
Compositional Reachability of Hybrid Systems
Alessandro Cimatti Sergio Mover Stefano Tonetta

Fondazione Bruno Kessler – FBK-irst – Embedded System Unit – Italy
{cimatti,mover,tonettas}@fbk.eu

Abstract—Hybrid automata provide a comprehensive frame-
work for the representation of practical systems with discrete
and continuous dynamics. Their interaction is paradigmatic of
partially synchronized systems, which may run asynchronously
or synchronize on common events.

In this paper, we propose a compositional approach to the
reachability analysis of hybrid systems. Differently from most
works in compositional reasoning, that focus on proving universal
properties, here the purpose is to provide witnesses to existential
properties.

The role of compositionality is to reduce the effort of building
such witnesses, by replacing a monolithic search on the whole
network of systems with a set of searches on suitably constrained
components.

The proposed method selects a component in the network
under analysis, and applies, to each of the other components,
either an over-approximation or an under-approximation. Intu-
itively, the over-approximations can be seen as abstractions of the
environment visible to the selected component, while the under-
approximations impose constraints resulting from previously
found partial solutions. The approach carries out a backtracking
search in the space of network approximations.

We instantiated the compositional analysis for checking
bounded reachability. We rely on advanced use of SMT tech-
niques to implement the necessary steps, including abstraction,
generalization, and learning. The experimental results demon-
strate the potential of the approach.

I. INTRODUCTION

Hybrid automata ([16]) are increasingly recognized as a
clean modeling framework for systems with discrete and
continuous variables. Many systems are structured into com-
ponents, and can often be naturally modeled as networks
of communicating hybrid automata: local activities of each
component amounts to transitions local to each hybrid au-
tomaton; communications and other events that are shared
between/visible for various components are modeled as syn-
chronizing transitions of the automata in the network; time
elapse is modeled as shared timed transitions.

In this paper, we propose a compositional approach to the
reachability analysis of hybrid systems. The role of com-
positionality is to reduce the effort of building reachability
witnesses, by replacing a monolithic search on the whole net-
work of systems with a set of searches on suitably constrained
components.

The proposed method selects a component in the network
under analysis, and applies, to each of the other components,
either an over-approximation or an under-approximation. In-
tuitively, the over-approximations can be seen as abstractions
of the environment visible to the selected component, while
the under-approximations impose constraints resulting from
previously found partial solutions. The approach carries out a

backtracking search in the space of network approximations.
When a conflict is found, the cause of the conflict is analyzed,
and the under-approximated components that are responsible
for the inconsistency are reconsidered to choose an alternative
under-approximation.

Compared to most works in compositional reasoning
(e.g. [17], [13]), that aim at proving universal properties, the
proposed approach focusses on providing witnesses to exis-
tential properties. In addition, we combine reasoning based on
overapproximations with a dual form of reasoning that exploits
under-approximations. Compared to approaches tailored to the
falsification of safety properties (e.g. [12], [23]), we notice
that they implement a monolithic search without exploiting
the compositionality of the network, and can thus be used as
a backend within the approach proposed here.

Our framework is quite general and can be instantiated in
several different ways. Here, we choose 1) approximations
based on state-space restrictions and constraints relaxation, 2)
a bounded model checking engine, 3) a search on the network
components based on a fixed order of the processes.

We rely on advanced use of SMT techniques to implement
the necessary steps, exploiting the solver’s incrementality to
perform bounded model checking and conflict analysis.

The experimental results demonstrate the potential of the
approach. In particular, while the compositional approach in
general pays a substantial overhead due to the number of
performed searches, compared to a monolithic approach, the
benefits are evident when we scale up the size of the network
and the complexity of the components.

Outline: The paper is structured as follows. In Section II
we present some background. In Section III we discuss the
exploited rules of compositionality and describe the com-
positional analysis algorithm. In Section we discuss some
specific choices in our approach. In particular, in Section IV-A
we present the component approximations, in Section IV-B
we describe the bounded reachability search based on SMT
technologies, and in Section IV-C we discuss the backtracking
details. In Section V we discuss some relevant related work.
In Section VI we experimentally evaluate the approach. In
Section VII we draw some conclusions and future work.

II. BACKGROUND

A. Networks of transition systems

The following definitions are standard notions of concur-
rency theory (see, e.g., [24]).

Definition 1 (Labelled Transition System): A Labelled
Transition System (LTS) is a tuple 〈Q,A, I, T 〉 where

• Q is the set of states,

• A is the set of actions/events,
• I ⊆ Q is the set of initial states,
• T ⊆ Q×A×Q is the set of labeled transitions.
Definition 2 (Trace): A trace is a sequence of actions π =

a1, . . . , ak ∈ A∗. Given A′ ⊆ A, the projection π �A′ of π on
A′ is the sub-trace of π obtained by removing all actions in
π that are not in A′.

Definition 3 (Run): A run σ of S over the trace π =
a1, . . . , ak ∈ A∗ is a sequence q0, q1, . . . , qk of states of S
such that q0 ∈ I and, 〈qi−1, ai, qi〉 ∈ T for all i such that
1 ≤ i ≤ k. We say that σ accepts π. Given a predicate p ⊆ Q
we say that σ terminates in p iff qk ∈ p.

