
Noname manuscript No.
(will be inserted by the editor)

SMT-based Scenario Verification for Hybrid Systems

A. Cimatti · S. Mover · S. Tonetta

Abstract Hybrid automata are a widely used framework to model complex critical systems,
where continuous physical dynamics are combined with discrete transitions. The expressive
power of Satisfiability Modulo Theories (SMT) solvers can be used to symbolically model
networks of hybrid automata, using formulas in the theory of reals, and SAT-based verifica-
tion algorithms, such as bounded model checking and k-induction, can be naturally lifted to
the SMT case.

In this paper, we tackle the important problem of scenario-based verification, i.e. check-
ing if a network of hybrid automata accepts some desired interactions among the compo-
nents, expressed as Message Sequence Charts (MSCs). We propose a novel approach, that
exploits the structure of the scenario to partition and drive the search, both for bounded
model checking and k-induction. We also show how to obtain information explaining the
reasons for infeasibility in the case of invalid scenarios.

The expressive power of the SMT framework allows us to exploit a local time seman-
tics, where the timescales of the automata in the network are synchronized upon shared
events. The approach fully leverages the advanced features of modern SMT solvers, such as
incrementality, unsatisfiable core extraction, and interpolation. An experimental evaluation
demonstrates the effectiveness of the approach in proving both feasibility and unfeasibility,
and the adequacy of the automatically generated explanations.

Keywords SMT-based verification, network of hybrid automata, message sequence charts,
bounded model checking, k-induction

1 Introduction

Complex Embedded Systems (CES) consist of software and hardware components that op-
erate autonomous devices interacting with the physical environment. They are now part of
our daily life and are used in many industrial sectors including automotive, aerospace, con-
sumer electronics, communications, medical and manufacturing. CES are used to carry out
highly complex and often critical functions. They are used to monitor and control industrial
plants, complex transportation equipment, and communication infrastructure. The develop-
ment process of CES is widely recognized as a highly complex task. A thorough validation
and verification activity is necessary to enhance the quality of the CES and, in particular, to
fulfill the quality criteria mandated by the relevant standards.

CES are composed of many heterogeneous components, interacting with external en-
vironments, and deal with continuous and discrete dynamics. Networks of communicating

Alessandro Cimatti, Sergio Mover, Stefano Tonetta (Fondazione Bruno Kessler, Trento, Italy)
E-mail: {cimatti,mover,tonettas}@fbk.eu
∗This paper presents in a coherent and expanded form material that appears in the conference venues [11]
and [13].

2 A. Cimatti et al.

Hybrid Automata (HAs) [20] are increasingly used as a formal framework to model dis-
crete and continuous components and their interaction: local activities of each component
amount to transitions local to each hybrid automaton; communications and other events that
are shared between/visible for various components are modeled as synchronizing transitions
of the automata in the network; time elapse is modeled as shared timed transitions.

The framework of Satisfiability Modulo Theories (SMT) allows to symbolically model
networks of Linear HAs, using the Linear Real Arithmetic (LRA) Theory. SAT-based veri-
fication algorithms, such as bounded model checking (BMC) and k-induction, can be natu-
rally lifted to the SMT case in order to tackle reachability problems (see for instance [4]).

In this paper, we concentrate on the problem of scenario-based verification, checking if
a network of hybrid automata accepts some desired interactions among the components. We
use the language of Message Sequence Charts (MSCs) extended with constraints, to express
scenarios of such interactions. MSCs are especially useful for the end users because of their
clarity and graphical content. The ability to check whether a network of HAs may exhibit
behaviors that satisfy a given MSC is an important feature to support user validation.

In principle, the problem could be reduced to standard SMT-based verification, follow-
ing an automata-based approach compiling the MSC into an observer. The approach pro-
posed here, however, exploits the structure of the scenario to partition and drive the search,
both for BMC and k-induction. We rely on the use of an alternative, local time semantics [6]
for HAs, where each automaton can proceed based on its individual “local time scale”, re-
aligning its local clock on synchronizations with other automata. The local time semantics
enables a “shallow synchronization” [8], where traces of the network are obtained compos-
ing traces of the local automata by superimposing structure based on shared communication.

In the case of BMC, we propose an encoding that is structured around the events in
the MSC, which are used as intermediate “islands”. The idea is to pre-simplify fragments
of the encoding based on the events attached to the islands. The algorithm proceeds by
incrementally increasing the local paths between two consecutive islands and linking the
local path to the next island by means of equalities. The k-induction algorithm, that is used
to prove the MSCs unfeasibility, is specialized to the structure of the MSC, so that the
“simple path” condition is localized to the fragments between the events, rather than being
imposed globally on the whole network.

When a scenario is proved unfeasible, particularly in the case where the scenario is ex-
pected to be feasible, the end user is typically confronted with an “unsat” answer. In this
paper, we also provide techniques to obtain information explaining the reasons for unfeasi-
bility (e.g. which components are involved, which temporal restrictions between events in
the MSC are too strong).

The SMT framework is a key enabler for the whole approach. In terms of expressiveness,
the SMT language provides a natural symbolic representation for the local time semantics. In
terms of search, the approach fully leverages the advanced features of modern SMT solvers,
such as incrementality, unsatisfiable core extraction, and interpolation.

We implemented this approach within an extension of the NuSMV system, tightly inte-
grated with the MathSAT SMT solver. We carried out an extensive evaluation, over a wide
set of networks and benchmark MSCs. The tailored algorithms turn out to outperform the
corresponding approaches based on MSC-to-automata construction, and the application of
SMT-based techniques off-the-shelf. We also illustrate the effectiveness of the approach in
automatically generating adequate explanations with detailed case studies.

The paper is structured as follows. In Section 2 we present some background on SMT-
based verification. In Section 3 we discuss the framework of hybrid systems, and in Section 4
we present the scenario language. In Section 5 and in Section 6 we discuss the optimized

SMT-based Scenario Verification for Hybrid Systems 3

BMC and k-induction, respectively. In Section 7 we present the explanation techniques. In
Section 8 we discuss the experimental results. Comparison with related works is presented
in Section 9. In Section 10 we draw some conclusions and discuss future research directions.

2 SMT-based Verification of First-Order Transition Systems

2.1 Satisfiability Modulo Theories

Let Σ be a first-order signature containing predicates and function symbols with their ar-
ity. As in [17], in order to ease the presentation, we prefer not to use free variables in the
formulas, but to represent them with 0-arity predicates (Boolean variables) and (uninter-
preted) 0-arity functions. A Σ-term is built applying function symbols in Σ to Σ-terms. If
p is a predicate with arity n and t1, . . . , tn are Σ-terms, then p(t1, . . . , tn) is a Σ-atom.
A Σ-formula is a Σ-atom or a Boolean combination of Σ-atoms obtained using the usual
Boolean connectives ∧,∨,¬. In this paper we do not deal with quantified formulas (i.e.
formulas obtained using the universal ∀ and existential ∃ quantifiers).

A first-order Σ-theory T is a set of first-order sentences with signature Σ, where a
sentence is aΣ-formula without free variables. We assume that the symbols =,⊥, and> are
part of the language, even if it is not explicitly contained in the signature, and are interpreted
as the identity, false, and true, respectively. A Σ-structureM is a model of a Σ-theory T
ifM satisfies every sentence in T . A Σ-formula is satisfiable in T (T -satisfiable) if it is
satisfiable in a model of T . We write Γ |= φ to denote that the Σ-formula φ is a logical
consequence of of a set of formulas Γ . Satisfiability Modulo Theory T (SMT(T)) is the
problem of checking if a Σ-formula φ is satisfiable, for some background theory T .

In this paper, we consider the theory of Linear Arithmetic over Reals/Rationals, T (Q),
which uses the 0-arity function symbols {a}a∈Q, interpreted over the corresponding rational
numbers, the unary function symbols {a·}a∈Q, interpreted over the multiplication of the
argument by the rational number a, a set of 0-arity uninterpreted function symbols, and
the binary function symbols and predicate symbols +, <,≤, >,≥, 6=, interpreted with the
corresponding operations and relations over the rationals. The resulting language consists
of quantifier-free Boolean combinations of atoms in the form

∑
ai · xj ./ a, where xj is a

0-arity uninterpreted function symbol, ai, a ∈ Q and ./∈ {<,≤, >,≥, 6=} .
A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses. It is

well known that given a non-CNF formula we can obtain an equi-satisfiable CNF formula
in polynomial time. The unsatisfiable core for an unsatisfiable CNF formula φ is a formula
ψ such that ψ is unsatisfiable and φ = ψ ∧ ψ′, for a (possibly empty) formula ψ′.

Given two formulas A and B, with A ∧ B |= ⊥, the Craig interpolant of A ∧ B is a
formula I such that |= A → I , B ∧ I |= ⊥, and every uninterpreted symbol of I occurs
both in A and B. Intuitively, the interpolant is an over-approximation of A “guided” by B.

SMT solvers are tools to check if a first-order formula is satisfiable modulo a background
theory. They often provide functionalities to construct models and proofs of unsatisfiability,
and to extract unsatisfiable cores and Craig interpolants. Most modern SMT solvers also fea-
ture an incremental interface, i.e. they are able to tackle sequences of satisfiability problems
efficiently, by reusing theory information discovered during the previous searches.

We assume that the sequences of problems have the following form, where each problem
may inherit from the preceding one the variables and a substantial subset of sub-formulas:
γ(0) ∧ β(0)
γ(0) ∧ γ(1) ∧ β(1)

4 A. Cimatti et al.

γ(0) ∧ γ(1) ∧ γ(2) ∧ β(2)
...

The non-monotonicity of the encoding is handled with a standard stack-based interface
of the SMT solver (PUSH, ASSERT, SOLVE, POP primitives). This allows, after asserting
γ(k), to set a backtrack point (PUSH), assert β(k) (ASSERT), check the satisfiability of the
conjunction of the asserted formulas (SOLVE), and to restore the state of the solver (i.e.
asserted formulas and learned clauses) at the backtrack point (POP). This way, the k+1-th
problem is solved keeping all the learned clauses related to γ(0), . . . , γ(k).

