copies of the state variables to store the value of a state and search for a fair loop.
In [25], the above technique is extended for different kinds of infinite-state systems
such as pushdown systems and TAs, but each reduction is ad-hoc for the specific class
of systems. A similar technique is also used in [26] for hybrid systems. The technique
is not sound in general for infinite-state systems because there are simple cases where
there are counterexamples but none of them has a lasso shape. So, it may be possible
that the invariant holds in the reduced system but the original property does not hold.
K-LIVENESS and K-ZENO are always sound: if the invariant holds for some K, then
the original property is true.

Restricted to timed automata, apart from DIVINE, the UPPAAL model checker [27]
does not support LTL, but a different fragment of temporal properties. However, this
fragment of temporal logic does not consider infinite Zeno paths, but it is based on finite
paths that possibly end in time-locks. A recent approach [28] considers LTL model
checking for TAs. However, the authors explicitly assume to have TAs without Zeno
paths. First, our approach differs since we allow Zeno paths in the model. Then, our
technique is more general, since we handle hybrid automata with parameters.

With respect to hybrid systems, an interesting liveness property is stability, which
requires that all the paths of the system eventually stay in a region. The work [29]
reduces the verification of stability properties to compute a special kind of relations,
called snapshot sequences, and to prove that these relations are well-founded. In prin-
ciple, the same approach could be used to verify general LTL properties. However, the



application of this technique to LTL properties seems not straightworward and we are
not aware of a publicly-available implementation with which to compare. Stability is
reduced to termination analysis also in [30], assuming non-Zeno hybrid automata (i.e.
bounded switching speed). In contrast, we focus on LTL properties and we take into
account Zeno paths. In [31] the authors consider the problem of LTL model checking
for discrete-time robust hybrid systems. Instead, we consider continuous-time systems.

Another line of work [32–34] for timed and hybrid systems focuses only on the
falsification problem (i.e. find a counterexample if the LTL property does not hold). For
timed automata, the work in [32] extends SMT-based BMC to search for a lasso-shaped
path in the region abstraction. The proposed encoding also removes Zeno paths and,
due to its nature, it could be used to complement our technique in the TA case to find
counterexamples. For hybrid systems, the approach presented in [33] falsifies an LTL
property by a randomized search while the one in [34] falsifies an MTL property under
robustness assumptions. Both approaches do not consider Zeno paths and are not able
to prove that a property holds.

Using the technique of [35], LTL model checking of infinite-state systems (includ-
ing hybrid automata) may be reduced to finding disjunctively well-founded transition
invariants, whose discovery can then be attempted with a solver for recursive Horn-like
clauses like HSF [36]. However, the current implementation of HSF does not handle
strict inequalities with real variables (e.g. A < B is converted into A + 1 ≤ B), and
thus it cannot be applied easily to real-time systems.

5 Experimental Evaluation

5.1 Implementation

We have implemented the K-ZENO algorithm on top of the SMT extension of IC3 de-
scribed in [7]. Given a symbolic systemM and an LTL property φ, we use HYCOMP [1]
(an extension of the NUSMV model checker) to generate the transition system M¬φ
and to compute the function β for the transition system Zβ(f, time,X) of Figure 2.
Zβ(f, time,X) is then added automatically to the system. In order to count the num-
ber of violations of fZ , we use a simple integer counter. We remark that, although the
completeness results hold only for initialized PHRA with bounded non-determinism,
our implementation supports a more general class of HAs with rectangular dynam-
ics. However, it currently can only be used to verify LTL properties, and not to dis-
prove them. If a property does not hold, our tool does not terminate. Similarly to the
Boolean case [10], our implementation consists of relatively few (and simple) lines
of code on top of IC3. Both the tool and the benchmarks used in the evaluation can
be downloaded at http://es.fbk.eu/people/griggio/papers/cav14-kzeno.
tar.bz2 for reproducing our results.