Definition 4 (Language): The language L(S) of an LTS S
is the set of traces accepted by some run of S. Two LTSs are
equivalent if they have the same language. Given a predicate
p ⊆ Q, the language Lp(S) of an LTS S is the set of traces
accepted by some run of S terminating in p.

Definition 5 (Parallel composition): The parallel composi-
tion S1||S2 of two LTSs S1 = 〈Q1, A1, I1, T1〉 and S2 =
〈Q2, A2, I2, T2〉 is the LTS 〈Q,A, I, T 〉 where

• Q = Q1 ×Q2,
• A1 ∪A2,
• I = I1 × I2,
• T :=
{〈q1 × q2, a, q

′
1 × q′2〉 | 〈q1, a, q′1〉 ∈ T1, 〈q2, a, q′2〉 ∈ T2}

∪{〈q1 × q2, a, q
′
1 × q2〉 | 〈q1, a, q′1〉 ∈ T1, a 6∈ A2}

∪{〈q1 × q2, a, q1 × q′2〉 | 〈q2, a, q′2〉 ∈ T2, a 6∈ A1}.
Similarly, we define the parallel composition σ1||σ2 of the run
σ1 of S1 and the run σ2 of S2.

Theorem 1 (Associativity and commutativity [24], [8]):
The parallel composition is associative and commutative
modulo language equivalence.

Definition 6 (Network): A network N is a set of LTSs
{S1, . . . Sn}. The language of a network is the language of
the composition of the LTSs, i.e., L(N) = L(S1|| . . . ||Sn).

Definition 7 (Language emptiness problem): Given a net-
work, the language emptiness problem is the problem of
checking if the language of a network is empty.

Definition 8 (Reachability problem): Given a network N
and a predicate p ⊆ Q1 × . . .×Qn, the reachability problem
is the problem of checking if the language Lp(N) is empty.

Theorem 2 (Composition language [24], [8]): A trace π is
accepted by S1||S2 iff π �A1 is accepted by S1 and π �A2 is
accepted by S2. Thus,

L(S1||S2) = {π ∈ (A1 ∪A2)∗ |
π �A1∈ L(S1), π �A2∈ L(S2)}

Remark 1: The set of actions is not restricted to be finite.
Thus, it is possible to model also variable sharing where the
two systems may synchronize the value of the variables on a
common action. In fact, it is sufficient to encode the value of
the variable in the action itself: for example, if on action a
two system synchronize the value of the real variable x, we

use the set of actions {〈a, x〉}x∈R and force that a transition
〈q, 〈a, x〉, q′〉 exists only if the value of x in q is x.

B. Hybrid systems

Definition 9 (Hybrid Automata): A Hybrid Automaton
(HA) is a tuple
〈Q,A, I, T,X, µ, ι, ξ, θ〉 where

• Q is the set of states,
• A is the set of actions,
• I ⊆ Q is the set of initial states,
• T ⊆ Q×A×Q is the set of discrete transitions,
• X is the set of continuous variables,
• µ : Q→ P (X, Ẋ) is the flow condition,
• ι : Q→ P (X) is the initial condition,
• ξ : Q→ P (X) is the invariant condition,
• θ : T → P (X,X ′) is the jump condition.
Definition 10: A network H of HAs is a set of HAs.
Definition 11 (Semantics): Consider a network

H = {H1, . . . ,Hn} of HAs with Hi =
〈Qi, Ai, Ii, Ti, Xi, µi, ιi, ξi, θi〉. The semantics of H is
the network of LTSs NDELTA = {S1, . . . , Sn} with
Si = 〈Q′

i, A
′
i, I

′
i, T

′
i 〉 where

• Q′
i = {〈q, x〉 | q ∈ Qi, x ∈ R|Xi|},

• A′
i = Ai ∪ {〈TIME, δ〉 | δ ∈ R},

• I ′i = {〈q, x〉 | q ∈ Ii, x ∈ ιi(q)},
• T ′i =
{〈q, x, a, q′, x′〉 | 〈q, a, q′〉 ∈ Ti, 〈x, x′〉 ∈ θi(q, a, q′), x ∈
ξi(q), x′ ∈ ξi(q′)}∪
{〈q, x, 〈TIME, δ〉, q, x′〉 | there exists f satisfying µi(q)
s.t. f(0) = x, f(δ) = x′, f(ε) ∈ ξ(q), ε ∈ [0, δ]}.

III. SEARCH-BASED COMPOSITIONAL REACHABILITY
ANALYSIS

A. Compositional reasoning based on under-approximations

In this paper, for compositional analysis, we mean checking
if there exists a trace π ∈ A =

⋃
S∈N AS such that π �AS

∈
L(S) for all S ∈ N ; for monolithic analysis, we mean building
the parallel composition of the systems in the network and
checking if there exists a trace accepted by the composition
system.

