
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

FBK-IRST

DIT - University of Trento

Verification of Hybrid Systems using

Satisfiability Modulo Theories

Sergio Mover

Advisor:

Dr. Alessandro Cimatti

FBK-IRST

Co-Advisor:

Dr. Stefano Tonetta

FBK-IRST

Abstract

Embedded systems are formed by hardware and software components

that interact with the physical environment and thus may be modeled as

Hybrid Systems. Due to the complexity the system, there is an increasing

need of automatic techniques to support the design phase, ensuring that a

system behaves as expected in all the possible operating conditions.

In this thesis, we propose novel techniques for the verification and the

validation of hybrid systems using Satisfiability Modulo Theories (SMT).

SMT is an established technique that has been used successfully in many

verification approaches, targeted for both hardware and software systems.

The use of SMT to verify hybrid systems has been limited, due to the re-

stricted support of complex continuous dynamics and the lack of scalability.

The contribution of the thesis is twofold. First, we propose novel en-

coding techniques, which widen the applicability and improve the effective-

ness of the SMT-based approaches. Second, we propose novel SMT-based

algorithms that improve the performance of the existing state of the art

approaches. In particular we show algorithms to solve problems such as

invariant verification, scenario verification and parameter synthesis. The

algorithms fully exploit the underlying structure of a network of hybrid sys-

tems and the functionalities of modern SMT-solvers.

We show and discuss the effectiveness of the the proposed techniques

when applied to benchmarks from the hybrid systems domain.

Keywords

[Formal Verification, Hybrid Systems, Cyber-Physical Systems, Hybrid

Automata, Model Checking, Satisfiability Modulo Theory, Scenario Verifi-

cation, Parameter Synthesis]

Contents

1 Introduction 3

1.1 Motivations . 3

1.2 Contribution of the thesis 5

1.3 Structure of the thesis . 9

I Background notions 11

2 Background 13

2.1 Satisfiability Modulo Theory 13

2.1.1 The SMT Problem 13

2.1.2 Theories of interest 14

2.1.3 SMT solvers . 15

2.2 First-order Transition Systems 17

2.3 SMT-based verification . 20

2.3.1 Verification Algorithms 21

2.4 Hybrid Systems . 30

2.4.1 Hybrid Automata 30

2.4.2 Classes of Hybrid Systems 33

2.4.3 Hybrid Automata Network 35

i

ii CONTENTS

II Encoding Techniques 39

3 Hybrid Automata Encoding 41

3.1 Encoding of a single automaton 43

3.2 Quantifier-free encoding for non-linear hybrid automata . . 46

3.2.1 Hybrid traces . 47

3.2.2 Removing quantified disjunctions from the invariants 50

3.2.3 Reduction to flow invariants 51

3.2.4 Applications . 56

3.3 Encoding of systems with Polynomial Dynamics 60

3.4 Encoding of systems with Linear Dynamics 63

3.4.1 Reduction in the nilpotent case 65

3.4.2 Reduction in the real eigenvalues case 66

3.5 Related work . 69

4 Encoding of Hybrid Automata Network 73

4.1 Global-time semantic . 74

4.2 Local-time semantic . 76

4.3 Local time vs. global time 78

5 Time-Aware Relational Abstraction 83

5.1 Relational Abstraction . 86

5.1.1 Eigenstructure-based relational abstraction 88

5.2 Simple Motivating Example 89

5.3 Time-Aware Relational Abstraction 92

5.3.1 Overall Approach 92

5.3.2 Constant Rate . 93

5.3.3 Real Eigenvalues 94

5.3.4 Complex Eigenvalues 98

5.3.5 Correctness . 103

CONTENTS iii

5.4 Related Work . 106

III Verification Techniques 109

6 Reachability 111

6.1 Problem Definition . 112

6.2 Bounded Model Checking with Shallow Synchronization . . 112

6.2.1 Shallow Synchronization Semantics 113

6.2.2 Symbolic Encoding 119

6.2.3 Related Work . 123

6.3 K-induction and Implicit Predicate Abstraction 125

6.3.1 Predicate abstraction 127

6.3.2 Refinement of implicit predicate abstraction 129

6.3.3 Related Work . 133

7 Scenario verification 135

7.1 Problem definition . 137

7.2 Scenario-driven BMC . 140

7.2.1 Invariant generation 145

7.3 Scenario-driven Induction 147

7.4 Unfeasibility Explanation 150

7.5 Related work . 157

8 Parameter synthesis 159

8.1 Problem definition . 161

8.2 Solving the synthesis problem with reachability 162

8.3 Description of the synthesis algorithm with IC3 163

8.3.1 Optimization . 166

8.4 Related work . 167

iv CONTENTS

IV Tools and Experimental Results 171

9 HyCOMP 173

9.1 Tool features . 174

9.2 Tool architecture . 177

9.3 The HyDI language . 178

9.3.1 Overview of the language 179

9.3.2 HyDI- syntax and semantics 182

9.4 Related work . 188

10 Experimental Results 193

10.1 Benchmarks . 195

10.2 Encodings . 200

10.2.1 Quantifier-free encoding 200

10.2.2 Time-aware relational abstraction 205

10.3 Reachability . 209

10.3.1 Shallow synchronization 209

10.3.2 K-induction and Implicit Predicate Abstraction . . 212

10.4 Scenario . 215

10.4.1 Evaluation Settings 215

10.4.2 Results - Feasibility 216

10.4.3 Results - Unfeasibility 219

10.5 Parameter Synthesis . 219

10.5.1 Evaluation Settings 219

10.5.2 Results . 221

V Conclusion 229

11 Conclusion and Future Work 231

CONTENTS v

11.1 Conclusion . 231

11.2 Future work . 233

Bibliography 235

A Appendix 265

A.1 Additional Proofs . 265

A.2 Relational abstraction . 266

A.2.1 Real eigenvalues . 266

A.2.2 Complex eigenvalues 267

List of Tables

10.1 Results applying quantifier elimination 202

10.2 Results (running time / path length) of BMC with the dif-

ferent encodings. 203

10.3 Results on verifying feedback PD, PI and PID controllers . 208

10.4 Shallow synchronization - Path lengths for different semantics211

vii

List of Figures

2.1 High-level description of IC3 (following [EMB11]). 37

3.1 Effect on a path of the encoding without disjunctions. . . . 51

3.2 Plot of the function t3 − 3t 54

5.1 Piecewise logarithm approximation 96

5.2 Relationship between phase and relational abstraction pred-

icates . 101

6.1 Local and interleaving traces 114

6.2 Abstract path [Ton09]. 128

6.3 CEGAR loop . 130

6.4 Implicit abstraction loop 130

7.1 An MSC for the Train-Gate-Controller [Hen96]. 139

7.2 Example of the scenario-based encoding 143

7.3 The MSC for the distributed controller. 154

8.1 High-level description of ParamIC3 170

9.1 Gate model written in HyDI. 180

10.1 Shallow synchronization - path length independent from the

number of processes . 210

ix

x LIST OF FIGURES

10.2 Shallow synchronization - path length dependent from the

number of processes . 223

10.3 Optimization of K-Ind+IA on hybrid automata benchmarks224

10.4 K-Ind+IA comparison on hybrid automata benchmarks . 224

10.5 Optimization of K-Ind+IA on sw benchmarks 224

10.6 K-Ind+IA comparison on sw benchmarks 225

10.7 Feasible instances - cumulative plot. Scatter plots that com-

pares ScenarioInvAlt and DistribLocalAlt 225

10.8 Feasible instances - scalable plots increasing the number of

processes . 226

10.9 Feasible instances - scalable plots increasing the length of

scenarios . 226

10.10Unfeasible instances - monolithic induction vs. scenario-

induction . 227

10.11Comparison of ParamIC3, Iterative-Block-Path(IC3), ParamIC3-

basic and Red . 227

Acknowledgements

First of all, I want to thank my advisors, Alessandro Cimatti and Stefano

Tonetta, for all the help they gave me during the doctorate. They were

always available for discussions and to give me useful insights. I am grateful

for all the efforts they made and for all the time they dedicated to me. This

thesis would have not been possible without their help.

Then, I would like to thank Dr. Ashish Tiwari for all the insights and the

inputs he gave me. I also thank him for hosting me at SRI International,

it was a great opportunity for me.

I have to thank Alberto Griggio, for his support for using MathSAT

and IC3. All these works were a key enabler for the research presented in

this thesis.

I want to thank all the friends that helped me during the Ph.D. First

of all, my close friends in FBK, Andrea Micheli, Cristian Mattarei, Marco

Gario, Alessandro Mariotti, Marco Roveri, Gianni Zampedri, Alberto Grig-

gio, Andrea Avancini, Bas Schaasfma, Mirko Sessa, Michele Dorigatti,

Ilaria Sambarino, Mirko Sessa, Benjamin Bittner. They always encour-

aged me and supported me during hard times. Moreover, they made the

life at work a huge fun! Then, I would like to thank the friends I met at

SRI, Adria Gascon, Jan Leike, Muhammad Rizwan Asghar.

I would like to thank several people for their feedback and useful dis-

cussions: Dr. Marco Bozzano, Roberto Cavada, Dr. Viktor Schuppan, Dr.

Iman Narasamdya, Dr. Bruno Dutertre, Dr. John Rushby, Dr. Natarajan

1

2 LIST OF FIGURES

Shankar, Dr. Sam Owre.

Of course, I have to thank my friends outside academia, Matteo, Tiziano,

Romina in Trento and Alessandro, Luis and Emma while staying in the

U.S..

Finally, I have to thank my parents and my brother Andrea for all their

patience and support.

2

Chapter 1

Introduction

1.1 Motivations

Embedded systems consist of several software and hardware components

that interact with the physical environment. These kinds of systems are

increasingly used in many industrial sectors, such as automotive, aerospace,

consumer electronic, medical and manufacturing. Paradigmatic examples

of embedded systems are the control software of airplanes (e.g. the auto-

pilot software), the anti-breaking system (ABS) of cars, One key

feature of these systems is that discrete computations (e.g. the control

software) interact with the physical environment (e.g. the velocity of an

object). Then, real embedded systems usually consist of different compo-

nents that interact, for example exchanging messages, and that may evolve

asynchronously.

The failure of embedded systems is not desirable, since they are often

used in safety critical applications (e.g. the control software of an airplane),

where a failure may have severe consequences and very high costs. To

reduce such costs, it is important to identify and fix the bugs in the system

in the early stages of the design flow. Due to the complexity of the systems,

there is an increasing need of automatic techniques that support the design

phase and allow the designer to validate the system and to certify that it

3

4 1.1. MOTIVATIONS

works as expected.

Formal verification provides several techniques that help to identify bugs

in the early stages of the design phase. In Formal verification a system

is modeled using formal languages (e.g. mathematical logic) and is an-

alyzed by means of rigorous techniques. Examples of formal verification

techniques are model checking, theorem proving, abstract interpretation.

Compared to the common practices used to find bugs, like testing and

simulation, formal verification ensures the correctness of the system with

respect to a specification for all the possible inputs. Well known prob-

lems in formal verification are the reachability problem and its dual, the

invariant verification problem.

The Hybrid systems formalism allow to represent systems that exhibit

both discrete behaviors, where computations are supposed to happen in-

stantaneously, and continuous behaviors, where physical quantities evolve

continuously in time. Thus, they are a suitable formalism to model em-

bedded systems.

The application of formal verification techniques to hybrid systems pose

several challenges. First, the analysis of such systems is difficult due to the

interaction of the discrete and the continuous behaviors of the system.

On the one hand, the analysis algorithm must take into account the dis-

crete state space of the system and its transitions. On the other hand,

the algorithm must reason on the differential equations that describe the

evolution of the physical quantities of the system. Then, the verification

algorithms may not be efficient enough to analyze complex systems, where

multiple components interact. In fact, the number of components increase

the state-space of the system, and thus complicate the verification tasks.

In the literature there have been several approaches to tackle verification

problems for hybrid systems (See [Alu11] for a survey). The prominent line

of research develops methods based on the computation of the reachable

4

CHAPTER 1. INTRODUCTION 5

states. Instead, other families of approaches are either based on deductive

verification or on abstraction techniques.

Several verification techniques for hybrid systems [dMRS03, ABCS05,

ÁBKS05] are based on Satisfiability Modulo Theories (SMT) [BSST09].

SMT is an established paradigm in formal verification. The SMT problem

consists to check the satisfiability of first-order logic formulas interpreted

with respect to a background theory. An example of theory is the Theory

of Reals, which formalizes the arithmetic operations on the real numbers.

SMT-based verification techniques have been successfully used to analyze

both hardware and software systems. With respect to hybrid systems, it

is possible to encode both the discrete and the continuous behavior of an

hybrid system in a symbolic transition systems, expressed as SMT for-

mulas. Then, the symbolic transition system can be analyzed using the

SMT-based verification algorithms.

However, the current state of the art in the verification of hybrid systems

using SMT solvers presents important weaknesses. First, the applicabil-

ity of the SMT-based techniques is limited to hybrid systems with simple

dynamics. This limits the significance of the approaches based on SMT,

which cannot be used on several real life examples. Second, the perfor-

mance of the SMT-based algorithms is not satisfactory in several contexts,

in particular in the case of distributed hybrid systems. This constitutes

a problem when verifying embedded systems, which are often designed as

distributed components.

1.2 Contribution of the thesis

In this thesis we investigate the verification problem of hybrid systems

using Satisfiability Modulo Theories.

We rely on the Hybrid Automata Network framework [Hen96] (HAN) to

5

6 1.2. CONTRIBUTION OF THE THESIS

formalize hybrid systems. While an hybrid automaton models a single hy-

brid system, a network of hybrid automata models a set of hybrid systems

that interact using a synchronization mechanism.

Our contributions can be categorized in two broad classes:

1. We provide novel encodings of hybrid automata and hybrid automata

network.

First, we investigate a novel encoding technique that handles Non-

linear Hybrid Automata, while state of the art encodings only deal with

Linear Hybrid Automata. This extends the applicability of SMT-based

verification algorithms. Then, we investigate the encodings of hybrid

automata networks, exploiting alternatives semantics [BJLY98]. Fi-

nally, we improve the precision of the existing encoding techniques

based on abstraction for the class of Linear Hybrid Systems.

2. We investigate novel algorithms to solve different verification problems

for networks of hybrid automata.

We investigate on novel and efficient algorithms that exploit the struc-

ture of the hybrid automata network for both the reachability and the

scenario verification problems. While standard techniques reason on

the composition of the different automata in the network, we propose

a technique that exploits an alternative semantic, called “shallow syn-

chronization”. The novel approaches are more efficient.

Then, we provide two novel algorithms that works for infinite-state

transition systems, which can be directly applied to the encoding of

a hybrid automata network. One algorithm solve the reachability

problem, while the other the parameter synthesis problem.

In details, the contributions of this thesis can be summarized as follows.

6

CHAPTER 1. INTRODUCTION 7

1. We extend the applicability of SMT-based algorithms to hybrid systems

with richer dynamics [CMT12, CMT13b]

The state of the art in the precise encoding of hybrid systems in

SMT formulas is limited to the simple class of Linear Hybrid Au-

tomata. A subset of the more expressive classes of non-linear hybrid

automata may be encoded in a first-order logic formula, requiring uni-

versal quantifiers to encode the invariant condition. In several cases

(e.g. when there are transcendental functions) the quantifier can-

not be eliminated (the problem is not decidable) while in other cases

(e.g. non-linear real arithmetic) the quantifier cannot be removed effi-

ciently. This issue hinders the applicability of SMT algorithms, which

requires quantifier-free formulas. We propose a novel technique to ob-

tain a quantifier-free encoding for several classes of hybrid systems,

we apply the technique to several examples and we characterize the

sub-classes of systems that can be handled automatically. The encod-

ing extends the applicability of the SMT-based algorithm to a richer

class of systems.

2. We improve relational abstraction techniques for Linear Hybrid Sys-

tems [MCTT13].

Relational abstraction is a technique that abstracts the dynamic of

a hybrid system in a SMT formula. The generated abstraction can

be verified using SMT-based algorithms. The shortcomings of of the

existing relational abstraction techniques for Linear Hybrid Systems

are that the produced abstractions may be too coarse (to prove an

invariant property) and that the precision of the abstraction cannot

be increased. We improve the existing technique that generates re-

lational abstractions for Linear Hybrid Systems, allowing it to create

more precise abstractions. We show that the increased precision of

7

8 1.2. CONTRIBUTION OF THE THESIS

the abstraction is needed to prove properties of models of practical

interest.

3. We study novel SMT-based algorithms for the reachability problem of

network of hybrid systems [BCL+10a].

First, we investigate a novel Bounded Model Checking (BMC) encod-

ing, based on the Shallow Synchronization Semantic, which are specific

for a network of hybrid automata. The encoding exploits the locality

of the automata in the network. Compared to the existing approaches,

where the BMC is not aware of the structure of the network, the new

encoding shows better performance if the path to the target set of

states does not involve the interaction of all the components of the

network.

Then, we present a verification algorithms for infinite-state transition

systems based on an abstraction refinement loop. The approach ex-

ploits an existing technique that embeds predicate abstraction and

k-induction.

4. We investigate efficient algorithms to prove the feasibility of a scenario

specification for a network of hybrid automata [CMT11a, CMT11c,

CMT13c].

We provide two algorithms based on SMT to solve the scenario verifi-

cation problem. Both algorithms exploit the shallow synchronization

semantic. The algorithms advance the state of the art, demonstrating

a dramatic improvement in the running time with respect to the exist-

ing approaches. Then, another contribution is an effective technique

to provide debug information in the case a scenario does not hold.

5. We propose a novel and efficient parameter synthesis algorithm for

infinite-state transition systems [CGMT13].

8

CHAPTER 1. INTRODUCTION 9

We propose a novel algorithm that solves the parameter synthesis

problem. The algorithm works for infinite-state transition systems and

thus can be applied to the hybrid systems considered in this thesis.

The algorithm shows very good performance compared to the state of

the art.

1.3 Structure of the thesis

The thesis is divided in four parts.

The first part introduce the background notions on SMT and the for-

malism of hybrid automata network. It also describes the state-of-the art

SMT-based verification techniques.

The second part describes the contributions related to the encoding of

hybrid systems:

• Chapter 3 describes the encoding of a hybrid automaton in a symbolic

transition systems. The chapter describes the encoding approach for

non-linear hybrid automata.

• Chapter 4 presents the global-time and the local-time encodings of a

hybrid automata network.

• Chapter 5 describes the improved relational abstraction techniques for

linear hybrid systems.

The third part contains the description of the novel verification algo-

rithms.

• Chapter 6 describes the verification algorithms that solve the reacha-

bility problem: Bounded Model Checking using Shallow Synchroniza-

tion (Section 6.2) and K-induction with implicit predicate abstraction

(Section 6.3).

9

10 1.3. STRUCTURE OF THE THESIS

• Chapter 7 describes the algorithms for the scenario verification prob-

lem.

• Chapter 8 presents a novel algorithm for the parameter synthesis prob-

lem of infinite-state transition systems.

The fourth part of the thesis presents the tool and the experimental

evaluation:

• Chapter 9 describes the HyComp tool, which implements most of the

techniques presented in the thesis.

• Chapter 10 describes the experiments performed on the techniques

presented in the thesis and discusses the obtained results.

Finally, Chapter 11 concludes the thesis and describes some future works.

10

Part I

Background notions

Chapter 2

Background

2.1 Satisfiability Modulo Theory

2.1.1 The Satisfiability Modulo Theory Problem

Our setting is standard first-order logic. Let Σ be a first-order signature

containing predicates and function symbols with their arity and V be a

set of variables. A 0-ary predicate symbol A is called a Boolean atom

while a 0-ary function symbol c is called a constant. A Σ-term is either

a variable or it is built applying function symbols in Σ to Σ-terms. If p

is a predicate with arity n and t1, . . . , tn are Σ-terms, then p(t1, . . . , tn) is

a Σ-atom. A Σ-formula is built in the usual way with the universal and

existential quantifiers, ∃, ∀, the Boolean connectives ∧,∨,¬ and Σ-atom.

We will use the standard abbreviations for the other Boolean operators,

“φ1 → φ2” for “¬φ1 ∨ φ2” and “φ1 ↔ φ2” for “(φ1 → φ2) ∧ (φ2 → φ1)”.

A first-order Σ-theory T is a set of first-order sentences with signature Σ,

where a sentence is a Σ-formula without free variables. We assume that

the symbols =, ⊥, and > are part of the language, even if they are not

explicitly contained in the signature, and are interpreted as the identity,

false, and true, respectively.

We assume the standard first-order notion of interpretation, satisfia-

13

14 2.1. SATISFIABILITY MODULO THEORY

bility, validity and logical consequence. We write Γ |= φ to denote that

the formula φ is a logical consequence of all the formulas in the (possibly

infinite) set Γ.

A Σ-structureM is a model of a Σ-theory T ifM satisfies every sentence

in T . A Σ-formula is satisfiable in T (T -satisfiable) if it is satisfiable in a

model of T . A Σ-formula is valid in T (T -satisfiable) if it is satisfiable in

all models of T . We write Γ |=T φ to denote Γ ∪ T |= φ. Two Σ-formula

φ1 and φ2 are T -equisatisfiable if and only if φ1 is T -satisfiable if and only

if φ2 is T -satisfiable.

The Satisfiability Modulo Theory problem (SMT (T)) is the problem of

checking if a Σ-formula φ is satisfiable, for some background theory T .

2.1.2 Theories of interest

We are mainly interested in the theories over reals and rational numbers.

For brevity, we do not discuss other theories, and we do not give the axioms

that describe the theories. A thorough exposition on the topic may be

found in [BM07a].

We will mostly consider the Theory of Rationals, T (Q) and we will also

call it Linear Arithmetic over Rationals. The signature of the theory is

ΣQ = {0, 1,+,−,=,≥} where the constants 0 and 1 are interpreted as

rational numbers, and the binary function symbols and predicate symbols

+,=,≥ are interpreted with the corresponding operations and relations

over the rationals. The others comparison operators, <,>,≤, 6= may be

obtained from ΣQ (i.e. a < 0 as ¬(a ≥ 0), a ≤ 0 as ¬(a > 0), a 6= 0 as

¬(a = 0)). As an intuition, the resulting language consists of quantifier-

free Boolean combinations of atoms in the form
∑
ai · xj ./ a, where xj is

a variable, ai, a ∈ Q and ./∈ {<,≤, >,≥, 6=}.
We will call linear predicates all the Σ-atom constructed from the sig-

nature ΣQ.

