
Model Checking of Hybrid Systems

using Shallow Synchronization⋆

Lei Bu1, Alessandro Cimatti2, Xuandong Li1, Sergio Mover2, and Stefano Tonetta2

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 Fondazione Bruno Kessler - IRST

Abstract. Hybrid automata are a widely accepted modeling framework for sys-

tems with discrete and continuous variables. The traditional semantics of a net-

work of automata is based on interleaving, and requires the construction of a

monolithic hybrid automaton based on the composition of the automata. This

destroys the structure of the network and results in a loss of efficiency, espe-

cially using bounded model checking techniques. An alternative compositional

semantics, called “shallow synchronization”, exploits the locality of transitions

and relaxes time synchronization. The semantics is obtained by composing traces

of the local automata, and superimposing compatibility constraints resulting from

synchronization.

In this paper, we investigate the different symbolic encodings of the reachabil-

ity problem of a network of hybrid automata. We propose a novel encoding

based on the shallow synchronization semantics, which allows different strategies

for searching local paths that can be synchronized. We implemented a bounded

reachability search based on the use of an incremental Satisfiability-Modulo-

Theory solver. The experimental results confirm that the new encoding often per-

forms better than the one based on interleaving.

1 Introduction

Hybrid automata ([13]) are increasingly recognized as a clean modeling framework

for systems with discrete and continuous variables. Many systems are structured into

components, and can often be naturally modeled as networks of communicating hybrid

automata: local activities of each component amount to transitions local to each hy-

brid automaton; communications and other events that are shared between/visible for

various components are modeled as synchronizing transitions of the automata in the net-

work; time elapse is modeled as shared timed transitions. The traditional asynchronous

semantics is based on interleaving, and requires the construction of a monolithic hy-

brid automaton based on the composition of the automata in the network. Intuitively,

this means that a path in the automaton is the result of the composition of interleaving

paths. However, the monolithic automaton resulting from the composition can be seen

⋆ The authors at Nanjing University are supported by the National Natural Science Foundation of

China (No.90818022 and No.60721002) and the National 863 High-Tech Programme of China

(No.2009AA01Z148). A. Cimatti is supported by the European Commission (FP7-2007-IST-

1-217069 COCONUT and ACP7-GA-2008-212088 MISSA) S. Tonetta is supported by the

Provincia Autonoma di Trento (project ANACONDA).

as the result of a “strict synchronization”, and the analysis has to deal with an overly

large number of paths, since the structure and the locality of the network are not taken

into account.

An alternative semantics [5] for networks of automata exploits the fact that au-

tomata can be “shallowly synchronized”. The intuition is that each automaton can pro-

ceed based on its individual “local time scale”, unless they perform a synchronizing

transition, in which case they must realign their absolute time. This results in a more

concise semantics, where traces of the network are obtained by composing traces of lo-

cal automata, each with local time elapse, by superimposing structure based on shared

communication.

In this paper, we provide a fully symbolic account for bounded reachability under

“shallow synchronization”, and we explore various search strategies. We implement the

approach in the sub-case of linear hybrid automata and we use a Satisfiability-Modulo-

Theory (SMT) [15] solver to check the satisfiability of the formulas encoding the reach-

ability problem. The main advantage is that the transition relation of each automata is

unrolled only for the steps necessary to reach locally the target (regardless the length

of the interleaving with the other automata). Typically, local paths are much shorter

because they do not need to stutter allowing other processes to perform local or non-

shared events. The disadvantage is that we may use additional variables and constraints.

We experimentally investigate this trade-off and the results show that the new encoding

often performs better than the one based on interleaving. In particular, the improvement

increases at the growth of the difference between the length of the local traces and the

length of the interleaving trace.

The paper is structured as follows. In Section 2 we present some background on

hybrid automata and their composition through interleaving. In Section 3 we present

the shallow synchronization semantics revising the concepts described in [5] and defin-

ing explicit mappings from the semantics with strict synchronization to the shallowly

synchronized one, and vice versa. In Section 4 we show several ways to symbolically

encode the bounded model checking problem for shallow synchronization semantics.

In Section 5 we discuss related work. In Section 6 we experimentally evaluate our ap-

proach. In Section 7 we draw some conclusions.

2 Background

Notation Given a set V of real-valued variables, we denote with LB(V) the set of

Boolean combinations of linear equalities and inequalities over V . We denote with V ′

the set of “next” variables and with V̇ the set of first derivative of the variables in V

over time. We write V ′ = V as an abbreviation for
∧

v∈V v
′ = v.

If f is a collection of real functions {fv}v∈V , we denote with fV the composed

function fV (t) = Πv∈V f
v(t).

Given a formula φ in LB(V) and V a set of copies of the variables in V , we denote

with φ(V) the formula obtained by substituting each v ∈ V with its copy v ∈ V . Given

a formula φ in LB(V̇), two copies V 1 and V 2 of V , and ψ a linear term, we denote

with φ(V 2−V 1

ψ
) the formula obtained by substituting each v̇ ∈ V̇ with v2−v1

ψ
and then

multiplying by ψ (thus φ(V 2−V 1

ψ
) is a Boolean combination of linear constraints).