The standard application of compositional reasoning is the
verification of universal properties such as safety and liveness.
Thus, the typical approaches use over-approximations of the
components to prove the properties on a simplified network,
and conclude that the properties hold also on the original
concrete network.

Since we are interested in existential properties, such as
finding a witness to the violation of a safety property or the
emptiness of the language of a network, over-approximations
are not suitable.

Given a component S, we denote with Ŝ an over-
approximation of S and with Š an under-approximation of
S.

Definition 12 (Over-Approximation): An LTS Ŝ is an over-
approximation of the LTS S iff L(S) ⊆ L(Ŝ).

Algorithm CompositionalAnalysis(NetworkN)
1. N̂ = InitialOverApprox (N)
2. Over = N
3. Under = ∅
4. while Over 6= ∅
5. Sc = PickComponent (Over)
6. Over = Over \ {Sc}
7. Ñ = Sc ×

∏
S∈Under Š ×

∏
S∈Over Ŝ

8. π = ReachAnalysis(Ñ)
9. if IsTrace(π)
10. then Šc = ExtractUnderApprox (Sc, π)
11. Under = Under ∪ {Sc}
12. else X = ConflictAnalysis (π)
13. if X ⊆ Over
14. then return unreachable
15. else Ŝc = RefineOverApprox (Sc)
16. Over = BackTrack (Over, X)
17. Under = N \ Over
18. return reachable

Fig. 1. The compositional reachability algorithm

Definition 13 (Under-Approximation): An LTS Š is an
under-approximation of the LTS S iff L(Š) ⊆ L(S).

Our approach complements over-approximations with
under-approximations. We use the following deduction rule
(left) for compositional reasoning (we assume that the property
can be expressed as a boolean combination of conditions over
state variables of the components):

L(S1) ⊆ L(Ŝ1)
...

L(Sn) ⊆ L(Ŝn)
L(Sc × Ŝ1 × . . .× Ŝn) = ∅
L(Sc × S1 × . . .× Sn) = ∅

L(Š1) ⊆ L(S1)
...

L(Šn) ⊆ L(Sn)
L(Sc × Š1 × . . .× Šn) 6= ∅
L(Sc × S1 × . . .× Sn) 6= ∅

The rule on the right is dual to the one on the left, and uses
the under-approximations of the components of the network.

Intuitively, the rule on the left is used to prune the search:
if we can’t find a trace in a network obtained by over-
approximating all the components but Sc, then no trace exists
in the original network. The rule on the right allows us to
conclude: if a trace exists in a network where all components
but Sc have been under-approximated, then a trace exists in
the original network.

B. Compositional Reachability Algorithm

The compositional reasoning rules presented above are
the basis for a search-based algorithm which analyzes the
reachability of a network in a compositional way. Intuitively,
the algorithm explores the space of networks that can be
obtained by over- and/or under-approximating the components
of the original network.

The algorithm is presented in Figure 1. The input N is a
network annotated with a set of target locations; the algorithm

terminates either returning unreachable when the target is
unreachable, or a witness trace when the target is reachable.
During the search, each component is associated with an
over-approximation, initially constructed by InitialOverAp-
prox. The over-approximation is is increasingly tightened with
constraints resulting from the analysis of other components.

The algorithm partitions the network between the com-
ponents in Under already analyzed which are under-
approximated and the components in Over to be analyzed
which are over-approximated.

The analysis iterates over the components of the network
to be analyzed, stored in the Over list. During each iteration,
a component Sc is selected by PickComponent and removed
from Over. Sc is checked, in its concrete form, for compati-
bility with respect to an environment composed by the under-
approximations of previously analyzed components, and by
the over-approximations of the other components (lines 4-6).
The result of the call to ReachAnalysis, π, is either a trace, or
a proof that the language of Ñ is empty.

If a trace is returned (lines 8-9), then Sc is added to
the Under list, and then Šc = ExtractUnderApprox (Sc, π)
constructs an under-approximation for Sc, by generalizing the
found trace.

If π is not a trace, then ConflictAnalysis (π) returns a set
of components X responsible for the inconsistency with Sc.
If X ⊆ Over, this means that Sc turns out to be inconsistent
with the over-approximation of some other components, and
thus it is possible to conclude that the network has an empty
language, according to the composition rules presented above.

If X contains the under-approximation of some component,
RefineOverApprox learns the reason within Sc for the incon-
sistency, and the search backtracks to a suitable point, so that
some of the processes that had been under-approximated are
reinserted in Over for reconsideration. Then, the search is
resumed. We notice that the learned reason for inconsistency
results in a tightening of the over-approximation of Sc. Intu-
itively, the learned reason encodes a set of traces that prevent
Sc to reach the target, and thus are blocked. This has the
effect of preventing the under-approximation(s) responsible for
inconsistency from being reconsidered in further iterations.

The search terminates successfully when Over is empty,
i.e. if the last component turns out to be consistent with the
under-approximations of all the other components. In such a
situation, we can conclude that the language is not empty,
and a witness is given by any trace reaching the target and
interleaving the candidate traces of each component.