2.2 First-Order Transition Systems (FOTS)

Given a first-order signature Σ, Σ′ is the signature obtained by replacing each symbol s in
Σ with a copy s′. A first-order transition system is a tuple S = 〈V,W, I, Z, T 〉 such that:

– V is a first-order signature;
– W is a first-order signature disjoint from V and V ′;
– I is a first-order formula over V (called initial condition);
– Z is a first-order formula over V (called invariant condition);
– T is a first-order formula over V ∪W ∪ V ′ (called transition condition).

Given a theory T over the signature V ∪W , a T -sequence is a sequence of T -models
s0; a1; s1; . . . ; ak; sk with the same domain, alternating states si and inputs ai. A T -sequence
π = s0; a1; s1; . . . ; ak; sk is a model of the transition system S = 〈V,W, I, Z, T 〉 iff:

– s0 satisfies I;
– for every 0 ≤ i ≤ k, si satisfies Z;
– for every 0 ≤ i < k, si ∪ ai+1 ∪ s′i+1 satisfies T , where the interpretation of a symbol

in V ′ by s′i+1 is the same as the interpretation of the “unprimed” version by si+1.

We say that π is a path of the FOTS S and that the sequence of inputsw = a1; . . . ; ak is
a trace of S. A path π = s0; a1; s1; . . . ; ak; sk accepts the trace w = a1; . . . ; ak. Given a
first-order formula φ over input variablesW , the projectionw|φ ofw on φ is the sub-trace of
w obtained by removing all ai in w such that ai 6|= φ. In practice, the sub-trace is restricted
to the assignments of the formula φ, which define a set of inputs of the FOTS.

Remark 1 In order to keep the notation as simple as possible, the above definition does
not distinguish symbols that are rigid and interpreted by T from the actual variables of the
system. We assume that such symbols do not occur as “primed” in the transition condition
although their interpretation is the same in all states of a sequence.

2.3 SMT-based Bounded Model Checking of FOTS

Given a set of symbols V , we denote with V i = {si|s ∈ V } the set of copies indexed with
i. Given a formula ψ(V) over the variables V , we denote with ψ(V i) (or simply ψi when V
is clear from the context) the formula obtained by replacing all the variables v ∈ V with vi.
Given a formula ψ(V,W, V ′) over the variables V,W, V ′, we denote with ψi the formula
obtained replacing all the variables v ∈ V with vi,w ∈ W withwi, and v′ ∈ V ′ with vi+1.

Given a FOTS S = 〈V,W, I, Z, T 〉 and a target property target over the variables in V ,
the Bounded Model Checking (BMC) problem consists of determining if target is reachable

SMT-based Scenario Verification for Hybrid Systems 5

in S in k steps (i.e. if there is a path π = s0; a1; s1; . . . ; ak; sk in S such that sk |= target).
We encode the BMC problem as follows:

path(k) := I0 ∧
k∧
i=0

Zi ∧
k−1∧
i=0

T i, BMC(k) := path(k) ∧ targetk

The formula BMC(k) is satisfiable iff there exists a path from the initial state of S to a
state in target of length k. An SMT solver is used to query for the satisfiability ofBMC(k).

When we solve the reachability problem incrementally, we look for a k such that the
formula BMC(k) is satisfiable. The problem is presented to the solver in the following
form: γ(0) := I0 ∧ Z0, γ(i) := T i−1 ∧ Zi, for i > 0, and β(i) := targeti, for i ≥ 0.

2.4 SMT-based K-induction of FOTSs

K-induction [35] is a technique that proves that if a set of states is not reachable in k steps,
then it is not reachable at all. On the lines of the induction principle, it consists of a base
step, which solves the bounded reachability problem with a given bound k, and an inductive
step, which concludes that k is sufficient to solve the (unbounded) reachability problem. The
idea of the inductive step is to check either if the initial states cannot reach new (non-visited)
states in k + 1 steps, or the target set of states cannot be reached in k + 1 steps by a path
s0, . . . , sk+1, where the target does not hold in si, for i < k+1. These checks can be solved
by means of satisfiability. Hereafter, we will consider only the first condition because it is
more effective for the problem of MSC feasibility, but the whole framework can be easily
extended to use both conditions.

The formula simple(k) :=
∧

0≤i<j≤k ¬
∧
v∈V v

i = vj can be used to strengthen
the path encoding to represent only simple (loop-free) paths. If the formula kind(k) :=
path(k + 1) ∧ simple(k + 1) is unsatisfiable, then there is no initial simple path with more
than k states. Thus, if, for all i ≤ k, path(k) ∧ targetk is unsatisfiable and kind(k) is
unsatisfiable as well, then target is not reachable.

If the target is not reachable in a finite-state FOTS, there is a k for which the above
conditions are unsatisfiable. In hybrid systems, it is very common that the FOTSs contain
infinite paths, typically with monotonically increasing variables (such as the local time) and,
therefore, it is difficult to apply k-induction.

In [36], k-induction has been integrated with predicate abstraction [18] to deal with
infinite-state systems. Typically, an abstraction defines an equivalence relation EQα among
the concrete states that are not distinguished by the abstraction. As for predicate abstraction,
given a certain set P of predicates over the variables V , the equivalence relation is defined
as EQP(V, V) :=

∧
P∈P P (V)↔ P (V).

Abstract k-induction embeds the definition of the predicate abstraction in the encoding
of the path. In particular, the formula pathα(k) := I(V 0) ∧ EQα(V 0, V 0) ∧

∧
1≤h≤k

(T (V h−1,Wh, V h)∧EQα(V h, V
h))∧

∧
0≤h≤k(Z(V

h)∧Z(V h)) is satisfiable iff there
exists an initial path of k steps in the abstract state space. The formula simpleα(k) is de-
fined as simpleα(k) :=

∧
0≤i<j≤k ¬EQα(V

i, V j). Finally, the formula kindα, defined as
kindα(k) := pathα(k) ∧ simpleα(k), is satisfiable iff there exists an initial simple path of
length k.

Similarly to the concrete case, if, for all i ≤ k, pathα(k) ∧ targetk is unsatisfiable
and kindα(k) is unsatisfiable as well, then target is not reachable in the abstraction (and
therefore neither in the concrete state space).

6 A. Cimatti et al.

3 SMT-based Verification of Hybrid Automata Networks

3.1 Hybrid Automata Networks (HAN)

A Hybrid Automaton (HA) [20] is a tuple 〈Q,A,Q0, R,X, µ, ι, ξ, θ〉 where:

– Q is the set of states,
– A is the set of events,
– Q0 ⊆ Q is the set of initial states,
– R ⊆ Q×A×Q is the set of discrete transitions,
– X is the set of continuous variables,
– µ : Q→ P (X, Ẋ) is the flow condition,
– ι : Q→ P (X) is the initial condition,
– ξ : Q→ P (X) is the invariant condition,
– θ : R→ P (X,X ′) is the jump condition,

where Ẋ represents the derivative of the variables X during a continuous evolution and P
represents the set of predicates over the specified variables.

A Linear HA (LHA) is an HA where all the conditions are Boolean combinations of
linear inequalities and the flow conditions contain variables in Ẋ only. We assume also that
the invariant condition of a LHA is a conjunction of inequalities.

A network N of HAs is the parallel composition of two or more HAs. In the following,
we consider a networkN = H1|| . . . ||Hn of HAs withHi = 〈Qi, Ai, Q0i, Ri, Xi, µi, ιi, ξi, θi〉
such that for all 1 ≤ i < j ≤ n Xi ∩ Xj = ∅ (i.e. the set of continuous variables of the
hybrid automata are disjoint). Also, we denote with τi the set of local events of the i-th
component, i.e., τi = Ai \

⋃
j 6=iAj .

3.2 FOTS-based Semantics of HAN

We consider the local-time semantics of [6], where time progresses in each component with
a local scale by enriching all shared events with time-stamps and synchronizing the compo-
nents on shared events forcing the time-stamps to be equal.

We define the semantics of a network of LHAs in terms of the FOTS SLOCTIME(N). More
specifically, we associate to a networkN = H1|| . . . ||Hn a set of FOTSs S1, . . . , Sn, with
Si = 〈Vi,Wi, Ii, Zi, Ti〉, and a synchronization constraint SYNC over the union of the Vi
and Wi. SLOCTIME(N) = 〈V,W, I, Z, T 〉 where: V =

⋃
i Vi; W =

⋃
iWi; I =

∧
i Ii;

Z =
∧
i Zi; T =

∧
i Ti ∧ SYNC.

The definition of the FOTS Si uses the following additional variables: a set of Boolean
variables {l(i,1), . . . , l(i,dlog(|Qi|)e)} that represents the current location of Hi; a set of
Boolean variables {a(i,1), . . . , a(i,dlog(|Ai∪{T,S}|)e)} that represents the set of events taken
byHi at the current step, with two distinguished values T and S, representing a timed transi-
tion and stuttering, respectively; an additional local real-valued variable ti to track the total
time elapsed in Hi. An assignment to the variables {l(i,1), . . . , l(i,dlog(|Qi|)e)} determines
the current location q ofHi. For clarity, we will denote this assignment with loci = q. Simi-
larly, we will write εi = a for the assignment to the variables {a(i,1), . . . , a(i,dlog(|Ai∪{T,S}|)e)}
used to encode that the current event is a. If E is a set of events, we denote with εi ∈ E the
formula over these variables encoding all the assignments corresponding to the events in E.

The elements of Si are defined as follows:

– Vi := {l(i,1), . . . , l(i,dlog(|Qi|)e)} ∪ {ti} ∪Xi;

SMT-based Scenario Verification for Hybrid Systems 7

– Wi := {a(i,1), . . . , a(i,dlog(|Ai∪{T,S}|)e)};
– Ii := ti = 0 ∧

∧
q∈Qi(loci = q → ι(q)(Xi));

– Zi :=
∧
q∈Qi(loci = q → ξ(q)(Xi));

– Ti := STUTTERi∨
∧
q∈Qi(loci = q → (TIMEDi,q∨

∨
〈q,a,q′〉∈Ri UNTIMEDi,〈q,a,q′〉))

with
– STUTTERi := εi = S ∧ ti = t′i ∧ loc′i = loci ∧

∧
x∈Xi x

′ = x;

– TIMEDi,q := εi = T ∧ loc′i = loci ∧ t′i > ti ∧ µi(q)
(t′i−ti)(Xi, X

′
i)

– UNTIMEDi,〈q,a,q′〉 := εi = a ∧ loc′i = q′ ∧ t′i = ti ∧ θi(〈q, a, q′〉)(Xi, X ′i)
where µi(q)

(t′i−ti) is a formula in LRA over Xi and X ′i . Recall that µi(q) is of the
form

∑
a · ẋ ./ b, for some a ∈ R, x ∈ Xi, ./∈ {<,≤, >,≥,=, 6=}. We replace

each ẋ in µi(q) by x′
i−xi
t′i−ti

, and we remove the denominator since t′i > ti, obtaining

µi(q)
(t′i−ti) :=

∑
a · (x′i − xi) ./ (t′i − ti) · b.