2.1 Hybrid automata

Due to lack of space, but without loss of generality, we restrict the presentation to the

framework of Linear Hybrid Automata (LHA). The results presented in the rest of this

paper however apply to the general case of Hybrid Automata as defined in [13]3.

Definition 1 ([13]). A LHA is a tuple 〈Q,E,X, F, I, Z, J, U, L〉 where

– Q is the set of locations,

– E ⊆ Q×Q is the set of edges,

– X is the set of continuous variables,

– for each q ∈ Q, F (q) ∈ LB(Ẋ) is the flow condition (denoted also as Fq),

– for each q ∈ Q, I(q) ∈ LB(X) is the initial condition (denoted also as Iq),

– for each q ∈ Q, Z(q) ∈ LB(X) is the invariant condition (denoted also as Zq),

– for each e ∈ E, J(e) ∈ LB(X ∪X ′) is the jump condition (denoted also as Je),

– U is the set of labels,

– for each e ∈ E, L(e) ∈ U is the label of the edge (denoted also as Le).

Definition 2. A run of a LHA H is a sequence 〈q0, s0〉
a1→ 〈q1, s1〉 . . . 〈qn−1, sn−1〉

an→
〈qn, sn〉 such that:

– for all i, 0 ≤ i ≤ n, qi ∈ Q and si is an assignment to the variables of X;

– for all i, 1 ≤ i ≤ n, ai ∈ U ∪ R
≥0; hereafter ti =

∑

1≤j≤i,aj∈R≥0 aj and t0 = 0;

we call tn the final time of the run; we call the pair 〈ai, ti〉 an event;

– for all i, 1 ≤ i ≤ n, if ai ∈ R
≥0, then qi−1 = qi and there exists a collection of real

functions {fxi }x∈X such that fxi is differentiable over [ti−1, ti] and fXi (ti−1) =
si−1 and fXi (ti) = si;

– for all i, 1 ≤ i ≤ n, if ai ∈ U then 〈qi−1, qi〉 ∈ E and ai = L(〈qi−1, qi〉);
– for all i, 1 ≤ i ≤ n, if ai ∈ R

≥0, then for all t ∈ [ti−1, ti], then ḟXi (t) |= Fqi ;

– s0 |= Iq0 and for all i, 0 ≤ i ≤ n, si |= Zqi ;

– for all i, 1 ≤ i ≤ n, if ai ∈ R
≥0, then for all t ∈ [ti−1, ti], f

X
i (t) |= Zqi;

– for all i, 1 ≤ i ≤ n, if ai ∈ U then si−1, si |= J〈qi−1,qi〉.

A run σ1 is a refinement of another run σ2 iff σ1 is obtained by σ2 by splitting some

timed transition 〈qi, si−1〉
ai→ 〈qi, si〉, ai ∈ R

≥0 into two or more timed transitions

〈qi, si−1〉
ai1→ 〈qi, si1〉 . . . 〈qi, sih−1

〉
aih→ 〈qi, si〉 such that aij ∈ R

≥0, 1 ≤ j ≤ h, and,
∑

1≤j≤h aij = ai. A timed transition 〈qi, si−1〉
ai→ 〈qi, si〉 with ai = 0 ∈ R

≥0 is called

a stuttering transition.

2.2 Network of hybrid automata

The definition of network of hybrid automata is based on the definition in [13], which

means components communicate with each other by shared labels.

3 As far as the solutions of the flow conditions can be represented in the logic handled by the

SMT solver

Definition 3. Given two LHAs H1 = 〈Q1, E1, X1, F1, I1, Z1, J1, U1, L1〉 and H2 =
〈Q2, E2, X2, F2, I2, Z2, J2, U2, L2〉 with Q1 ∩ Q2 = X1 ∩ X2 = ∅, the composition

H1 ×H2 is the LHA 〈QP , EP , XP , FP , IP , ZP , JP , UP , LP 〉 where

– QP = Q1 ×Q2,

– EP = {〈q1 × q2, q
′
1 × q′2〉 | either 〈q1, q′1〉 ∈ E1, q2 = q′2, L1(〈q1, q′1〉) 6∈ U2,

or 〈q2, q
′
2〉 ∈ E2, q1 = q′1, L2(〈q2, q

′
2〉) 6∈ U1, or 〈q1, q

′
1〉 ∈ E1, 〈q2, q

′
2〉 ∈

E2, L1(〈q1, q′1〉) = L2(〈q2, q′2〉)},

– XP = X1 ∪X2,

– FP (q1 × q2) = F1(q1) ∧ F2(q2),
– IP (q1 × q2) = I1(q1) ∧ I2(q2),
– ZP (q1 × q2) = Z1(q1) ∧ Z2(q2),
– UP = U1 ∪ U2,