Algorithm CompositionalAnalysis has several degrees of
freedom in various primitives. Let Ñ be Sc ×

∏
S∈Under Š ×∏

S∈Over Ŝ.
If L(Ñ) 6= ∅ and Šc = ExtractUnderApprox(Sc), then ∅ 6=

L(Šc) ⊆ L(Sc). Thus, the language of the selected under-
approximation can range from a trace to the whole language
of Sc.

If L(Ñ) = ∅ and Ŝc = RefineOverApprox(Sc), then (i)
Ŝc is an over-approximation of Sc, i.e. L(Sc) ⊆ L(Ŝc), and
(ii) Ŝc is sufficiently strong to block the under-approximation

responsible for the inconsistency. That is, if Ñ [Sc/Ŝc] is Ŝc×∏
S∈Under Š ×

∏
S∈Over Ŝ, then L(Ñ [Sc/Ŝc]) = ∅ Thus, the

language of the chosen over-approximation can range from
L(S) to ¬L(

∏
S∈Under Š ×

∏
S∈Over Ŝ).

If the sub-routines of Algorithm CompositionalAnalysis are
correct and terminating, so is the algorithm.

Theorem 3: If the sub-routines of Algorithm Composition-
alAnalysis are correct, in particular ReachAnalysis(Ñ) ⊆
L(Ñ) iff L(Ñ) 6= ∅, L(ExtractUnderApprox(Sc)) ⊆ L(Sc),
and L(Sc) ⊆ L(RefineOverApprox(Sc)), then Algorithm Com-
positionalAnalysis returns reachable [unreachable] iff L(N) 6=
∅ [L(N) = ∅].

Theorem 4: If the sub-routines of Algorithm Composi-
tionalAnalysis are terminating and a sequence of calls to
RefineOverApprox(Sc) converges with a finite number of steps
to Sc, then Algorithm CompositionalAnalysis is terminating.

Running example: In order to illustrate the technique, we
consider now the example of network reported in Figure 2. The
network has three components (C1, C2 and C3, counterclock-
wise from the top). C1 and C2 share the labels a and b; C1 and
C3 share c; C2 and C3 share d. The components are HA with
one or two continuous variables per component. For example,
C1 has the continuous variable x which is set to 0 during the
transitions 0 a−→1 and 0 b−→2, incremented with ẋ > 10 while
staying in the state 1 and with ẋ ≤ 10 while staying in
the state 2, and tested in 1−→3 and 2−→3. For simplicity, the
local transitions (e.g. 1−→0 in C1) with non-shared events are
not labeled. We denote a network configuration as a tuple
of locations: the initial configuration is (0,0,0), i.e. all the
components in 0, while the target configuration is (3,3,2). A
possible run of the algorithm is the following.

1) The over-approximations created by InitialOverApprox
contain only the discrete parts of the components and
disregard the constraints on the continuous variables.

2) Checking C1× Ĉ2× Ĉ3, ReachAnalysis finds the C1’s
run 0 a−→1 c−→3. C1 is under-approximated restricting the
HA to the states 0, 1, and 3.

3) Checking Č1×C2× Ĉ3, ReachAnalysis finds the C2’s
run 0 d−→1 a−→3. C2 is under-approximated restricting the
HA to the states 0, 1, and 3.

4) Checking Č1× Č2× C3, ReachAnalysis finds that the
language of the approximated network is empty. The
reason of the inconsistency is that Č1 and Č2 require
that the time elapsing between d and c is less than 8
while the C3’s constraints on z require such time to be
greater or equal to 9. Thus the search backtracks to C2
and refines Ĉ3 by adding the constraints on z.

5) Re-checking Č1 × C2 × Ĉ3, ReachAnalysis finds the
C2’s run 0 d−→2 a−→3. C2 is under-approximated restricting
the HA to the states 0, 2, and 3.

6) Re-checking Č1×Č2×C3, ReachAnalysis finds that the
language of the approximated network is not empty and
thus Algorithm CompositionalAnalysis concludes that
the original concrete network admits a run to the target.

Note that if at step 1, ReachAnalysis finds the run 0 d−→2 a−→3
of C1, this would be inconsistent with the constraints on w of
C3. Thus, in such case, at step 4, the search would back-jump
to C1.

IV. FRAMEWORK INSTANTIATION

In this section, we discuss a practical instantiation of the
general framework of Section III-B. The instantiation depends
on three main choices:

1) the state-space of approximations from which we choose
the under and over-approximations of the components;

2) the verification problem and the engine with which we
analyze the network;

3) the order with which we analyze the processes and we
backtrack (which can be fixed, dynamic, based on the
topology of the network, etc...).

A. Constraint-based Approximations of Hybrid Automata

The algorithm presented in previous section leaves many
degrees of freedom regarding the systems being analyzed,
and the formalism used to represent the under- and over-
approximations. Here, we present an approach for approximat-
ing HAs based on the constraints defining the different parts
of the automata. Basically, under-approximations are obtained
by removing states and transitions, and/or adding further
constraints to initial, invariant, flow, of jump conditions; over-
approximations are obtained by adding constraints to initial,
invariant, flow, of jump conditions.