14

CHAPTER 2. BACKGROUND 15

Example 1 The formula x < y ∧ (x + 3 = z ∨ z > y) is satisfiable in the

theory of T (Q), since x := 5, y := 6, z := 8 is a model for the formula.

The Theory of Reals, T (R), (also called elementary algebra) has the

signature ΣR = {0, 1,+,−, ·,=,≥}, where 0 and 1 are the real numbers

constants, +,−, · are the usual addition, subtraction and multiplication

operators and =,≥ are the usual equal and greater than or equal operators.

Note that the satisfiability of both theories is decidable. For T (Q),

satisfiability is decidable through well know algorithms (e.g. the Simplex

algorithm or Fourier-Motzkin elimination [DE73]), while T (R) may be de-

cided using Cylindrical Algebraic Decomposition (CAD) [Col75].

In the most general case, we will consider an extension of the theory

of reals, T (R), such that its signature ΣR extends the structure ΣR with

transcendental functions such as the exponential and the trigonometric

functions. The transcendental functions are unary interpreted function

symbols, and are interpreted with their standard semantics. Note that the

satisfiability of this theory is not decidable.

2.1.3 SMT solvers

SMT solvers are tools which implement decision procedures for the SMT

problem. The most efficient implementations of SMT solvers use the so-

called “lazy approach”, where a SAT solver is tightly integrated with a

T -solver. The role of the SAT solver is to enumerate the truth assign-

ments to the Boolean abstraction of the first-order formula. The Boolean

abstraction has the same Boolean structure of the first-order formula, but

“replaces” the predicates that contain T information with fresh Boolean

variables. The Boolean abstraction of the Example 1 is a ∧ (b ∨ c), where

a, b, c are fresh Boolean variables. The T -solver is invoked when the SAT

solver finds a model for the Boolean abstraction: the Boolean model maps

15

16 2.1. SATISFIABILITY MODULO THEORY

directly to a conjunction of T atoms, which the T -solver can handle. If

the conjunction is satisfiable also the original formula is satisfiable. Oth-

erwise the T -solver returns a conflict set which identifies a reason for the

unsatisfiability. Then, the negation of the conflict set is learned by the

SAT solver in order to prune the search. Examples of solvers based on the

“lazy approach” are MathSAT [CGSS13], Z3 [dMB08], Yices [DdM06]

and OpemSMT [BPST10].

SMT-solvers often construct models in the case a formula is satisfiable

and proofs if it is unsatisfiable. Proofs are used to generate additional

information, such as unsatisfiable cores and interpolants.

We recall the standard notion of conjunctive normal form (CNF) for a

formula ψ. A literal is a Σ-atom or the negation of a Σ-atom. A clause is a

disjunction of literals. A formula is in conjunctive normal form (CNF) if it

is a conjunction of clauses. It is well known that given a non-CNF formula

we can obtain an equi-satisfiable CNF formula in polynomial time.

The unsatisfiable core for an unsatisfiable CNF formula φ is a formula ψ

such that ψ is unsatisfiable and φ = ψ∧ψ′, for a (possibly empty) formula

ψ′ (See [CGS11] for a survey on the computation of unsatisfiable core).

Given two formulas φ and ψ, with φ ∧ ψ |= ⊥, the Craig Interpolant

(from now on only interpolant) of φ∧ψ is a formula I such that |= φ→ I,

ψ ∧ I |= ⊥, and every uninterpreted symbol of I occurs both in φ and ψ.

Intuitively, the interpolant is an over-approximation of φ “guided” by ψ

(for interpolant computation, See [CGS10]).

Most modern SMT solvers also feature an incremental interface, i.e.

they are able to tackle sequences of satisfiability problems efficiently, by

reusing theory information discovered during the previous searches.

We assume that the sequences of problems have the following form,

where each problem may inherit from the preceding one the variables and

a substantial subset of sub-formulas:

16

CHAPTER 2. BACKGROUND 17

γ(0) ∧ β(0)

γ(0) ∧ γ(1) ∧ β(1)

γ(0) ∧ γ(1) ∧ γ(2) ∧ β(2)

...

The non-monotonicity of the encoding is handled with a standard stack-

based interface of the SMT solver (Push, Assert, Solve, Pop primi-

tives). This allows, after asserting γ(k), to set a backtrack point (Push),

assert β(k) (Assert), check the satisfiability of the conjunction of the

asserted formulas (Solve), and to restore the state of the solver (i.e. as-

serted formulas and learned clauses) at the backtrack point (Pop). This

way, the k+1-th problem is solved keeping all the learned clauses related

to γ(0), . . . , γ(k).

The quantifier-elimination problem consists to compute a quantifier-free

formula that is equivalent to a formula with quantifiers [BM07a]. A the-

ory admits quantifier elimination if there exists an algorithm that solve

the quantifier elimination problem. SMT solvers have also been extended

to solve the quantifier elimination problem. For example, for the Theory

of Rationals, the SMT solver is used as an efficient enumerator of mod-

els [Mon10]. Then, the approach relies on standard quantifier elimination

algorithm for linear arithmetic [DE73, LW93].

2.2 First-order Transition Systems

We will represent transition systems symbolically using first-order formu-

las.

Given a first-order signature Σ with variables V , and a natural number

i ∈ N≥0, we denote with Σ′, Σ̇, Σi the signatures obtained by replacing each

symbol s in Σ with s′, ṡ and si respectively. Similarly, given a set V , we

denote with V ′, V̇ , V i the copies of such set such that V ′ = {v′ | v ∈ V },

17

18 2.2. FIRST-ORDER TRANSITION SYSTEMS

V̇ = {v̇ | v ∈ V }, V i = {vi | v ∈ V }. Finally, we denote with A the set

of Boolean atoms of the signature Σ with variables V (i.e. A = {A | A ∈
Σ, A is a 0-arity predicate}).

Definition 1 (First-order Transition System) Given a first-order sig-

nature Σ with variables V, we denote with Σ′, Σ̇,

Let Σ be a first-order signature, V a set of variables and let denote with

A = {A | A ∈ Σ A is a 0-arity predicate} the set of Boolean atoms of Σ.

A first-order Σ-Transition System is a tuple S = 〈V,W , Init, Inv, Trans〉
such that:

• V ⊆ (V ∪ A) is a set of state variables,

• W ⊆ (V ∪ A) is a set of input variables,

• V ∩W = ∅, V ∪W = (V ∪ A),

• Init is a first-order Σ-formula over V (called initial condition);

• Inv is a first-order Σ-formula over V (called invariant condition);

• Trans is a first-order Σ-formula over V ∪ W ∪ V ′ (called transition

condition).

An assignment s to the variables V is a state of the transition system,

while an assignment a to the variables W is an input. We denote with

s′, ṡ, s0, s1, . . . the corresponding assignment to the copy V ′, V̇ , V 0, V 1, . . .

of V . Given a set of variables L and an assignment s, we denote with s|L
the assignment s restricted to the variables in L. s|L contains only the

assignment corresponding to the variables in L. If x is a variable, we will

use the shorthand s(x) to refer to the value of x in the assignment s (e.g.

if s = 〈x = 1〉, s(x) = 1). Finally, given the assignments s1, s2 defined

respectively on the set of variables X1, X2, with X1 and X2 disjoints (i.e.

18

CHAPTER 2. BACKGROUND 19

X1 ∩ X2 = ∅), we denote with 〈s1, s2〉 the assignment to the variables

X1 ∪X2 obtained from s1 and s2.

Definition 2 (Path) A sequence π = s0; a1, s1; . . . ; ak; sk of states and in-

puts is a model (also called path) of the transition system S = 〈V,W , Init,

Inv, Trans〉 iff:

• s0 satisfies Init;

• for every 0 ≤ i ≤ k, si satisfies Inv;

• for every 0 ≤ i < k, si, ai+1, si+1 satisfy Trans.

Remark 1 In order to keep the notation as simple as possible, the above

definition does not distinguish symbols that are rigid and interpreted by T
from the actual variables of the system. We assume that such symbols do

not occur as “primed” in the transition condition although their interpre-

tation is the same in all the states of a sequence.

We say that a state s is reachable if there exists a path π = s0; a1; s1;

. . . ; ak; sk such that sk = s.

Definition 3 (Trace) A trace is a sequence of events w = a1; . . . ; ak,

where ai is an assignments to variables in W.

Given A′ ⊆ A, the projection w|A′ of w on A′ is the sub-trace of w

obtained by removing all events in w that are not in A′.

To simplify the exposition, in particular to describe some reachability al-

gorithms and when we are not interested in the traces of the system, we will

use a more concise definition of first-order transition system, which does not

have the invariant formula and input variables (i.e. S = 〈V, Init, T rans〉).
We will specify when we use this definition instead of the one with input

variables and the invariant formula. Note that this does not restrict the

19

20 2.3. SMT-BASED VERIFICATION

expressivity of the formalism. Input variables can be encoded as state vari-

ables, under the assumption that they do not compare in state formulas

(i.e. they do not compare in the Init and Inv formulas). The Inv formula

can be encoded in the Trans formula. This is obtained conjoining the

Trans formula with the Inv formula and its primed version Inv′.

Definition 4 (Parallel composition) The parallel composition S1||S2 of

two symbolic transition systems S1 = 〈V1,W1, Init1, Inv1, T rans1〉 and

S2 = 〈V2,W2, Init2, Inv2, T rans2〉, is the symbolic transition system

〈V,W , Init, Inv, Trans〉:

• V = V1 ∪ V2;

• W =W1 ∪W2;

• Init = Init1 ∧ Init2;

• Inv = Inv1 ∧ Inv2;

• Trans = Trans1 ∧ Trans2.

2.3 SMT-based verification

In this section we overview the existing verification techniques for first-

order transition systems using SMT solvers. In particular, we focus on the

verification of invariant properties:

Definition 5 (Safety) Let S = 〈V,W , Init, Inv, Trans〉 be a first-order

transition system and P (V) a Σ-formula over the state variables V , also

called invariant property. S |= P iff there are no paths of S that can reach

a state in P . In this case we say that S is safe.

20

CHAPTER 2. BACKGROUND 21

2.3.1 Verification Algorithms

Notation

Given a formula ψ(V) over the variables V , we denote with ψ(V i) (or sim-

ply ψi when V is clear from the context) the formula obtained by replacing

all the variables v ∈ V with vi. Similarly, given a formula ψ(V,W , V ′) over

the variables V,W , V ′, we denote with ψi the formula obtained replacing

all the variables v ∈ V with vi, w ∈ W with wi, and v′ ∈ V ′ with vi+1.

Bounded Model Checking

Bounded Model Checking (BMC) [BCCZ99] is a symbolic reachability tech-

nique that explores all the paths of the system from the initial state up to

a fixed length. The technique was first introduced for finite-state transi-

tion systems [BCCZ99] to find violations to Linear Temporal Logic (LTL)

properties [Pnu77]. The technique was extended to infinite-state transition

systems 1 in [dMRS02], substituting the underlying decision procedure, a

SAT solver, with an SMT solver.

Given a FOTS S = 〈V,W , Init, Inv, Trans〉 and a set of target states

¬P (V) over the variables in V , the BMC problem consists of determining if

¬P is reachable in S in k steps (i.e. if there is a path π = s0; a1; s1; . . . ; ak; sk

in S such that sk |= ¬P). We encode the BMC problem as follows:

path(k) :=Init0 ∧
k∧

i=0

Invi ∧
k−1∧

i=0

Transi, (2.1)

BMC(k) :=path(k) ∧ ¬P k (2.2)

The formula BMC(k) is satisfiable iff there exists a path from the initial

state of S to a state in ¬P of length k. An SMT solver is used to query

1While we present BMC to check invariant properties, the authors of [dMRS02] shows an encoding

for LTL properties.

21

22 2.3. SMT-BASED VERIFICATION

for the satisfiability of BMC(k). The BMC(k) formula may be slightly

modified to explore all the paths of length at least k as follows:

BMC(≤k) :=path(k) ∧
i≤k∨

i=0

¬P i (2.3)

We can exploit the incremental feature of the SMT solver to look for a k

such that the formula BMC(k) is satisfiable. The problem is presented to

the solver in the following form: γ(0) := Init0 ∧ Inv0, γ(i) := Transi−1 ∧
Invi, for i > 0, and β(i) := ¬P i, for i ≥ 0.

K-Induction

K-induction [SSS00] is a technique that aims to prove that a safety property

P (V) holds in a transition system S. By exploiting a reasoning similar to

the induction principle, the technique consists of finding a bound k such

that both a base step and an inductive step hold.

The base step consists of proving that P holds for the first k steps of

the system. This can be done checking the unsatisfiability of BMC(i), for

0 ≤ i ≤ k. Then, the inductive step hold if either one of the forward or the

backward steps hold. The forward step consists to check if any new state is

reachable by a path of length k+ 1. If it is not the case, since all the paths

up to k cannot reach a violation to P , then the algorithm explored all the

paths of the systems, proving that S |= P . The backward step consists to

check if there exists a loop-free path of length k + 1 where P holds for k

steps and reaches ¬P .

The forward step holds if the following formula is unsatisfiable:

kindfw(k) :=path(k + 1) ∧ simple(k + 1) (2.4)

simple(k) :=
∧

0≤i<j≤k
¬
∧

v∈V
vi = vj (2.5)

22

CHAPTER 2. BACKGROUND 23

where simple(k) encodes that all the states in a path are different. In

practice, simple(k) encodes a loop-free path, which is also called simple

path.

The backward step holds if the following formula is unsatisfiable:

kindbw(k) :=
k∧

i=0

Invi ∧
k−1∧

i=0

Transi ∧ simple(k + 1) ∧
i≤k∧

i=0

(P k) ∧ ¬P k+1

(2.6)

Efficient algorithms that exploit the solver incrementality to interleave

the step and forward satisfiability checks have been presented in [ES03].

As for BMC, k-induction may be applied to infinite-state transition sys-

tems [dMRS03, Pik07, SDS08, SD10]. However, in this case the approach

may not be effective since the step case requires to find a loop-free path.

Since the domain of the variables V of the system is infinite, the system

may have an infinite number of paths, and thus kindbw and kindfw will

always be satisfiable.

In [Pik07, SDS08, SD10] the authors overcome the issue by manually

strengthening the inductive check with additional lemmas. The technique

consists of proving additional lemmas on the transition system S, and then

add them to the invariant conditions of S. The right lemmas to add can

be found looking at the counter-example to induction (i.e. a path that

shows a witness of failure for the inductive step). Intuitively, the lemmas

should be able to prove that the states in this path are not reachable. Also

the lemmas should be proved to hold in S, for example applying again

k-induction. The drawbacks of the approach are that it requires a manual

intervention, a deep knowledge of the system and several iterations.

Another technique [Ton09] tries to solve the problem combining k-

induction with abstraction techniques. We present the details of the ap-

proach in 6.3.

23

24 2.3. SMT-BASED VERIFICATION

Interpolation-based Model Checking

Interpolation-based model checking [McM03, McM05] exploits the notion

of Craig Interpolants to approximate the reachable states of the systems.

The problem is formulated dividing the formula that encodes a set of paths

of length k in a prefix of length j < k and a suffix of length k − j.

Pref(j) :=Init0 ∧ (

j∧

i=0

Invi) ∧ (

j−1∧

i=0

Transi) (2.7)

Suff(k − j) :=(
k∧

i=j

Invi) ∧ (
k−1∧

i=j

Transi) ∧ (
k∨

i=j

¬P i) (2.8)

Note that Pref(j) ∧ Suff(k − j) encodes all paths of length k checking for

the existence of a bug in all the states si such that j ≤ i ≤ k.

The interpolation-based algorithm tries to build an inductive invariant

R that prove that S |= P . A formula R is an inductive invariant for the

transition system S and the property P if:

1. I |= R,

2. R ∧ T ∧R′,

3. R |= P .

Initially, R = I and the algorithm checks if Pref(j)∧Suff(k−j) is satisfiable.

If it is the case, then there exists an initialized path (i.e. a path that starts

from the initial states of S) that violates P . Otherwise, the algorithm

computes the interpolant itp of the formulas Pref(j) and Suff(k − j). The

interpolant itp is an over-approximation of all the states reachable in j

steps and that cannot reach a bug in the next k − j steps. If the formula

R ∨ itp[V/V 0] → R is valid, then the algorithm reached a fixed-point,

proving P . Otherwise, the algorithm iterates relaxing the set if initial

states Init := Init ∨ itp[V/V 0], thus analyzing an overapproximation of

24

CHAPTER 2. BACKGROUND 25

the original system (where itp[V/V 0] denotes the formula obtained from

itp replacing all the variables v0 ∈ V 0 with the variable v ∈ V). Note that,

if in the following iteration the algorithm finds that Pref(j) ∧ Suff(k − j)
is satisfiable, it cannot conclude that there exists a bug, since the set of

initial states was approximated.

IC3

In this section we use the transition system definition without input vari-

ables and the invariant formula.

IC3 [Bra11] is an algorithm for checking invariant properties that in

the last years proved to outperform the existing verification techniques for

finite-state systems (e.g. see the results of the Hardware Model Checking

Competition [BC10, BH11, BHSW12, BHSW13]). The algorithm is also

known with the name Property Directed Reachability [EMB11]. We follow

the presentation given in [CG12].

The goal of IC3 is either to find an inductive invariant F (V) that proves

that a symbolic transition system S |= P or to determine the existence of

a counterexample path. The inductive invariant is such that:

1. Init(V) |= F (V),

2. F (V) ∧ Trans(V, V ′) |= F (V ′),

3. F (V) |= P (V).

IC3 keeps a sequence of sets of formulas F0, . . . , Fk, called frames, which

over-approximate the set of the reachable states up to a fixed length (i.e.

Fi over-approximates the set of states reachable by S in at most i steps).

The algorithm keeps the following invariant conditions:

1. F0 = I,

2. for all i, 0 ≤ i < k, Fi → Fi+1,

25

26 2.3. SMT-BASED VERIFICATION

3. for all i, 0 ≤ i < k, Fi ∧ Trans→ F ′i+1,

4. for all i < k, Fi |= P .

Frames are represented in CNF, and thus each frame is a set of clauses. This

allows to rewrite conditions 2 using subset inclusion (i.e. for all i, 0 < i < k,

Fi+1 ⊆ Fi).

From an high level point of view, in each iteration IC3 performs two

different phases, the blocking phase and the propagation phase. The goal

of the blocking phase is to ensure that the last frame in the sequence, Fk,

satisfies P (i.e. Fk |= P). The procedure is recursive and it either tries

to prove that Fk |= P or to prove the existence of a counterexample trace

from the frame Fo to the frame Fk. Thus, in this phase the algorithm

may conclude that Fk 6|= P . Then, in the propagation phase IC3 checks

if a clause c in a frame Fi can be also added to the subsequent frame

Fi+1. Intuitively, this can be done if any transition from one of the states

represented by the clause c reaches only states in the same set. During this

phase IC3 may discover that Fk−1 = Fk, thus proving that S |= P . If it

is not the case, IC3 adds a new frame to the sequence and iterates both

phases.

IC3 relies on the concept of relative induction [Bra11].

Definition 6 (Inductive relative) Given a transition system S and a

formula φ(V), the formula ψ(V) is inductive relative to φ if:

|=Init→ ψ (2.9)

|=Trans ∧ φ→ ψ′ (2.10)

Thus, the basic step of IC3 consists of checking the relative inductiveness

of a clause c with respect to a frame Fi:

|= Fi ∧ Trans→ c′ (2.11)

26

CHAPTER 2. BACKGROUND 27

The algorithm is shown in Figure 2.1. Initially (line 1) the trace contains

only one frame with the initial states. Then, the main IC3 loop (line 3)

alternates the blocking (line 4) ad the propagation (line 7) phases. During

the blocking phase IC3 checks if the current frame (i.e. the last frame

added to the sequence, Fk satisfies P . If it is not the case, there exists a

cube c that must be “blocked” by the previous frames. We denote proof

obligation the pair (c, i), where c is a cube and i is an integer. In order to

prove P , the algorithm must “discharge” the proof obligation, proving as

an intermediate result that the cube c is not reachable in i steps. At line 5

IC3 calls the function recBlock. The function, also shown in Figure 2.1,

recursively tries to discharge the proof obligation (c, k − 1). Note that,

if k = 0 then the function actually found a counterexample. Otherwise,

recBlock checks if ¬c is relative inductive to Fk−1:

|= Fi ∧ Trans ∧ ¬c ∧ c′ (2.12)

This check tries to strengthen the induction adding ¬c. ¬c holds in Fi−1,

otherwise the algorithm would have found that c |= Fi−1 ∧ P in the k − 1

step. If the check is satisfiable, then c is not inductive relative to Fi−1,

and thus there exists a predecessor of c, say s, in Fi−1 that can reach c in

one step. The algorithm generates a new proof obligation (s, k − 1) that

must be discharged (recursively). If c is inductive relative to Fi−1 then the

clause ¬c could be added to Fk, thus discharging (c, k − 1). However, one

of the strengths of IC3 is that it generalizes the blocking clause in order to

rule out sets of states (otherwise, the approach would perform an explicit

state exploration). We will briefly discuss about the the generalization step

later.

Instead, if no bug where found in the frame Fk, IC3 extends the visited

traces, adding Fk+1 (line 7). At this point IC3 tries to propagate the

clauses in a frame to the subsequent one. A clause c is propagated from

27

28 2.3. SMT-BASED VERIFICATION

a frame Fi to a frame Fi+1 if c is inductive relative to Fi. During the

propagation IC3 checks if two subsequent frames Fi and Fi+1 have the

same set of clauses. In this case Fi is an inductive invariant that proves

S |= P .

The IC3 strength lies in the generalization step that is performed when

blocking a proof obligation. Recall the relative inductive check of Equa-

tion 2.12. The generalization consists of “dropping” literals [BM07b] from

the clause ¬c, keeping the relative inductive check for the new clause un-

satisfiable. Intuitively, this has the effect of enlarging the set of states

represented by the clause, and thus the new clause will rule out a larger

set of states than ¬c. Bradley presented an algorithm [BM07b] that tries

to “drop” the literals in a systematic way (the intuition is that one has to

search in the lattice formed by all the possible sub-clauses of ¬c). This pro-

cess can always use the unsatisfiable cores obtained from the SAT solver.

Moreover, in [EMB11] the authors propose another way of “generalizing”

the formulas manipulated by the algorithm. In particular, every time the

algorithm get a counterexample to induction this may be “enlarged”. The

intuition is that a complete assignment contains all the state variables of

S, and thus it represents a single state. Techniques such as three-valued

ternary simulation and don’t care detection may remove some variables

from the complete assignment, thus generalizing the result.