– JP (〈q1 × q2, q
′
1 × q′2〉) =







J(〈q1, q′1〉) ∧X
′
2 = X2 if q2 = q′2, L1(〈q1, q′1〉) 6∈ U2

J(〈q2, q′2〉) ∧X
′
1 = X1 if q1 = q′1, L2(〈q2, q′2〉) 6∈ U1

J(〈q1, q′1〉) ∧ J(〈q2, q
′
2〉) if L1(〈q1, q′1〉) = L2(〈q2, q′2〉),

– LP (〈q1 × q2, q
′
1 × q′2〉) =







L(〈q1, q′1〉) if q2 = q′2, L1(〈q1, q′1〉) 6∈ U2

L(〈q2, q′2〉) if q1 = q′1, L2(〈q2, q′2〉) 6∈ U1

L(〈q1, q
′
1〉) if L1(〈q1, q

′
1〉) = L2(〈q2, q

′
2〉).

Definition 4. A network H of LHAs is a tuple of LHAs.

The semantics of a network of automata is given by the composition of the automata.

Definition 5. A synchronized run of a network H = 〈H1, . . . , Hn〉 is a run of the

composition H1 × . . .×Hn.

In the following we refer to a run of a single automaton in a network as “local”, to

distinguish it from a run of the composition automaton.

Reachability problem Given a network of automata H = 〈H1, H2, . . . , Hn〉, and

a target set T = 〈q1, q2, . . . , qn〉, the reachability problem for H and T is to verify

whether q1 × q2 × · · · × qn can be reached in the composition H. Thus, we consider

only finite runs, although the approach can be extended to infinite runs which can be

represented by lasso-shape paths.

3 Shallow Synchronization Semantics

While in strict synchronization the behavior of a network is basically obtained by in-

terleaving, in shallow synchronization a run of the network is the result of “composi-

tion” of runs local to each automaton in the network. The intuition is demonstrated in

Figure 1. In the upper part, we see three traces of three automata in a network. Each

automaton Hi has a local label τ ; the ij labels are shared between processes Hi and

Hj ; δ denotes local time elapse. We notice that the synchronization over the ij labels

happens exactly at the same time, e.g., 12 takes place at absolute time 5, although the

number of transitions required byH1 andH2 is different. In the lower part of the figure,

A
A
A
0

A

A
B

0

A

A
B

2.5

B
B
A

2.5

B
B
A
5

A

C
C

5

F

F
F

10
E

F
F

10
E

F
E

10
C

F
E

10

F
E
C
8

E

C
E

8

C
E
B
8

C
E
B
7

C
D
A
7

D
C

A
5

F

12

C F23

23

13

13

A
2.5 A 2.5

12
CBB C3

E F 2

325
A B B C D D E E F

7
A A B

1
B

2
C E

12
12

13

13

23
23

δ δ δ δ

δ δ δ

δ δ δ

δ

δ

δ

δ

δ

τ τ

τττ

τ τ

δ

δ

δδ

δ

δ

δ

δ

δ

τ

τ

τ

τ

τ

τ

τδ

Fig. 1. Three local traces (above), and the corresponding interleaving (below).

we report the corresponding trace based on interleaving (where each box contains the

state of each of the three processes). Stuttering (e.g. of process 1 and 3 in the first step)

is modeled by the fact that a process does not have any label on its side.

We also define a mapping of a set of shallowly synchronized runs of the automata

into a run in the composition of the automata. Intuitively, the mapping induces an equiv-

alence relation among the runs of the composition automaton which are obtained by

composing the same set of local runs with different interleaving. The shallow synchro-

nization is defined according to the trace of a run i.e., the list of events occurring in the

run. An S-trace, with S ⊆ U , is a trace restricted to the labels in S.

Definition 6. Given a set of labels S ⊆ U and a run σ = 〈q0, s0〉
a1→ 〈q1, s1〉 . . .

an→
〈qn, sn〉, the S-trace τS(σ) is the sequence of events 〈a1, t1〉, 〈a2, t2〉, . . . , 〈ak, tk〉 where

ti is the time at which the event ai occurs in σ.

Definition 7. Given two LHAs H1 and H2 with sets of labels U1 and U2 resp., let σ1
be a run of H1 and σ2 a run of H2. Let S be the intersection of U1 and U2 (S =
U1 ∩ U2). The pair 〈σ1, σ2〉 is consistent iff the S-trace of σ1 is equal to the S-trace of

σ2 (τS(σ1) = τS(σ2)) and the final time of σ1 is equal to the final time of σ2.

The last constraint on the final time is necessary because otherwise the two runs may

terminate with a series of local steps with different timings.

Definition 8. A shallowly synchronized run of a network of LHAs is a tuple θ =
〈σ1, . . . , σn〉 such that σj is the run of Hj and, for all j, h, 1 ≤ j < h ≤ n, σj
and σh are consistent.