Given a HA H = 〈Q,A, I, T,X, µ, ι, ξ, θ〉, we con-
sider only under-approximations in the form Ȟ =
〈Q̌, A, Ǐ, Ť ,X, µ̌, ι̌, ξ̌, θ̌〉 where

• Q̌ ⊆ Q
• Ǐ ⊆ I
• Ť ⊆ T
• µ(q) ⊆ µ̌(q) for all q ∈ Q;
• ι(q) ⊆ ι̌(q) for all q ∈ Q;
• ξ(q) ⊆ ξ̌(q) for all q ∈ Q;
• θ(q) ⊆ θ̌(q) for all q ∈ Q.
Similarly, we consider only over-approximations in the form

Ĥ = 〈Q,A, I, T,X, µ̂, ι̂, ξ̂, θ̂〉 where the discrete part is the
same of H and

• µ̂(q) ⊆ µ(q) for all q ∈ Q;
• ι̂(q) ⊆ ι(q) for all q ∈ Q;
• ξ̂(q) ⊆ ξ(q) for all q ∈ Q;
• θ̂(q) ⊆ θ(q) for all q ∈ Q.
Based on this state-space of approximations, we instantiate

the sub-routines InitialOverApprox, ExtractUnderApprox, and
RefineOverApprox as follows:

• InitialOverApprox returns the over-approximation Ŝ
where initial, invariant, and flow conditions are abstracted
away (removed):

– µ̂(q) = ∅ for all q ∈ Q;
– ι̂(q) = ∅ for all q ∈ Q;
– ξ̂(q) = ∅ for all q ∈ Q;
– θ̂(q) = θ(q) for all q ∈ Q.

{d}

{a,b} {c}

0 3

d

1

2

d

C2

b

C3

0 2a

1d

c

C1

0 3

b

1

2

a

c

c

ẏ = 1

y := 0
ẏ = 1

y = 5

y := 2
y = 5

ẇ > 1
w := 0

z ≥ 9

ẋ > 10

x := 0
ẋ ≤ 10

x := 0 x < 50

x ≥ 100

z := 0
ż ≤ 1

w < 10

Fig. 2. An example of network.

• Given a trace π ∈ L(Sc), we consider a run σ over π.
Let Qσ be the set of states forming σ. Let Aπ be the
set of actions forming π. ExtractUnderApprox returns the
under-approximation Šc which is obtained from Sc by

– removing the states which are not visited by σ, i.e.
Q̌ = Qσ;

– removing transition labeled with actions which are
not present in π, i.e. Ť = {〈q, a, q′〉 | a ∈ Aπ}.

• Given an approximated network Ñ whose language is
empty, and the over-approximation Ŝc of Sc, RefineOver-
Approx returns a new over-approximation Ŝ′c obtained by
Ŝc by adding for each q ∈ Q, for each ? ∈ {µ, ι, χ, θ}
a minimal set of constraints in ?(q) to ?̂(q) such that
Ñ [Sc/Ŝc] has an empty language.

B. Compositional bounded reachability analysis with SMT

The compositional analysis of Section III is orthogonal to
the addressed reachability problem and the engine used to
solve such problem. Here, we focus on the bounded reacha-
bility problem of a network of hybrid automata. In particular,
we fix a bound k and we check if there exists a path of up to
k steps in the network reaching the target, and we discuss its
implementation by way of SMT techniques.

1) Bounded reachability analysis: The procedure Reach-
Analysis uses an SMT solver as back-end engine to solve the
satisfiability of formulas encoding reachability problems in the
network. Given a network Sc×

∏
S∈Under Š×

∏
S∈Over Ŝ with

up to k steps, the formula encoding the target reachability is
the standard:

BMCk(Sc) ∧
∧

S∈Under

BMCk(Š) ∧∧
S∈Over

BMCk(Ŝ) ∧ SYNCk ∧ TARGETk (1)

where SYNC is a formula which forces the synchronization
of the runs of the components and varies among different
techniques [5].

2) Conflict analysis with unsat cores: ConflictAnalysis
modifies the encoding 1 in order to analyze the causes of an
inconsistency. The information is used for early termination,
back-jumping, and over-approximation refinement.

We add additional variables to flag the sub-formulas forced
to be true in the SMT problem. In particular, we build the
following formula:

BMC′k(Sc) ∧
∧

S∈Under

(AŠ → BMCk(Š)) ∧

(Â→
∧

S∈Over

BMCk(Ŝ)) ∧ SYNCk ∧
∨

0≤i≤k

TARGETi (2)

where BMC′k(Sc) =
∧
ψ∈BMCk(Sc)

(Aψ → ψ) (note that
BMCk(Sc) is seen as a set of conjoined formulas).

Thus, the overall set of flags is F = {A | A = Â or
A = AŠ , for some Š ∈ Under, or A = Aψ , for some
ψ ∈ BMCk(Sc)}. The conflict analysis is performed by
considering the formula 2 in conjunction with a subset X of F .
In the following, we analyze different subsets used for different
purposes. We will X0 to denote the set {A | A = Aψ , for some
ψ ∈ BMCk(Sc)} and X̌ to denote the set {A | A = AŠ , for
some Š ∈ Under}.