Another interesting observation regards the implementation of the func-

tion recBlock. While the formulation of recBlock given in Figure 2.1 is

recursive, the real implementations of the functions are iterative and based

on a priority queue data structure, which stores the proofs obligations.

The algorithm extracts the proof obligation from the queue, taking first

the proof obligation with the higher index. With the priority queue, a

proof obligation (c, i) that has to be blocked in frame i, with 0 < i ≤ k, it

is also copied for all the indexes i < j ≤ k (i.e. (c, i + 1), . . . , (c, k). The

28

CHAPTER 2. BACKGROUND 29

intuition is that the bad state c must be blocked also “in the future” by all

the subsequent frames. This mechanism allows IC3 to find counterexample

traces that are longer than the length of the frame sequence k.

IC3 can be applied also to first-order transition systems, just replacing

the underlying SAT solver with an SMT solver. However, the resulting

algorithm may be extremely inefficient and ineffective. The main reason

lays in the missing generalization for the theory variables, which are not

considered by the generalization. There have been a couple of implementa-

tion of IC3 to deal with systems represented in T (Q) [CG12, HB12]. The

approach in [HB12] proposes an implementation of the generalization to

induction based on interpolants. Suppose to have the (simplified) relative

inductive query Fi ∧ T ∧ ¬c′. Then, if the query is unsatisfiable, the gen-

eralization computes the interpolant itp between the formulas Fi ∧ T and

¬c′. By the property of interpolation, |= (Fi ∧ T) → itp and 6|= ¬c ∧ itp.

Thus, itp clearly would block c in Fi+1. However, to fit the IC3 frame-

work, itp must be a clause. This is solved in [HB12] computing a specific

interpolant for T (Q), which is a clause by construction. A discussion on

the computation of the interpolant is out of scope, we refer the interested

reader to [HB12].

Instead, the approach in [CG12] focuses on the generalization of the

counterexample to induction. The main issue with the counterexample

to induction in the SMT case is that a cube s is of the form s := s1 ∧
. . . ∧ s|V |, where |V | is the cardinality of the set of state variables and

each si is a predicate that assigns a value to a variable (e.g. x = 1). It is

unlikely that the search converges since the number of possible assignments

is infinite. Thus, instead of taking one single counterexample to induction,

the proposed technique considers a set of counterexamples. Consider again

the query Fi ∧ T ∧ c′. In the case it is satisfiable, one could compute the

exact preimage of the set of states c′ (i.e. Pre(c′) := ∃V ′.(Fi ∧ T ∧ c′))

29

30 2.4. HYBRID SYSTEMS

and then take a cube in Pre(c′). A viable solution consists of performing

an approximate quantifier elimination, approx-preimage, which returns

just one cube c→ Pre(c′) (i.e. an under-approximation of the pre-image).

Note that both solutions are orthogonal, and can be combined.

Specific implementation of IC3 have been proposed for the Theory of

Bit-vectors (UF BV) [WK13] and also for specific kinds of systems (e.g.

timed-automata [KJN12b], well-structured transition systems [KMNP13]).

A recent approach [CGMT14a] extends IC3 with implicit predicate ab-

straction [Ton09]. The approach does not require a specific generalization

techniques for theories, since all the IC3 “machinery” is performed on the

abstract state space. The only requirement is to have an effective refine-

ment technique for the used theories (e.g. interpolation based [HJMM04]).

2.4 Hybrid Systems

2.4.1 Hybrid Automata

Hybrid Automata [Hen96] are a well known framework used to model hy-

brid systems. An hybrid automaton models both the discrete and the

continuous behaviors of a system. The discrete state of the system is rep-

resented with a set of vertices of a graph, called locations, while real-valued

functions, called continuous variables, model the continuous state. The dis-

crete transitions are modeled using edges between two vertices, that are

labelled with an expression that expresses when the transition is enabled

and how the continuous variables change when the transition is executed.

The continuous evolution, called flow condition, is described through dif-

ferential equations over the continuous variables and their derivatives (with

respect to time). Each discrete location has its own flow condition. More-

over, the continuous evolution is affected by the invariant condition, which

expresses a relation over the continuous variables that must hold in each

30

CHAPTER 2. BACKGROUND 31

discrete location.

A state of the system is given by a location and an assignment to the

continuous variables. The intuitive semantic of an hybrid automaton is

to alternate discrete transitions, where the discrete location changes, to

continuous transitions, where the time elapses and thus the value of the

continuous variables change according to the flow and invariant conditions.

In the rest of the thesis, we denote with ḟ the first derivative of a real

function f and with Ẋ the set that contains the first derivatives of all the

real functions in the set X (e.g. Ẋ = {ẋ | x ∈ X}). As we did for symbolic

transition system, we will denote with x′ the value of the variable x in the

next discrete execution step of the system. We extend this notation to a

set of variables (e.g. X ′ = {x′ | x ∈ X}).
We will use a definition of hybrid automaton where the discrete locations

are not given explicitly, but are determined by the assignments to a set

of discrete variables, and thus also the discrete transitions, the initial, the

invariant and the flow conditions are expressed as first-order logic formulas.

Definition 7 (Hybrid Automaton [Hen96]) A Hybrid Automaton

(HA) is a tuple 〈V,X, ε, Init, Invar, Trans, F low〉 where:

• V is a set of discrete variables,

• X is a set of continuous variables,

• ε is a variable with domain A,

• Init is a ΣR-formula over V ∪X (the initial condition),

• Invar is a ΣR-formula over V ∪X (the initial condition),

• Trans is a ΣR-formula over V ∪ X ∪ A ∪ V ′ ∪ X ′ (the transition

relation),

• Flow is a ΣR-formula over V ∪X ∪ Ẋ (the flow condition).

31

32 2.4. HYBRID SYSTEMS

A state of a hybrid automaton H is an assignment s to the variables

V ∪ X. We refer to the set of values A, the domain of the variable ε, as

labels of the hybrid automaton.

Definition 8 (Path) A sequence s0
δ1→ s1

δ2→ . . .
δk→ sk is a path of the

hybrid automaton H if:

• s0 |= Init and for 0 < i ≤ k, si is a state of H and

• for 1 ≤ i ≤ k, δj ∈ R ∪ A and si−1
δi→ si we have that either:

– Discrete transition: δi ∈ A and 〈si−1, δi, si〉 |= Trans, si−i |=
Invar, si |= Invar.

– Continuous transition: δi ∈ R, δi > 0:

∗ si−1|V = si|V ,

∗ there exists a continuous differentiable function f : [0, δi] →
R|X| such that:

· f(0) = si−1|X and f(δi) = si|X ,

· si−1 |= Invar, si |= Invar,

· ∀ε ∈ [0, δi], 〈si−1|V , f(ε), ḟ(ε)〉 |= Flow,

· ∀ε ∈ [0, δi], 〈si−1|V , f(ε)〉 |= Invar.

We say that a state sk of the hybrid automaton H is reachable if there

exists a run π of H such that π = s0
δ1→ s1

δ2→ . . .
δk→ sk.

While we use a symbolic definition of the hybrid automaton, we will

denote with Q the set of all the assignments to the variables V . For-

mally, Q =
∏

v∈V |Dom(v)|, where |Dom(v)| denotes the cardinality of the

domain of the variable v. We extend the notation used to refer to the

“primed” variables to assignments. If v is an assignment to the variables

V , we denote with v′ the same assignment to the variables in V ′ (e.g. if

v = 〈x = 1, y = 2〉, then v′ = 〈x′ = 1, y′ = 2〉). Q corresponds to the set

32

CHAPTER 2. BACKGROUND 33

of explicit locations of the hybrid automaton, as used by the standard

definition [Hen96].

2.4.2 Classes of Hybrid Systems

We clarify the nomenclature used in this thesis when referring to the dif-

ferent kinds of hybrid systems that we consider:

• Hybrid systems with linear (or non-linear) constraints (e.g., [ACHH92,

HHWT98]): linear and non-linear hybrid automata, where the flow

condition is given by symbolic constraints over the derivatives of con-

tinuous variables.

• Hybrid systems with linear (or non-linear) ODE (see, e.g., [ADMB00,

LPY01, Tiw08, FGD+11a]): following the literature on control the-

ory, linear and non-linear hybrid systems where the flow condition

is defined by a system of linear or non-linear Ordinary Differential

Equations (ODE).

• Hybrid systems with polynomial (or non-linear) dynamics (see, e.g.,

[Frä01, CCF+07a, PC07]): hybrid systems such that the continuous

evolution is described with a function of time, thus without using

derivatives.

Our definition of hybrid systems is general enough to cover the first two

cases. However, our results also applies to the third case, as such dynamics

provide the explicit solution for a system of ODEs, as we require.

We formally define two main classes of systems, Linear Hybrid Au-

tomata [Hen96] and Linear Hybrid Systems. These two classes of systems

have been widely used in the literature and are the target of several tech-

niques presented in this thesis.

33

34 2.4. HYBRID SYSTEMS

Definition 9 (Linear hybrid automata) A Linear Hybrid Automaton

(LHA) is an hybrid automaton such that:

• Flow is a ΣQ-formula over V ∪ Ẋ,

• Init is a ΣQ-formula over the variables V ∪X,

• Invar is a ΣQ-formulas over the variables V ∪X and for each location

q ∈ Q, Invar(q) is convex,

• Trans is a ΣQ-formula over V ∪X ∪ A ∪ V ′ ∪X ′.

In some cases, we will specifically consider linear dynamics, where the

flow condition Flow for a specific location q ∈ Q is a system of linear

Ordinary Differential Equations (ODEs).

We denote column vectors with the the notation ~x. We say that ~x is

the vector of the set of variables X if ~x is the vector formed by all the

variables x ∈ X, assuming that the order of the variables in the vector is

chosen arbitrarily (in this thesis we assume a lexicographic order on the

variables name). We will denote with ~xT the transpose of the vector ~x (i.e.

the row vector). Given a m × n matrix M , two positive integers i, j, we

denote with Mi,j the element in the i− th row and j− th column of M . In

the case of column or row vector, we drop the constant index 1 from the

notation (e.g. given ~cT = [c1, c2, c3], we write ~c2 = c2 for ~c1,2).

We define a linear Ordinary Differential Equations as follows:

~̇x = A~x+ b

where A ∈ Rn×n and b : R → Rn, n is the cardinality of the set X (i.e.

|X| = n), ~x is the vector of X and ~̇x is the vector of X. Here, note

that b is a function of time and thus may represent inputs that change

over time (i.e. non-autonomous system). As remarked in [LPY01], this

definition is sufficient to represent inputs of the form Bu where B ∈ Rn×m

34

CHAPTER 2. BACKGROUND 35

and u : Rm → Rn. We will write Flow(q) = A~x+ b to refer to the dynamic

of the location q ∈ Q. We deal with this kind of dynamics in Section 3.4.

Moreover, we define Linear Hybrid System a hybrid automaton where

the flow condition in each location is linear and where all the constraints

of the automaton are expressed in T (Q).

Definition 10 (Linear Hybrid System) With the term Linear Hybrid

System (LHS) we refer to a an hybrid automaton such that, for all the

locations q ∈ Q:

• The dynamic in each location q ∈ Q is a system of linear ODEs,

• Init is a ΣQ-formula over the variables V ∪X,

• Invar is a ΣQ-formulas over the variables V ∪X and for each location

q ∈ Q, Invar(q) is convex,

• Trans is a ΣQ-formula over V ∪X ∪ A ∪ V ′ ∪X ′.

In Chapter 5 we deal with autonomous linear hybrid systems, where the

inputs b do not depend on time. Due to the restriction, the dynamic

Flow(q) can be written as:

Flow(q) := A~x+~b

where A ∈ Rn×n, ~x is the vector of X, ~̇x is the vector if Ẋ, ~b : Rn, n is

the dimension of the dynamical system (i.e. the cardinality of the set X,

|X| = n) and ~X is the vector of all the continuous variables.

2.4.3 Hybrid Automata Network

To represent concurrent systems, we consider the asynchronous composi-

tion of hybrid automata.

35

36 2.4. HYBRID SYSTEMS

Definition 11 (Parallel Composition of Hybrid Automata) Given

two hybrid automata H1 = 〈V1, X1, ε1, Init1, Invar1, T rans1, F low1〉 and

H2 = 〈V2, X2, ε2, Init2, Invar2, T rans2, F low2〉, where V1 ∩ V2 = ∅ and

X1 ∩ X2 = ∅, their parallel composition H1||H2 is the hybrid automaton

H = 〈V,X, ε, Init, Invar, Trans, F low〉 where:

• V := V1 ∪ V2,

• X := X1 ∪X2,

• ε is a variable such that its domain A = A1 ∪ A2,

• Init := Init1 ∧ Init2,

• Invar := Invar1 ∧ Invar2,

• Trans :=
∨

e∈A1\A2

(ε = e ∧ Trans1 ∧ V ′2 = V2 ∧X ′2 = X2)∨
∨

e∈A2\A1

(ε = e ∧ Trans2 ∧ V ′1 = V1 ∧X ′1 = X1)∨
∨

e∈A2∩A1

(ε = e ∧ Trans1 ∧ Trans2)

• Flow = Flow1 ∧ Flow2.

A network N of HAs is the parallel composition of two or more HAs:

N = H1|| . . . ||Hn, where H1, . . . , Hn are hybrid automata. In the follow-

ing, we consider a network N = N = H1|| . . . ||Hn of HAs with Hi =

〈Vi, Xi, εi, Initi, Invari, T ransi, F lowi〉 such that for all 1 ≤ i < j ≤ n

Xi ∩ Xj = ∅ and Vi ∩ Vj = ∅ (i.e. both the set of continuous and dis-

crete variables of the hybrid automata are disjoint). Other definitions of

hybrid automata consider shared variables, for example I/O Hybrid Au-

tomata [LSV03].

36

CHAPTER 2. BACKGROUND 37

bool IC3-prove(Init, Trans, P):

1. trace = [Init] # first elem of trace is init formula

2. trace.push() # add a new frame to the trace

3. while True:

blocking phase

4. while there exists a cube c s.t. c |= trace.last() ∧ ¬P :

recursively block the pair (c, trace.size()− 1)

5. if not recBlock(c, trace.size()-1):

a pair (s0, 0) is generated

6. return False # counterexample found

propagation phase

7. trace.push()

8. for i = 1 to trace.size()− 1:

9. for each clause c ∈ trace[i]:

10. if trace[i] ∧ c ∧ Trans ∧ ¬c′ is unsatisfiable:

11. add c to trace[i+1]

12. if trace[i] == trace[i+1]:

13. return True # property proved

simplified recursive description, in practice based on priority queue [Bra11, EMB11]

bool recBlock(s, i):

1. if i = 0: return False # reached initial states

2. while there exists a cube c such that |= Fi ∧ Trans ∧ c ∧ s′:
3. if not recBlock(c, i− 1): return False

4. g = generalize(¬s, i) # standard IC3 generalization [Bra11, EMB11]

5. add g to trace[i]

6. return True

Figure 2.1: High-level description of IC3 (following [EMB11]).

37

38 2.4. HYBRID SYSTEMS

38

Part II

Encoding Techniques

Chapter 3

Hybrid Automata Encoding

Note. The material presented in this chapter has already been presented

in [CMT12, CMT13b].

In this chapter we present the encoding of a hybrid automaton H in a

symbolic transition system S. The encoding preserves safety properties 1:

a safety property P holds in the hybrid automaton H (H |= P) if and only

if P holds in the symbolic transition system S. Thus, after the encoding

we can apply all the algorithms presented in Section 2.3 to prove P .

We will first introduce a general encoding in the theory of reals extended

with transcendental function and universal quantifiers. While this defini-

tion is general, it cannot be used in a practical setting. The definition

uses a very expressive theory, T (R), that is not currently handled by the

existing SMT solvers. We will see that, for many systems of practical in-

terest, we do not need this theory and we rely on T (R) or T (Q). From a

practical point of view, the experimental results presented in Chapter 10

shows benchmarks that use T (Q) and T (R).

The encoding assumes the existence of an explicit solution for the Flow

condition of the hybrid automaton that can be expressed in T (R). We may

find an explicit solution for several classes of systems. In particular, this

is true for Linear Hybrid Automata, for Polynomial Hybrid Systems and
1The presented encoding preserves also LTLX , the fragment of LTL without the next operator

41

42

for some sub-classes of Linear Hybrid Systems. Moreover, some non-linear

hybrid systems may have an explicit solution in T (R). The continuous

evolution is encoded as a transition of the symbolic transition system,

where the real time elapses and the continuous variables change their values

according to Trans. Note that the “continuous” transition of the encoding

is point-wise: it expresses the fact that the system changes its state from

s(t) to s(t′).

The encoding also forces that the invariant condition Invar holds in all

the time points in the interval [t, t′], i.e. ∀ε ∈ [t, t′], Invar(ε). This formula

has a universal quantifier to encode that the continuous (timed) transi-

tion is always enclosed in the invariant condition of the hybrid automata.

The handling of these quantifiers is an open problem [ÁBKS05], since the

quantifier elimination problem for T (R) it not decidable, while for T (R)

the existing quantifier-elimination procedures such as CAD [Col75] do not

scale.

We show a technique that allow us to obtain a quantifier-free encoding

for several interesting classes of hybrid systems. The main idea consists

of forcing the invariant to hold before and after the continuous transition

(i.e. Invar(t) and Invar(t′)), and the sign of the derivative of the invariant

to be constant during a continuous transition. This reduction yields a

universally quantified formula over the derivative of the invariant, and

not over the invariant itself. In several interesting cases, the reduction

may be applied recursively until the quantifiers are applied to a linear

function. At this point, the universal quantifiers can be safely removed by

convexity [HKPV98], obtaining a quantifier free formula.

Finally, we show that we can encode different classes of systems with

polynomial and linear dynamics using T (R). While the SMT encoding of

systems for simpler dynamic like linear hybrid automata is straightforward,

and well know in the literature, the encoding for the other classes of systems

42

CHAPTER 3. HYBRID AUTOMATA ENCODING 43

exploits our reduction that removes the quantifiers. Thus, the encoding

extends the applicability of the SMT-based verification methods to these

classes of systems.

3.1 Encoding of a single automaton

We show the encoding of a single hybrid automaton in a symbolic transition

system.

In this chapter we focus on single hybrid automaton and thus, to simplify

the notation, we disregard the labels on the discrete transitions of the au-

tomaton (i.e. the automaton is defined as a tuple 〈VH , XH , InitH , InvarH ,

T ransH , F lowH〉, where Trans is a ΣR-formula over V ∪X ∪ V ′ ∪X ′).
In our hybrid automata definition the Flow condition is a general pred-

icate over V,X and Ẋ. The encoding considers hybrid automata where

the continuous dynamics Flow is described by a system of Ordinary Dif-

ferential Equations 2 (ODEs) in the form Ẋ = F (X) (i.e., for all x ∈ X,

ẋ = Fx(X)). Then, we assume that the system of ODEs admits a primitive

solution f(V, t), which is uniquely determined by the state at the beginning

of the timed transition.

Let 〈VH , XH , InitH , InvarH , T ransH , F lowH〉 be an hybrid automaton.

Then, the encoding of H is the first-order transition system SH = 〈VS,
WS, InitS, InvS, T ransS〉 defined as:

• VS := V ∪X ∪ {t},
(t is a real variable used to track the amount of time elapsed)

• WS := {},

• InitS := t = 0 ∧ InitH ,

2In the case of Linear hybrid automata we also allow more general predicates in the flow condition,

like ẋ+ ẏ <= 5 (See Example 2).

43

44 3.1. ENCODING OF A SINGLE AUTOMATON

• InvS := InvarH

Note that InvS does not ensure that InvarH holds during a continuous

transition. This is encoded by the universal quantifier of TransS.

• TransS := Untimed ∨Timed where

– Untimed := t′ = t ∧ TransH(V,X, V ′, X ′).

– Timed :=t′ > t ∧ V ′ = V ∧X ′ = f(V, t′)∧
∀ε ∈ [t, t′], InvarH(V, f(V, ε))

From now on, we will call SH the encoding of H.

Theorem 1 Given a HS H, the symbolic transition system SH = 〈VS,WS,

InitS, InvS, T ransS〉 is such that there exists a one-to-one mapping between

the paths of H and the paths of SH .

Proof. (⇒) Let πH = h0
δ1→ h1

δ2→ . . .
δk→ hk be a path of the hybrid

automaton H. Then, the sequence of states πS = s0; a1; s1; . . . ; ak; sk such

that:

• for all 0 ≤ i ≤ k, ∀v ∈ V, si(v) = hi(v),

• for all 0 ≤ i ≤ k, ∀x ∈ X, si(x) = hi(x),

• s0(t) = 0,

• for all 0 < i ≤ k, si(t)




si−1(t) if δi 6∈ R,

si−1(t) + δi otherwise

is a path of SH .

Clearly, s0 |= InitS and for all 0 ≤ i ≤ k, si |= InvS (since h0 |=
InitH and s0(t) = 0 and for all 0 ≤ i ≤ k hi |= InvarH). Then, if

hi−1
δi→ hi is a discrete transition we have that 〈si−1, si〉 |= Untimed (note

that si−1(t) = si(t)). Otherwise, if hi−1
δi→ hi is a continuous transition

44

CHAPTER 3. HYBRID AUTOMATA ENCODING 45

〈si−1, si〉 |= Timed. Since hi−1
δi→ hi with a continuous transition, we have

that:

• δi > 0, and thus si−1(t) > si(t), and thus t′ ∧ t holds,

• hi−1|V = hi|V , and thus si−1|V = si|V , and thus V ′S = VS holds,

• hi|X = f(hi−1|discvars, δ) and thus 〈si−1, si〉 |= X ′ = f(V, t′).

• ∀ε ∈ [0, δ], f(hi−1|discvars, ε) |= InvarH , and thus 〈si−1, si〉 |= ∀ε ∈
[t, t′], InvarH(V, f(V, ε)) holds.

(⇐) Let πS = s0; a1; s1; . . . ; ak; sk be a path of SH . Then, the sequence

of states πH = h0
δ1→ h1

δ2→ . . .
δk→ hk such that:

• for all 0 ≤ i ≤ k, ∀v ∈ V, si(v) = hi(v),

• for all 0 ≤ i ≤ k, ∀x ∈ X, si(x) = hi(x),

• for all 0 < i ≤ k, δi = si(t)− si−1(t)

is a path of H. The proof is similar to the one in the previous case (i.e.

we can easily prove that hi |= InitH , hi |= InvarH and that hi−1
δ1→ hi is a

transition of H, either discrete or continuous). �

Example 2 (Encoding of Linear Hybrid Automaton) In the case H

is a Linear Hybrid Automaton, the encoding [ABCS05, dMRS02, ÁBKS05]

is the transition system:

• VS := V ∪X ∪ {t},

• WS := {},

• InitS := t = 0 ∧ InitH ,

• InvS := InvarH ,

45

463.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

• TransS := Untimed ∨Timed where

– Untimed := t′ = t ∧ TransH(V,X, V ′, X ′).