If θ is a shallowly synchronized run, we denote with θj the j-th component of θ.

Remark 1. In general, two different events can occur at the same time in the same

run, because discrete transitions are not forced to be interleaved with timed transitions.

Moreover, simultaneous events may be interleaved with different orders.

However, in many cases, we can assume that whenever two events occur simulta-

neously, they have a fixed order. Then, the pair 〈σ1, σ2〉 is consistent simply iff for all

a ∈ U1 ∩U2 and t ∈ R, 〈a, t〉 occurs in σ1 iff 〈a, t〉 occurs in σ2. I.e., having the events

at the same time guarantees that the traces are the same. The definitions and theorems

in [5] have this assumption, while in this section we consider the most general case.

Projection of a synchronized run of the composition automaton on one component is

the corresponding run local to that component automaton. Intuitively, the set of projec-

tions of a synchronized run form a shallowly synchronized run. The projection induces

an equivalence relation over strictly synchronized traces, namely the equivalence of

runs that are the same modulo a reordering of the interleaved labels.

Definition 9. Given a network H and an LHA H ∈ H, the projection πH of a syn-

chronized run σ of H over H is obtained by projecting the states and the assignments

occurring in σ on the H component and substituting transitions labeled with events not

accepted by H with stuttering transitions4.

The following theorem states the relationship between the two semantics5.

Theorem 1. Given a synchronized run σ, the tuple of projections 〈πH1
(σ), . . . , πHn

(σ)〉
on the different components is a shallowly synchronized run. Vice versa, given a shal-

lowly synchronized run θ, there exists a synchronized run σ such that 〈πH1
(σ), . . . , πHn

(σ)〉
is a refinement of θ.

As corollary, there exists a strictly synchronized run reaching qH1
× · · · × qHn

iff there

exists a shallowly synchronized run θ such that for all i, 1 ≤ i ≤ n, θHi
reaches qHi

.

4 Symbolic Encoding

In this section, first, we recall how linear hybrid automata and their reachability problem

can be encoded symbolically; second, we show how we can encode symbolically the

problem for a network with strict and shallow synchronization.

4.1 Symbolic encoding for single automaton

In the following, in order to encode the flow condition into a quantifier-free formula,

we assume the convexity of the invariant conditions. The symbolic encoding of a single

LHA consists of three formulas representing respectively the initial, the transition, and

the invariant condition. The encoding uses the following additional variables: a discrete

variable loc that represents the current location; a real-valued variable δ that represents

the time elapsed at the current step; a discrete variable l that represents the label taken

at the current step; and two distinguished values T and S, representing a timed transition

and stuttering, respectively.

4 The projection is well defined because if 〈qi−1, si−1〉
ai→ 〈qi, si〉 occurs in σ and ai is not a

label of H , then the H components of qi−1 and si−1 are equal to the H components of qi and

si respectively. Thus, the transition can be locally substituted with a stuttering transition.
5 An extended version with proofs can be find at http://es.fbk.eu/people/

tonetta/papers/forte10/

The encoding consists of the following formulas:

INIT :=
∧

q∈Q

(loc = q → Iq(X))

INVAR :=
∧

q∈Q

(loc = q → Zq(X))

TRANS :=
∧

q∈Q

(loc = q → (STUTTER ∨ TIMEDq ∨
∨

(q,p)∈E

UNTIMEDq,p))

STUTTER := l = S ∧ δ = 0 ∧ loc′ = loc ∧X ′ = X

TIMEDq := l = T ∧ δ > 0 ∧ loc′ = loc ∧ Fq(
X ′ −X

δ
)

UNTIMEDq,p := l = Lq,p ∧ δ = 0 ∧ loc′ = p ∧ Jq,p(X,X
′)

Given a reachability problem and a bound k on the length of the runs, we can encode

the bounded reachability problem into a formula which is satisfiable iff there exists a

run reaching the target condition. We assume to have a formula TARGET encoding the

target condition. For example, if we want to check the reachability of the location q, we

can set TARGET := loc = q.

As usual in BMC, we introduce k+1 copies of every variable in the encoding of the

automata. Then, the reachability problem can be encoded into the following formula:

BMC
k := INIT

0 ∧ INVAR
0 ∧

∧

0≤i<k

(

TRANS
i ∧ INVAR

i+1
)

∧ TARGET
k

where φi means that the current and next variables of φ have been substituted with their

i-th and (i + 1)-th copy, respectively.

When we consider a network, we use BMC
k
H to refer to the encoding of the problem

for the automatonH .

4.2 Symbolic encoding based on interleaving

In principle, it would be possible to generate the automaton corresponding to the com-

position of two or more LHAs, and use the above encoding. A more reasonable encod-

ing for a network is based on the encoding of each LHA in the network. The idea is to

simply conjunct the encodings forcing the shared event variables to be true exactly at

the same steps, and forcing the processes to “stutter” when they are not activated. We

assume that the variable δ is shared among the encodings of the different automata.