Considering X = Xc ∪ {Â}, we analyze if the process
Sc is inconsistent with some over-approximation. In such
cases, ConflictAnalysis returns Over and Algorithm Compo-
sitionalAnalysis terminates concluding that the target cannot
be reached within k steps (early termination).

Considering X ′ = X0 ∪ {Â} ∪ X̌ ′ for some X̌ ′ ⊆ X̌ , we
check if a set of under-approximations is inconsistent with
Sc. This is used to backtrack to the last choice of under-
approximation which caused the inconsistency (back-jumping).

Considering the set X ′ = {Â} ∪ X̌ ∪ X ′
0 for different

X ′
0 ⊆ X0, we can analyze the cause of inconsistency within Sc.

Given a minimal X ′ for which the problem is unsatisfiable, we
refine the over-approximation of Sc by adding the constraints
corresponding to the formulas in the set X ′

0 (learning).
The minimal set X ′ is found with a linear number of checks

providing a set such that the removal of any further element

would result into a satisfiable problem.
3) SMT Incrementality: The two procedures (ReachAnal-

ysis and ConflictAnalysis) interact with the solver to solve
different problems incrementally adding new constraints. This
way, the solver keeps the lemmas found in previous checks
and speed up the search. This is exploited in ReachAnalysis
unrolling the systems step by step and interactively checking
the reachability of the target. In ConflictAnalysis, the incre-
mentality is exploited by querying the solver with different set
of flags, while keeping the same instance of the reachability
problem.

C. Backtracking order

Finally, the order with which Algorithm Compositional-
Analysis picks a components and back-tracks may depend
on different heuristic such as the topology of the network.
Here, we simply use a fixed order of the components. We
assume the order is given by the indexes of the processes
S1, . . . , Sn. At every step of Algorithm CompositionalAnal-
ysis, Under = {S1, . . . , Sj−1} and Over = {Sj , . . . , Sn}
for some j, PickComponent returns Sj , and we analyze the
network

∏
1≤i≤j−1 Ši × Ŝi ×

∏
j+1≤i≤n Ŝn. When there is a

conflict, BackTrack chooses the last component in the order
S1, . . . , Sj−1 which is in conflict with Sj .

V. RELATED WORK

A well-known paradigm of compositional verification is
assume-guarantee reasoning [15]. In [17], [13], the paradigm
has been applied to networks of hybrid systems. However the
standard assume-guarantee reasoning focus on guaranteeing
that each component satisfies an universal property given over-
approximating assumptions on the behavior of the other com-
ponents. Thus, the approach is not adapt to compositionally
construct a model common to all the systems in the network.

Another type of compositional analysis composes the com-
ponents of a network incrementally producing an observation-
ally equivalent system. In [26], such approach is applied to
the reachability analysis of networks of timed systems with
discrete time.

Abstraction is a standard technique to tackle the state-
space explosion problem. Many techniques adopt over-
approximations such as localization reduction [21] or predicate
abstraction [14]. BMC [3] can be considered an instance
of under-approximation. Constraints-based approximations are
also used in the context of HA verification [20]. The work
described in [25] proposes an event-order abstraction to verify
timed automata. The idea is to analyze the discrete and
continuous aspects separately by first finding a discrete path
causing an error and then computing a set of timing constraints
that make the path realistic. A similar approach is adopted
by [6] which exploits a time-stamps semantics of hybrid
automata and check the consistency of runs of discrete over-
approximations of the components.

Abstraction refinement [10], [11] iteratively refines an over-
approximation until either an universal property is proved to

be satisfied or a counterexample is given. In counterexample-
guided abstraction refinement [10], the abstraction is re-
fined according to spurious behaviors created by the over-
approximation. Abstraction refinement is applied to hybrid
automata in [1]. In [8], abstraction refinement is used to
analyze concurrent system, though without a compositional
approach.

In [22], [7], the abstraction refinement is applied in combi-
nation with under-approximations. In [7], abstraction refine-
ment is applied to both under and over-approximations to
check the substitutability of components. In [22], an under-
approximated search is performed on the concrete system
using predicate abstraction to over-approximate the visited
states.

Bounded model checking (without compositional analysis)
for hybrid systems using SMT solvers has been investigated in
[2], [12], [5]. The proposed compositional analysis is orthog-
onal to the different engines used to check the approximated
networks.

VI. EXPERIMENTS

A. Implementation

We implemented the algorithm described in Sections III and
IV within the setting of NUSMT, a model checker that extends
NuSMV2 [9] with SMT techniques. The solver used to check
the satisfiability of the formulas is MathSat [4], which provides
an incremental interface.

We enabled the tool to take in input a network of sym-
bolically represented hybrid automata. The discrete part of a
component is described by means of discrete variables, which
may be scalar, integer, or real. The discrete transitions are
modeled with formulas as well as the initial, invariant, jump,
and flow conditions.