– Timed :=t′ > t ∧ V ′ = V ∧ γ(V,X, t,X ′, t′)

where γ is a ΣQ-formula over variables V ∪X ∪X ′∪{t, t′}, obtained copy-

ing the Flow expression replacing each ẋ occurrence by x−x
t′−t and removing

the denominator t′ − t (note that t′ > t). Formally, since Flow contains

predicate of the form
∑

x∈X ax · ẋ ./ b, for some ax ∈ R, b ∈ R, ./∈ {<
,≤, >,≥,=, 6=} we have that γ =

∑
x∈X ax · (x′ − x) ./ (t′ − t) · b. Note

that the universal quantification that encodes the invariant condition of the

automaton can be removed since Flow is linear and the invariant Inv is

convex [HKPV98].

Remark 2 (Alternative encoding without t) In several cases we are

not interested to keep track of the amount of time elapsed during the au-

tomaton run. In these cases, we avoid to add t to VS and we use an

additional input variable δ of real type (WS := {δ}). δ represents only the

amount of time elapsed during the last continuous transition. Thus, the en-

coding forces δ > 0 during Timed. This different version of the encoding

may be more effective when using induction methods (e.g. k-induction).

3.2 Quantifier-free encoding for non-linear hybrid au-

tomata

In this section we show the reduction of the encoding with universal quan-

tifiers to a quantifier-free encoding.

The reduction assumes that the invariant condition Invar does not con-

tain disjunctions. However, we do not restrict the form of Invar but we

show that the universal quantifier can be distributed over disjunctions.

46

CHAPTER 3. HYBRID AUTOMATA ENCODING 47

While in general this is not possible for arbitrary first-order formulas,

it preserves the hybrid automata semantic. The handling of disjunctive

invariants requires an universal quantification over open intervals (e.g.

∀ε ∈ (t, t′)). This does not change the semantic of the system, since the

invariant condition also forced to hold on the points t and t′ (i.e. Invar(t)

and Invar(t′)).

Thus, in the following section we consider an encoding where the con-

tinuous transition is encoded as:

Timed :=t′ > t ∧ V ′ = V ∧X ′ = f(V, t′) ∧ ∀ε ∈ (t, t′), Invar(V, f(V, ε))

The reduction is formalized by hybrid traces [dAM95, CRT09] that allow

us to handle an arbitrary combinations of intervals, as opposed to the

definition of hybrid automata paths that only use closed intervals ([t, t′])

or left-closed and right-open intervals ([t, t′)).

We will first introduce hybrid traces and then we show how we can han-

dle disjunctive invariants. Then we present the reduction that enables us

to remove the universal quantifier and several examples of its application.

3.2.1 Hybrid traces

Let I be an interval of R or N; we denote with le(I) and ue(I) the lower

and upper endpoints of I, respectively.

Hybrid traces [dAM95, CRT09] describe the evolution of variables in

every point of time. Such evolution is allowed to have a countable number

of discontinuous points corresponding to changes in the discrete part of the

model.

Definition 12 (Hybrid Trace) A hybrid trace over discrete variables V

and continuous variables X is a sequence 〈f, I〉 := 〈f0, I0〉, 〈f1, I1〉, . . . ,
〈fk, Ik〉 such that, for all i, 0 ≤ i ≤ k,

47

483.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

• the intervals are adjacent, i.e. ue(Ii) = le(Ii+1);

• le(I0) = 0 and Ik is right closed;

• fi : V ∪X → R → R is a function such that, for all x ∈ X, fi(x) is

differentiable, and for all v ∈ V , fi(v) is constant;

• if Ii is left open and le(Ii) = t then, for all v ∈ V ∪ X, fi(v)(t) =

fi−1(v)(t).

• Similarly, if Ii is right open and ue(Ii) = t then, for all v ∈ V ∪ X,

fi(v)(t) = fi+1(v)(t).

We say that a trace is a sampling refinement of another one if it has

been obtained by splitting an open interval into two parts by adding a

sampling point in the middle [dAM95]. A partitioning function µ is a

sequence µ0, µ1, µ2, . . . of non-empty, adjacent and disjoint intervals of N
partitioning N. Formally,

⋃
i∈N µi = N and ue(µi) = le(µi+1)− 1.

Definition 13 (Sampling Refinement) A hybrid trace 〈f ′, I ′〉 is a sam-

pling refinement of 〈f, I〉 (denoted with 〈f ′, I ′〉 � 〈f, I〉) iff, there exists a

partitioning µ such that for all i ∈ N, Ii =
⋃
j∈µi I

′
j and, for all j ∈ µj,

f ′j = fi.

We extend the relation to set L1 and L2 of traces as follows: L1 � L2 iff

for every trace w2 ∈ L2 there exists w1 ∈ L1 such that w1 � w2.

We assume that the evolution of predicates along time have the finite

variability property. We say that a predicate P (t) over a real variable t has

finite variability [Rab98] iff for any bounded interval J there exists a finite

sequence of real numbers t0 < . . . < tn such that t0 = le(J), tn = ue(J),

and for all i ∈ [1, n], either for all ε ∈ (ti−1, ti), P (ε) or for all ε ∈ (ti−1, ti),

¬P (ε). The last condition means that the predicate is constant in the

interval (ti−1, ti). If P is in the form g(t) ./ 0 with g continuous and

./∈ {≥,≤, <,>}, in the points in which P changes value, g(t) = 0.

48

CHAPTER 3. HYBRID AUTOMATA ENCODING 49

Definition 14 (Finite Variability) A predicate g ./ 0 has finite vari-

ability iff for any bounded interval J there exists a finite sequence of real

numbers t0 < . . . < tn such that t0 = le(J), tn = ue(J), and for all

i ∈ [1, n], either for all ε ∈ [ti−1, ti], g(ε) ≥ 0 or for all ε ∈ [ti−1, ti],

g(ε) ≤ 0. We denote this condition with Constant(P, ti−1, ti).

Proposition 1 Assuming that a predicate P has finite variability, for ev-

ery hybrid trace σ, there exists a sampling refinement of σ for which P is

constant in the open part of every interval.

Given a hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉, we denote with sfi(t)

the state assigning to every variable v ∈ V ∪ X the value fi(v)(t) and

with ṡfi(t) the assignment that maps every variable v ∈ X with the value

ḟi(v)(t).

A hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a path of the hybrid au-

tomaton H = 〈V,X, Init, Invar, Trans, F low〉 iff:

• sf0(0) satisfies Init;

• for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t) satisfies Invar;

• for every 0 ≤ i < k, if Ii is right closed with ue(Ii) = t and Ii+1 is left

closed with le(Ii+1) = t′, then sfi(t), s
′
fi+1

(t′) satisfies Trans;

• for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t), ṡfi(t) satisfy Flow.

The language L(S) is the set of models of S.

Proposition 2 A sampling refinement of a path of an HS S is also a path

of S.

Intuitively, sampling refinement just splits an interval into sub-intervals

and therefore does not change either the initial state or the discrete tran-

sitions. Thus, the conditions remain satisfied by the corresponding points.

49

503.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

Sampling refinement preserves reachability properties in the sense that

if L′ � L(S) then there exists a trace in L′ reaching a condition φ iff there

exists a trace in L(S) reaching φ (similarly for LTL properties without next

operators [AN95] and HRELTL properties [CRT09]).

3.2.2 Removing quantified disjunctions from the invariants

In this section we describe how to remove disjunctions from the invariants,

obtaining an equivalent encoding where the quantified formulas contain

only atomic predicates. The transformation relies on the encoding of hybrid

systems with quantifiers over open intervals. Then, in the next Section we

will show how to remove the quantifiers in both the open and the closed

intervals case. Note that the existing encodings of hybrid automata into

infinite-state transition systems ignore the issue and assume the convexity

of the invariant condition.

We reduce the quantification over a disjunctive invariant into a disjunc-

tion of quantifications. While this is not correct in general, it is possible due

to the particular position of the quantified sub-formula in the transition

condition. After the reduction we guarantee that the quantified formula in

TransS is atomic, allowing us to remove the quantifiers.

Suppose we have a disjunctive invariant φ(ε) ∨ ψ(ε). In our case we

can distribute the universal quantifier in ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε) over the

disjunction, obtaining the formula ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε). The

following theorem proves the correctness of the transformation.

Theorem 2 Let H be a hybrid automaton with Invar = φ(ε) ∨ ψ(ε),

where the predicates φ and ψ have finite variability, and SH its encod-

ing. Then, the encoding S ′H obtained from SH replacing the subformula

∀ε ∈ (t, t′), φ(ε)∨ψ(ε) in TransS with ∀ε ∈ (t, t′), φ(ε)∨∀ε ∈ (t, t′), ψ(ε) is

sampling refinement to the original hybrid automaton.

50

CHAPTER 3. HYBRID AUTOMATA ENCODING 51

t = t0 t0 . . . tn−1 tn = t′φ ψ φ ψ

φ ∨ ψ

Figure 3.1: Effect on a path of the encoding without disjunctions.

Proof. (⇐) Clearly, ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε) implies ∀ε ∈
(t, t′), φ(ε) ∨ ψ(ε).

(⇒) Consider a hybrid trace 〈f, I〉 := 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which

is a path of a H. Assuming that the predicates φ and ψ have finite vari-

ability, we can refine the hybrid trace into a new hybrid trace 〈f ′, I ′〉′ :=

〈f ′0, I ′0〉, 〈f ′1, I ′1〉, . . . , 〈f ′l , I ′l〉 in which φ and ψ are constant in every inter-

val. The new hybrid trace also satisfies SH by Proposition 2 and thus the

corresponding discrete trace s0; . . . ; sl satisfies its encoding S ′H . At every

i, if si satisfies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε), then f(si, ε) satisfies φ ∨ ψ for all

ε ∈ (t, t′) = (le(I ′i), ue(I
′
i)), and thus either φ or ψ (since φ and ψ are

constant in the open part of I ′i). Therefore the discrete trace satisfies also

the encoding with ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε). �
The effect of the encoding on the paths of the transition system is shown

in Figure 3.1. In practice, the encoding of the transition system without

disjunctions splits the continuous transition every time the valuation of φ

or ψ changes, instead of allowing a single continuous transition where φ∨ψ
holds.

3.2.3 Reduction to flow invariants

In this section we present a result that allow us to reduce the quantified

formula of an invariant to a quantified formula over its derivatives. The

application of the reduction results in a formula where the quantifier is

applied to the derivatives of the invariant. Thus, the reduction could be

51

523.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

applied recursively to obtain a quantified formula over the second order

derivatives. In some cases, the quantifiers on the derivatives may be re-

moved trivially, obtaining a quantifier-free formula (e.g. this happens when

the derivative is a linear predicate).

The following theorems assume the finite variability of predicates of the

derivatives. Many functions have this property, in particular polynomials

and some simple transcendental functions.

Theorem 3 If g : R → R is a differentiable function and ġ ./ 0 (./∈
{≥, >,≤, <}) has finite variability, then ∀ε ∈ [t, t′], g(ε) ./ 0 iff there ex-

ists a finite sequence of real numbers t = t0 < . . . < tn = t′ such that∧
0≤i≤n g(ti) ./ 0 ∧∧0<i≤n Constant(ġ ≥ 0, ti−1, ti).

Proof. Let us assume that ./∈ {≥, >}.
(⇒) Since ġ ./ 0 has finite variability, there exists a finite sequence of

real numbers t0 = t < . . . < tn = t′ such that
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti)

by definition. Moreover, since ∀ε ∈ [t, t′], g(ε) ./ 0, g ./ 0 holds also in the

time points t0, . . . , tn.

(⇐) Assume by contradiction that there exists tb ∈ [t, t′] such that

g(tb) ./ 0 is false. Since
∧

0≤i≤n g(ti) ./ 0, there exists i ∈ [1, n] such that

tb ∈ (ti−1, ti). Since g is differentiable, by the mean value theorem, there

exists a point t′b ∈ (ti−1, tb) such that ġ(t′b) = g(tb)−g(ti−1)
(tb−ti−1) and therefore

ġ(t′b) < 0. Similarly, there exists a point t′′b ∈ (tb, ti) such that ġ(t′′b) =
g(ti)−g(tb)

(ti−tb) and therefore ġ(t′′b) > 0. Thus, ġ is not constant over (ti−1, ti)

contradicting the hypothesis. We conclude that ∀ε ∈ [t, t′], g(ε) ./ 0.

The cases in which ./∈ {≤, <} can be proved similarly. �
The intuition behind the theorem is simple. While we can easily encode

that the invariant holds at some precise point (e.g. t, t′) it is harder to

impose the same condition along an interval without the use of quantifiers.

However, we exploit the sign of ġ to infer the behavior of g in [t, t′] (i.e. if

52

CHAPTER 3. HYBRID AUTOMATA ENCODING 53

ġ > 0, resp. ġ < 0, resp. ġ = 0, then g increases, resp. decreases, resp.

is constant). Since g is finite variable, we can divide the interval [t, t′] in

a finite sequence of intervals where the sign of the derivative is constant.

If the invariant does not hold in all the endpoints of the intervals, then

there exists a point in [t, t′] where the invariant does not hold. Otherwise,

by the fact that the sign of the derivative is constant we know that g just

increases, decreases or is constant in the interval. Thus, the valuation of

g ./ 0 does not change in the interval.

Example 3 Consider the function g(t) = t3− 3t in the interval [−2, 2] (it

is plotted in Figure 3.2) and the invariant g(t) ≥ 0. The derivative ġ(t) < 0

in [−2,−1) and (1, 2], ġ(t) > 0 in (−1,−1), ġ(t) = 0 in [−1,−1] and [1, 1].

Now consider the formula ∀ε ∈ [−2, 0], g(ε) ≥ 0. We remove the quantifier

considering the intervals where the derivative is constant: g(−2) ≥ 0 ∧
g(−1) ≥ 0 ∧ g(0) ≥ 0 ∧ Constant(ġ ≥ 0,−2,−1)Constant(ġ ≥ 0,−1, 0).

Note that in practice we do not fix the intervals where the derivative is

constant, but they will be found automatically by the SMT solver.

When the predicate is an equality, the reduction is simpler.

Corollary 1 If g : R → R is a differentiable function and ġ = 0 has

finite variability, then ∀ε ∈ [t, t′], g(ε) = 0 iff g(t) = 0 ∧ g(t′) = 0 ∧ ∀ε ∈
[t, t′], ġ(ε) = 0.

The quantifier can be removed even if the interval of quantification is

open.

Theorem 4 If g : R → R is a differentiable function and ġ ./ 0 (./∈ {≥
, >}) has finite variability, then ∀ε ∈ (t, t′), g ./ 0 iff there exists a finite

set of real numbers t = t0 < . . . < tn = t′ such that g(t) ≥ 0 ∧ g(t′) ≥
0 ∧∧0<i<n g(ti) ./ 0 ∧∧0<i≤n Constant(ġ ≥ 0, ti−1, ti) if ./=≥, g(t) ≥ 0 ∧
g(t′) ≥ 0∧∧0<i<n g(ti) ./ 0∧∧0<i≤n Constant(ġ ≥ 0, ti−1, ti)∧ (g(t) = 0→
ġ(t) > 0) ∧ (g(t′) = 0→ ġ(t) < 0), if ./=>.

53

543.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

ġ(t) > 0 ġ(t) < 0 ġ(t) < 0

t

g(t)
g(t)

Figure 3.2: Plot of the function t3 − 3t. The plot is gray if ġ(t) > 0 and white when

ġ(t) < 0.

Proof. (⇒) Since ġ ./ 0 has finite variability, there exists a finite set of

real numbers t = t0 < . . . < tn = t′ such that
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti)

by definition. Moreover, since ∀ε ∈ (t, t′), g ./ 0, g ./ 0 holds also in the

time points t1, . . . , tn−1. g(t) ≥ 0 and g(t′) ≥ 0 for the continuity of g.

Finally, (g(t) = 0→ ġ(t) > 0) ∧ (g(t′) = 0→ ġ(t) < 0), if ./=>.

(⇐) Assume by contradiction that there exists tb ∈ (t, t′) such that

g(tb) ./ 0 is false. Since
∧

0<i<n g(ti) ./ 0, there exists i ∈ [1, n] such that

tb ∈ (ti−1, ti).

Let us consider first the cases in which ./=≥ or i ∈ [2, n−1] or i = 1 and

g(t) ./ 0 or i = n and g(t′) ./ 0. Since g is differentiable, for the mean value

theorem, there exists a point t′b ∈ (ti−1, tb) such that ġ(t′b) = g(tb)−g(ti−1)
(tb−ti−1) and

therefore ġ(t′b) < 0. Similarly, there exists a point t′′b ∈ (tb, ti) such that

ġ(t′′b) = g(ti)−g(tb)
(ti−tb) and therefore ġ(t′′b) > 0. Thus, ġ is not constant over

(ti−1, ti) contradicting the hypothesis.

Let us now consider the case in which ./=>, i = 1 and g(t) = 0 (the case

i = n and g(t′) = 0 is similar). By hypothesis, ġ(t) > 0. Thus, there exists

54

CHAPTER 3. HYBRID AUTOMATA ENCODING 55

t0 ∈ (ti−1, tb) such that g(t0) > 0. As before there exists a point t′b ∈ (t0, tb)

such that ġ(t′b) = g(tb)−g(t0)
(tb−t0) and therefore ġ(t′b) < 0. Similarly, there exists

a point t′′b ∈ (tb, ti) such that ġ(t′′b) = g(ti)−g(tb)
(ti−tb) and therefore ġ(t′′b) > 0.

Therefore ġ is not constant over (ti−1, ti) contradicting the hypothesis.

We conclude that ∀ε ∈ (t, t′), g(ε) ./ 0. �
Hereafter, unless otherwise specified, we assume that every universal

quantifier occurs positively in TransS and that it is in the form ∀ε ∈
[t, t′], g(ε) ./ 0, with ./∈ {<,≤, >,≥,=}. As shown by the previous the-

orem, the assumption does not limit the approach, but it simplifies the

presentation of the results of this section.

The definition of Constant() contains quantified sub-formulas in the

form ∀ε ∈ [t, t′], ġ ./ 0. Therefore, the reduction can be iterated trying to

remove the quantifiers.

Theorem 3 can be used to simplify the encoding of the invariant of an

HS. Let the invariant be in the form g(X) ./ 0 (./∈ {≥,≤, >,<,=}) and f :

R→ R|X| be the solution of the flow condition. If f and g are differentiable

functions and d
dt(g◦f) ./ 0 has finite variability, then ∀ε ∈ [t, t′], g(f(ε)) ./ 0

iff there exists a finite sequence of real numbers t0 = t < . . . < tn = t′ such

that
∧

0≤i≤n g(f(ti)) ./ 0 ∧∧0<i≤n Constant(ddt(g ◦ f) ≥ 0, ti−1, ti).

The geometrical interpretation of d
dt(g ◦ f) is the scalar product of the

gradient of the curve g and the derivative vector ḟ : in fact, d
dtg(f(t)) =

5g · ḟ where5g = 〈 ∂g∂x1 , . . . ,
∂g
∂xn
〉 . Therefore, in the theorem, the condition

of ġ ≥ 0 of being constant in the interval means that the function f is

uniformly getting closer to (or farther from) the curve g in that interval.

As a side note, in the case of ODEs Ẋ = F (X), the new quantified

formula ∀ε ∈ [t, t′], ddt(g ◦ f) ≥ 0 is equivalent to the invariant 5g · F ≥ 0.

Thus, the reduction can be also applied without need of the primitive

solutions.

In the case that the invariants are polynomial and the continuous vari-

55

563.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

ables are polynomial functions of time, the derivative will eventually reduce

to zero.

3.2.4 Applications

Application to polynomial hybrid automata

We consider the class of HS where the invariants and the primitive so-

lution of the ODEs are polynomial functions of time (see also [Frä01]).

The polynomial may contain some discrete variables as coefficients to ac-

count for uncertainties in the inputs, model parameters, etc. Note that

several classes of HS with linear ODE can be expressed as a polynomial

hybrid automaton, since the solution to the linear system of ODEs can be

expressed as a quantifier free formula in the theory of reals [LPY01]. We

describe a quantifier-free encoding for some classes of linear hybrid systems

in Section 3.4.

Theorem 5 The invariant of a polynomial hybrid automaton can be en-

coded with a quantifier-free formula.

Proof. In the case of polynomial hybrid automata, the invariant g ./ 0

is encoded into a formula in the form ∀ε ∈ [t, t′], g(f(ε)) ./ 0. If g and f

are polynomials, g ◦ f is also a polynomial. The derivative of a polynomial

has a lower degree than the polynomial itself. Thus, at every application

of Theorem 3, the degree of the polynomial inside the quantifier strictly

decreases. Thus, after a finite number of applications of the theorem, we

obtain a quantifier-free formula. �

Example 4 Let us consider the classical example of the bouncing ball.

Suppose the ball moves in two dimensions x and y, where x is the hor-

izontal coordinate, with ẋ = v0, and y is the vertical coordinate, with

ẏ = w and ẇ = −g. Thus, the primitive solution is x(t) = v0t + x0,

56

CHAPTER 3. HYBRID AUTOMATA ENCODING 57

y(t) = −g
2t

2 +w0t+ y0, and w(t) = −gt+w0. Suppose the ball is bouncing

on a parabolic hill, a curved surface with equation y + ax2 + bx + c = 0.

The invariant of the continuous transition is y + ax2 + bx+ c ≥ 0 and its

encoding is ∀ε ∈ [t, t′], y(ε)+ax2(ε)+ bx(ε)+ c ≥ 0, which is quadratic in ε.