The reachability problem with a bound k can be encoded as

BMCINT
k
H :=

∧

1≤j≤n BMC
k
Hj

∧ STRICTSYNC
k
H

where STRICTSYNC guarantees that for every pair of processes j and h, every shared

event and the timed event occur at the same step in the two processes, and while a

non-shared event occurs in one process, the other process must stutter6:

STRICTSYNC
k
H :=

∧

1≤j<h≤n

∧

0≤i<k

∧

a∈Uj∩Uh

(lij = a↔ lih = a)

∧
∧

a∈Uj\Uh

(lij = a→ lih = S)

∧
∧

a∈Uh\Uj

(lih = a→ lij = S)

∧ (lih = T ↔ lij = T)

The encoding is compositional in the sense that each automaton is individually en-

coded. However, the necessity of stuttering on non-shared events and of performing

shared events in the same steps may cause complex runs (as shown in Fig. 1).

We also consider a variant of the above encoding where we allow discrete transitions

in different automata to occur at the same step of the encoding. Basically, with this

variant, we do not force a process to stutter when other processes perform either a

local event or an event which is not shared by the process. In this cases, we omit the

constraints which force to stutter. This encoding corresponds to the step semantics used

in [12] for encoding the bounded model checking problem of asynchronous systems.

4.3 Symbolic encoding based on shallow synchronization

In this section, we propose an encoding based on shallow synchronization. We let each

automaton keep its own copy of the bound k and the elapsed time δ; we do not force

processes to stutter and we let shared events occur at different (local) steps. This means

that each of the local encodings is able to construct a local trace.

The reachability problem with bounds k = 〈k1, k2, . . . , kn〉 can be encoded as

BMCSSkH :=
∧

1≤j≤n

BMC
kj
Hj

∧ SHALLOWSYNC

where SHALLOWSYNC encodes the constraints enforcing that all the paths must be

consistent according to Definition 7. In the following, we present different ways to

encode SHALLOWSYNC. (We assume to be in the case described in Remark 1, but all

the encodings that we are showing can be lifted to the general case.)

Encoding based on enumeration The first way to encode SHALLOWSYNC is by enu-

merating all possible combinations of steps on which the synchronization occurs. For

example, processes P1 and P2 may synchronize over event a, but a may occur in step 2

for P1, and in step 4 for P2. SHALLOWSYNC guarantees that, for all pairs of processes,

(i) if a shared event occurs in the first process, then the event must occur also in the

6 Note that it is not necessary to force at least one process not to stutter.

second process at the same time (possibly in different steps), and (ii) the final time of

the two processes is the same:

SHALLOWSYNC :=
∧

1≤j<h≤n

∧

a∈Uj∩Uh

∧

1≤ij≤kj

(l
ij
j = a↔

∨

1≤ih≤kh

lihh = a ∧ t
ij
j = tihh) ∧

∧

1≤ih≤kh

(lihh = a↔
∨

1≤ij≤kj

l
ij
j = a ∧ t

ij
j = tihh) ∧

∧

1<j≤n t
kj
j = tk11

Local reasoning We propose a variant of the previous encoding which can be split

into constraints local to each automaton, and one for each step. The encoding uses the

following additional variables:

– for each automatonHj , for each shared label l, a variable countil,j to represent how

many times l has occurred in Hj before step i;
– for each shared label l, a group of variables occ timei,l to represent the time at

which the i-th occurrence of l is fired;
– for each shared label l, a variable llast to record how many times l has been fired in

the whole run;
– clast to record the time at which the system reaches the target.

Note that the variables without superscript are untimed, in the sense that they do not

depend on any temporal step.

The shallow synchronization can be encoded as:

SHALLOWSYNC :=
∧

1≤j≤n

∧

0≤i<kj

SHALLOWSTEP
i
j ∧

COUNTERINITj ∧





∧

0≤i<kj

COUNTERSTEP
i
j



 ∧ FINALSHALLOWj

where SHALLOWSTEP
i
j states that if in the i-th step, an event l occurs in the j-th process

for the g-th time, then the local time of the process must be occ timeg,l:

SHALLOWSTEP
i
j :=

∧

l∈Uj

(lij = l) →
∧

1≤g≤i

((countil,j = g) → tij = occ timeg,l)

COUNTERINIT and COUNTERSTEP encode how the counters evolve:

COUNTERSTEP
i
j :=

∧

l∈Uj

(lij = l) → (counti+1
l,j = countil,j + 1)

COUNTERINITj := (count0l,j = 0)

while FINALSHALLOW states that the final values of the counters and the local time

must be the same:

FINALSHALLOWj := (
∧

l∈Uj

count
kj
l,j = llast) ∧ (t

kj+1
j = clast))

Exploiting richer theories It is possible to represent the above encoding with richer

theories introducing uninterpreted functions symbols. In particular we represent the

time of the i-th occurrence of a label l as a function occ timel from integers to reals.