B. Benchmarks

We focus the evaluation on the trade-off provided by the
compositional approach between the speed up on a single
search given by the approximations and the overhead of
performing several searches instead of a monolithic one. As
evident from the example of Section III-B, if the components
of the network are simple, the benefit of reducing the com-
ponents will not pay off. Thus, we focus on the scalability
of the algorithm with regards to the number of components
of a network and the complexity of each component. To this
purpose, we consider four academic benchmarks which are
scalable in the number of components and we augment them
with artificial scalable complexity. In particular, we add to each
component a new continuous variable and a scalar variable
whose domain is [1..P]. Moreover a constraint forces the value
of the continuous variable and its flow condition in a different
interval for each possible value of the scalar variable. We
applied this transformation to the following benchmarks:

• Star-shape Fischer: this is the hybrid Fischer algorithm
for the mutual exclusion protocol that uses a shared
variable to control the access to a critical session.

• Ring-shape Fischer: this variant contains a ring of pro-
cesses where each process shares a variable with its
left and right neighbor; the variables are used to access
critical sections in mutual exclusion with the neighbors.

• FDDI Protocol: this example is a ring topology model
based on the system in [27]. It is a set of standards for
data transmission on fiber optic lines in a LAN. Each
component in the system waits for the signal of previous
one to transmit data.

• Motorcycle: this example is inspired by the automated
highway system from [20]. This system models a se-
quence of n motorcycles. Each motorcycle i needs to wait
the signal from the previous one to move, and it needs
to keep the sequence during the parade by synchronizing
shared labels with neighbors.

We then evaluated the approach on a more realistic bench-
mark which is a scalable though simplified version of the
ETCS protocol for the interoperability of n trains on a track,
as described in [19]. The non-linear equation coming from the
flow condition relating the location and the speed of a train is
linearized with portrait partitioning [18] with P partitions.

For each benchmark we check reachable targets to verify if
the compositional approach manages to speed-up the search by
interleaving simpler components. Both methods reach a target
with the same number of steps. We show in Table I the length
of paths found for each benchmark in function of the number
of automata in the network. As for the ETCS protocol, the runs
are linear in the partitions used to approximate the non-linear
equation.

Benchmark Path length
Ring-shape Fischer 7
Star-shape Fischer 3n

FDDI Protocol 2n + 2
Motorcycle 4n + 3

TABLE I
LENGTH OF FOUND PATHS IN FUNCTION OF THE NUMBER OF AUTOMATA.

C. Results
The plots in Figure 3 and 4 show, for each benchmark, the

difference between the total search times of the monolithic
approach and of the compositional approach. In order to show
the scalability with respect to the number and the complexity
of the components, we use a 3-D plot with, on X and Y axes,
the number n of automata in the network and the number
P of partitions. On the Z axis, we plot, for each instance,
the difference between the total search time of monolithic
and the total search time of compositional: thus, a point
with a positive value means that the search time of the
compositional approach was lower than the search time for
the monolithic approach. The instances where both approaches
time out are not plotted. The instances where only monolithic
[compositional, resp.] times out are highlighted with a triangle
[square].

A key finding of the experimental evaluation is that the
compositional approach outperforms the monolithic search

 2
 4

 6
 8

 10
 12

 14
 16 4

 5

 6

 7

 8

 9

-200
 0

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Time (sec.)

of processes

of scalar values

Time (sec.)

Fig. 3. ETCS Protocol

when the complexity of the components increases. This is
because when the automata in the network become more
complex it is more convenient to perform several searches
on an approximated network, rather than a unique search on
the concrete network. In some benchmarks, 4(a) and 4(c),
we notice that the monolithic approach scales better than
compositional when we fix the complexity of the components
while increasing their number. In these cases, the reduction
given by the approximated components is not enough to
counterbalance a higher number of searches.

In all the benchmarks, the adopted over-approximation is
strong enough to constrain the search to choose the right
under-approximation. This means that the compositional algo-
rithm never backtracks. We also tested our approach using a
different, coarser over-approximation, chosen using an heuris-
tic based on the topology of the network: intuitively, only
the components topologically close to the concrete component
are abstracted as in the previous case, while the others are
approximated only by the information learnt during conflic
analysis. This may indeed results in backtracking, but without
a qualitative change in the plots, and moderate impact on
performance. We notice a moderate slow-down in case of
backtracking, compensated by moderate speed-up due to the
simplified search space. For lack of space, we do not report
these results here. The complete set of results, together with
the binaries and test cases necessary to reproduce them, are
available at http://es.fbk.eu/people/mover/tests/fmcad10/.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a compositional approach
to reachability of networks of transition systems. The idea
is to explore the space of approximations of the components
of the network, using both over-approximations and under-
approximations. The framework is instantiated to the case of
hybrid automata, and implemented by means of SMT tech-
niques. The experimental evaluation shows that the approach
is able to scale better than monolithic reachability, and is
amenable to several heuristic implementations.