After applying the Theorem 3 twice, we obtain the following quantifier-free

formula: y(t) + ax2(t) + bx(t) + c ≥ 0∧
y(t1) + ax2(t1) + bx(t1) + c ≥ 0∧
y(t′) + ax2(t′) + bx(t′) + c ≥ 0∧
((w(t) + 2av0x(t) + bv0 ≥ 0 ∧ w(t1) + 2av0x(t1) + bv0 ≥ 0)∨
(w(t) + 2av0x(t) + bv0 ≤ 0 ∧ w(t1) + 2av0x(t1) + bv0 ≤ 0))∧
((w(t1) + 2av0x(t1) + bv0 ≥ 0 ∧ w(t′) + 2av0x(t′) + bv0 ≥ 0)∨
(w(t1) + 2av0x(t1) + bv0 ≤ 0 ∧ w(t′) + 2av0x(t′) + bv0 ≤ 0))

Application to non-linear hybrid automata

In the general case of non-linear hybrid automata (here meant as hybrid

systems with non-polynomial functions), the reduction of Theorem 3 may

result in more complex quantified formulas. Even if we restrict to polyno-

mial invariants, their composition with transcendental primitive solutions

may yield complex derivatives. However, in many cases, we can convert

the derived quantified formula into a polynomial which is simpler than the

original3.

Example 5 Let us consider a temperature controller. The system is pa-

rameterized by the lower and upper temperature limits m and M , the out-

side temperature u, the rate b of temperature exchanged with the outside,

and the rate c of temperature increase due to the heater. The constraints

on the parameters are u < m < M ∧ c > 0 ∧ b > 0. The hybrid automaton

is defined as follows:

3This conversion is not currently automated.

57

583.2. QUANTIFIER-FREE ENCODING FOR NON-LINEAR HYBRID AUTOMATA

• V = {h} where h is a variable representing the heater.

• X = {x} where x represents the temperature.

• Init := m ≤ x ≤M .

• Invar := (h = 0→ x ≥ m) ∧ (h = c→ x ≤M).

• Trans := (h = 0 → (x = m ∧ h′ = c)) ∧ (h = c → (x = M ∧ h′ =

0)) ∧ x′ = x.

• Flow := ẋ = b(u− x) + h.

The primitive solution of the ODE when the location is h = c is x(t) :=

u + (x(0)−u)
b e(−b∗t) + c

b. Its derivative is x(t) := −(x(0) − u)e(−b∗t), which

never changes sign. Therefore, applying Theorem 3, ∀ε ∈ [t, t′], x ≥ m

is translated into the formula x(t) ≥ m ∧ x(t′) ≥ m and similarly for

∀ε ∈ [t, t′], x ≤M .

Example 6 Consider the roundabout collision avoidance system example

(cfr. e.g. [PC09]). The continuous dynamics of a safe circular maneuver

is described by the following equations ẋ1 = d1, ẋ2 = d2, ḋ1 = −ωd2, ḋ2 =

ωd1, ẏ1 = e1, ẏ2 = e2, ė1 = −ρe2, ė2 = ρe1, (x1 − y1)
2 + (x2 − y2)

2 ≥ p2.

The primitive solution of the differential equations is:

x1 =
1

ω
sin(θ), x2 = − 1

ω
cos(θ),

d1 = cos(θ), d2 = sin(θ), θ = ωt+ t0,

y1 =
1

ρ
sin(ξ), y2 = −1

ρ
cos(ξ),

e1 = cos(ξ), e2 = sin(ξ), ξ = ρt+ t0

Substituting the primitive solution into the invariant (x1 − y1)
2 + (x2 −

y2)
2 ≥ p2 we obtain the formula:

1

ω2
+

1

ρ2
− 2

ωρ
sin(θ)sin(ξ)− 2

ωρ
cos(θ)cos(ξ) ≥ p2.

58

CHAPTER 3. HYBRID AUTOMATA ENCODING 59

which can be rewritten into: φ := 1
ω2 + 1

ρ2 − 2
ωρcos(θ − ξ) ≥ p2.

The standard quantified encoding is ∀t ∈ [0, δ], φ(t). Applying Theo-

rem 3, we obtain the formula:

φ(0) ∧ φ(δ)∧ (∀t(−sin(θ − ξ)(ω − ρ) ≥ 0) ∨
∀t(−sin(θ − ξ)(ω − ρ) ≤ 0)).

The quantified sub-formulas can be rewritten into polynomials over θ and

ξ. For example, ∀t(−sin(θ−ξ)(ω−ρ) ≥ 0) can be rewritten into ∀t(ω−ξ ≥
0 ∧ (π ≤ θ − ρ ≤ 2π) ∨ ω − ξ ≤ 0 ∧ (0 ≤ θ − ρ ≤ π)). Since θ and ρ are

linear, this can be converted into an equivalent quantifier-free one.

Example 7 Consider the steering car example of [IUH11]. The flow in-

variant of the location correct left is ṗ = −r ∗ sin(γ), γ̇ = ω, ċ = −2,−1 ≤
p ≤ 1, c ≥ 0. Let us make the example more complex (and realistic) con-

sidering an (uniformly) accelerated rotation by adding ω̇ = α, 0 ≤ α ≤ 3,

where α is a (real valued) discrete variable.

The semantics of this flow invariant is that during a timed transition of δ

time units starting from the state p(0) = p0, γ(0) = γ0, c(0) = c0, ω(0) = ω0,

there exist the continuous differentiable functions p, γ, c, ω that satisfy the

ODEs ṗ = −r ∗ sin(γ), γ̇ = ω, ċ = −2, ω̇ = α and such that ∀t, 0 ≤ t ≤
δ(−1 ≤ p(t) ≤ 1 ∧ c(t) ≥ 0 ∧ 0 ≤ α ≤ 3).

The removal of quantifiers is very similar to the Example 6.

The quantification can be distributed obtaining:

I1 := ∀t, 0 ≤ t ≤ δ(−1 ≤ p(t) ≤ 1)

I2 := ∀t, 0 ≤ t ≤ δ(c(t) ≥ 0)

I3 := ∀t, 0 ≤ t ≤ δ(0 ≤ α ≤ 3)

I3 is equivalent to 0 ≤ α0 ≤ 3 since α does not change during the timed

transition.

59

60 3.3. ENCODING OF SYSTEMS WITH POLYNOMIAL DYNAMICS

I2 is equivalent to c(0) ≥ 0 and c(δ) ≥ 0 since c is linear. This can be

obtained also from Theorem 3 by replacing ċ with −2 and simplifying.

In order to remove the quantification of I1, we apply the Theorem 3 by

obtaining

I1 ≡ −1 ≤ p(0) ≤ 1 ∧ −1 ≤ p(δ) ≤ 1 ∧
(∀t, 0 ≤ t ≤ δ(ṗ ≥ 0) ∨ ∀t, 0 ≤ t ≤ δ(ṗ ≤ 0))

By replacing ṗ with −r ∗ sinγ we obtain the invariant condition:

I1a := ∀t, 0 ≤ t ≤ δ(−r ∗ sin(γ) ≥ 0)

This can be solved considering 0 ≤ γ ≤ 2π by taking π ≤ γ ≤ 2π. This

results in the invariant condition:

I1b := ∀t, 0 ≤ t ≤ δ(π ≤ γ(t) ≤ 2π)

Applying again Theorem 3, we obtain an equivalent formula containing

∀t, 0 ≤ t ≤ δ(γ̇ ≥ 0). Now, since γ is linear we can remove the quantifica-

tion in the standard way.

3.3 Encoding of systems with Polynomial Dynamics

In this section, we show how Theorem 3 can be exploited to automati-

cally encode a HS with polynomial dynamics into a transition system with

quantifier-free formulas.

Theorem 3 states the existence of the points t1, . . . , tn where the deriva-

tive changes sign. However, such points are unknown. The encoding of a

HS into a transition system must thus implicitly represent when the deriva-

tive of the invariant changes sign. This is achieved by simply forcing that

the sign of the derivative is constant throughout the timed transition. The

encoding implicitly concatenates timed transitions one after the other, del-

egating to the search the task of finding the sequence of time points that

60

CHAPTER 3. HYBRID AUTOMATA ENCODING 61

split the interval, so that the sign of the derivative is uniformly constant

in the resulting trace.

Given a formula T including the invariant condition ∀ε ∈ [t, t′], g(ε) ./

0, the condition can be locally replaced with g(t) ./ 0 ∧ g(t′) ./ 0 ∧
Constant(ġ, t, t′) obtaining a new formula τ(T).

τ performs a recursive substitution of the quantified expressions. The

recursion terminates when the quantified formula is a linear polynomial,

thus allowing us to trivially remove the quantifiers. τ is defined recursively

as follows:

τ(ψ1 ∧ ψ2) := τ(ψ1) ∧ τ(ψ2) (3.1)

τ(ψ1 ∨ ψ2) := τ(ψ1) ∨ τ(ψ2)

τ(¬ψ) := ¬ψ, (ψ is a predicate)

τ(∀ε ∈ [t, t′], g(ε) ./ 0) :=





g(t) ./ 0 ∧ g(t′) ./ 0 if g linear

g(t) ./ 0 ∧ g(t′) ./ 0∧
τ(Constant(ġ, t, t′)) otherwise

The correctness of the transformation is given by the following theorem.

Theorem 6 If SH is the encoding of the HS H and τ(SH) is the transi-

tion system obtained by replacing Trans with τ(Trans), then τ(SH) is the

encoding of a sampling refinement of H.

Proof. (⇐) If a sequence of states satisfies τ(SH), then by Theorem 3,

the sequence satisfies also SH , and by Theorem 1, it represents a path of

H.

(⇒) Consider a hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path

of H. Assuming that ġ has finite variability, we can refine the hybrid trace

into a new hybrid trace in which ġ is constant in every interval. The new

hybrid trace also satisfies H by Theorem 2 and thus the corresponding

61

62 3.3. ENCODING OF SYSTEMS WITH POLYNOMIAL DYNAMICS

discrete path s0; . . . ; sk satisfies its encoding SH . At every i, if si satisfies

∀ε ∈ [t, t′], g(ε) ./ 0, then both f(si, t) and f(si, t
′) satisfy g ./ 0. Since ġ

has constant sign in Ii, si satisfies also τ(Trans). Therefore the discrete

path satisfies also τ(SH). �
The recursive definition of τ in (3.1) creates a formula whose size is

exponential in the degree of the polynomial inside the invariant. We use

the following equivalence to keep the size of the encoding linear in the

degree of the polynomial (here g is not linear):

τ(Constant(g, t, t′)) = (g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧ τ(Constant(ġ, t, t′))) ∨
(g(t) ≤ 0 ∧ g(t′) ≤ 0 ∧ τ(Constant(ġ, t, t′)))

= ((g(t) ≥ 0 ∧ g(t′) ≥ 0) ∨ (g(t) ≤ 0 ∧ g(t′) ≤ 0)) ∧
τ(Constant(ġ, t, t′))

The sequential encoding may force the split of a continuous transition in

several transitions, since the predicates introduced to remove the quanti-

fiers force the derivatives of the invariant conditions to be constant. While

the encoding enables to remove the quantifier, the depth of the bounded

model checking formula may increase due to the splitting. In incremen-

tal bounded model checking, the burden of finding how many splits are

necessary is delegated to the search.

In the case of polynomial hybrid automata we can compute an upper

bound on the number of consecutive continuous transitions (continuous

transitions not separated by a discrete transition) needed to simulate the

longest quantified continuous transition (the continuous transition with the

maximum time elapse).

We can compute the upper bound on the number of intervals needed to

“cover” the quantified continuous transition for the invariant predicate ∀ε ∈
[t, t′], g(ε) ./ 0. If Ω(g) is the degree of the polynomial, then the maximum

number of intervals that have to be considered is ub(g) = Ω(g)∗(Ω(g)−1)
2 . In

62

CHAPTER 3. HYBRID AUTOMATA ENCODING 63

fact, the i-th derivative of g has degree Ω(g) − i and thus changes sign

Ω(g)− i times.

3.4 Encoding of systems with Linear Dynamics

In this section we describe how we can encode sub-classes of hybrid sys-

tems that have a linear dynamic (i.e. the flow condition in each location is

defined by a system of linear ODEs) using quantifier free formulas. More-

over, we consider systems where the initial condition, the invariant con-

dition and the transition relation are expressed in T (R). The resulting

encoding will be in the theory of reals (T (R)). We rely on the results

presented by [LPY01], which show how the primitive solution of several

classes of systems with linear dynamics can be encoded in T (R). While

their approach handles invariants, it still relies on universal quantification.

We show that in two cases the universal quantifier can be removed by ap-

plying Theorem 5. The process is straightforward in one case, while it

requires several steps in the other.

In the following, we show the quantifier free encoding considering a

single location q ∈ Q to the automaton. The flow condition in q is of

the form ~̇x = A~x + b, where A ∈ Rn×n, b : R → Rn. Given a matrix

M ∈ Rq × Rs, with q, s ∈ N, we will write Mij to refer to the element at

the i-th row and at the j-th column of M . We will avoid one index in the

case of vectors, where s = 1. Also, we denote with Λ the set of eigenvalues

of A. To ease the presentation, we will use the symbol δ to represent the

amount of time t′ − t elapsed in a continuous transition.

Let L be a set of symbolic parameters that can be used in the inputs

b. The value of each l ∈ L is unknown, but it does not change during the

execution of the system. Moreover, the set L is disjoint from the set of the

variables of the hybrid system (X ∪ V). Let P be a set of functions over

63

64 3.4. ENCODING OF SYSTEMS WITH LINEAR DYNAMICS

δ (e.g. P = {p(δ) = δn, n ∈ N} is the set of all the powers of δ with a

natural exponent). Let MP be a set of inputs parameterized by P :

MP :=

{
b ∈ [b1, . . . , bn]

T | for i ∈ [1, n], bi(δ) =
r∑

l=1

ui,lpl(δ),

pl(δ) ∈ P, ui,l is a ΣR-formula over L}
P determines the function of the terms pl(δ). We will consider different

families of inputs, parameterized by different families of functions P .

Given a linear system ~̇x = A~x + b the reachability problem can be

expressed in the theory of reals if the matrix A and the inputs b have a

particular structure[LPY01]:

• A is nilpotent and P = {δn, n ∈ Z},

• A is diagonalizable, all its eigenvalues are real and P = {eulδ, ul /∈
Λ, ul ∈ Q},

• A is diagonalizable, all its eigenvalues are imaginary and P = {sin(ulδ),

ul /∈ Λ, ul ∈ Q} ∪ {cos(ulδ), ul /∈ Λ, ul ∈ Q}.
We will provide a quantifier-free encoding for the first two cases.

Note that we do not consider symbolic coefficients in the matrix A.

While in the first case obtaining an exact solution in the theory of reals is

straightforward, also in the presence of symbolic coefficients of the matrix,

the second case is more involved and, since its applicability depends on the

coefficient of A (i.e. eigenvalues and diagonalizability), it requires imposing

several constraints on the parameters.

The general solution of ~̇x = A~x+ b is:

~x(δ) = f(~x, δ, b) = eAδX + Ψ(δ, b)

where:

Ψ(δ, b) =

∫ δ

s=0

eA(δ−s)b(s) ds eAδ =
∞∑

k=0

δk

k!
Ak

64

CHAPTER 3. HYBRID AUTOMATA ENCODING 65

3.4.1 Reduction in the nilpotent case

Suppose that the flow condition in the location of a hybrid automaton is

of the form ~̇x = A~x + b, where A is nilpotent and the inputs are of the

form P = {δi, i ∈ N}. Also, suppose that g(X, δ) ./ 0 be the invariant in

the location, and g(X, δ) be a multivariate polynomial with variables in X

and P = {δi, i ∈ N}.
In this case, for each 1 ≤ i ≤ n the solution is:

f(~x, δ, b)i :=
n∑

k=1

γij(X) + δk−1 +
v∑

k=0

ρi,k(b)δ
k−1

for some v ∈ N, some polynomials ρi,k(b) and γij(X) =
∑n

j=1 (Ak)ijxj
1
k! .

Note that we do not know a priori
∑v

k=0 ρi,k(b)δ
k, since it depends on the

inputs b. However, an expression of this form can always be obtained as a

solution of the integral in Ψ(δ, b) (i.e. in this case we are just integrating a

polynomial over t). Thus, the primitive solution f(~x, δ, b) is a ΣR-formula

without transcendental functions (i.e. a polynomial).

Also the invariant g(X, δ) is a multivariate polynomial over X and P =

{δi, i ∈ N}. The encoding of the continuous transition in the location is:

δ > 0 ∧
n∧

i

x′i = f(~x, δ, b)i ∧ ∀ε ∈ [0, δ], g(X, ε) ./ 0

We are in the case of polynomial hybrid automata, so we apply the Theo-

rem 5 to obtain a quantifier-free encoding.

Note that the bouncing ball example (see Example 4) with a set of

instantiated parameters, falls in this class of systems.

Example 8 The movement of two vehicles which follows a uniformly ac-

celerated motion can be modeled with the linear dynamic ~̇x = A~x + b

65

66 3.4. ENCODING OF SYSTEMS WITH LINEAR DYNAMICS

where: XT :=
[
x1 v1 a1 x2 v2 a2

]
. A :=




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0




and bT :=

[
0 0 10 0 0 6

]
. The invariant of the system x1 ≤ x2 + sd guarantees

that the first vehicle follows the second vehicle respecting a safety distance

sd. The primitive solutions are: x1(δ) = 5δ2 + v1(0)t + x1(0), v1(δ) =

10δ + v1(0), a1(δ) = 10, x2(δ) = 3δ2 + v2(0) + x2(0), v2(δ) = 6δ + v2(0),

a2(δ) = 6. The quantified invariant may be rewritten as:

∀ε ∈ [0, δ], 2ε2 + (v1(0)− v2(0))ε+ x1(0)− x2(0)− sd ≤ 0

Thus, applying Theorem 5 we remove the quantifiers:

x1(0)− x2(0)− sd ≤ 0∧
2δ2 + (v1(0)− v2(0))δ + x1(0)− x2(0)− sd ≤ 0∧
(v1(0) + v1(0) ≥ 0 ∧ 4 ∗ δ + v1(0) + v1(0) ≥ 0)∧

(v1(0) + v1(0) < 0 ∧ 4 ∗ δ + v1(0) + v1(0) < 0)

3.4.2 Reduction in the case A is diagonalizable with real eigen-

values

Suppose that the flow condition in the location of a hybrid automaton is

of the form ~̇x = A~x + b, where A is diagonalizable, all its eigenvalues are

real (i.e. Λ ⊂ R) and the inputs are of the form P = {eulδ, ul /∈ Λ, ul ∈ Q}.
Also, suppose that g(X, δ) ./ 0 is the invariant in the location, and g(X, δ)

is a multivariate polynomial with variables in X and P = {eulδ, ul /∈ Λ, ul ∈

66

CHAPTER 3. HYBRID AUTOMATA ENCODING 67

Q} 4. Since A is diagonalizable, there exists an invertible matrix T ∈ Rn×n

such that A = TDT−1, where D =



λ1

. . .

λn


 is the diagonal matrix of

A. Hence, we can compute eAδ = eTDT
−1δ = T



eλ1δ

. . .

eλnδ


T−1.

In this case, for each 1 ≤ i ≤ n we have:

f(~x, δ, b)i :=
n∑

k=1

γi,k(x)eλkδ +
s∑

k=1

ψik(b)e
νkδ

where s ∈ N, γi,k(x) is a polynomial, and for all 1 ≤ k ≤ s, νk ∈ Q and

ψik(b) is a polynomial. Let us write f(~x, δ, b)i as follows (for some natural

q > 0):

f(~x, δ, b)i :=

q∑

k=1

φik(X, b)e
ηkδ

The formulas f(~x, δ, b)i are such that δ occurs only in the exponent of e,

and hence we have terms like eηδ, where η ∈ Q. We also requires the same

property in the invariant g. Thus, we substitute the exponential with a

new variable z both in the solution and in the invariant as follows:

• We compute a common denominator d among all the rational coef-

ficients η (i.e. d =
∏

for all the coefficients η den(η)), where den(η) is the

denominator of η.

• We define the variable z = e
δ
d .

• We substitute e
δ
d with z in the solution and in the invariant:

– for all 1 ≤ i ≤ n, f̂(~x, z, b)i := f(~x, δ, b)[z/e
δ
d]i).

4 Note that ul cannot be an eigenvalue of the system. This condition is necessary to get a solution where

δ appears only as exponent of e, thus enabling the removal of the exponential function via substitution.

67

68 3.4. ENCODING OF SYSTEMS WITH LINEAR DYNAMICS

– ĝ(X, z) := g(X, δ)[z/e
δ
d].

• If f̂ contains a negative power of z, i.e., some z−l with l > 0, we

substitute it with wl, where zw = 1:

– for all 1 ≤ i ≤ n, f̂(~x, z, w, b) = f̂(~x, z, b)[wl/z−l]i ∧ wz = 1.

Remark 3 If we want to obtain a polynomial, the substitution of e
δ
d with

z forbids the use of the variable t, which tracks the total amount of elapsed

time, in the transition system. In fact, t is updated in the continuous

transition using a logarithm (t′ = ln(z)− t). This shows that in the system

we cannot have continuous variables that evolve as clocks (i.e. a variable

x such that ẋ = 1).

The encoding of the continuous transition in the location is:

δ > 0 ∧
n∧

i

x′i = f(~x, δ, b)i ∧ ∀ε ∈ [0, δ], g(ε) ./ 0

Performing the substitution we obtain the following formula:

z > 1 ∧ zw = 1 ∧
n∧

i

x′i = f̂(~x, z, w, b)i ∧ ∀zε ∈ [1, z], ĝ(X, zε) ./ 0

Note that ĝ(X, zε) may contain negative powers of z. However, z > 0 and

we can multiply both sides of ĝ(X, zε) by zl where l is the greatest negative

order with which occurs in ĝ. Now we can recursively apply Theorem 3 to

obtain a quantifier free formula.