This way we can rewrite SHALLOWSTEP into

SHALLOWSTEP
i
j :=

∧

l∈Uj

(lij = l) → (tij = occ timel(count
i
l,j))

5 Related Work

The shallow semantics (defined in [5] and adopted in this paper) bears many similarities

with the “local-time” semantics defined in [3] for networks of timed systems and can

in fact be seen as a generalization to the hybrid case of [3]. Indeed, neither requires

the synchronization of timed transitions of different components; they both use local

clocks that are re-synchronized upon shared events. The two semantics differ in the

types of runs used to solve the reachability problem: the shallow semantics consists of

sets of local runs, while the local-time semantics consists of runs in the interleaving

composition. With a mapping similar to the one defined in Section 3, it can be shown

that the two semantics are equivalent. As far as we know, this is the first attempt to

exploit the shallow/local-time semantics to improve BMC.

Partial-Order Reduction (POR) [11] is one of the most known and used technique

to tackle the state-space explosion problem due to interleaving of concurrent systems.

The idea is to identify cases when the order of transitions is not relevant in order to

prune the search space. The application of POR techniques is difficult in the context of

timed and hybrid systems because the timed transitions are global actions which typi-

cally interleave the local transition, and thus forbid the pruning performed by POR. The

local-time semantics was proposed in [3] to enable POR by removing the synchroniza-

tion on timed transitions. Other works as in [17] propose symbolic versions of POR and

combine them with bounded model checking and SMT. The main difference between

POR and the techniques presented in this paper is that while POR tackles the interleav-

ing explosion problem by fixing the order of independent transitions, we allow them to

be executed in parallel.

Also related is the “step” semantics, used in [12] for an efficient encoding of the

reachability problem in a network of asynchronous systems. The work in [12] is limited

to the case of discrete transitions. The idea presented in this paper can be seen as a

generalization of the step semantics to the case of timed transitions.

The work described in [16] proposes an event-order abstraction to verify timed au-

tomata. The idea is to analyze the discrete and continuous aspects separately by first

finding a discrete path causing an error and then computing a set of timing constraints

that make the path realistic. Similarly, CEGAR-based approaches such as [1, 14] per-

form a search on a purely discrete abstraction of the hybrid automaton, and check if the

obtained paths are compliant with the original constraints.

The first approach that adopts a shallowly synchronized semantics is presented in [5]

for path-oriented bounded reachability analysis of a network of LHAs. In the approach,

one path is selected for each component and all selected paths compose a path set for

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8

T
im

e
(s

ec
.)

of rods

inter
step

ru
ef
tu
rf
tf

(a : Star-shape Fischer) (b : Nuclear Reactor)

Fig. 2. Results where the length of a local run depends on the number of processes.

reachability analysis. Each path is independently encoded to a set of constraints while

synchronization controls are encoded according to the position of shared labels. By

merging all the constraints, the path-oriented reachability problem can be transformed

to the feasibility problem of the resulting linear constraint set, which can be solved by

linear programming efficiently. This approach has been extended in BACH [6] into a

general bounded reachability analysis technique. Different from the approach presented

in this paper, this technique traverses the structure of a network of automata using depth-

first search and checks the abstract path set one by one.

In the approaches mentioned above, the search is carried out in two stages: in the

first, a discrete abstraction of the problem is constructed, while in the second the candi-

date paths found in the abstract state are checked for consistency in the concrete space.

In our approach, the SMT solver carries out the refinement automatically during the

search, on demand. With respect to explicit-state search, the symbolic representation is

less sensitive to the state-space explosion problem. With respect to abstraction-based

techniques, the BMC technique is more tailored to find error paths.

Bounded model checking for hybrid systems using SMT solvers has been investi-

gated in [2, 10, 8, 9]. The characterizing feature of our work is the attempt to leverage

the structure induced by the synchronization of a network of hybrid automata.

6 Experimental Evaluation

6.1 Implementation

We implemented the encodings presented in Section 4 within the setting of NUSMT,

a model checker that extends NuSMV2 [7] with SMT techniques. The solver used to

check the satisfiability of the formulas was MathSat [4], which provides an incremental

interface. Thus, the search interacts with the solver to analyze problems of increasing

depth. As standard in bounded model checking, we exploit the fact that subproblems at

increasing depth share large parts of the encoding: the solver is able to retain informa-

tion discovered during the previous searches to solve next subproblems more efficiently.

We use the following notation to refer to the options: we use e for using the enumerative

encoding, r for using local reasoning, t for using local reasoning with uninterpreted

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

(a : Simple ring) (b : Ring-shape Fischer)

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of motorcycles

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of processes

inter
step

ru
ef
tu
rf
tf

(c : Motorcycle) (d : FDDI Protocol)

 10

 100

 1000

 2 4 6 8 10 12 14

T
im

e
(s

ec
.)

of trains

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

ec
.)

of local controllers

inter
step

ru
ef
tu
rf
tf

(e : ETCS) (f : Multi frequency)

Fig. 3. Results where the length of the local runs does not depend on the number of processes.

functions; with regards to the incrementality, when we use local reasoning, we can add

the synchronization constraints during the unrolling (denoted with u) or add them after

the unrolling (denoted with f). Overall, the options are ru, rf, ef, tu, tf (e.g., ru

means using local encoding with the constraints added during the unrolling).