5.2 Benchmarks

We tried our approach on various kinds of benchmarks and properties.
Fischer family benchmarks. We considered 4 different versions of the Fischer mutual



exclusion protocol: the TA version from the UPPAAL distribution (Fischer), a paramet-
ric version (Fischer Param), a hybrid one (Fischer Hybrid), and one that ensures that
every request is eventually served (Fischer Fair). All the variants are scalable in the
number of processes involved, except for Fischer Fair that only considers 2 processes.
Distributed Controller [37] models the interactions of n sensors with a preemptive
scheduler and a controller. We scaled the benchmark increasing the number of sensors.
Nuclear Reactor [38] models the control of a nuclear reactor with n rods. The bench-
mark is scaled increasing the number of control rods in the reactor.
Navigation family benchmarks: the models are inspired by the benchmarks presented
in [39]. The benchmark describes the movement of an object in an nxn grid of square
cells. Independently from the initial position, the object will eventually reach and stay
in a target region. We created two versions of the benchmark, depending on whether
the initial position of the object is given (NavigationInit) or not (NavigationFree). The
benchmark is scaled by increasing the number of cells in the grid.
Diesel Generator [32]: the benchmark is an industrial model of an emergency diesel
generator intended for the use in a nuclear power plant. The benchmark has three dif-
ferent versions (small, medium, large).
Bridge: the benchmark is from the UPPAAL distribution and models the bridge and
torch puzzle. We used the same LTL properties used in the distribution of DIVINE [24].
Counter: the benchmark consists of an automaton with two locations,

bad
ẋo = 1
. . .

ẋn = 1
x0 ≤ 1

good
ẋo = 1
. . .

ẋn = 1

∀i ∈ [1, n], xi ≤ 1 ∧ xi−1 := 0

Fig. 5. Counter with n+ 1 clocks.

bad and good, and n + 1 clocks, x0, x1, . . . , xn.
The initial location bad has the invariant x0 ≤ 1
and a transition to good. bad has n self loops: each
i-th self loop has guard xi ≤ 1 and reset xi−1. The
automaton is shown in Figure 5. On this model
the LTL property (FG good) holds, since x0 will
eventually reach x = 1, forcing the transition to
good. The example is interesting because the ac-
tual K needed to prove the property depends on the number of edges of the model, as
shown in Lemma 1.

Note that the benchmarks fall in different classes: some of them are timed automata
(Fischer, Diesel Generator, Bridge, Counter), some are parametrized timed automata
(Fischer Param, Fischer Fair), some are initialized rectangular automata (Fischer Hy-
brid, Nuclear Reactor), while some have rectangular dynamics but are not initialized
(Distributed Controller, NavigationInit, NavigationFree).

We manually generated several meaningful LTL properties for the benchmarks of
the Fischer family, the Distributed Controller and the Nuclear Reactor. The prop-
erties match several common patterns for LTL like fairness (GFp), strong fairness
(GFp → GFq), and “leads to” (G(p → Fq)). Moreover, in several cases we added
additional fairness constraints to the common patterns to generate properties that hold
in the model. For the Bridge and Diesel Generator benchmarks we used the properties
already specified in the models. For the navigation benchmark we checked that eventu-
ally the object will stay forever in the “stability” region. Finally, we used the property
(FG good) in the Counter benchmarks.



Table 1. Selected experimental results.