The formula SYNC is defined as follows:

SYNC :=
∧

1≤j<h≤n

∧
a∈Aj∩Ah

(εj = a↔ εh = a) ∧ (εj = a→ tj = th)

∧
∧

a∈(Aj\Ah)∪{T}

(εj = a→ εh = S)

∧
∧

a∈(Ah\Aj)∪{T}

(εh = a→ εj = S)

A variant, called step semantics, allows to have independent transitions in parallel:

SYNCstep :=
∧

1≤j<h≤n

∧
a∈Aj∩Ah

(εj = a↔ εh = a) ∧ (εj = a→ tj = th)

We say that a state sk of SLOCTIME(N) is synchronized iff for 1 ≤ i < j ≤ n, ti = tj ,
i.e., the local times are equal. We say that a path π = s0; a1; s1; . . . ; ak; sk of the FOTS
SLOCTIME(N) is synchronized if sk is a synchronized state.

The paths of the network N are given by the synchronized T -paths of SLOCTIME(N),
where T is the theory of LRA.

3.3 Specialized BMC

In order to solve the reachability problem in a network of LHAs, we can use BMC and unroll
the transition relation for a bounded number of steps. However, this requires each component
to perform the same number of steps in order to reach the target. If some components can
reach the target in less steps, they are forced to stutter.

In [8], a more shallow synchronization is required among the components resulting in
local runs free of stuttering. Basically, instead of unrolling the composition of the Si, the
BMC encoding of each component is built with an independent bound. A global (often more
complex) synchronization constraint guarantees that the sequence of events and their time-
stamps are compliant with the semantics of the composition.

Another interesting optimization is the alternation of discrete and timed transitions,
first proposed in [4]. The idea consists of using different transition conditions for odd and

8 A. Cimatti et al.

even steps during the unrolling. In particular, TT,i :=
∧
q∈Qi(loci = q → (STUTTERi ∨

TIMEDi,q)) can be used in even steps, while TD,i :=
∧
q∈Qi(loci = q → (STUTTERi ∨∨

〈q,a,q′〉∈Ri UNTIMEDi,〈q,a,q′〉)) in odd steps.
With k-induction, the alternation is fundamental to allow a concrete search to close.

In fact, without forcing the alternation, the system will likely have infinite loop-free paths
where timed transitions change some continuous variables infinitely often.

However, in order to enhance k-induction with alternation, the encoding of stutter tran-
sitions, which usually are not allowed when checking the loop-free condition, must be taken
into account. TT,i must allow to stutter: if it is not the case, then the alternation imposed in
the encoding will not allow to execute two consecutive discrete transitions, where time does
not elapse. Thus, the loop-free condition of k-induction must be relaxed in order to allow
stutter in TT,i. TD,i must not stutter: stutter transitions in the odd steps make the alternation
ineffective, since they allow infinite loop-free paths. Avoiding stutter does not prevent to
visit all the reachable states: a single timed transition can reach the same states reached by
two timed transitions interleaved with a stutter transition, covering a bigger time elapse.

4 Scenario Verification for HAN

In order to support user validation, it is very important to be able to check whether a HAN
may exhibit behaviors that satisfy a certain scenario, specifying some desired or undesired
interactions among the components. We use the language of Message Sequence Charts
(MSCs) [22] and its extensions to express scenarios of such interactions.

An MSC defines a single (partial-order) interaction of the components of a networkN =
H1|| . . . ||Hn. MSCs have been extended in several ways. We consider here a particular
variant, enriched with additional constraints, which turns out to be very useful and easy to
handle with the SMT-based approach.

An MSC m is associated with a set of events Am ⊆ AN , where AN =
⋃

1≤i≤nAi
is the set of all the events of the network N . The typical implicit assumption is that the
set Am contains all the synchronization events of the network. Since we are dealing with
networks of hybrid automata the timed event is not part of Am and, thus, is not present in
the sequence of events specified by the MSC. Therefore, we assume that if N is a network
of the hybrid automata H1, . . . , Hn with alphabet respectively A1, . . . An, then Am =⋃

1≤i<j≤nAi ∩Aj and thus the timed event is not part of Am1.
The MSC defines a sequence of events for every component Hi of the network, called

instance of Hi. An instance σi of Hi is a sequence a1; . . . ; al ∈ (Am ∩ Ai)∗ of events of
Hi. We denote the j-th event aj of the instance σi with σi[j] and the length of σi with |σi|.
Along each instance line σi there is a finite set of local segments {lsg(σi[0]), . . . , lsg(σi[l])}
which denote the position between two consecutive events: lsg(σi[j]) is the local segment
between the j-th event and the j + 1-th event of σi. The first local segment from the be-
ginning of the instance to the first event is lsg(σi[0]) and the final local segment after the
|σi|-th event is lsg(σi[l]).

Hi accepts the instance σi with respect to Am iff the FOTS Si of Hi accepts σi with
respect to Am (Si |=m σi). Si |=m σi iff there exists a trace w accepted by Si such that
the sub-sequence of events in Am of w is equal to σi (i.e. w|∨a∈Am ε=a = σi). In this case
we say that w is compatible with σi. In other words, Si accepts the instance with respect to

1 The techniques presented in this paper can be adapted to handle synchronizations wich are not in Am.

SMT-based Scenario Verification for Hybrid Systems 9

Am iff there exists a path π of Si over a trace compatible with σi. In such cases, we write
π |=m σi.

If π |=m σ, π must be in the form s0; ε = τ ; . . . ; ε = τ ; sh1
; ε = σ[1]; s(h1+1); ε = τ ;

. . . ; ε = τ ; sh|σ| ; ε = σ[|σ|]s(h|σ|+1); ε = τ ; . . . ; ε = τ ; sh(|σ|+1)
, where sh is a model over

the state variables Vi of Si and τ are local events ofHi. We denote the sub-sequences of the
path π in which it is split by σ as follows:

– prej(π) = shj is the source state of the transition labeled with ε = σ[j] in π.
– postj(π) = shj+1 is the destination state of the transition labeled with ε = σ[j] in π.
– locj(π) = shj+1; . . . ; shj+1

is the sequence of states between the j-th and the j + 1-th
shared events, where we denoted 0 with h0.

An MSC is the parallel composition σ1|| . . . ||σn where σi is an instance of Hi. An
MSC σ1|| . . . ||σn is consistent iff for every pair of instances σi and σj the projection on the
common alphabet is the same, i.e., if A = Ai ∩ Aj , σi|A = σj|A. Henceforth, we assume
that the MSCs are consistent.

The network N accepts the MSC m iff the FOTS SLOCTIME(N) = S1|| . . . ||Sn ac-
cepts m (SLOCTIME(N) |= m). SLOCTIME(N) |= m iff there exists a trace w accepted by
SLOCTIME(N) such that, for every Si, the sub-sequence of events in Am ∩ Ai is equal to σi
(w|(∨a∈Am ε=a) = σi). In other words, SLOCTIME(N) accepts the MSC m iff there exists a
path of SLOCTIME(N) over a trace compatible with every instance of the MSC.

GateControllerTrain

Exit

Raise

Lower

Approach

Fig. 1 An MSC for the Train-Gate-Controller [20].

Vm :=
⋃

1≤i≤n Vσi is the set of
variables of the CMSC m, where for all
1 ≤ i ≤ n, Vσi :=

⋃
0≤j≤(|σi|+1) V

j
i

(e.g. vji represents the value of the vari-
able vi of the i-th component just before
the j-th event σi[j] of σi). We define
a Constrained MSC (CMSC) as a pair
〈m,φ〉wherem is an MSC σ1|| . . . ||σn,
φ = φ0 ∧φ1 ∧ . . .∧φn, φ0 is a formula
over Vm and for all 1 ≤ i ≤ n, φi is
a formula over V ji . Given a path π =
s0; a1; s1; . . . ; ak; sk of NLOCTIME(H),
the projection of π over Si is the path
prj(π, i) obtained projecting the states over the Si-th component and removing all the tran-
sitions over events which are not in Ai. SLOCTIME(N) |= 〈m,φ〉 iff there exists a path π of
SLOCTIME(N) such that

⋃
1≤i≤n,0≤j≤|σi| prej(prj(π, i)) |= φ.

Example 1 Figure 1 shows an MSC for the railroad model from [20]. There is an instance
for each automaton in the network, Train, Controller and Gate. The MSC represents a sce-
nario where the Train communicates with the controller when approaching the Gate and the
controller synchronizes with the Gate to close it. When the Train is far, it synchronizes with
the Controller, which opens the Gate.

The model checking problem for a CMSC 〈m,φ〉 is the problem of checking if a net-
work satisfies a CMSC. The classical approach is based on the construction of a monitor
that, composed with SLOCTIME(N), forces SLOCTIME(N) to follow only paths that satisfy the
MSC. It is in spirit similar to the automata-approach to LTL model checking [37]. The SMT-
based verification techniques are applied off the shelf on the resulting FOTS. The monitor
can be one additional component in the network or consist of many components one for each

10 A. Cimatti et al.

instance of the CMSC. Exploiting local-time semantics, the monitor can also be reduced to
follow one interleaving of the partial-order reduction defined by the CMSC. However, the
experimental analysis of [11] shows that the best option is to use a monitor per component.