In the future, we plan to extend this research according to
the following lines. First, we plan to rely on a more aggressive
use of incrementality, representing in a unique formula the
whole space of approximations. Second, we will investigate

 2
 3

 4
 5

 6
 7

 8 0
 20

 40
 60

 80
 100

 120
 140

 160

-2000
-1500
-1000
-500

 0
 500

 1000
 1500
 2000

Time (sec.)

of processes

of scalar values

Time (sec.)

(a) Star-shape Fischer

 4 6 8 10 12 14 16 18 20 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

-500

 0

 500

 1000

 1500

 2000

Time (sec.)

of processes

of scalar values

Time (sec.)

(b) Ring-shape Fischer

 4 6 8 10 12 14 16 18 20 0

 20

 40

 60

 80

 100

-4000
-3000
-2000
-1000

 0
 1000
 2000
 3000
 4000

Time (sec.)

of processes

of scalar values

Time (sec.)

(c) FDDI Protocol

 2 2.5 3 3.5 4 4.5 5 5.5 6 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

-2000
-1500
-1000
-500

 0
 500

 1000
 1500
 2000

Time (sec.)

of processes

of scalar values

Time (sec.)

(d) Motorcycle

Fig. 4.

the use of a shallow synchronization semantics to exploit the
encoding of local runs as done in [5]. Third, we will generalize
to the case of unbounded reachability, and we will explore
different forms of over and under-approximations. Finally, we
plan to investigate the effectiveness of the proposed techniques
in the setting of networks with nonlinear solvers.

REFERENCES

[1] R. Alur, T. Dang, and F. Ivancic. Predicate abstraction for reachability
analysis of hybrid systems. ACM Trans. Embedded Comput. Syst.,
5(1):152–199, 2006.

[2] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
Industrial Hybrid Systems with MathSAT. ENTCS, 119(2):17–32, 2005.

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In TACAS, pages 193–207, 1999.

[4] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4 SMT Solver. In CAV, pages 299–303. Springer, 2008.

[5] L. Bu, A. Cimatti, X. Li, S. Mover, and S. Tonetta. Model Checking of
Hybrid Systems using Shallow Synchronization. In FORTE, 2010.

[6] L. Bu, Y. Li, L. Wang, X. Chen, and X. Li. BACH2: Bounded
reachAbility CHecker for Compositional Linear Hybrid Systems. In
DATE, pages 1512–1517. EDAA, 2010.

[7] S. Chaki, E. Clarke, N. Sharygina, and N. Sinha. Verification of evolving
software via component substitutability analysis. Form. Methods Syst.
Des., 32(3):235–266, 2008.

[8] Sagar Chaki, Joël Ouaknine, Karen Yorav, and Edmund M. Clarke.
Automated Compositional Abstraction Refinement for Concurrent C
Programs: A Two-Level Approach. ENTCS, 89(3), 2003.

[9] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In CAV, pages 359–364, 2002.

[10] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In CAV, pages 154–169, 2000.

[11] S. Das and D.L. Dill. Successive Approximation of Abstract Transition
Relations. In LICS, pages 51–60, 2001.

[12] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design,
30(3):179–198, 2007.

[13] G. Frehse. Compositional verification of hybrid systems with discrete
interaction using simulation relations. In CACSD, 2004.

[14] S. Graf and H. Saı̈di. Construction of Abstract State Graphs with PVS.
In CAV, pages 72–83, 1997.

[15] O. Grumberg and D.E. Long. Model Checking and Modular Verification.
ACM Trans. Program. Lang. Syst., 16(3):843–871, 1994.

[16] T.A. Henzinger. The Theory of Hybrid Automata. In LICS, pages 278–
292. IEEE Computer Society, 1996.

[17] T.A. Henzinger, M. Minea, and V.S. Prabhu. Assume-Guarantee Rea-
soning for Hierarchical Hybrid Systems. In HSCC, pages 275–290,
2001.

[18] T.A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations
for nonlinear hybrid systems. In Hybrid Systems, pages 377–388, 1996.

[19] C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysis of Hybrid
Systems Using HySAT. In ICONS, pages 196–201, 2008.

[20] S.K. Jha, B.H. Krogh, J.E. Weimer, and E.M. Clarke. Reachability
for Linear Hybrid Automata Using Iterative Relaxation Abstraction. In
HSCC, pages 287–300, 2007.

[21] R.P. Kurshan. Computer Aided Verification of Coordinating Processes.
Princeton University Press, 1994.

[22] C.S. Pasareanu, R. Pelánek, and W. Visser. Predicate Abstraction with
Under-approximation Refinement. CoRR, abs/cs/0701140, 2007.

[23] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Falsification of LTL Safety
Properties in Hybrid Systems. In TACAS, pages 368–382, 2009.

[24] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall,
November 1997.

[25] U. Shinya. Event order abstraction for parametric real-time system
verification. In EMSOFT, pages 1–10. ACM, 2008.

[26] Farn Wang. Scalable compositional reachability analysis of real-time
concurrent systems. In RTAS, pages 182–191, 1996.

[27] J. Zhao, X. Li, T. Zheng, and G. Zheng. Removing Irrelevant Atomic
Formulas for Checking Timed Automata Efficiently. In FORMATS,
pages 34–45, 2003.