Example 9 Consider a system with XT = [x, y], A =

[
1 −12

5
−12

5 1

]
, bT =

[1, 1] and invariant x2 ≥ 0. The eigenvalues of A are −7
5 and 17

5 and A is

diagonalizable. The solution X(δ) is:

x(δ) :=
x− y

2
e

17
5 δ +

x+ y

2
e−

7
5δ − 5

7
e−

7
5δ +

5

7

y(δ) :=
y − x

2
e

17
5 δ +

x+ y

2
e−

7
5δ − 5

7
e−

7
5δ +

5

7

68

CHAPTER 3. HYBRID AUTOMATA ENCODING 69

In this case we use the following variables for the substitution (note that

the d = 5): z = e
1
5δ:

x̂(z) :=
x− y

2
z17 +

x+ y

2
z−7 − 5

7
z−7 +

5

7

ŷ(z) :=
y − x

2
z17 +

x+ y

2
z−7 − 5

7
z−7 +

5

7

ĝ(z) is:

ĝ(z) :=(
5

7
x+

5

7
y +

x+ y

2
+

25

49
)z−14 + (

5

7
x+

5

7
y +

50

49
)z−7+

(
x2

2
+

5

7
x− y2

2
− 5

7
y)z−7z17 +

x− y
2

2

z34(
5

7
x− 5

7
y)z17 +

25

49

Then, we multiply both sides of ĝ(z) ./ 0 by z14:

x− y
2

2

z48 + (
5

7
x− 5

7
y)z31 + (

x2

2
+

5

7
x− y2

2
− 5

7
y)z24 +

25

49
z14

(
5

7
x+

5

7
y +

50

49
)z7 + (

5

7
x+

5

7
y +

x+ y

2
+

25

49
) ./ 0

3.5 Related work

Several works focus on the problem of encoding hybrid systems into tran-

sition systems, but they use less expressive invariants or they restrict the

class of the analyzed hybrid automata. There are examples of encodings

into timed automata [NMA+02, ACKS02, Sor02, dMRS02] and linear hy-

brid automata [dMRS03, ABCS05, ÁBKS05]. All these works do not con-

sider the problem of quantified invariants since for linear hybrid automata

(and thus for timed automata) if the invariant holds in the first and in the

last instant of a timed transition, then the invariant holds also in all the

intermediate time points, thus resulting in a quantifier-free encoding.

Other approaches [BZL10, ERNF11, IUH11, GKC13] focus on non-

linear hybrid automata.

69

70 3.5. RELATED WORK

In [BZL10], the authors solve the reachability problem for non-linear

convex hybrid automata. The restriction to convex invariant and linear

flow conditions, or to monotonic invariant and convex flow, allows an easy

encoding of invariants without quantifiers. Many examples, including those

mentioned in this chapter, do not fall in this class of automata.

All the approaches [ERNF11, IUH11, GKC13, PKV13] defines and use

decision procedures that can directly handle ODEs. In [ERNF11] the au-

thors propose an SMT solver modulo ODEs, that can be used to perform

bounded model checking on hybrid automata where the flow conditions are

ODEs. The only allowed invariants are of the form x ∈ [l, u], where x is

a continuous variable and l, u ∈ R. Their main focus is on the integra-

tion of numerical methods to compute the initial value problem for ODEs,

while they cannot manage more complex invariants (e.g. linear functions).

The authors of [IUH11] compute the precise intersection of the continuous

flow with the guards of the hybrid automaton. The solver can in principle

handle invariants, but the authors state that the implementation is not ma-

ture enough to evaluate the approach. Recently, the authors of [GKC13]

propose a general SMT-theory that can directly handle Ordinary Differ-

ential Equations (ODE). Since the satisfiability problem for theories that

admit transcendental functions and ODEs is not decidable, the proposed

decision procedure considers the δ-satisfiability problem, where a formula

is δ-satisfiable if under some δ-perturbations a syntactic variant of the

formula is satisfiable. The proposed framework allow to handle the uni-

versal quantifiers of the invariants natively. Our approach handles hybrid

systems with simpler dynamics but precisely encodes the behavior of the

original system, without considering arbitrary perturbations. However, in

real world application it is an advantage to verify a systems considering

also possible small perturbation of its behavior, since this would also certify

its robustness. Other approaches based on motion planning [PKV13] do

70

CHAPTER 3. HYBRID AUTOMATA ENCODING 71

not encode symbolically the invariants, since they simulate the ODEs using

numerical methods (without considering numerical errors). In contrast, we

encode a set of continuous transitions.

The quantifier-free encoding that we propose is related to quantifier

elimination procedures (see, e.g., [Col75, DSW98]). It is not a quantifier

elimination procedure in that it contains new variables that are implicitly

existentially quantified. In fact, we apply the reduction even in some cases

of transcendental functions. The burden to remove the quantifiers is dele-

gated to the verification techniques if necessary. We claim that quantifier

elimination is somehow an overkill: the verification techniques does not of-

ten need the precise region of points where the invariant holds; it is usually

sufficient either to pick some “good” values (in case of reachability) or to

find “good” invariants (in case of safety verification).

The prominent approaches to the verification of hybrid systems are

based either on the exploration of the reachable states or on deductive

systems. We refer the readers to [Alu11] for a recent survey. The focus

of our work is on the SMT-based paradigm, which, although less mature,

seems promising.

Our settings also differs from the works that build abstractions for HSs.

The approaches described in [Tiw08, ST11a] use techniques based on the

sign of derivatives such as ours. However, the purpose is different in that

they generate over-approximations of the HS.

Finally, we mention the “clock translation” described in [HHWT98],

where invariants are translated into constraints on time. However, the

translation is restricted to monotonic flows (plus other restrictions on the

independence of variables).

71

72 3.5. RELATED WORK

72

Chapter 4

Encoding of Hybrid Automata

Network

In this chapter we show the transition system encoding of a Hybrid Au-

tomata Network. We show the encoding of two different semantics, the

Global-time [Hen96] and Local-time semantics [BJLY98].

The global-time semantic encoding captures the standard semantic of a

network of hybrid automata, since it forces the synchronization of the time-

elapse steps of all the automata in the network. Thus, the time elapses in

the same way in all the automata of the network.

Instead, in the local-time semantic encoding each automaton keeps the

amount of time elapsed in a local clock variable that is incremented inde-

pendently by each automaton: this way, time evolves differently in each

component. Then, the encoding forces that all the automata that syn-

chronize must agree on the value of their local clocks, enforcing that the

synchronization happened at the same time. Moreover, the same condition

on clocks is required at the end of a run. The local-time semantic allows

us to investigate alternative, and more efficient, encodings for the reach-

ability problem (Chapter 6) and the verification of scenario specifications

(Chapter 7).

In the rest of the chapter, we consider a network of hybrid automata

73

74 4.1. GLOBAL-TIME SEMANTIC

N = H1|| . . . ||Hn, where for all 1 ≤ i ≤ n each hybrid automaton Hi

is defined as 〈Vi, Xi, εi, Initi, Invari, T ransi, F lowi〉. We also assume that

all the variables of the automata in the network are disjoint (i.e. for all

1 ≤ i < j, Vi ∩ Vj = Xi ∩ Xj = ∅). While other formalism are available

(See e.g.[LSV03]), the local-time semantic encoding strongly rely on this

assumption.

4.1 Global-time semantic

We associate to a network N = H1|| . . . ||Hn a set of first-order transition

systems S1, . . . , Sn, with Si = 〈Vsi,WSi, InitSi, InvSi, T ransSi〉, and a syn-

chronization constraint SyncGlTime over the union of the VSi andWSi. We

define the global-time semantics [Hen96] of a network of hybrid automata

N as the symbolic transition system SGlTime(N) = 〈V,W , Init, Inv, Trans〉,
where V :=

⋃
1≤i≤n Vi, W :=

⋃
1≤i≤nWi, Init :=

∧
1≤i≤n InitSi, Inv :=∧

1≤i≤n InvSi, Trans :=
∧

1≤i≤n TransSi∧SyncGlTime and for all 1 ≤ i ≤ n,

Si is the transition system associated to Hi. Si is defined as follows:

• VSi := Vi ∪Xi,

• WSi := {εi, δi}, where the domain of εi is Ai ∪ {t, s} and δi ∈ R,

• InitSi := Initi,

• InvSi := Invari,

• TransSi := Untimedi ∨Timedi ∨ Stutteri where

– Untimedi :=
∨
a∈A(εi = a) ∧ Transi(Vi, Xi, V

′
i , X

′
i).

– Timedi :=εi = t ∧ δi > 0 ∧ V ′i = Vi ∧X ′i = f(Vi, δi)∧
∀ε ∈ [0, δi], Invari(Vi, f(Vi, ε))

– Stutteri := εi = s ∧ V ′Si = VSi

74

CHAPTER 4. ENCODING OF HYBRID AUTOMATA NETWORK 75

The variable δi represents the amount of time elapsed during a continu-

ous transition (as noted in the Remark 2). The variable ε selects the events

of the automaton. The encoding has two additional event values: t selects

the continuous evolution, while s represents the stutter event.

The formula Sync encodes the synchronization of the automata net-

work:

SyncGlTime :=
∧

1≤j<h≤n
∧

a∈Aj∩Ah
(εj = a↔ εh = a)

∧(εj = t↔ εh = t)

∧(εj = t↔ δj = δh)

∧
∧

a∈(Aj\Ah)

(εj = a→ εh = s)

∧
∧

a∈(Ah\Aj)
(εh = a→ εj = s)

The condition states, for all the possible couples of automata, that the au-

tomata must synchronize when performing transitions that have the same

label and on the timed event. Moreover, the constraint forces that the time

elapsed on a timed transition must be the same in all the automata (i.e.

the time is the same in all the automata in the initial state and it is also

the same after the continuous transition, while it cannot change during a

discrete transition or during stuttering). Finally SY NCGlTime forces the

stuttering of all the automata not involved in the current synchronization.

The stuttering condition can be relaxed in a variant of the SyncGlTime

constraint, called step semantics [HN03], which allows different automata

75

76 4.2. LOCAL-TIME SEMANTIC

to execute independent transitions in parallel:

SyncGlTimestep :=
∧

1≤j<h≤n
∧

a∈Aj∩Ah
(εj = a↔ εh = a)

∧(εj = t↔ εh = t)

∧(εj = t↔ δj = δh)

4.2 Local-time semantic

We consider the local-time semantics of [BJLY98], where time progresses

in each component with a local scale by enriching all shared events with

time-stamps and synchronizing the components on shared events forcing

the time-stamps to be equal. This semantic differs from the standard

global-time semantics of [Hen96], where the time event is shared by all

components. The two semantics are equivalent from the point of view

of reachable states and traces (modulo the partial order over events), but

local-time allows a more efficient encoding where the problem is partitioned

in sub-problems interfaced by equalities.

We define the semantics of a network of hybrid automata in terms of

the symbolic transition system SLocTime(N). As before, we associate to a

network N = H1|| . . . ||Hn a set of first-order transition systems S1, . . . , Sn,

with Si = 〈VSi,WSi, InitSi, InvSi, T ransSi〉, and a synchronization con-

straint SyncLocTime over the union of the VSi and WSi. SLocTime(N) =

〈V,W , Init, Inv, Trans〉 where: V =
⋃
i VSi;W =

⋃
iWSi; Init =

∧
i InitSi;

Inv =
∧
i InvSi; Trans =

∧
i TransSi ∧ SyncLocTime.

The elements of Si are defined as follows:

• VSi := Vi ∪Xi ∪ {ti},

• WSi := {εi}, where the domain of εi is Ai ∪ {t, s},

76

CHAPTER 4. ENCODING OF HYBRID AUTOMATA NETWORK 77

• InitSi := ti = 0 ∧ Initi,

• InvSi := Invari,

• TransSi := Untimedi ∨Timedi ∨ Stutteri where

– Untimedi :=
∨
a∈A(εi = a) ∧ t′i = ti ∧ Transi(Vi, Xi, V

′
i , X

′
i).

– Timedi :=εi = t ∧ t′i > ti ∧ V ′i = Vi ∧X ′i = f(Vi, t
′
i)∧

∀ε ∈ [ti, t
′
i], Invari(Vi, f(Vi, ε))

– Stutteri := εi = s ∧ V ′Si = VSi ∧ t′i = ti;

The formula SyncLocTime is defined as follows:

SyncLocTime :=
∧

1≤j<h≤n
∧

a∈Aj∩Ah
(εj = a↔ εh = a) ∧ (εj = a→ tj = th)

∧
∧

a∈(Aj\Ah)∪{t}
(εj = a→ εh = s)

∧
∧

a∈(Ah\Aj)∪{t}
(εh = a→ εj = s)

The local-time semantic encodes the timed transition of each automaton as

a local event. This means that in a path of the transition system SLocTime

there can exists a state where the local clocks of two automata have a

different value (e.g. ti 6= tj). However, the synchronization constraint

force that the time variables of the different automaton must be the same

every time the automata synchronize on a shared event.

As in the global-time case, we may have the step semantics variant to

allow the parallel execution of independent transitions:

SyncLocTimestep :=
∧

1≤j<h≤n

∧

a∈Aj∩Ah
(εj = a↔ εh = a) ∧ (εj = a→ tj = th)

Note that, since the timed transition is a local action, it can happen in

parallel with other discrete transitions.

77

78 4.3. LOCAL TIME VS. GLOBAL TIME

We say that a state sk of SLocTime(N) is synchronized iff for 1 ≤ i <

j ≤ n, sk(ti) = sk(tj), i.e., the local times are equal. We say that a path

π = s0; a1; s1; . . . ; ak; sk of the FOTS SLocTime(N) is synchronized if sk is

a synchronized state.

The paths of the network N are given by the synchronized T -paths of

SLocTime(N), where T is the theory of LRA.

4.3 Local time vs. global time

We denote with s = 〈s1, . . . , sn〉 a state s of SGlTime(N) [SLocTime(N)],

where si is a state of the transition system Si used to compose SGlTime(N)

[SLocTime(N)] (i.e. it is an assignment to the variables VSi). Note that

a state si that corresponds to the encoding of the i-th automaton in

SGlTime(N) and a state s′i that corresponds to the encoding of the i-th

automaton in SLocTime(N) are defined over the same set of variables, ex-

cept for the time variable ti. Thus, given a time variable ti, we denote with

s′i = 〈si, t〉 the assignment equal to si and with the additional variable ti.

Theorem 7 (Equivalence of thw two semantics [BJLY98]) A state

s = 〈s1, . . . , sn〉 is reachable in SGlTime(N) iff there exists a synchronized

state s′ = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉 reachable in SLocTime(N).

In the following, we prove a stronger version of the Theorem 7, which

limits itself to the preservation of the reachability passing from local time

to global time and vice versa. Here, we define a mapping between the

paths of the local time and the paths of the global time encoding which

preserves their abstract-time version.

Definition 15 (Abstract-time trace for SGlTime(N)) Given the global-

time encoding SGlTime(N), we denote withW ′ =W\{δ1, . . . , δn} the set of

input variables W of SGlTime(N) without the δi variables of each transition

78

CHAPTER 4. ENCODING OF HYBRID AUTOMATA NETWORK 79

system Si. Given a trace w = w1; . . . ;wk, where wi is an assignment to

the input variables W, its time-abstract trace α(w) is the trace obtained

removing all the assignments wi such that wi(ε) = t and restricting all the

other assignments in w to assignments over W ′.

In practice a time-abstract trace of the global time semantic is a trace

that does not have timed events and does not have any assignments to the

variables δ.

Definition 16 (Abstract-time trace for SLocTime(N)) Given a trace of

SLocTime(N) w = w1; . . . ;wk, its time-abstract trace α(w) is the trace ob-

tained removing all the assignments wi such that such that wi(ε) = t, for

any 1 ≤ j ≤ n.

Theorem 8 A state s = 〈s1, . . . , sn〉 is reachable in SGlTime(N) with a

path π over the time-abstract trace w iff there exists a synchronized state

s′ = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉 reachable in SLocTime(N) with a path π′ over w.

Proof. (⇐) We define a function % that maps a path of SGlTime(N)

to a path of SLocTime(N). % is defined by simply adding the time elapsed

from the beginning of the path to the states and the shared events and by

replacing a global timed transition with a sequence of equivalent local timed

transitions. Formally, we define % recursively on the length of the path.

The definition keeps invariant that the last state of %(π) is synchronized.

If π is a path of SGlTime(N), then %(π) is defined recursively as follows:

• if k = 0 and π = 〈s1, . . . , sn〉, then %(π) := 〈〈s1, t1 = 0〉, . . . , 〈sn, tn = 0〉〉;
note that the last state of %(π) is synchronized;

• if π = π′;wk; 〈s1, . . . , sn〉, then

– if wk is a discrete event (i.e. wk(εi) 6= t), then let t be the time

of the last state of %(π′) (which is synchronized by construction);

79

80 4.3. LOCAL TIME VS. GLOBAL TIME

%(π) := %(π′);wk|W′ ; 〈〈s1, t1 = t〉, . . . , 〈sn, tn = t〉〉; thus, the last

state of %(π) is synchronized;

– if wk is a timed event, then let t be the time of the last state of %(π′)

(which is synchronized by construction); %(π) := %(π′); 〈ε1 = t,

ε2 = s, . . . , εn = s; . . . ; 〈ε1 = s, ε2 = s, . . . , εn = t〉; 〈〈s1, t1 = t〉,
. . . , 〈sn, tn = t〉〉 (this is possible since the sets Vi are disjoint and

the continuous evolution of the components are independent);

thus, the last state of %(π) is synchronized.

We can easily prove by induction that the time-abstract trace accepted by

π is the same time-abstract trace accepted by %(π).

(⇒) Following the opposite direction, we define a function %′ that maps

a path of SLocTime(N) that ends in a synchronized state into a path of

SGlTime(N). %′ is defined by shuffling independent transitions so that all

the components can take a timed transitions. Timed transitions are split to

allow components to take a discrete transition when necessary. Formally,

we define %′ recursively on the length of the path. We use the concept of

first i-th step to denote the first transition labeled with an event of the i-th

component. If π is a path that ends in a synchronized state of SLocTime(N),

then %′(π) is defined recursively as follows:

• if k = 0 and π = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉, then %′(π) := π = 〈s1, . . . , sn〉;

• if, for some i, the first i-th step is a discrete event εi = a, with a ∈ Ai.

We consider the first of such i, and without changing the time-abstract

trace, take such step as first; thus π = 〈〈s1, t1〉, . . . , 〈sn, tn〉〉;wk; π′,
with wk(εi) ∈ Ai, then %′(π) := 〈s1, . . . , sn〉;wk|W ; %′(π′);

• if, for all i, the first i-th step is a timed event, we consider the small-

est delta time δ of such timed events, and without changing the time-

abstract trace, we refine the path by splitting each of these timed tran-

80

CHAPTER 4. ENCODING OF HYBRID AUTOMATA NETWORK 81

sitions into two, of which the first takes δ time; still without changing

the time-abstract trace, we take such timed steps as first; thus π =

〈〈s1, t1 = t〉, . . . , 〈sn, tn = t〉〉;w1; . . . ;wi; . . . ; π
′, where wj(εj = t) for

j = 1, . . . , i and π′ starts with 〈〈s1, t1 = t+ δ〉, . . . , 〈sn, tn = t+ δ〉〉,
thus, %′(π) := 〈s1, . . . , sn〉; ; 〈ε1 = t, δi = δ〉, . . . , 〈εn = t, δn = δ〉; %′(π′).

We can easily prove by induction that the time-abstract trace accepted by

π is the same time-abstract trace accepted by %′(π). �

81

82 4.3. LOCAL TIME VS. GLOBAL TIME

82

Chapter 5

Time-Aware Relational Abstraction

Note. The material presented in this chapter has already been presented

in [MCTT13].

This work was supported in part by NSF grants CSR-0917398 and

SHF:CSR-1017483.

In the previous chapters we presented a precise encoding of different

classes of hybrid systems in symbolic transition systems. The encoding

enabled the use of different verification techniques (e.g. SMT-based ver-

ification algorithms) to prove safety properties of the original hybrid au-

tomaton.

However, the practical application of the approach may be limited for

several reasons. First, the encoding requires that, for each flow condition,

there exists an explicit solution expressible in a theory that can be effec-

tively handled by modern SMT solvers. For example, the general solution

of a linear system cannot be encoded in T (R). Second, even if an encoding

in T (R) exists, the model checking procedures may not scale, due to the

intrinsic complexity in the satisfiability problems for such theory. As the

experimental results of Section 10.2.1 shows, the current performances of

SMT solvers on non-linear real arithmetic formulas are still not satisfactory

and their scalability is an issue, despite the recent improvements [JdM12].

83

84

One viable approach to tackle the problem consists to analyze an ab-

straction of the hybrid automaton that approximates its behaviors conser-

vatively. Relational abstraction [ST11a] is an effective abstraction tech-

nique that enable SMT-based verification for Linear Hybrid Systems. Re-

lational abstraction replaces the ordinary differential equations in each lo-

cation of the hybrid automaton with a binary relation over the continuous

state space of the system. The relation approximates the binary reach-

ability relation induced by the ordinary differential equations. Thus, by

replacing the ODEs in each mode by their relational abstraction, it is

possible to over-approximate a linear hybrid system with an infinite-state

transition system.

Relational abstraction has been applied successfully to verify several

systems [ST11a, Tiw12, TD12]. The main computation technique of re-

lational abstractions for linear hybrid systems is implemented in the the

HybridSAL [Tiw12] tool. However, HybridSAL currently generates one

fixed abstraction for any given ODE. Hence, if the relational abstraction

fails to prove a valid property, then there is no option for refining the

abstraction. Then, the abstractions generated by HybridSAL are time-

agnostic: they do not relate the time elapsed in the continuous transitions

with the state variables.

Time-agnostic relational abstractions can prove several nontrivial prop-

erties, but they may fail in the following cases:

1. Since the relational abstraction is time-agnostic, it cannot be used to

verify timing properties.

2. The time-agnostic abstractions are very coarse (imprecise). In fact,

they often do not capture the relationship between different variables

of the system. Even in simple cases, the loss of information in time-

agnostic relational abstraction is very significant.

84

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 85

3. Finally, the time-agnostic abstraction is not suitable to prove proper-

ties of distributed systems, like networks of hybrid automata. While

the abstraction is computed compositionally for each location of each

automaton, it looses the relationship between the variables of different

components. This effect may be seen as a corollary of the previous

issue.

In this chapter we present a technique that allow us to compute a more

precise, time-aware, relational abstraction1. Time-aware relational abstrac-

tion overcomes the shortcomings of relational abstraction procedure im-

plemented in HybridSAL. First, it is not time-agnostic and it contains

information about the relationship between the state variables and the

time-elapse variable. Second, time-aware relational abstraction enables

tuning the precision of the abstraction. Third, the relation over time im-

plicitly relates the variables in the different automata in the network, thus

enabling the analysis of distributed systems.

Our main contribution is a procedure for computing a time-aware re-

lational abstraction that can be tuned to achieve any desired precision-

efficiency trade-off. The abstraction can be made more and more precise,

but that increases the cost of analyzing it using SMT-based techniques

(e.g. bounded model checking, k-induction, IC3).

Our approach for generating time-aware relational abstractions is based

on exploiting the eigenstructure of the matrix A of the linear ordinary dif-

ferential equations. The technique for creating time-agnostic relational ab-

stractions, as implemented in HybridSAL [Tiw12], was also based on the

same basic idea. However, we have to non-trivially extend that approach

to preserve information about time (rather than throwing it away) in the

abstraction. The key challenge in extending the procedure for creating

1We consider autonomous systems, where the vector field of the system (i.e. the right-hand side of

the ODEs) does not explicitly depends on time.