5 Scenario-driven BMC

The drawbacks of the traditional SMT-based encoding is that it cannot exploit the sequence
of messages prescribed by the MSC in order to simplify the search because of the uncertainty
on the number of local steps between two events. We encode the path of each automaton
independently, exploiting the local time semantics, and then we add constraints that force
shared events to happen at the same time, as in shallow synchronization [8]. Moreover, we
fix the steps corresponding to the shared events and we parametrize the encoding of the
local steps with a maximum number of transitions. The encoding is conceived in order to
maximize the incrementality of the solver, as described in Section 2, along the increase of
the number of local steps. The idea is that we keep the encodings of the sequences of local
transitions separated from the encoding of the encoding of the next shared event, and we
unroll them incrementally, while we add and remove accordingly the equality constraints
which glue such sequences. Note that the encoding of a sequence of local transitions does
not fix the exact number of local transitions, since we allow the stutter action. This because
we do not known a priori what will be the exact length of each local path.

Let us consider a network N = H1|| . . . ||Hn of LHAs and the correspondent FOTS
Si = 〈Vi,Wi, Ii, Zi, Ti〉, representing Hi, for 1 ≤ i ≤ n, in the local-time semantics. We
denote with Ti|φ the transition condition restricted to the condition φ, i.e., Ti|φ = Ti ∧ φ.
We abbreviate Ti|ε=a with Ti|a and Ti|ε∈τi∪{S,T} with Ti|τ . We associate a bound ki[j]
to the j-th segment lsg(σi[j]) of the i-th instance. ki[j] is used to limit the number of
transitions in the local path locj(π) of a path π satisfying the instance σi. We use ki to
denote 〈ki[0], . . . , ki[h|σi|]〉 and k to denote 〈k1, . . . , kn〉. Moreover, for all 1 ≤ i ≤ n
and 0 ≤ j ≤ |σi|, we define the index idxi[j] such that idxi[0] = −1 and if 〈i, j〉 6= 〈i, j′〉
then idxi[j] + h 6= idxi[j′] + h′ for all h, h′ with 0 ≤ h ≤ ki[j] and 0 ≤ h′ ≤ ki[j

′] (i.e.
the indexes of two different segments do not overlap).

The following encoding represents all paths of the network compatible with the MSC
where the local transitions of the j-th segment of the i-th instance have been unrolled up to
ki[j] times (note that the “up to” is due to the ability of stuttering):

enc(m, k) :=
∧

1≤i≤n

enc(σi, ki) ∧
∧

1≤j<i≤n

sync(σj , σi) ∧ finalsync(m, k)

enc(σi, ki) := I0i ∧ Z0
i ∧ enc(σi, ki[0]) ∧

∧
1≤j≤|σi|

(V idxi[j−1]+ki[j−1]+1 = V idxi[j] ∧

T
idxi[j]
i|σi[j] ∧ Z

idxi[j]
i ∧ enc(σi, ki[j]))

enc(σi, ki[j]) :=
∧

1≤h≤ki[j]

(T
idxi[j]+h
i|τ ∧ Z idxi[j]+h

i)

sync(σj , σi) :=
∧

1≤z≤|σj|A{i,j}
|=|σi|A{i,j}

|

t
idxi[f

ij
i (z)]

i = t
idxj [f

ij
j (z)]

j

finalsync(m, k) :=
∧

1≤i<n,j=i+1

(t
idxi[|σi|]+ki[|σi|]+1
i = t

idxj [|σj |]+kj [|σj |]+1
j)

SMT-based Scenario Verification for Hybrid Systems 11

where A{i,j} = Ai ∩ Aj and the function f iji maps the z-th event az shared between
σi and σj to the index of az in σi. More, specifically, if σj|A = σi|A = a1; . . . al, then
f iji , f

ij
j : N→ N are such that az = σi[f

ij
i (z)] = σj [f

ij
j (z)], for 1 ≤ z ≤ l.

Intuitively, enc(m, k) encodes the unrolling of each component according to its instance
and guarantees that the different unrollings have the same time for every occurrence of a
shared event and the same final time. In order to encode the paths that satisfy a CMSC
〈m,φ〉 we have just to conjoin the additional constraints φ:

enc(〈m,φ〉, k) := enc(m, k) ∧ φ[vidxi[j]
i /vi[j]]

where for all the instances i, 1 ≤ i ≤ n, and all events j, 1 ≤ j ≤ |σi|, we substitute vi[j]
in φ with the timed variable vidxi[j]

i .

Theorem 1 If enc(〈m,φ〉, k) is satisfiable then N |= 〈m,φ〉. Vice versa, if N |= 〈m,φ〉,
then there exist integers k such that enc(〈m,φ〉, k) is satisfiable.

TT |τ TT |Approach TT |τ TT |Exit TT |τ

TC|τ TC|Approach TC|τ TC|Lower TC|τ TC|Exit TC|τ TC|Raise TC|τ

TG|τ TG|Lower TG|τ TG|Raise TG|τ

V 1 = V idxC [1] V idxC [1]+kT [1]+1 = V idxC [2] V idxC [2]+kT [2]+1 = V idxC [3] V idxC [3]+kT [3]+1 = V idxC [4]

V 1 = V idxT [1] V idxT [1]+kT [1]+1 = V idxT [2]

V 1 = V idxG[1] V idxG[1]+kT [1]+1 = V idxG[2]

tC = tT tC = tT

tC = tT

tC = tG tC = tG

tC = tT

Fig. 2 Encoding for the Train-Gate-Controller MSC fixing to 1 the length of all the local bounds.

Example 2 The Figure 2 shows the encoding of the MSC of Example 1, fixing the length of
all the local steps to 1 (we abbreviated the name of the components with their initial letter).
Each sequence of states represents the encoding for a single instance of the MSC, the double
arrows represent the links of the local segments with the shared events, and the dotted lines
represent the equalities over the local time variables.

In the following, we detail how we increase the bound of the local transitions incremen-
tally adding new constraints to the solver. We consider the same number k of local steps
for each segment of the CMSC. This simplifies the algorithm because it is not necessary to
decide which segment to increment and reduces the number of calls to the SMT solver.

With regard to the formulas introduced in Section 2, we define the partial encoding for
an instance σi as follows:

γenc(σi)(0) := I0i ∧ Z0
i ∧

∧
1≤j≤|σi|

T
idxi[j]
i|σi[j] ∧ Z

idxi[j]
i

γenc(σi)(k) :=
∧

0≤j≤|σi|

T
idxi[j]+k
i|τ Z

idxi[j]+k
i

βenc(σi)(k) :=
∧

0≤j<|σi|

V idxi[j]+k+1 = V idxi[j+1]

12 A. Cimatti et al.

For each instance σi we encode the initial condition and all the |σi| events in γenc(σi)(0).
We incrementally increase the length of the local step in γenc(σi)(k) and in βenc(σi)(k),
which glues the last state of a sequence of local steps with the first state that performs the
next shared event.

The incremental encoding considering the whole MSC m is defined as follows:

γ(0) :=
∧

1≤i≤n

γenc(σi)(0) ∧
∧

1≤i<j≤n

sync(σi, σj)

γ(k) :=
∧

1≤i≤n

γenc(σi)(k)

β(k) :=
∧

1≤i≤n

βenc(σi)(k) ∧ finalsync(m, k)

6 Scenario-driven Induction

In this section, we describe how the structure of the MSC can be exploited to tailor k-
induction to prove the unfeasibility of the scenario. For the base case, we use the encoding
of Section 5. For the inductive step, we apply the simple path condition to each segment of
the scenario. The use of different local bounds as presented in Section 5 allows k-induction
to stop the unrolling of the local path at different depths according to the local structure of
the component at the considered segment.

The goal is to find an inductive condition kind(〈m,φ〉, k) such that, if kind(〈m,φ〉, k)
and enc(〈m,φ〉, k) are unsatisfiable for some k , thenN 6|= 〈m,φ〉. It is not possible to ap-
ply the simple path condition independently to each segment of the encoding. There exists
two main difficulties. The first is that the projection of a simple path on a component may
not be a simple path. The second is that if a simple path is the concatenation or the parallel
composition of two paths, these may be not the longest simple paths of their segments.

The CMSC 〈m,φ〉 defines a partial order ≤m among the segments of m defined as the
transitive closure of the smallest relation such that:

– lsg(σi[j]) ≤m lsg(σi[j′]) if 0 ≤ j ≤ j′ ≤ |σi|;
– lsg(σi[j]) ≤m lsg(σi′ [j′]) if lsg(σi[j]) = lsg(σi′ [j′]) or there exists a lsg(σi′′ [j′′])

such that there is a synchronization between σi[j] and σi′′ [j′′] and lsg(σi′′ [j′′]) ≤m
lsg(σi′ [j′]).

Given a CMSC 〈m,φ〉 and the local segment lsg(σi[j]), 〈mi[j], φi[j]〉 is partial CMSC
where:

– mi[j] = σ1|| . . . ||σn such that for all 1 ≤ v ≤ n, |σv| ≤ |σv| and for all 1 ≤ z ≤ |σv|
σv[z] = σv[z] and lsg(σv[z]) ≤m lsg(σi[j]) or lsg(σv[z]) = lsg(σi[j]), while for all
|σv| < z ≤ |σv| lsg(σv[z]) 6≤m lsg(σi[j]).

– φi[j] is the conjunction of all the conjuncts of φ which are over variables in mi[j].

We define the local simple path condition as follows:

kindi[j] := enc(〈mi[j], φi[j]〉, k) ∧ simplei[j]

simplei[j] :=
∧

1≤h≤z≤ki[j]

s
idxi[j]+h
i 6= s

idxi[j]+z
i

SMT-based Scenario Verification for Hybrid Systems 13

Theorem 2 If there exist k s.t. enc(〈m,φ〉, k) is unsatisfiable and, for all i, j, kindi[j] is
unsatisfiable, thenN 6|= m.

In order to check if k-induction holds incrementally, we visit the MSC m according to
the partial order ≤m. We incrementally apply the partitioned simple path condition to the
local segments of m. The incremental checks exploit the incremental interface of the solver.

The structure of local transitions between two shared events is often simple and without
loops. In these cases, the alternation without stuttering allows k-induction to prove the un-
feasibility of scenarios. If there exists a loop in the local structure of the automaton (i.e. a
loop where all the transitions are labelled with a local event), due to the infinite nature of the
state space we may have an infinite path in the system without loops, so that the simple-path
condition never holds. In order to prove the unfeasibility of scenarios also in these cases,
we combine k-induction with predicate abstraction as described in Section 2.4. We can asso-
ciate to different segments of the MSC different abstractions of the local transition relation.
This way, we can obtain a fined-grained abstraction which abstracts away the continuous
components only where necessary.