# Bool # Real Trans
Instance Class Property vars vars size k Time
Fischer (8 processes) T (

∧17
i=1 GFpi)→ G(¬p18 → Fp18) 132 20 1286 3 6.37

Fischer Fair (2 processes) P (p1 ∧GFp2)→ G(p3 → Fp4) 38 12 622 4 76.14
Fischer Hybrid (10 procs) R (GFp1 ∧GFp2 ∧ FGp3)→ G(p4 → Fp5) 106 64 8759 1 325.03
Dist Controller (3 sensors) N (GFp1)→ (GFp2) 58 27 1737 1 397.24
Nuclear Reactor (9 rods) R G(p1 → Fp2) 82 24 3258 1 530.40
NavigationInit (3x3) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 16 8 808 2 4.37
NavigationInit (10x10) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 22 8 4030 2 453.74
NavigationFree (3x3) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 16 8 808 2 3.37
NavigationFree (9x9) N FG(p1 ∨ p2 ∨ p3 ∨ p4) 22 8 3461 2 872.07
Counter 10 T FGp 10 24 294 10 52.74
Diesel Gen (small) T G(p1 → F(¬p2 ∨ p3)) 84 24 724 1 16.55
Diesel Gen (medium) T G(p1 → F(¬p2 ∨ p3)) 140 30 1184 1 51.24
Diesel Gen (large) T G(p1 → F(¬p2 ∨ p3 ∨ p4)) 264 62 2567 1 538.39

Classes: T: timed, P: parametric timed, R: rectangular, N: non-initialized rectangular.

5.3 Evaluation

Effectiveness. In order to evaluate the feasibility of our approach, we have run it on a
total of 276 verification tasks, consisting of various LTL properties on the benchmark
families described above. Our best configuration could solve 205 instances within the
resource constraints (900 seconds of CPU time and 3Gb of memory). If instead we
consider the “Virtual Best” configuration, obtained by picking the best configuration for
each individual task, our implementation could solve 238 problems. We report details
about some of the properties we could prove in Table 1. On each row, the table shows the
model name, the class of instances it belongs to (timed, parametric, rectangular, non-
initialized rectangular), the property proved (with variables pi’s used as placeholders
for atomic propositions), the size of the symbolic encoding (number of Boolean and
Real variables, and number of nodes in the formula DAG of the transition relation), the
value of k reached by K-LIVENESS1, and the total execution time. We remark that we
are not aware of any other tool capable of verifying similar kinds of LTL properties on
the full class of instances we support.

Heuristics and Implementation Choices. We analyze the performance impact of dif-
ferent heuristics and implementation choices along the following dimensions:
Invariant checking engine. We have two versions of SMT-based IC3, one based on ap-
proximated preimage computations with quantifier elimination (called IC3(QE) here),
and one based on implicit predicate abstraction (IC3(IA)). Our recent results [7] in-
dicate that IC3(IA) is generally superior to IC3(QE) on software verification bench-
marks. However, the situation is less clear in the domain of timed and hybrid systems.
Incrementality. We compare our fully-incremental implementation of K-LIVENESS to a
non-incremental one, in which IC3 is restarted from scratch every time the K-LIVENESS

1 On most of the instances the value of k reached by K-LIVENESS is small. The explanation is
that, on real models, the number of constraints that must be violated inside a loop that contains
f¬φ before time diverges is usually low. The benchmarks of the Counter family were created
on purpose, to show that k can increase arbitrarily.
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Fig. 6. Experimental comparison of various configuration options.

counter is incremented.
Initial value of the K-LIVENESS counter. We consider the impact of starting the search
with a right (or close to) value for the K-LIVENESS counter k, instead of always starting
from zero, in IC3. For this, we use a simple heuristic that uses BMC to guess a value for
the counter: we run BMC for a limited time (20 seconds in our experiments), increasing
k every time a violation is detected. We then start IC3 with the k value found.

Overall, we considered six different configurations: IC3(IA) and IC3(QE) are the
default, incremental versions of K-LIVENESS with IC3, using either approximate quan-
tifier elimination or implicit abstraction; IC3(IA)-NOINCR and IC3(QE)-NOINCR are
the non-incremental versions; BMC+IC3(IA) and BMC+IC3(QE) are the versions
using a time-limited initial BMC run for computing an initial value for the K-LIVENESS
counter k. The six configurations are compared in Fig. 6, showing the number of in-
stances solved (y-axis) and the total execution time (x-axis). The figure also includes
the “Virtual Best” configuration, constructed by taking the best result for each individ-
ual instance.