85

86 5.1. RELATIONAL ABSTRACTION

time-agnostic relational abstractions to time-aware relational abstractions

is that the relationship between the time elapsed (∆t) and the change in

the value of any state variable (∆x) is seldom linear. It is often nonlinear,

and it often contains quadratic terms and transcendental functions, such

as the exponential function and the trigonometric functions. Since we wish

to effectively use SMT verification techniques, we need the abstract sys-

tem to be encoded in “easy” theories, namely, in linear rational arithmetic

(T (Q)). The main technical contribution is the creation of a time-aware

relational abstraction of linear ODEs using piecewise linear approximations

of nonlinear (transcendental) functions.

In the experimental evaluation of Section 10.2.2 we show the effective-

ness of our approach on two case studies, a PID controller and an active

suspension controller. We show that, while the previous relational abstrac-

tion was too coarse, time-aware abstraction is able to verify time properties

on both benchmarks.

5.1 Relational Abstraction

In the following, we consider a Linear Hybrid System H = 〈V,X, Init,
Invar, Trans, F low〉 such that, for each explicit location q ∈ Q, the flow

condition is a linear ODE2:

Flow(q) = A~x+~b

where A ∈ Rn×n, b : Rn, ~x is the vector of X and ~̇x is the vector of X, n is

the dimension of the dynamical system (i.e. the cardinality of the set X,

|X| = n) and ~x is a vector of all the continuous variables X.

Definition 17 An infinite-state transition system S is an abstraction of

the hybrid system H if for all traces πH = 〈l0, v0〉 δ1→ . . .
δk→ 〈lk, vk〉 of H

2We deal with autonomous systems where the vector of inputs ~b does not depend on the time variable.

86

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 87

there exists a path s0; δ1; s1; δ2; . . . ; δk; sk of S.

Relational abstraction [ST11a] abstracts only the continuous evolution

in each location of the hybrid automaton, leaving unchanged its discrete

locations and transitions.

Thus, the relational abstraction of H is the transition system SH = 〈VS,
WS, InitS, InvS, T ransS〉:

• VS := V ∪X ∪ {t},

• WS := {},

• InitS := t = 0 ∧ InitH ,

• InvS := InvarH

• TransS := Untimed ∨Timed where

– Untimed := t′ = t ∧ TransH(V,X, V ′, X ′).

– Timed :=t′ > t ∧
∧

q∈Q
Timedq(X,X

′)

The timed transition Timed abstracts the continuous evolution in each lo-

cation. In particular, Timedq relates all the values assigned to the continu-

ous variables with all the possible future values assigned to the continuous

variables after a continuous transition.

Definition 18 (Relational Abstraction) Timedq is a relational abstrac-

tion for the location q ∈ Q if ∀vi ∈ Rn, δ ∈ R, it is the case that:

〈q,X = vi, q
′, X ′ = fq(vi, δ)〉 |= Timedq

where fq : Rn+1 → Rn is the solution to the system of ODEs Flow(q).

It follows immediately from the definitions above that the infinite-state

transition system SH is an abstraction of H.

87

88 5.1. RELATIONAL ABSTRACTION

5.1.1 Eigenstructure-based relational abstraction

There exists several instantiation of relational abstractions [ST11a, Tiw12,

ZST12, DM12]. Their strengths and disadvantages are discussed in the

related work Section of this chapter (Section 5.4).

In the following, we describe the relational abstraction technique for

linear systems presented in [Tiw12] , that we will extend in the next section

to increase its precision.

The relational abstraction Timedq of Flow(q) may be computed ex-

ploiting the eigenstructure of the matrix A (i.e. all the pairs of eigenvalues

and eigenvectors of A). First, the system of differential equations is rear-

ranged partitioning the variables ~x into two disjoint vectors ~y and ~z such

that3:
[
~̇y

~̇z

]
=

[
A1 A2

0 0

][
~y

~z

]
+

[
~b1

~b2

]

Given an n × n matrix M , let ΛM be the set of all the pairs 〈λ,~c〉,
where λ is a left-eigenvalue of the matrix M and ~c is one of its associated

left-eigenvectors. More precisely, for each eigenvalue λ we consider only

linearly independent eigenvectors. Let R be a set of tuples 〈r,~c〉 such that
d~cT~x
dt = r, for some r ∈ R. Note that, for each zi ∈ ~z, we can easily get one

of such tuple 〈bi, zi〉, since dzi
dt = bi.

The abstraction Timedq is computed from each pair 〈λ,~c〉 ∈ ΛA1
:

Timedq :=
∧

〈λ,~c〉∈ΛA1

φ〈λ,~c〉 ∧
∧

〈r,~c〉, 〈l, ~d〉 ∈ R
r 6= l ∨ ~c 6= ~d

~c′ − ~c
r

=
~d′ − ~d

l

where φ〈λ,~c〉 is a formula that depends on the kind of eigenvalues and eigen-

vectors, which may be real or complex.
3Note that if there are no variables with constant derivative the dimension of ~z is 0, which is a simpler

special case.

88

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 89

If ~c ∈ Rn and λ ∈ R, the abstraction is defined with the predicate

p(~x) = ~cT~y + ~dT~z + e, where ~dT = ~cT A2

λ , e = ~cT ~b1+~dT ~b2
λ . The details [Tiw12]

about the computation of p(~x) are reported in the Appendix A.2.

In the following, we use p to denote the linear expression p(~x) and p′ to

denote the linear expression p(~x′) over the next-state variables.

φ〈λ,~c〉 :=





(p′ ≤ p < 0) ∨ (0 < p ≤ p′) ∨ (0 = p = p′) if λ > 0

(p ≤ p′ < 0) ∨ (0 < p′ ≤ p) ∨ (0 = p = p′) if λ < 0

t′ − t = ~cT (~y′−~y)

~cT ~b1
λ = 0

If ~c ∈ Cn and λ ∈ C, the abstraction is defined using two predicates,

p1(~x) and p2(~x). Suppose ~c = ~d + i~e and λ = α + iβ. We define p1 and

p2 as follows 4: p1(~x) = ~dT~y + ~c1
T~z + e1, p2(~x) = ~eT~y + ~c2

T~z + e2 and

c1, c2, ~c1
T , ~c2

T , e1, e2 are such that ṗ1 = αp1− βp2 and ṗ2 = βp1 + αp2. The

formula φ〈λ,~c〉 added to Timedq is:

φ〈λ,~c〉 :=




p2

1(~x) + p2
2(~x) ≥ p2

1(~x
′) + p2

2(~x
′) if α ≤ 0

p2
1(~x
′) + p2(~x′) ≥ p2

1(~x) + p2
2(~x) if α ≥ 0

A practical requirement for the abstraction is that it has to be expressed

in a formula in the Linear Real Arithmetic Theory. Note that the abstrac-

tion, φ〈λ,~c〉, generated in the complex eigenvalue case is non-linear and thus

it is approximated in the original approach.

5.2 Simple Motivating Example

We illustrate the main idea underlying time-aware relational abstraction

with a simple contrived example.

4See the Appendix A.2 for details

89

90 5.2. SIMPLE MOTIVATING EXAMPLE

Consider the linear system

ẋ = −2x,

ẏ = 0.5− y
with initial condition x ∈ [−1, 0.9], y ∈ [1.1,∞). We want to prove that x

is always less-than y; that is, G(x < y).

One way to prove safety of such systems involves constructing a rela-

tional abstraction of the system and then verifying the abstract system

using infinite bounded model checking and k-induction.

Relational abstraction replaces the differential equation by a discrete

transition. The abstract transition relates the current value of x, y with

any future value x′, y′. The default relational abstraction, constructed by

HybridSAL, for the above differential equation is the following transition:

(x = x′ = 0 ∨ 0 < x′ ≤ x ∨ 0 > x′ ≥ x) ∧
(y = y′ = 0.5 ∨ 0.5 < y′ ≤ y ∨ 0.5 > y′ ≥ y)

In the abstract system, there is a transition from (x, y) to a new state

(x′, y′) if these four values satisfy the above constraint.

The abstraction is sound: starting from (x, y) and following the solutions

of the differential equations, if we reach (x′, y′) at any future time instance,

then x, y, x′, y′ will necessarily satisfy the above constraint. However, the

relational abstraction is very coarse (imprecise). In particular, the rate at

which x and y are changing is abstracted away. If ẋ = −2x were replaced

by ẋ = −0.2x, we would still get the same relational abstraction.

As a result of this imprecision, the default relational abstraction is in-

sufficient to prove the safety property. (We get a spurious counterexample

when trying to prove the safety property using the above relational ab-

straction.)

We construct more precise relational abstractions, called time-aware

relational abstraction. First, we make the implicit time variable explicit

90

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 91

by adding a new variable called t to the state space and the differential

equation ṫ = 1 to the dynamics. Time t is the glue that will help relate

the change in x to the change in y.

The new time-aware relational abstraction relates the old values x, y, t to

the new values x′, y′, t′. For the above system, the new abstract transition

is the conjunction of two constraints: the first constraint, shown below,

relates x, x′, t, t′:

(x = x′ = 0) ∨
(0 < x′ ≤ x ∧ lnlb(x)− lnub(x

′) ≥ −2(t′ − t) ≥
lnub(x)− lnlb(x

′)) ∨
(0 > x′ ≥ x ∧ lnlb(−x)− lnub(−x′) ≥ −2(t′ − t) ≥

lnub(−x)− lnlb(−x′))

There is a similar second constraint that relates y, y′, t, t′.

There are two key points to note here. First, there is no simple linear

relationship between the time variable and the x, y variables. They are

related through the natural logarithm (ln) function; specifically, x(t) =

x(0)e−2t is (part of) the solution of the above differential equation; and

hence we have −2(t′ − t) = ln(x′) − ln(x). To enable analysis using BM-

C/SMT tools, we need a piecewise linear function that computes a sound

lower- and upper-bound of the ln function. These approximate functions,

called lnlb and lnub respectively, will be defined later.

Second, all interactions between different state variables are captured

via the time variable. Note that the first constraint above relates x, x′ with

the time elapsed t′−t, and similarly the second constraint relates y, y′ with

the time elapsed t′ − t. By reasoning over the conjunction, we deduce the

relationship between x and y.

In particular, using the refined time-aware relational abstraction, we

can prove the safety property G(x < y).

91

92 5.3. TIME-AWARE RELATIONAL ABSTRACTION

5.3 Time-Aware Relational Abstraction

A time-aware relational abstraction of a dynamical system is a binary re-

lation that holds between the current state of the system, including the

current time, and any future reachable state of the system (including the

future time). In this section, we describe a procedure for constructing time-

aware relational abstractions of linear dynamical systems; that is, systems

whose dynamics are specified using linear ordinary differential equations

of the form ~̇x = A~x+~b.

5.3.1 Overall Approach

Consider a linear system ~̇x = A~x+~b. The exact relationship between t′− t
and the variables ~x is given by the explicit solution:

~x(t) := x0e
At +

∫ t

s=0

e(t−s)A~b ds (5.1)

where x0 is the state of the dynamical system. It is hard to reason with

this solution directly. In some very special cases, this explicit solution

can be used to effectively solve the reachability problem for linear sys-

tems [LPY01]. This happens, for example, when either A is nilpotent,

or its eigenvalues are either all reals or all purely imaginary, but even in

these restricted cases, the solution requires reasoning over nonlinear real

arithmetic. Hence, working with the explicit solution in Equation 5.1 is

not very practical.

In our approach, we create an abstraction of the solution. Specifically,

we construct a relationship between the current value ~x of the state vari-

ables, the future value ~x′ of the state variables, the current value t of time,

and the future value t′ of time. Note that we use the shorthand δ = t′−t to

represent the relationship of t before and after the continuous transition.

92

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 93

The relationship we construct will over-approximate the binary reachabil-

ity relation.

To ease the presentation, we assume that the set of continuous variables

X of the hybrid automaton H contains a clock variable t, which counts the

total time elapsed in the system. Initially t is 0 and its derivative is 1 in all

the locations. Also, t is never used in a jump or in an invariant condition5.

Note that we defined the clock variable t in the transition system encoding

SH of H. In the following, suppose that the transition system encoding SH

of H does not define an additional variable t, but it uses the continuous

variable t already present in H.

In the following, let R be a set of tuples 〈r,~c〉 such that d~cT~x
dt = r, for

some r ∈ R. For each location q ∈ Q, for each 〈λ,~c〉 ∈ ΛA1
and for each

〈r,~c〉 ∈ R, we obtain the following time-aware relational abstraction:

Timedtq :=
∧

〈λ,~c〉∈Λ

φt〈λ,~c〉 ∧
∧

〈r,~c〉∈R
φc〈r,~c〉 (5.2)

where φt〈λ,~c〉 is the time-aware abstraction generated from 〈λ,~c〉 and φc〈r,~c〉 is

the abstraction generated for linear expressions with a constant-rate deriva-

tive. We define φt〈λ,~c〉 and φc〈r,~c〉 below. As in the case of the eigenstructure-

based abstraction, the definition of φt〈λ,~c〉 depends on whether the eigenvalue

λ is real or complex.

In the following, we use p to denote the linear expression p(~x), and p′

to denote the linear expression p(~x′) over the next-state variables.

5.3.2 Constant Rate

We define φc〈r,~c〉 now. Consider the linear expression p = ~cT~x such that

ṗ = r, where r is a nonzero constant, then we get the following time-aware

5If we are not interested in the total amount of time elapsed, we can keep only the time elapsed during

a continuous transition, δ, as shown in Remark 2.

93

94 5.3. TIME-AWARE RELATIONAL ABSTRACTION

relational abstraction φc〈r,~c〉:

φc〈r,~c〉 := (p′ − p) = rδ (5.3)

where t is the time variable. We can then add the conjunct φc〈r,~c〉 to the

time-aware relational abstraction of linear system.

Note that we can obtain a predicate 〈b2i, zi〉 of R from each variable zi

of ~z. In practice, the variables in ~z have a constant derivative, and thus

the encoding of their dynamic is exact and similar to the one shown in

Example 2.

5.3.3 Real Eigenvalues

To ease the presentation of the real and complex eigenvalues cases, we

consider a linear system where ~b = ~0. This means that we deal with a

continuous dynamic of the form ~̇x = A~x. The terms ~b complicates the

computation of the linear constraints that will be used in the abstraction.

The computation of these constraints in the case ~b 6= ~0 has been already

defined in [Tiw12], and it is fully reported in the Appendix A.2. Note that

the results regarding time-aware relational abstraction extends smoothly in

the case ~b 6= ~0: in fact, once the additional predicates have been computed

from ~̇x = A~x + ~b, the steps needed to compute the abstraction do not

change.

In this section we define φt〈λ,~c〉 in the case λ is real. Let ~c be a left

eigenvector of A corresponding to some real eigenvalue λ; that is,

~cTA = λ~cT

where ~cT is a row vector obtained by transposing (the column vector) ~c.

(Equivalently, ~c is a eigenvector of the transpose of A). Consider the linear

expression

p(~x) = ~cT~x

94

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 95

Clearly, we have

dp(~x)
dt = d~cT~x

dt = ~cT d~xdt = ~cTA~x = λ~cT~x = λp(~x)

Hence, the value of p changes exponentially; that is:

p(~x(t)) = p(~x(0))eλt (5.4)

The linear expression p can be used to constrain the future value, ~x′,

and the current value, ~x, of the state variables. When λ > 0, the following

constraint holds between any future value ~x′ and the current value ~x of the

state variables:

ψ(p, p′) := (p = p′ = 0) ∨

(0 < p ≤ p′ ∧ lnlb(p
′)− lnub(p) ≤ λδ ≤ lnub(p

′)− lnlb(p)) ∨

(0 > p ≥ p′ ∧ lnlb(−p′)− lnub(−p) ≤ λδ ≤ lnub(−p′)− lnlb(−p))

When λ < 0, the constraint is the same as above, but with p and p′

swapped. We thus have

φt〈λ,~c〉 =





ψ(p, p′) if λ > 0

ψ(p′, p) if λ < 0

p = p′ if λ = 0

(5.5)

where ψ is as defined above.

We remark that, in practice, we only need a linear expression p(~x) that

satisfies the equation dp(~x(t))
dt = λp. For linear dynamical systems, such a

p can be found using the left eigenvectors of the A matrix. For nonlinear

dynamics, one needs to develop other techniques to obtain such a p, but

once found, it can be used to construct time-aware relational abstractions

of nonlinear systems too [TK04].

We now define the functions lnlb and lnub. These functions are piecewise

linear approximations of the (lower and upper bounds for the) nonlinear

natural logarithm function ln; that is, they satisfy the following condition:

lnlb(x) ≤ ln(x) ≤ lnub(x), ∀x ∈ R+

95

96 5.3. TIME-AWARE RELATIONAL ABSTRACTION

ln(x)

x

e−2e−1 e0 e1

Figure 5.1: Piecewise linear approximation for natural logarithm function. The solid line

plots ln(x) and the dotted lines shows the piecewise linear under- and over-approximations.

Piecewise Linear Approximation for Natural Logarithm

The natural logarithm function, ln(x), can be approximated using a piece-

wise linear function, as described in [Hil00]. Figure 5.1 illustrates this

approximation.

We first divide the real number line into infinitely many intervals. Con-

sider the infinitely many intervals Ik := [ek, ek+1], k ∈ Z. Clearly, we have⋃
k∈Z Ik = (0, inf).

Since the logarithm function is concave, it is easy to obtain a piecewise

linear underapproximation of the function. This underapproximation is

obtained by just linearly extrapolating within each interval, as shown in

Figure 5.1. Specifically, if x is in the interval Ik, then ln(x) is approximated

by:

lnlb(x) =
e−k

e− 1
x+ k − 1

e− 1
(5.6)

96

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 97

This idea for approximation works not only for the base e, but also

for any base a > 1. For base e, the approximation error is defined by

γ(x) = ln(x)− lnlbx. In any interval Ik, γ is bounded by

ln(e− 1)− 1 +
1

e− 1
(5.7)

Thus, in general, γ depends only on the base of the logarithm and not on

the interval itself.

The function lnlb(x) gives a lower bound for the function ln(x). The

upper bound can be obtained by just adding γ to the lower bound.

lnub(x) =
e−k

e− 1
x+ k − 1 + ln(e− 1) (5.8)

Thus, we get a piecewise linear function for both under and over approxi-

mating the natural logarithm function.

In practice, we cannot use the above piecewise linear function because

it is defined over infinitely many intervals. We pick finitely many intervals.

In our implementation, we use two parameters l,m to specify the inter-

vals that are used to create the piecewise linear lower- and upper-bound

functions. Given natural numbers l,m, our implementation uses the inter-

vals

(−∞, e−l], [e−l, e−l+1], . . . , [em−1, em], [em,∞) (5.9)

We use linear-interpolation based approximation on the bounded intervals

and we use a sound coarse approximation on the unbounded intervals.

Clearly, we can refine our abstraction by increasing the number of inter-

vals; that is, by increasing the values of the parameters l,m. Automated

abstraction-refinement of this kind is left for future work.

One advantage of this approximation is that the size of the intervals

grows exponentially. Hence, a few intervals can approximate the logarithm

for a “reasonable” range of x values. Also, note that the error is bounded

97

98 5.3. TIME-AWARE RELATIONAL ABSTRACTION

and depends only on the base of the logarithm. Thus, changing the base

of the logarithm provides another way to get a better approximations (re-

finements).

5.3.4 Complex Eigenvalues

We define φt〈λ,~c〉 for λ ∈ C. Consider a linear dynamical system ~̇x = A~x,

where A contains only real (in practice, rational) entries. Let ~c := ~d+ ι~e be

a left eigenvector of A corresponding to the complex eigenvalue λ := a+ ιb;

that is,

(~dT + ι~eT)A = (a+ ιb)(~dT + ι~eT)

Now, consider the two linear expressions

p(~x) = ~dT~x q(~x) = ~eT~x

Computing the time derivative (Lie derivative) of these two expressions,

we find that the expressions p and q satisfy the differential equation ṗ =

ap− bq, q̇ = bp + aq, and hence the closed-form solution for them is given

by

p(~x(t)) = reat cos(bt+ φ)

q(~x(t)) = reat sin(bt+ φ)

where r, φ are determined by the initial conditions (that is, values of p(~x(0))

and q(~x(0))) as follows:

r2 = p(~x(0))2 + q(~x(0))2

tan(φ) = q(~x(0))/p(~x(0))

We want to find linear relationships that hold between the initial value

p, q of these two expressions, any future value p′, q′ of these two expressions,

98

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 99

and the initial value t of the time, and the future value t′ of time. We divide

the task into two parts: first, we will find relationships φampl〈λ,~c〉 that result

from the exponential change in the amplitude (reat) with time, and second,

we will find relationships φphase〈λ,~c〉 that result from the linear change in phase

(bt+ φ) with time. Then, the conjunct added to the time-aware relational

abstraction will be

φt〈λ,~c〉 := φampl〈λ,~c〉 ∧ φ
phase

〈λ,~c〉 (5.10)

where φampl〈λ,~c〉 and φphase〈λ,~c〉 will be defined below.

Relating Amplitude and Time

Let us denote p(~x(t′)) by p′ and p(~x(t)) by p; and similarly for q, q′. We

are given p, q and the fact that

(p′2 + q′2)0.5 = (p2 + q2)0.5eaδ (5.11)

We wish to find linear constraints that are implied by the above equation.

Those linear constraints can then be added to the time-aware relational

abstraction without compromising soundness.

We use the piecewise linear approximation of the natural logarithm to

deal with the exponential in the above expression, but there still remains

the problem of handling the other quadratic sub-expressions. We will use

coarse linear lower- and upper-bounds for the quadratic sub-expressions to

finally obtain the conservative linear constraint that approximates Equa-

tion 5.11. Specifically, the following derivation shows how we obtain the

99

100 5.3. TIME-AWARE RELATIONAL ABSTRACTION

linear approximation φampl〈λ,~c〉 of Equation 5.11:

(p′2 + q′2)0.5 = (p2 + q2)0.5eaδ

⇒ aδ = ln(p′2 + q′2)0.5 − ln(p2 + q2)0.5

⇒ aδ ≤ lnub(qub(p
′2 + q′2)0.5)−

lnlb(qlb(p
2 + q2)0.5) ∧

aδ ≥ lnlb(qlb(p
′2 + q′2)0.5)−

lnub(qub(p
2 + q2)0.5)

Let φampl〈λ,~c〉 denote the last conjunction above.