7 Unfeasibility Explanation

In the case the CMSC 〈m,φ〉 is unfeasible in the networkN we provide the user with expla-
nations which help to identify the reasons of the unfeasibility of the CMSC. In this section
we first describe what kind of explanations we provide, their formalization and how we
compute them. Then, we present three different case studies where we use the unfeasibility
explanation to infer the cause of the unfeasibility of the scenario.

We identify the following three types of explanations:

1. an unfeasible prefix of the CMSC, which reduces the number of events and constraints
to be inspected by a user to find a bug (either in the scenario or in the network);

2. why the paths of the network consistent with m cannot satisfy φ. The explanation is a
formula that helps the user to understand the behaviours of N that are not consistent
with φ;

3. why the paths of a component consistent with the corresponding instance of m are not
consistent with the rest of m: this formula helps the user in detecting if a component is
involved in the unfeasibility and, in that case, what synchronization constraints are not
consistent with the other components in the network.

A prefix of a CMSC 〈m,φ〉 is a CMSC 〈m,φ〉 such that: m := σ1|| . . . ||σn and m is
consistent; for all 1 ≤ i ≤ n, |σi| ≤ |σi| and for all 1 ≤ j ≤ |σi|, σi[j] = σi[j]; φ contains
only the conjunct of φ over the variables Vm.

Given a CMSC 〈m,φ〉 and a network N such that N 6|= 〈m,φ〉, the unfeasibility
explanation of the first type is an unfeasible CMSC prefix 〈m,φ〉 of 〈m,φ〉.

Given a path πi |= σi and a tuple of bounds ki := 〈ki[0], . . . , ki[|σi|]〉, where ki[j] is
the length of a local segment, we say that πi is bounded by ki if for all 0 ≤ j ≤ |σi| the
length of lsg(σi[j]) in πi is ki[j]. Given a path π of SLOCTIME(N) compatible with m and
k := 〈k1, . . . , kn〉, where ki is a tuple of bounds, we say that π is bounded by k iff for all
1 ≤ i ≤ n, prj(π, i) is bounded by ki.

Given a CMSC 〈m,φ〉 unfeasible inN and bounds k , an explanation of the second type
is a formula ψ over Vm such that N ‖ m |=k ψ and ψ ∧ φ |= ⊥, where N ‖ m |=k ψ iff
for all π of SLOCTIME(N) bounded by k ,

⋃
1≤i≤n,0≤j≤|σi|+1 prej(prj(π, i)) |= ψ.

14 A. Cimatti et al.

Given a CMSC 〈m,φ〉 unfeasible in N and bounds k , an explanation of the third type
is a formula ψi over Vσi such that Si ‖ σi|φi |=k ψi and ‖j 6=i Sj ‖ σj|φj |=k ¬ψi. Si ‖
σi|φi |=k ψi iff for all paths πi of Si bounded by ki

⋃
0≤j≤|σi|+1 prej(πi) |= ψi and ‖i6=j

Sj ‖ σj|φj |=k ¬φ iff for i 6= j, for all πj bounded by kj ,
⋃
i 6=j,0≤v≤|σj |+1 prev(πj) |=

¬ψi.
We extract the explanations by exploiting both unsatisfiable cores and interpolation. In

particular, when we perform the inductive check incrementally on the CMSC 〈m,φ〉 we
run a satisfiability check after we have encoded all the synchronizations in the same partial
order defined by ≤m. If the encoding is unsatisfiable, by Theorem 2 we known that 〈m,φ〉
is unfeasible. We extract the unsatisfiable core ξ of the encoding and different interpolants
from the same proof of unsatisfiability.

In order to compute an unfeasible CMSC prefix 〈m,φ〉, we use the unsatisfiable core ξ.
ξ contains a subset of the encoding of the local paths, events, and constraints, since they are
encoded in different conjuncts. Thus, ξ is fine-grained enough to obtain a precise subset X
of the elements of the CMSC. For example, if the formula T idxi[j]

i|σi[j] ∧Z
idxi[j]
i is in ξ, it means

that the encoding of the event σi[j] is inX . The unfeasible CMSC prefix 〈m,φ〉 is obtained
taking all the elements of 〈m,φ〉 that are in the relation ≤m with an element of X .

We compute the explanation of the second type ψ using interpolation. We partition the
formulas in the unsatisfiable core ξ in two different formulas,A andB.A is the conjunction
of all the formulas of ξ which encodes the parallel composition of the network N and the
MSC m (i.e. enc(m, k)), while B contains the other formulas of ξ (i.e. φ[vidxi[j]

i /vi[j]]). ψ
is an interpolant of A and B. Note that, if ψ |= ⊥, we deduce that φ is not responsible of
the unfeasibility and that the unrolling of the network is inconsistent by itself.

Finally, we compute the third explanation type ψi for the i-th component of N . We
partition the unsatisfiable core ξ in the formulas A and B. A is the conjunction of all the
formulas of ξ which encode the unrolling of the i-th component along its instance σi and
CMSC constraints (i.e. enc(σi, ki) and φi), while B is the conjunctions of all the other
formulas of ξ. If ψi |= >, the component does not play a role in the unfeasibility. On the
contrary, if ψi |= ⊥, the component does not have a path compatible with its instance.

Note that, when the abstraction is used to prove the unfeasibility of the scenario, the
three types of explanations are still valid.

Distributed Controller [21]. This benchmark models the interactions of two sensors (sensor1
and sensor2) with a controller of a robot. The two sensors interact with a scheduler to access
a shared processor. The time needed for computation by the two sensors is bounded but it is
non-deterministic, and is tracked in the scheduler with two stopwatches (x1 and x2). Also,
the controller sets a time-out (variable z = 0) after the receipt of the first message. If the
time-out expires (z = 10) the controller discards all the received data.

The MSC shown in Figure 3 models the interaction where sensor1 requests the pro-
cessor; the scheduler grants it for a total duration of x2 time; sensor2, which has a higher
priority, requests and receives grant to the processor; when sensor2 finishes its computation
(event read2), sensor1 accesses the processor (event read1); in parallel, sensor2 sends its
data to the controller; finally, the sensor1 and the controller synchronize on send1 and ack1.
The time spent to process the data of sensor1 is given by the stopwatch x1. In Figure 3 x1 is
the sum of the intervals x′1 and x′′1 . Moreover, we add two additional conditions on the dura-
tion of x1 and x2 in the scheduler (x2 = 1.5 and x1 = 1.1), and we fix the maximum time
spent by the controller before receiving the data from sensor1 (z < 1). The MSC augmented
with these constraints is unfeasible.

SMT-based Scenario Verification for Hybrid Systems 15

The scenario is proved unfeasible. In Figure 3 we outline in gray the elements of the
scenario, events and constraints, which contribute to the unfeasibility. In particular, the un-
satisfiable core contains all the events of the CMSC apart from Ack1 and Ack2. Thus, the
unfeasible CMSC prefix does not include the last event Ack1.

We exploit the interpolation techniques to get the constraints z >= x1.All the inter-
polants are computed by the SMT solver, then we manually simplify them removing redun-
dant constraints. In fact, z counts the time elapsed in the controller between the send1 event
and the send2 event. This means that the controller cannot receive the send1 message before
x1 seconds, which is the time spent to process data from sensor1. If we fix z >= 1.1 then the
scenario is feasible. We find a similar result if we look at the interpolant obtained partitioning
the encoding in the constraints from sensor1 (theA formula) and the rest of the network and
the scenario (theB formula). We denote with timeevent

component the time variable of component
when performing event. The interpolant is 6 <= time

request1
sensor1 − timeread1

sensor1 + timesend1
sensor1 .

Since timerequest1
sensor1 is 6, from the initial condition and invariants of sensor1, we can infer that

the scenario and the other processes in the network do not allow timeread1
sensor1 <= timesend1

sensor1 ,
which is a necessary condition for sensor1.

Ack2

Ack1

Request2

Read2

Read1

Send1

Request1

Send2

x2 =
3
2

x′1

x′′1
x′1 + x′′1 =

11
10

z < 1

SchedulerSensor1 ControllerSensor2

Fig. 3 The MSC for the distributed controller.

Audio Control Protocol [21]. The bench-
mark models a protocol that transmits
an arbitrary-length bit sequence from a
sender to a receiver based on the timing-
based Manchester encoding. The pro-
tocol relies on division of the elapsed
time in slots. Every slot corresponds to
a bit. The sender transmits a signal up
in the slots corresponding to bits with
value 1 (thus, a slot without signals cor-
respond to bit 0). The protocol is robust
to bounded errors in the timers used by
the sender and receiver.

The considered scenarios consist of
unfeasible timed sequences of up. For
example, the sequence 〈up, 4〉, 〈up, 8〉,
〈up, 12〉, 〈up, 16〉, 〈up, 19〉, 〈up, 23〉 does not respect the protocol, since the 4-th and 5-th
events must be separated by 3 seconds.

Once scenario-based induction proves that the scenario is unfeasible, the unsatisfiable
core contains the encoding of the 4-th and 5-th event, thus the unfeasible CMSC prefix is
the CMSC formed by the first 5 events. Interpolation “explains” that the inconsistency arises
because the sender requires the 5-th event to happen after at least 3.8 seconds; it also shows
that the receiver does not play any role in the inconsistency.

Electronic Height Control System [30]. This industrial case study models a system that
controls the height of a car’s chassis. A timer tells the controller when to read the height
from a filter, while disturbances which changes the height of the vehicle are modelled by the
environment. The MSC describes a scenario where the height of the chassis falls outside the
allowed thresholds, first below and then above the permitted height intervals.

The scenario is not feasible due to the timing constraints imposed by the timer on each
event and to the dynamics of the environment which requires an incompatible time to pass

16 A. Cimatti et al.

from the initial level of the chassis to a value read outside the allowed threshold. More
precisely, the timer forces every event to happen every second, while the filter chassis level
f read by the sensors evolves according to the differential equation ḟ = h−f

T , where h
represents the current level. This is approximated by the linear-phase portrait partitioning
which linearizes the differential equation into flow conditions of the form ḟ ∈ [a, b].