Fig. 6 shows that, differently from the case of software verification, the default ver-
sion of IC3(QE) performs much better than IC3(IA). Although we currently do not
have a clear explanation for this, our conjecture is that this is due to the “bad quality” of
the predicates found by IC3(IA) in the process of disproving invariants when the value
of k is too small. Since IC3(IA) never discards predicates, and it only tries to add the
minimal amount of new predicates when performing refinements, it might simply get
lost in computing clauses of poor quality due to the “bad” language of predicates found.
This might also be the reason why IC3(IA)-NOINCR performs better than IC3(IA), de-
spite the runtime cost of restarting the search from scratch every time k changes: when
restarting, IC3(IA)-NOINCR can also throw away bad predicates. A similar argument
can also be applied to BMC+IC3(IA): using BMC to skip the bad values of k allows
IC3(IA) to find predicates that are more relevant/useful for proving the property with
the good (or close to) value of k.

The situation for IC3(QE) is instead completely different. In this case, not only
turning off incrementality significantly hurts performance, as we expected, but also
using BMC is detrimental. This is consistent with the behavior observed in the finite-
state case for the original K-LIVENESS implementation [10]. However, as the authors
of [10], also in this case we do not have a clear explanation for this behavior.
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Fig. 7. Comparison with DIVINE.

Comparison with Other Tools. We conclude our evaluation with a comparison of our
implementation with alternative tools and techniques working on similar systems. As
already remarked above, we are not aware of any tool that is able to handle arbitrary
LTL properties on the class of systems that we support. Therefore, we concentrate our
comparison only on Timed Automata, comparing with DIVINE [24]. We use a total of
64 instances from the Fischer, Bridge and Counter families. Unfortunately, we could
not include the industrial Diesel Generator model, since it is modeled as a symbolic
transition system, whereas DIVINE expects a network of timed automata (in UPPAAL
format) as input. However, the Diesel Generator benchmark was reported to be very
challenging for explicit-state approaches [32].

The results are shown in Fig. 7, where we compare DIVINE with our two best
configurations, BMC+IC3(IA) and IC3(QE). We can see that DIVINE is very fast
for simple instances, outperforming our tool by orders of magnitude. However, its
performance degrades quickly as the size of the instances increases. In contrast, both
BMC+IC3(IA) and IC3(QE) scale better to larger instances. This is particularly evi-
dent for BMC+IC3(IA): after having found a good initial value for the K-LIVENESS
counter with BMC, IC3(IA) can solve almost all the instances in just a few seconds.

6 Conclusions and Future Work

We presented a new approach to the verification of liveness properties on hybrid sys-
tems, in particular of LTL properties, with SMT-based techniques. The approach relies
on the K-LIVENESS idea of reducing the problem for finite-state systems to proving that
an accepting condition can be visited at most K times. The new algorithm, K-ZENO,
exploits the divergence of time to make the reduction succeed in proving properties on
hybrid systems. We prove that the reduction is complete for a class of parametric rectan-
gular hybrid automata. An extensive evaluation shows the effectiveness and scalability
of the approach.

There are various directions for future work. Some of our objectives are to find
optimizations for linear hybrid systems using relational abstraction [40], to apply the
approach to LTL satisfiability in order to enable compositional contract-based reason-
ing [?], and to extend the idea to deal with continuous-time temporal logics and first-
order theories different from reals.
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Formal Methods in System Design 26(3) (2005) 267–292
22. Tripakis, S.: Verifying Progress in Timed Systems. In: ARTS. (1999) 299–314
23. David, A., Larsen, K.: More features in UPPAAL
24. Barnat, J., Brim, L., Havel, V., Havlı́cek, J., Kriho, J., Lenco, M., Rockai, P., Still, V., Weiser,

J.: DiVinE 3.0 - An Explicit-State Model Checker for Multithreaded C & C++ Programs. In:
CAV. (2013) 863–868

25. Schuppan, V., Biere, A.: Liveness Checking as Safety Checking for Infinite State Spaces.
Electr. Notes Theor. Comput. Sci. 149(1) (2006) 79–96



26. Bresolin, D.: HyLTL: a temporal logic for model checking hybrid systems. In: HAS. (2013)
73–84

27. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2) (1997) 134–152
28. Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-core Empti-
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