6.2 Benchmarks

We test the performance of the shallow synchronization on the following benchmarks:

– Simple ring: this example is a simple ring of processes where each process only

communicates with its left and right neighbors; it is a proof of concept to show how

the shallow synchronization can perform exponentially better than the interleaving.

– Star-shape Fischer: this is the hybrid fischer algorithm for the mutual exclusion

protocol that uses a shared variable to control the access to a critical session.

– Ring-shape Fischer: this variant contains a ring of processes where each process

shares a variable with its left and right neighbor; the variables are used to access

critical sections in mutual exclusion with the neighbors.

– ETCS: this example is inspired by the European Train Control System (ETCS)

specification which controls the movement of trains on a track divided into sections.

The accelerated motion of the trains is approximated with linear constraints.

– Motorcycle: this example is inspired by the automated highway system from [14].

This system models a sequence of n motorcycles. Each motorcycle i needs to wait

the signal from the previous one to move, and it needs to keep the sequence during

the parade by synchronizing shared labels with neighbors.

– FDDI Protocol: this example is a ring topology model based on the system in [19].

It is a set of standards for data transmission on fiber optic lines in a LAN. Each

component in the system waits for the signal of previous one to transmit data.

– Nuclear Reactor: this example from [18]. The system controls a nuclear reactor

with n rods, and uses these rods to absorb neutrons one by one. Each rod that has

just been moved out must stay out of the water and cool for several time units.

– Multi-Frequency: this example models a global controller that periodically reads

the value of a variable from n local controllers, which synchronizes with an high

frequency with its environment, and a lower frequency with the global controller.

6.3 Results

We check reachability problems comparing the encodings based on interleaving, step

semantics, and shallow synchronization. We compared the results only on reachable in-

stances. For unreachable cases, since we are using a BMC approach, the results strongly

depend on the fixed bound, but the meaning of the bound depends on the semantics: for

the interleaving, it represents the total number of local and global steps; for the shal-

low synchronization, it represents the maximum bound of a local run. Thus, any bound

would be unfair for either semantics. Nevertheless, note that all algorithms check the

unreachability of the target for path lengths smaller than the final one. So, the perfor-

mance does not depend on the chance of finding the right path. We ran the experiments

on a Red Hat 4.1.2 machine, with Intel(R) Core(TM)2 Quad CPU 2.66*4, and 4GB of

RAM with a time out of 600 seconds.

The results of the comparison are shown in Figures 2 and 3, where the time to

solve the reachability problem is plotted in log scale against the number of automata

in the network. Each line corresponds to a particular option. Table 1 shows some of

the features of the benchmarks, such as the length of the paths found by reachability

analysis as a function of n (the number of processes in the benchmark family). Results

are reported for interleaving, step semantic and shallow synchronization.

The main finding of the experimental results is that the efficiency of the bounded

model checker depends on necessary depth of the search regardless the adopted seman-

tics. The interleaving performs better than shallow synchronization in the cases where

the depth of the search is the same for the different semantics (because one process in-

teracts with all the others and its local run of one process interleaves the synchronization

Benchmark Path length Hardest instance attempted

Inter Step Shallow Inter Step Shallow

Simple Ring 5n 6 6 5[TO] 20[1.1] 20 [3.1] - 20 [5.5]

Ring-shape Fischer 7n 7 7 5[TO] 20[8.9] 20 [24.2] - 20 [130.2]

Star-shape Fischer 3n 3n 3n 8[TO] 9[TO] 5 [TO] - 6 [TO]

FDDI Protocol 2n+ 1 5 3..5 15[TO] 15[TO] 20 [0.7] - 20 [7.3]

Nuclear Reactor 4n 4n 4n 8[TO] 8[TO] 6 [TO] - 7 [TO]

Motorcycle 4n+ 3 4n+ 3 7..9 7[TO] 6[TO] 20 [22.4] - 20 [259.5]

ETCS NA NA 17 2[TO] 2[TO] 7 [TO] - 14 [TO]

Multi-Frequency NA 3(n− 1)..3n 9 4[TO] 8[TO] 20 [20.4] - 20 [115.6]

Table 1. Columns 2, 3 and 4 report the length of the path found with the different semantics in

function of the number of processes n. Columns 5, 6, 7 report the size of the hardest instance at-

tempted, and, in square brackets, the corresponding time, or “TO” in case of timeout. For Shallow,

we report the best and worst result over the different options.

with all other processes): in these cases, the shallow synchronization is penalized by the

overhead of the synchronizing constraints. Nevertheless, in many cases (see Fig. 3), the

length of local runs do not depend on the number of processes. Thus, using the shallow

semantics, we reach the target at same depth. In these cases, the encoding based on shal-

low synchronization scales exponentially better than the one based on interleaving. The

shorter depth of the encoding pays off the overhead due to the more complex synchro-

nizing constraints. The same happens for the step semantics, which is the winner when

it is possible to parallelize independent transitions. Among the different options of the

shallow synchronization encodings, there is no winner, but using the local encoding

added after reaching the target seems to win in most of cases.