In order to prove the scenario unfeasible, abstraction is required. In fact, in the concrete
state space of the environment, the portrait partitioning creates discrete loops that corre-
spond to infinite simple paths, and thus concrete K-induction can not converge. K-induction
combined with abstraction proves that the controller and the timer do not have a simple path
longer than 1 alternating timed and discrete transitions (since there is no local transition).

For the environment we used a set of predicates in the form t ∈ [i, i + 1], h ∈ [at, bt]
and f ∈ [at, bt] where i is an integer while a and b are the constants used in the partitioning.
We localise the abstraction by using t ∈ [i, i+ 1] only in the i-th event and considering the
partition consistent with the initial, values. We added a total of 16 predicates to the first two
local segments of the environment. This way, the unfeasibility can be proved unrolling the
environment for 25 steps in the first segment and 20 steps in the second segment. The details
of the abstraction are available at http://es.fbk.eu/people/mover/tests/FMSD11/.

We extract an unfeasible CMSC formed by the first 2 events. Non-trivial explanations of
the third type are associated with the timer, where the 2-nd event must happen in less then 3
seconds, and with the environment, where the same event to happen not before 3.3 seconds.

8 Experimental Evaluation

8.1 Settings

The techniques discussed in the previous sections were implemented in an extended version
of NuSMV [10], that deals with networks of HAs, formalized in the HYDI language [12].
The extended version of NuSMV features an SMT-based approach to the verification of
hybrid systems, and is tightly integrated with MathSAT [7], a state-of-the-art, full-fledged
Satisfiability-Modulo-Theory solver (SMT). MathSAT provides the functionalities of incre-
mental reasoning, unsatisfiable core extraction, and interpolation, which are used for BMC,
inductive reasoning, and explanation extraction. For the comparison, we implemented the
different approaches based on the automata construction [11].

In the experimental evaluation, we used the following benchmarks: Distributed Con-
troller, Electronic Height Control System (EHC) and Audio Protocol, presented in Section 7;
Star-shape Fischer is a hybrid version of the Fischer mutual exclusion protocol, that uses a
shared variable to control the access to a critical section; Ring-shape Fischer is a variant of
the protocol where the processes are in a ring, and each process shares a lock variable with
its neighbors; Nuclear Reactor [39] models the control of a nuclear reactor with n rods.

First we compare the scenario-based encoding with the automata-based approach on
feasible MSCs. Then we evaluate the scenario-driven induction with the k-induction per-
formed on the system composed with the monitor. The experimental comparison does not
take into account the computation of unfeasibility explanations. On the one hand, the extrac-
tion of explanation does not appear to be straightforward for the automata-based approach.
On the other hand, the overhead largely depends on the fact that the SMT solver must be
run with proof logging activated. This can in general lead to non-negligible overheads, but
in the benchmarks we analyzed this did not turn out to be the case.

http://es.fbk.eu/people/mover/tests/FMSD11/

SMT-based Scenario Verification for Hybrid Systems 17

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350

DistribLocal

DistribLocalAlt

Global

GlobalAlt

Scenario

ScenarioAlt

(a) cumulative time (y axes) - # of solved instances (x axes)

to

 0.1

 1

 10

 100

 1000

to 0.1 1 10 100 1000

(b) SCENARIOALT (y axes) vs. DISTRIBLOCALALT (x axes)

Fig. 4 (a) Cactus plot of run times (sec.). (b) Scatter plots of run times (sec.).

The experiments were run on two Linux machine (with an Intel i7 CPU at 2.93 for feasi-
ble MSCs and an Intel Core 2 Quad CPU 2.66 for unfeasible MSCs), setting the timeout and
the memory out for a single run to 900 seconds and to 4 GB. The test cases, the executable
and the results are available at http://es.fbk.eu/people/mover/tests/FMSD11/.

8.2 Scenario-driven BMC

We compare the scenario-based approach with the automata-based approach on a set of
feasible meaningful scenarios, that describe the interaction of all the automata in the bench-
marks, possibly containing parallel event synchronizations. We evaluate the scalability of
the proposed approaches with respect to the number of components in the network and to
the length of the MSCs. We increase the number of the components for all the benchmarks,
except for the EHC and the Audio Protocol which have a fixed number of processes.

For the automata-based approach we exploit two different construction of the monitor. In
the approach called GLOBAL we construct a single monitor which represents one of the pos-
sible equivalent partial-orders imposed by the scenario, while in DISTRIBLOCAL we build a
distributed monitor, one for each hybrid automaton in the network. In both construction, we
used the optimization of step semantics. Then we check the reachability of the target state
of the monitor in the model obtained composing the monitor with the original system. The
search is performed using an incremental BMC.

We evaluate the scenario approach, called (SCENARIO), where we further optimize the
encoding locally simplifying it with respect to the structure of the different components.
Additionally, we evaluate for both the automata-based and the scenario-based approach the
optimization where we alternate the timed and the discrete transitions in the encoding. We
add the suffix ALT to the names of the approaches to denote this variant.

The main findings of the experimental evaluation regard the effectiveness of the scenario-
based encoding, which outperforms the optimized automata-based techniques. The Fig-
ure 4(a) shows a cactus plot (in logarithmic scale) for all the tested instances of benchmarks
and scenarios. The plot shows the cumulative time (on the y axes, in seconds) to solve a
given number of instances (on the x axes). From the plot it is clear that the scenario-driven
encoding solves more instances than the automata approaches, and is significantly faster.
Moreover, we note that the alternation improves the performances for the scenario and for
the global automaton, while it is counterproductive for DISTRIBLOCAL. Figure 4(b) shows
a scatter plot that compares the run-times of DISTRIBLOCALALT and SCENARIOALT on

http://es.fbk.eu/people/mover/tests/FMSD11/

18 A. Cimatti et al.

every instance. A point in the plot represents the time used by DISTRIBLOCALALT (x axes)
and by SCENARIOALT (y axes) to solve an instance. SCENARIOALT outperforms DISTRI-
BLOCALALT in almost all the benchmarks.

8.3 Scenario-driven Induction

We compared the scenario-based induction with k-induction applied to the monolithic en-
coding of the network of HAs and the automata translated from the MSC. The monolithic
encoding is obtained composing the network with the automata obtained from the MSC,
using the DISTRIBLOCAL construction with step semantics.

to
mo

 0.1

 1

 10

 100

 1000

to mo 0.1 1 10 100 1000

Fig. 5 Run times (sec.): monolithic induction (x axes)
vs. scenario-induction (y axes).

In order to test the scalability of both
approaches, we considered a set of un-
feasible MSCs of different lengths, and
parameterized the number of HAs in the
network. The scatter plot in Figure 5
shows the execution time for both meth-
ods on all the instances. The Scenario-
based induction is clearly superior to
monolithic k-induction. This because it
exploits the structure of the MSC, result-
ing in localized simple path conditions,
that are both simpler, and more effective,
so that unsatisfiability is detected with a
much shorter unrolling.

9 Related Work

MSCs [22] are a basic building block to describe the interactions among components. Sev-
eral works, such as High-Level Message Sequence Charts [28] and Live Sequence Charts
(LSC) [14], extend the language of the MSCs increasing their expressive power. We con-
sider a basic version of MSCs which describes a single (partial-order) composition of se-
quences of events, augmented with additional constraints [2,5,9]. We consider a trace-based
semantics for the MSC, where the MSC predicates range over the observable events of a
system [25, 26]. While several works use MSCs to describe the entire system [3, 31], we
instead use the MSC as a specification language.

A common approach to deal with the verification of MSC specifications consists in
translating the scenario into automata or temporal logic formulas. In [9] the authors con-
sider the feasibility problem for MSCs with timed constraints and a timed message-passing
automaton. Their solution consists of a translation of the timed MSC into an automaton, re-
ducing the problem to a reachability analysis for timed systems. They support also “weak”
embeddings, where the MSC specification can be partial. Live Sequence Charts (LSCs) are
translated into timed automata in the UPPAAL model checker [27], while in [24] the authors
propose a translation from charts with timing constraints and synchronous events to Timed
Büchi Automata. These works deal with expressive specification languages but they do not
exploit the structure of the scenario. Moreover, in case of unfeasibility, these techniques
do not provide explanations that narrow the events of the scenario or that give meaningful
information about a specific component.

SMT-based Scenario Verification for Hybrid Systems 19

The approach which translates the MSC into an automaton reduces the feasibility prob-
lem of the MSC to a reachability problem. Thus, the works on Bounded Model Checking
(BMC) for hybrid systems [1, 4, 8, 15, 16, 38] can be used to solve the feasibility problem.
The use of the step semantics to optimize the BMC encodings for asynchronous systems
was investigated in [19,23]. However, BMC is unable to prove the unfeasibility of the MSC.
When we encode the MSC into an automaton the unfeasibility problem can be solved using
unbounded model checking techniques, such as k-induction [35]. K-induction is complete
for finite state systems, but it was applied also to infinite state systems in [29,32,36]. In [29]
the authors use k-induction to verify timed and hybrid automata and they generalize the
simple path condition to simulation relations. K-induction is combined with predicate ab-
straction in [36]. These works are not tailored to the problem of deciding the unfeasibility
of a scenario and do not provide explanations in the case of unsatisfiability.

Unsat cores and interpolation are often used to explain and generalize the source of
unsatisfiability. Unsat cores are typically subsets of the conjuncts forming the unsatisfiable
formula. However, other forms are possible, especially in the context of temporal unsatisfi-
ability [34]. Interpolation for temporal properties is proposed in [33] as a theoretical frame-
work for analyzing vacuity for discrete systems; the practical implications are not addressed
in depth. In [34], it is suggested that k-induction can be used to find a k for which the BMC
encoding of a temporal formula yields its unsatisfiability and that the unsat core contains
the relevant parts of the formula that cause the unsatisfiability. However, mapping the BMC
unsat core back to the original problem is not always easy. We achieve this by exploiting the
scenario-based encoding that respects the structure of the scenario.

10 Conclusions and Future Work

In this paper, we described a new SMT-based verification technique tailored to the verifi-
cation of MSC feasibility in a network of hybrid automata. The encoding of the problem
exploits the local time semantics and structures the search according to the local segments
of the MSC. The events of the MSC are used to simplify the encoding while the local tran-
sitions are incrementally added up to a certain bound. A specialized version of k-induction,
based on the localization of simple paths, may prove that the MSC is instead unfeasible.
Unsat cores and interpolants are used to explain the reason of such unfeasibility. The experi-
ments show that the proposed method significantly outperforms optimized techniques based
on the reduction to reachability, and is able to construct interesting explanations.

In the future, we will address the following research directions. First, will lift the pro-
posed techniques to incompletely specified MSCs. Second, we will experiment with ab-
straction refinement techniques such as localization reduction based on the structure of the
network of components. Finally, we will address hybrid automata with nonlinear dynamics.

References

1. Ábrahám, E., Becker, B., Klaedtke, F., Steffen, M.: Optimizing bounded model checking for linear Hy-
brid Systems. In: VMCAI, pp. 396–412 (2005)

2. Akshay, S., Bollig, B., Gastin, P.: Automata and logics for timed message sequence charts. In: FSTTCS,
pp. 290–302 (2007)

3. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: CONCUR, pp. 114–129
(1999)

4. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hybrid systems with Math-
SAT. ENTCS 119(2), 17–32 (2005)

20 A. Cimatti et al.

5. Ben-Abdallah, H., Leue, S.: Timing constraints in Message Sequence Chart specifications. In: FORTE,
pp. 91–106 (1997)

6. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: CONCUR,
pp. 485–500 (1998)

7. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The MathSAT4 smt solver. In:
CAV, pp. 299–303. Springer (2008)

8. Bu, L., Cimatti, A., Li, X., Mover, S., Tonetta, S.: Model checking of hybrid systems using shallow
synchronization. In: FORTE, pp. 155–169 (2010)

9. Chandrasekaran, P., Mukund, M.: Matching scenarios with timing constraints. In: FORMATS, pp. 98–
112 (2006)

10. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella,
A.: NuSMV 2: an opensource tool for symbolic model checking. In: CAV, pp. 359–364 (2002)

11. Cimatti, A., Mover, S., Tonetta, S.: Efficient scenario verificastion for Hybrid Automata. In: CAV, pp.
317–332 (2011)

12. Cimatti, A., Mover, S., Tonetta, S.: HYDI: a language for symbolic hybrid systems with discrete inter-
action. In: EUROMICRO-SEAA, pp. 275–278 (2011)

13. Cimatti, A., Mover, S., Tonetta, S.: Proving and explaining the unfeasibility of Message Sequence Charts
for hybrid systems. In: FMCAD (2011)

14. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal Methods in System
Design 19(1), 45–80 (2001)

15. Fränzle, M., Herde, C.: Efficient proof engines for bounded model checking of hybrid systems. ENTCS
133, 119–137 (2005)

16. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model checking of hybrid systems.
Formal Methods in System Design 30(3), 179–198 (2007)

17. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satisfiability and model-
checking of infinite-state systems. In: CADE, pp. 362–378 (2007)

18. Graf, S., Saı̈di, H.: Construction of Abstract State Graphs with PVS. In: CAV, pp. 72–83 (1997)
19. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. Theory and Practice of

Logic Programming 3(4-5), 519–550 (2003)
20. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE CS (1996)
21. Henzinger, T.A., Ho, P.: HyTech: the Cornell HYbrid TECHnology tool. In: Hybrid Systems II, LNCS

999, pp. 265–293 (1995)
22. ITU-T: Recommendation Z.120 - Message Sequence Charts (1996)
23. J., D., Junttila, T., Heljanko, K.: Exploiting step semantics for efficient bounded model checking of

asynchronous systems. Sci. Comput. Program. (2011)
24. Klose, J., Wittke, H.: An automata based interpretation of Live Sequence Charts. In: TACAS, pp. 512–

527 (2001)
25. Ladkin, P., Leue, S.: On the semantics of message sequence charts. In: FBT, pp. 88–104 (1992)
26. Ladkin, P.B., Leue, S.: Interpreting Message Flow Graphs. Formal Asp. Comput. 7(5), 473–509 (1995)
27. Li, S., Balaguer, S., David, A., Larsen, K.G., Nielsen, B., Pusinskas, S.: Scenario-based verification of

real-time systems using Uppaal. Formal Methods in System Design pp. 200–264 (2010)
28. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL Forum, pp. 291–306 (1997)
29. de Moura, L., Rueß, H., Sorea, M.: Bounded Model Checking and induction: from refutation to verifica-

tion. In: CAV, pp. 14–26 (2003)
30. Müller, O., Stauner, T.: Modelling and verification using Linear Hybrid Automata - a case study. Math-

ematical and Computer Modelling of Dynamical Systems 71, 71–89 (2000)
31. Pan, M., Bu, L., Li, X.: TASS: timing analyzer of scenario-based specifications. In: CAV, pp. 689–695

(2009)
32. Pike, L.: Real-Time System Verification by k-Induction. Tech. Rep. NASA/TM-2005-213751, NASA

(2005)
33. Samer, M., Veith, H.: On the notion of vacuous truth. In: LPAR, pp. 2–14 (2007)
34. Schuppan, V.: Towards a notion of unsatisfiable cores for LTL. In: FSEN, pp. 129–145 (2009)
35. Sheeran, M., Singh, S., Stålmarck, G.: checking safety properties using induction and a SAT-solver
36. Tonetta, S.: Abstract model checking without computing the abstraction. In: FM, pp. 89–105 (2009)
37. Vardi, M.: An automata-theoretic approach to Linear Temporal Logic. In: Banff Higher Order Workshop,

pp. 238–266 (1995)
38. Walter, D., Little, S., Myers, C.J., Seegmiller, N., Yoneda, T.: Verification of Analog/Mixed-Signal cir-

cuits using symbolic methods. IEEE Trans. on CAD of Integrated Circuits and Systems 27(12), 2223–
2235 (2008)

39. Wang, F.: Symbolic parametric safety analysis of linear hybrid systems with BDD-like data structures.
IEEE TSE 31(1), 38–51 (2005)

SMT-based Scenario Verification for Hybrid Systems 21

A Proofs

A.1 Theorem 1

A.1.1 Shallow synchronization

In order to prove Theorem 1, we briefly recap the concept of shallowly synchronized paths from [8].

Definition 1 (S-trace) Given a set of events S ⊆ A and a path π = s0; a1; s1; . . . ; ah; sh, the S-trace
τS(π) is the sequence of events 〈t1, a1〉; . . . ; 〈tk, ak〉 where tj is the time at which the event aj occurs in
π and aj ∈ S, for 1 ≤ j ≤ k.

Definition 2 (Consistent traces) Let π1 and π2 be two paths over the sets of eventsA1 andA2 respectively,
and S = A1 ∩ A2. The pair 〈π1, π2〉 is consistent iff the S-trace of π1 is equal to the S-trace of π2
(τS(π1) = τS(π2)) and the final time of π1 is equal to the final time of π2.

Definition 3 (Shallowly synchronized path) A shallowly synchronized path of a network SLOCTIME(N) is
a tuple πSHALLOW = 〈π1, . . . , πn〉 such that πj is a path of Si and, for all i, j, 1 ≤ i < j ≤ n, πi and πj
are consistent.

Definition 4 (Projection) Given Si and a path πLOCTIME in SLOCTIME(N), the projection of πLOCTIME over
Si is the path prj(πLOCTIME, i) obtained projecting the states over the Si-th component and removing all
the transitions over events which are not in Ai ∪ {T} (in the alphabet of Hi and the timed event). Note
that the stutter event (S) is projected. Formally, given the component Si with alphabet Ai and πLOCTIME :=
s0; a1; s1; . . . ; ah; sh, the projection of πLOCTIME overSi is the path prj(πLOCTIME, i) := s′0; a

′
1; s
′
1; . . . ; a

′
l; s
′
l

such that:

– fAi : N ×N is a function such that fAi (z) maps the index in πLOCTIME of the z-th occurrence of an
event which belongs to the set Ai.

– l is the number of events in the path πLOCTIME which also belong to Ai.
– s|V is the T -model s restricted to the symbols of the signature V .
– s′0 := s0.
– for all 1 ≤ j ≤ l, s′j := sfAi (j)|Vi

.

– for all 1 ≤ j ≤ l, a′j := afAi (j)|Ai
.

Theorem 3 If πLOCTIME := s0; a1; s1; . . . ; ah; sh is a path in the local-time semantics then πSHALLOW =
〈prj(πLOCTIME, 1), . . . , prj(πLOCTIME, n)〉 is a shallowly synchronized path.
Vice versa, given a shallowly synchronized path πSHALLOW there exists a path πLOCTIME in SLOCTIME(N) such
that πSHALLOW = 〈prj(πLOCTIME, 1), . . . , prj(πLOCTIME, n)〉.

Proof πSHALLOW is a shallowly synchronized path since:

– for all 1 ≤ i ≤ n, prj(πLOCTIME, i) |= Si: By construction, the projection of prj(πLOCTIME, i) removes
from the network path πLOCTIME all the transitions which are not over Ai ∪ T. prj(πLOCTIME, i) |= Si,
since in the transitions removed from πLOCTIME Si stutters, thus it does not change the value of its local
states.

– for all 1 ≤ i < j ≤ n, prj(πLOCTIME, i) and prj(πLOCTIME, j) are consistent: by construction, the
projection does not change the order of states and events of πLOCTIME , and restricts each projection
to a given alphabet. prj(πLOCTIME, i) is restricted to all the events in Ai while prj(πLOCTIME, j) is
restricted to all the events in Aj . τAi∩Aj (prj(πLOCTIME, i)) and τAi∩Aj (prj(πLOCTIME, j)) restrict
both sequences to events in Ai ∩ Aj . The two sequences contain the same events and have the same
order and, therefore, they are equal. Moreover, since πLOCTIME is in SLOCTIME(N), the assignment to the
variables ti, tj in the last state of πLOCTIME is the same. Thus, also the assignments to ti and tj in the
last state of prj(πLOCTIME, i) and prj(πLOCTIME, j) respectively must be the same.

If πSHALLOW is a shallowly synchronized path, then there exists a path πLOCTIME in SLOCTIME(N) such that
πSHALLOW = 〈prj(πLOCTIME, 1), . . . , prj(πLOCTIME, n)〉. πi := si0; a

i
1; s

i
1; . . . ; a

i
li
; si
li

. We recursively de-
fine the function γ which maps πSHALLOW to a path πLOCTIME ∈ SLOCTIME(N) (πLOCTIME := γ(πSHALLOW)):

– if πi = si0 for all 1 ≤ i ≤ n, then γ(πSHALLOW) := s10 ∪ . . . ∪ sn0 (i.e. all the local paths have a single
state).