We also compared our implementation with BACH, which results to be faster on

many examples, while on others it does not terminate with few processes. The com-

parison does not help in understanding which encoding is more efficient, but rather it

confirms that explicit-state search is faster on automata with a small graph, while does

not compete on automata with complex graph structure. Finally, we played with dif-

ferent search strategies but they do not modify the outcome of the presented results.

All results, together with the binaries and test cases necessary to reproduce them, are

available at http://es.fbk.eu/people/tonetta/tests/forte10/.

7 Conclusions and Future Work

In this paper we have introduced a novel approach to symbolic reachability in networks

of hybrid automata. The approach relies on the shallow synchronization semantics, that

preserves the locality of reasoning within each automaton, and forces synchronization

between them only when necessary. We discussed how to exploit the features of shallow

synchronization in the setting of symbolic bounded model checking, exploiting some

advanced features of modern SMT solvers. An experimental evaluation in the setting of

linear hybrid automata shows that the proposed encodings are often more scalable than

the traditional encodings based on interleaving.

In the future, we will investigate the impact of shallow synchronization to the gen-

eral case of non-linear hybrid systems. Since automata synchronize only by way of

discrete messages, it should be possible to integrate different reasoning engines, with

different expressive power, within the same framework. The idea is to selectively apply

engines to automata, and to control the search based on the computation cost associated

to each tool. Furthermore, we will investigate the application of shallow synchroniza-

tion in the discrete setting, and its combination with partial order reduction techniques.

References

1. R. Alur, T. Dang, and F. Ivancic. Predicate abstraction for reachability analysis of hybrid

systems. ACM Trans. Embedded Comput. Syst., 5(1):152–199, 2006.
2. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying Industrial Hybrid Sys-

tems with MathSAT. Electr. Notes Theor. Comput. Sci., 119(2):17–32, 2005.
3. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions for Timed Systems.

In CONCUR, volume 1466 of LNCS, pages 485–500. Springer, 1998.

4. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The MathSAT 4

SMT Solver. In CAV, volume 5123 of LNCS, pages 299–303. Springer, 2008.
5. L. Bu and X. Li. Path-Oriented Bounded Reachability Analysis of Compositional Linear

Hybrid Systems, manuscript submitted, 2008.
6. L. Bu, Y. Li, L. Wang, X. Chen, and X. Li. BACH2: Bounded reachAbility CHecker for

Compositional Linear Hybrid Systems. In DATE, pages 1512–1517. EDAA, 2010.

7. A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In CAV,

volume 2102 of LNCS, pages 359–364. Springer, 2002.

8. M. Fränzle and C. Herde. Efficient Proof Engines for Bounded Model Checking of Hybrid

Systems. Electr. Notes Theor. Comput. Sci., 133:119–137, 2005.
9. M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded model checking of

hybrid systems. Formal Methods in System Design, 30(3):179–198, 2007.
10. N. Giorgetti, G.J. Pappas, and A. Bemporad. Bounded model checking for hybrid dynamical

systems. In DAC, pages 672–677. IEEE, 2005.
11. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An Ap-

proach to the State-Explosion Problem, volume 1032 of LNCS. Springer, 1996.
12. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. Theory and

Practice of Logic Programming, 3(4-5):519–550, 2003.

13. T.A. Henzinger. The Theory of Hybrid Automata. In LICS, pages 278–292. IEEE Computer

Society, 1996.
14. S. Jha, B. Krogh, J. Weimer, and E. Clarke. Reachability for Linear Hybrid Automata Using

Iterative Relaxation Abstraction. In HSCC, volume 4416 of LNCS, pages 287–300. Springer,

2007.
15. Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-4):141–224, 2007.

16. U. Shinya. Event order abstraction for parametric real-time system verification. In EMSOFT,

pages 1–10. ACM, 2008.
17. C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole Partial Order Reduction. In TACAS,

volume 4963 of LNCS, pages 382–396. Springer, 2008.
18. F. Wang. Symbolic parametric safety analysis of linear hybrid systems with BDD-like data

structures. IEEE Trans. Soft. Eng., 31(1):38–51, 2005.

19. J. Zhao, X. Li, T. Zheng, and G. Zheng. Removing Irrelevant Atomic Formulas for Checking

Timed Automata Efficiently. In FORMATS, volume 2791 of LNCS, pages 34–45. Springer,

2003.