22 A. Cimatti et al.

– if there exists an i in 1 ≤ i ≤ n such that πi := si0; a
i
0; . . . ; s

i
li−1

; ai
li
; si
li

and ai0 is a local event of

Si, then γ(πSHALLOW) := s10 ∪ . . . ∪ si0 ∪ . . . ∪ sn0 ; a1 ∪ . . . an; γ(〈π1, . . . , π′i, . . . , πn〉), where

aj =

{
aj0 if i = i

aj s.t. aj |= εj = S otherwise

and π′i := si1; a
i
1; . . . ; s

i
li−1

; ai
li
; si
li

(i.e. when a process can move on a local event, all the other
processes stutter).

– otherwise, since πSHALLOW is a shallowly synchronized path, there exists a set J of indexes and and event
a ∈

⋂
i∈J Ai such that

⋃
i∈J ai |=

∧
i∈J εi = a and

⋃
i∈J si |=

∧
i,j∈J,i6=j ti = tj (i.e. all the

processes with index in J synchronize on the event a). In this case γ(πSHALLOW) := s10 ∪ . . . ∪ si0 ∪
. . . ∪ sn0 ; a1 ∪ . . . an; γ(〈π′1, . . . , π′n〉), where:

ai =

{
ai0 if i ∈ J
ai s.t. ai |= εi = S otherwise

and

π′i =

{
si1; a

i
1; . . . ; s

i
li−1

; ai
li
; si
li

if i ∈ J
πi otherwise

We can prove by induction that πLOCTIME ∈ SLOCTIME(N). Moreover, since the last time of all the com-
ponents in γ(πSHALLOW) are equal, then 〈prj(πLOCTIME, 1), . . . , prj(πLOCTIME,m)〉 is a shallowly synchro-
nized path.

A.1.2 Proof of Theorem 1

Proof Let us consider a model µ of the formula enc(〈m,φ〉, k). µ is a model over the variables of the
network SLOCTIME(N). For all 1 ≤ i ≤ n, consider the projection πi of µ over the symbols defined in
the Σ-structure Vi and Wi of Si. By construction πi is a path of Si (i.e. πi |= Si), πi |=m σi and⋃

1≤i≤n,0≤j≤|σi| prej(πi) |= φ. Moreover, for all 1 ≤ i < j ≤ j, πi and πj are consistent, since the
MSC is consistent and the events happen at the same time due to sync. Thus, 〈π1, . . . , πn〉 is a shallowly
synchronized path. By Theorem 3, there exists a path πLOCTIME in SLOCTIME(N) such that πSHALLOW :=
〈prj(πLOCTIME, 1), . . . , prj(πLOCTIME, n)〉. By the definition in Section 4, it means thatN |= 〈m,φ〉.

If N |= 〈m,φ〉, then there is a path πLOCTIME such that πLOCTIME |= SLOCTIME(N). This means that
prj(πLOCTIME, i) |=m σi, prj(πLOCTIME, i) |= Si and

⋃
1≤i≤n,0≤j≤|σi| prej(prj(πLOCTIME, i)) |= φ.

By Theorem 3, 〈prj(πLOCTIME, 1); . . . ; prj(πLOCTIME, n)〉 forms a shallowly synchronized path. Let us con-
sider a k such that, for all 1 ≤ i ≤ n, for all 0 ≤ j ≤ |σi|, ki[j] is equal to the length of the local seg-
ment lsg(σi[j]) in prj(πLOCTIME, i). prj(πLOCTIME, 1)∪ . . .∪ prj(πLOCTIME, n) |= enc(〈m,φ〉, k), since
prj(πLOCTIME, i) |= enc(σi, ki) and

⋃
1≤i≤n,0≤j≤|σi| prej(prj(πLOCTIME, i)) |= φ by definition, and

since 〈prj(πLOCTIME, 1); . . . ; prj(πLOCTIME, n)〉 is a shallowly synchronized path then the sync constraints
holds in enc(〈m,φ〉, k) (i.e. the synchronization happen at the same time and the time at the end of all the
paths is the same).

Remark 2 Here we do not prove that the global time semantics, which is more common in the definition of
Hybrid Automata [20], and the local time semantics [6] are equivalent for our purposes (i.e. for the scenario
verification problem).

However, a proof of Theorem 1 which considers the global time semantics is available at https:
//es.fbk.eu/people/mover/paper/scenario/main.pdf.

A.2 Theorem 2

A.2.1 Additional lemmas

In the following we provide two additional lemmas which are used to prove Theorem 2.

https://es.fbk.eu/people/mover/paper/scenario/main.pdf
https://es.fbk.eu/people/mover/paper/scenario/main.pdf

SMT-based Scenario Verification for Hybrid Systems 23

We introduce the following notation shorthands. Given a tuple of bounds k we write k′ ≥ k iff for all
1 ≤ i ≤ n, for all 0 ≤ j ≤ |σi|, k

′
i [j] ≥ ki[j]. Given a path π such that π |=m σi, |locj(π)| is the length

of the sequence of states locj(π) of π.
The CMSC 〈m,φ〉, defines a partial order<m among the segments ofm defined as the transitive closure

of the smallest relation such that:
– lsg(σi[j]) <m lsg(σi[j′]) if 0 ≤ j ≤ j′ < |σi|;
– lsg(σi[j]) <m lsg(σi′ [j′]) if there exists a lsg(σi′′ [j′′]) such that there is a synchronization between
σi[j] and σi′′ [j′′] and lsg(σi′′ [j′′]) <m lsg(σi′ [j′]).

Note that <m is defined in a similarly to ≤m.

Lemma 1 Given a CMSC 〈m,φ〉 and a tuple of bounds k , if enc(〈m,φ〉, k) is satisfiable then for all
k
′ ≥ k , enc(〈m,φ〉, k′) is satisfiable.

Proof If enc(〈m,φ〉, k) is satisfiable then there exists a path π consistent with 〈m,φ〉 such that for all
1 ≤ i ≤ n, for all 1 ≤ j|σi|, |locj(prj(i, π))| is ki[j].

π can be extended to a path π′ as follows. For all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|:
– prej(prj(π, i)) = prej(prj(π′, i)),
– postj(prj(π, i)) = postj(prj(π′, i)),
– locj(prj(π′, i)) := locj(prj(π, i)); ε = S; s1; . . . ; ε = S; s

k
′
i [j]−ki[j]

, where for 1 ≤ z ≤ k
′
i [j] −

ki[j], sz is equal to the last state of locj(prj(π, i)). locj(prj(π′, i)) is the concatenation of the j-th
local sequence of π (locj(prj(π, i))) with a sequence of stutter actions (i.e. ε = S).

Thus, π′ extends all the local sequences of π by stuttering actions S.
Since stutter does not change the state reached by the system, π′ |= enc(〈m,φ〉, k′).

Lemma 1 states that if enc(〈m,φ〉, k) is satisfiable, then all the encodings which consider a k′ >= k
are satisfiable as well, due to the insertion of stuttering action.

Lemma 2 For all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|, if kindi[j] is unsatisfiable for bounds k , then for all paths π
such that π |= enc(〈mi[j], φi[j]〉, k) and |locj(prj(i, π))| > ki[j], locj(prj(i, π)) is not simple.

Proof For all 1 ≤ i ≤ n and j = 0 if kindi[j] is unsatisfiable, π |= enc(〈mi[0], φi[0]〉, k) and
|loc0(prj(i, π))| > ki[j]. In this case enc(〈mi[0], φi[0]〉, k) encodes the local segment lsg(σi[0]) and
kindi[0] is unsatisfiable. Thus, it does not exist a simple path loc0(prj(i, π)) longer than lsg(σi[0]).

Consider the local segment lsg(σi[j]) and suppose that the lemma holds for all l, h such that lsg(σl[h]) <m
lsg(σi[j]) (i.e. the theorem holds for all the local segment which are found “before” in the partial order de-
fined by <m). Suppose that the bounds k′ are the same as k′, except for k

′
i [j] which is ki[j] + 1. For every

path π such that π |= enc(〈mi[j], φi[j]〉, k
′
), we have that locj(prj(i, π)) is not a simple path, since

kindi[j] is unsatisfiable.
By induction, the lemma holds for all locj(prj(i, π)).

A.2.2 Proof of Theorem 2

Proof Suppose thatN |= m.
By Theorem 1 there exist bounds k′ and a path π′ such that:

– π′ |= enc(〈m,φ〉, k′);
– for all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|, locj(prj(π′, i)) is of length k

′
i [j].

We consider the bounds k′ such that k′ ≥ k . If we show that enc(〈m,φ〉, k′) is unsatisfiable, then by
Lemma 1 we known that for all the k′′ ≤ k enc(〈m,φ〉, k′′) is unsatisfiable.

For all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|, by Lemma 2 it does not exist a π′′ consistent with 〈m,φ〉 such that
its local segment locj(prj(π′′, i)) is simple and longer than ki[j].

Thus, there exists a path π such that:
– for all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|:

– prej(prj(π, i)) = prej(prj(π′, i));
– postj(prj(π, i)) = postj(prj(π′, i));
– the length of locj is ki[j].

– π |= enc(〈m,φ〉, k).
This contraddicts the fact that by hypothesis enc(〈m,φ〉) is unsatisfiable.

	Introduction
	SMT-based Verification of First-Order Transition Systems
	Satisfiability Modulo Theories
	First-Order Transition Systems (FOTS)
	SMT-based Bounded Model Checking of FOTS
	SMT-based K-induction of FOTSs

	SMT-based Verification of Hybrid Automata Networks
	Hybrid Automata Networks (HAN)
	FOTS-based Semantics of HAN
	Specialized BMC

	Scenario Verification for HAN
	Scenario-driven BMC
	Scenario-driven Induction
	Unfeasibility Explanation
	Experimental Evaluation
	Settings
	Scenario-driven BMC
	Scenario-driven Induction

	Related Work
	Conclusions and Future Work
	Proofs
	Theorem 1
	Shallow synchronization
	Proof of Theorem 1

	Theorem 2
	Additional lemmas
	Proof of Theorem 2