We have already defined the functions lnlb and lnub before. We now

define the functions qlb and qub that compute linear lower and upper bound

for the expression (x2 + y2)0.5. In other words, qlb and qub are piecewise

linear and satisfy the following condition:

qlb((x
2 + y2)0.5) ≤ (x2 + y2)0.5 ≤ qub((x

2 + y2)0.5)

We use the value |x| + |y| as a linear upper bound for (x2 + y2)0.5 and

the expression max(|x|, |y|) as the lower bound for (x2 + y2)0.5.

qlb((x
2 + y2)0.5) := max(|x|, |y|)

qub((x
2 + y2)0.5) := |x|+ |y|

Note that the functions qlb and qub are both piecewise linear functions.

We thus get a linear and sound relationship between the current values

p, q, the future values p′, q′ of the two linear expressions and the current and

future values t, t′ of time based on analyzing the change in the amplitude

with time.

Relating Phase and Time

We now consider the problem of finding a linear relationship between

p, p′, q, q′, t, t′ based on analyzing the change in the phase with time. We

100

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 101

time

p

−p

q

−q

-2

-1

0

1

2

int
0

p > q

q ≥ 0

2π

8b

int
1

q ≥ p

p > 0

2 2π

8b

int
2

q > −p
−p ≥ 0

3 2π

8b

int
3

−p ≥ q

q > 0

4 2π

8b

int
4

−p > −q
−q ≥ 0

5 2π

8b

int
5

−q ≥ −p
−p > 0

6 2π

8b

int
6

−q > p

p ≥ 0

7 2π

8b

int
7

p ≥ −q
−q > 0

2π

b

Figure 5.2: Extracting time elapsed information from analyzing the phase of the sinusoidal

signals. The red line shows p, the blue line shows q, and the partition of the time axes

based on the sign of p, q and p ≥ q.

are given p, q and the fact that

p′ = (p2 + q2)0.5eaδ cos(bδ + tan−1(q/p))

q′ = (p2 + q2)0.5eaδ sin(bδ + tan−1(q/p))

We wish to find linear constraints that are implied by the above equation

based on analyzing the phase.

Given p′, q′, let ω(p′, q′) denote the angle bδ + tan−1(q/p). For example,

ω(p, q) is just b(t − t) + tan−1(q/p) = tan−1(q/p). We have the following

relationship based on analyzing the phase.

bδ = ω(p′, q′)− ω(p, q)

101

102 5.3. TIME-AWARE RELATIONAL ABSTRACTION

Now, we need piecewise linear approximations of the ω function. The

main point to note is that the phase determines the sign of p′, q′ and the

value of p′ ≥ q′. Hence, we can get an estimate of the phase of p, q if we

analyze the signs of p, q, p−q. Depending on the sign of p, q, p−q, the time

axis is partitioned into infinitely many intervals, as shown in Figure 5.2.

Let us define the function ωa(p, q) that takes the values of p, q and

returns a number based on the phase as illustrated in Figure 5.2.

ωa(p, q) =





0 if p > q ≥ 0

1 if q ≥ p > 0

2 if q > −p ≥ 0

3 if −p ≥ q > 0

4 if −p > −q ≥ 0

5 if −q ≥ −p > 0

6 if −q > p ≥ 0

7 if p ≥ −q > 0

Now, given ωa(p, q) and ωa(p
′, q′), we can compute bounds on δ. Specifi-

cally, if ωa(p
′, q′) ≥ ωa(p, q), then for some natural number n ≥ 0, it will

be the case that

φphase〈λ,~c〉 := ∃n ≥ 0 :

bδ ≥ 2πn+ ((ωa(p
′, q′)− ωa(p, q))− 1)

2π

8
∧

bδ ≤ 2πn+ ((ωa(p
′, q′)− ωa(p, q)) + 1)

2π

8
(5.12)

The value of n indicates the number of complete cycles that lie between

the initial and final state.

Similarly, if ωa(p
′, q′) ≤ ωa(p, q), then for some natural number n ≥ 0,

102

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 103

it will be the case that

φphase〈λ,~c〉 := ∃n ≥ 0 :

bδ ≥ 2πn+ ((ωa(p
′, q′)− ωa(p, q)) + 7)

2π

8
∧

bδ ≤ 2πn+ ((ωa(p
′, q′)− ωa(p, q)) + 9)

2π

8
(5.13)

In both cases, the constraint φphase〈λ,~c〉 is an infinite disjunction: there is

one disjunct for each value of n. There are two different ways to handle

the infinite disjunction. First, in the time-aware relational abstraction, we

can introduce a new input variable n. When we perform infinite bounded

model checking on the abstract system, the input variable n is automat-

ically existentially quantified and all possible values for n are considered.

The alternative is to replace the infinite disjunction by a finite disjunction

(picking specific values for n, say n = 0, 1, 2) and then over-approximating

the rest (n = 3, 4, . . .) of the disjuncts conservatively. Our implementation

uses the latter approach. We have a parameter that fixes the range of

values we use for n. We will call the parameter n subsequently.

5.3.5 Correctness

We can now formally state the correctness of the procedure outlined above

for creating a time-aware relational abstraction. First, we note the follow-

ing immediate fact.

Lemma 1 If φ1(~x, ~x
′) and φ2(~x, ~x

′) are two relational abstractions of the

same system, then φ1(~x, ~x
′) ∧ φ2(~x, ~x

′) is also a relational abstraction of

that system.

Thus, for a given linear system ~̇x = A~x+~b, let Λ denote all pairs 〈λ,~c〉
s.t. d~cT~x

dt = λ~cT~x, and let R denote all pairs 〈r,~c〉 s.t. d~cT~x
dt = r for some

103

104 5.3. TIME-AWARE RELATIONAL ABSTRACTION

real number r. Then, we can construct the following time-aware relational

abstraction for ~̇x = A~x+~b:

Timedtq :=
∧

〈λ,~c〉∈Λ

φt〈λ,~c〉 ∧
∧

〈r,~c〉∈R
φc〈r,~c〉 (5.14)

where depending on whether λ is real or complex, φt〈λ,~c〉 is defined in Equa-

tion 5.5 or Equation 5.10, and φc〈r,~c〉 is defined in Equation 5.3.

The following theorem states the correctness of this construction.

Theorem 9 Let ~̇x = A~x+~b be the continuous dynamics of the location q ∈
Q of H. Then, Timedtq defined in Equation 5.14 is a relational abstraction

for the continuous dynamics Flow(q).

Proof. We have to prove that ∀vi, vi+1 ∈ Rn, δ ∈ R s.t. vi+1 = fq(vi, δ),

s, s′ |= Timedtq, where s = ρ(〈q, vi〉), s′ = ρ(〈q, f(vi, δ)〉) and fq : Rn+1 →
Rn is the solution to the flow condition Flow(q).

We will prove that s, s′ is a model for each conjunct φt〈λ,~c〉 and φc〈r,~c〉.

Then, the proof will follow from Lemma 1.

The proof for the constant rate case, i.e. s, s′ |= φc〈r,~c〉 := p′ − p = rδ,

follows directly from the fact that ṗ = r. Note that ṫ = 1, hence δ = δ.

We prove that s, s′ |= φt〈λ,~c〉 considering the cases for real and complex

eigenvalues.

Suppose λ ∈ R and ~c ∈ Rn. If λ = 0, clearly s, s′ |= p′ = p. If

λ > 0, then φt〈λ,~c〉 = ψ(p, p′) for the predicate p = ~cT~x. We have that

s, s′ |= ψ(p, p′):

1. If s |= p = 0, then by the explicit time solution of p (Equation A.1),

we also have p′ = 0 and thus s, s′ |= 0 = p = p′.

2. If s |= 0 < p, then by Equation A.1 we have s, s′ |= 0 < p ≤ p′ and

s, s′ |= ln(p′) − ln(p) = λδ. Thus, s, s′ |= lnlb(p
′) − lnub(p) ≤ λδ ≤

lnub(p
′)− lnlb(p).

104

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 105

3. The proof for the other case (i.e. when s, s′ |= 0 < p ≤ p′) is similar

to the previous one.

The proof for λ < 0 is specular to the one for λ > 0.

Suppose ~c = ~d+ι~e is a left eigenvector of A corresponding to the complex

eigenvalue λ = a+ ιb. In this case, we have that φt〈λ,~c〉 := φampl〈λ,~c〉 ∧ φ
phase

〈λ,~c〉
We can prove that φampl〈λ,~c〉 is a relational abstraction following the same

reasoning done for the real-eigenvalue case (i.e. the explicit solution now

is the one in Equation 5.11).

To prove that s, s′ |= φphase〈λ,~c〉 , we have to consider all the possible com-

binations of intervals ωa(p, q) and ωa(p
′, q′) in the case ωa(p, q) ≤ ωa(p

′, q′)

or ωa(p
′, q′) ≤ ωa(p, q). We show the proof for one case, while the others

can be proved similarly, hence proving that s, s′ |= φphase〈λ,~c〉 .

Suppose that s |= 0 ≤ q ≤ p and s′ |= 0 ≤ q′ ≤ p′. Thus, ωa(p, q) =

ωa(p
′, q′) = 0. From s′ |= 0 ≤ q′ ≤ p′ and the solution of p′ and q′

(Equation 5.12) we have

0 ≤ cos(bδ + tan−1(q/p)) ≤ sin(bδ + tan−1(q/p))

We derive a lower and upper bound for bδ + tan−1(q/p):

2πk1 ≤ bδ + tan−1(q/p) ≤ 2πk1 +
π

4

for some integer k1. From 0 ≤ q ≤ p, we have that:

2πk2 ≤ tan−1(q/p) ≤ 2πk2 +
π

4

for some integer k2. Thus, we have:

2π(k1 − k2)−
π

4
≤ bδ ≤ 2π(k1 − k2) +

π

4

Letting n = k1 = k2, we obtain the abstraction φphase〈λ,~c〉 for ωa(p, q) =

ωa(p
′, q′) = 0. �

105

106 5.4. RELATED WORK

5.4 Related Work

Verification of hybrid systems has been performed applying different tech-

niques (see [Alu11] for a recent survey).

Among these techniques there are symbolic reachability and deductive

verification. Symbolic reachability [HHWT97, FGD+11b, TK04, BBC+12,

BBC+14, RS07] consists of computing the reachable set of states, which

will be used to prove the system safety. In deductive verification [Pla08,

PJ04, ST11b], the user interacts with a theorem prover to produce a proof

of correctness. Both approaches may handle properties that involve pred-

icates over time. However, we stress that the main goal of the time-aware

abstraction is to provide a more precise relational abstraction, widening its

applicability in terms of hybrid systems and properties that can be verified.

Also, since the timed-aware abstraction is a relational abstraction, it sepa-

rates the reasoning task on the continuous dynamics from the verification

task on the infinite-state transition system.

Another viable technique to the hybrid systems verification consists of

computing an abstraction of the system, which may be subsequently veri-

fied [ADI06, CFH+03, Tiw08]. Relational abstraction falls in this class of

techniques. There exists several ways to compute relational abstractions.

However, the current techniques used to compute a relational abstrac-

tion [ST11a, Tiw12, ZST12] are not suitable to verify real-time properties

or to analyze a network of hybrid systems.

The template-based relational abstraction [ST11a] does not capture the

relation among time and the continuous variables of the system. Moreover,

the problem of finding the coefficients of the templates requires the use of

non-linear real arithmetic, which may be solved using expensive real quan-

tifier elimination techniques [DS96, Bro03] or SMT solvers which handle

non-linear real arithmetic [JdM12].

106

CHAPTER 5. TIME-AWARE RELATIONAL ABSTRACTION 107

The timed relational abstraction [ZST12] is suitable to analyze control

systems that sample the physical plant at fixed time intervals. In that

case, the relation is precise over time since it relates the current values

with the future values of the variables after a continuous transition of fixed

duration (the sampling interval). However, since the continuous evolution

has a fixed duration, the relation does not capture the possible evolution

of the system for different intervals of time.

As explained in Section 5.2, the eigenstructure-based relational abstrac-

tion [ST11a, Tiw12] is not precise enough to capture the relation between

the continuous variables and the time elapsed in a continuous transitions

and, in general, between the variables which evolve with different “rates”.

Hence, it is not suitable to analyze properties which predicate about time

or about other variables with a piecewise constant derivative (like drifted

clocks or resources which evolve with a non-deterministic but bounded

derivative). The time-aware abstraction increases the precision of the

eigenstructure-based abstraction.

Other works [DM12] use relational abstraction to capture a sequence

of continuous and discrete transitions, with the goal of verifying stabil-

ity properties. The generated abstraction is expressed in non-linear real

arithmetic and it does not explicitly consider the relation with time.

Other works focuses on the analysis of hybrid systems using Satisfia-

bility Modulo Theory (SMT) solvers [ABCS05, ÁBKS05]. However, these

approaches are currently limited, since they may only handle a subset of

Linear Hybrid Systems [CMT12, CMT13b]. Relational abstraction han-

dles all the class of linear hybrid systems, even if in an approximate way.

The time-aware abstraction also widens the applicability of the verification

techniques developed for networks of linear hybrid automata, like scenario

verification [CMT13c], to Linear Hybrid Systems.

Since the produced abstraction is an infinite-state transition system, it

107

108 5.4. RELATED WORK

can be verified by SMT-based verification techniques such as k-induction

or ic3 [SSS00, HB12, CG12]. The time-aware abstraction is orthogonal to

these approaches, since it only abstracts a dynamical system. Our approach

will benefit from any improvement in the performance of the verification

algorithms for infinite state transition systems and of SMT solvers.

108

Part III

Verification Techniques

Chapter 6

Reachability

In this chapter we present two techniques based on Satisfiability Modulo

Theories to solve the Reachability Problem.

The first technique, Shallow Synchronization [BCL+10a] is a specialized

Bounded Model Checking encoding for a network of hybrid automata. The

encoding is such that the paths of each automaton in the network are

explored independently, while their consistency is ensured by additional

constraints, which force synchronization actions to happen at the same

time (as in local-time semantic), but allow synchronizations to happen

at different steps in the encoding. Note that this technique may find a

counterexample to an invariant property, and not prove that the property

holds.

The second technique is a verification algorithm based on predicate ab-

straction [GS97] and K-induction [SSS00]. The technique, called Implicit

Abstraction [Ton09], embeds predicate abstraction in the symbolic encod-

ing of paths of BMC (and thus also of K-induction). The result is that

predicate abstraction is not computed beforehand, but on demand while

solving the K-induction problem. Related to abstraction, we show that

it can be refined automatically adding predicates extracted from inter-

polants [HJMM04]. Differently from Bounded Model Checking, the algo-

111

112 6.1. PROBLEM DEFINITION

rithm may prove that a property holds. Also, note that abstraction is cru-

cial for infinite-state transition systems, where the simple path condition of

K-induction may be ineffective. While the technique works in general for

symbolic transition systems, it could be applied to hybrid systems using

the encodings presented in Part II.

First, we formally introduce the reachability problem in Section 6.1.

Then, in Section 6.2 we present Shallow synchronization and finally in

Section 6.3 the combination of k-induction and predicate abstraction.

6.1 Problem Definition

In the following, we consider the reachability problem for a network of

hybrid automata.

Definition 19 (Reachability Problem) Given a network of hybrid au-

tomata N = H1|| . . . ||Hn and a state s of N , the reachability problem

consists of deciding if there exists a finite path π of N that reaches s (i.e.

π = s0
δ1→ s1

δ2→ . . .
δk→ s).

The problem can be extended to a set of states S: we say that S is reachable

if there exists a state s ∈ S that is reachable.

Given a network of hybrid automata N and a formula P defined over

variables
⋃

1≤i≤n Vi ∪Xi, we say that N satisfy P , N |= P , if ¬P is not

reachable.

6.2 Bounded Model Checking with Shallow Synchro-

nization

Note. The material presented in this chapter has already been presented

in [BCL+10a]. The traditional asynchronous semantics is based on inter-

leaving, and requires the construction of a monolithic hybrid automaton

112

CHAPTER 6. REACHABILITY 113

based on the composition of the automata in the network. Intuitively, this

means that a path in the automaton is the result of the composition of

interleaving paths. However, the monolithic automaton resulting from the

composition can be seen as the result of a “strict synchronization”, forcing

the analysis to deal with a large number of paths, where the structure and

the locality of the network are not taken into account.

An alternative semantics [BL11] for networks of automata exploits the

fact that automata can be “shallowly synchronized”. The intuition is that

each automata can proceed based on their individual “local time scale”,

unless they perform a synchronizing transition, in that case they must

realign their absolute time. This results in a more concise semantics, where

traces of the network are obtained by composing traces of local automata,

each with local time elapse, forcing their consistency with respect to the

shared communication.

We provide a Bounded Model Checking encoding that exploits “shallow

synchronization”, exploring various search strategies. The main advantage

of the approach is that the transition relation of each automata is unrolled

only for the steps necessary to reach locally the target (regardless the length

of the interleaving with the other automata). Typically, local paths are

much shorter because they do not need to stutter allowing other processes

to perform local or non-shared events. The disadvantage is that we may

use additional variables and constraints that degrades the performance of

the approach.

6.2.1 Shallow Synchronization Semantics

While in strict synchronization the behavior of a network is basically ob-

tained by interleaving, in shallow synchronization a path of the network

is the result of the “composition” of paths local to each automaton in the

network. The intuition is demonstrated in Figure 6.1. In the upper part,

113

114 6.2. BOUNDED MODEL CHECKING WITH SHALLOW SYNCHRONIZATION

A

A

A

0

A

A

B

0

A

A

B

2.5

B

B

A

2.5

B

B

A

5

A

C

C

5

F

F

F

10

E

F

F

10

E

F

E

10

C

F

E

10

F

E

C

8

E

C

E

8

C

E

B

8

C

E

B

7

C

D

A

7

D

C

A

5

F

12

C F
23

23

13

13

A
2.5

A
2.5

12
CBB C

3
E F

2

325
A B B C D D E E F

7
A A B

1
B

2
C E

12

12

13

13

23

23

δ δ δ δ

δ δ δ

δ δ δ

δ
δ

δ

δ
δ

τ τ

τττ

τ τ

δ
δ

δδ

δ
δ

δ

δ
δ

τ
τ

τ
τ

τ

τ

τδ

Figure 6.1: Three local traces (above), and the corresponding interleaving (below).

we see three traces of three automata in a network. Each automaton Hi

has a local label τ ; the ij labels are shared between processes Hi and Hj;

δ denotes the local time elapse. We notice that the synchronization over

the ij labels happens exactly at the same time, e.g., 12 takes place at ab-

solute time 5, although the number of transitions required by H1 and H2

is different. In the lower part of the figure, we report the corresponding

trace based on interleaving (where each box contains the state of each of

the three processes). Stuttering (e.g. of process 1 and 3 in the first step)

is modeled by the fact that a process does not have any label on its side.

In the following, we consider a network of hybrid automata N = H1||
. . . ||Hn and an invariant property P . We associate to each automaton

Hi of N a transition system Si, as we did in Section 4.2 when defining

the local-time encoding. Si is defined as in the local-time case, adding an

additional variable ti to keep track of the total amount of time elapsed in

the system.

We define a mapping of a set of shallowly synchronized paths of the

transition systems S1, . . . , Sn into a path in the composition SLocTime(N).

Intuitively, the mapping induces an equivalence relation among the paths

114

CHAPTER 6. REACHABILITY 115

of SLocTime(N) which are obtained by composing the same set of local

paths with different interleavings. The shallow synchronization is defined

according to the trace of a path i.e., the list of events occurring in the path.

An S-trace, with S ⊆ A, is a trace restricted to the labels in the set S.

Definition 20 (S-trace) Given a set of events S ⊆ A and a path π =

s0; a1; s1; . . . ; ah; sh, the S-trace τS(π) is the sequence of events 〈t1, a1〉; . . . ;
〈tk, ak〉 where tj is the time at which the event aj occurs in π and aj ∈ S,

for 1 ≤ j ≤ k.

Definition 21 (Consistent traces) Let π1 and π2 be two paths over the

sets of events A1 and A2 respectively, and S = A1∩A2. The pair 〈π1, π2〉 is

consistent iff the S-trace of π1 is equal to the S-trace of π2 (τS(π1) = τS(π2))

and the final time of π1 is equal to the final time of π2.

The last constraint on the final time is necessary because otherwise the

two paths may terminate with a series of local steps with different timings.

Definition 22 (Shallowly synchronized path) A shallowly synchroni-

zed path of a network N is a tuple πshallow = 〈π1, . . . , πn〉 such that, for

all 1 ≤ i ≤ n, πi is a path of Si and, for all i, j, 1 ≤ i < j ≤ n, πi and πj

are consistent.

If π is a shallowly synchronized path, we denote with πi the i-th com-

ponent of π.

Remark 4 In general, two different events can occur at the same time in

the same path, because discrete transitions are not forced to be interleaved

with timed transitions. Moreover, simultaneous events may be interleaved

with different orders.

However, in many cases, we can assume that whenever two events occur

simultaneously, they have a fixed order. Then, the pair 〈π1, π2〉 is consistent

115

116 6.2. BOUNDED MODEL CHECKING WITH SHALLOW SYNCHRONIZATION

simply iff for all a ∈ A1∩A2 and t ∈ R, 〈a, t〉 occurs in π1 iff 〈a, t〉 occurs in

π2. I.e., having the events at the same time guarantees that the traces are

the same. The definitions and theorems in [BL11] have this assumption,

while in this section we consider the most general case.

The projection of a synchronized path on a specific transition system Si

is the local path of that transition system Si. Intuitively, the set of pro-

jections of a synchronized path form a shallowly synchronized path. The

projection induces an equivalence relation over strictly synchronized traces,

namely the equivalence of paths that are the same modulo a reordering of

the interleaved labels.

Definition 23 (Projection) Given the transition system Si and a path

πLocTime in SLocTime(N), the projection of πLocTime over Si is the path

prj(πLocTime, i) obtained projecting the states over the Si-th component

and removing all the transitions over events which are not in Ai ∪ {ti}
(in the alphabet of Hi and the timed event). Note that the stutter event

(s) is projected. Formally, given the component Si with alphabet Ai and

πLocTime := s0; a1; s1; . . . ; ah; sh, the projection of πLocTime over Si is the

path prj(πLocTime, i) := s′0; a
′
1; s
′
1; . . . ; a

′
l; s
′
l such that:

• fAi : N≥0 × N≥0 is a function such that fAi(z) maps the index in

πLocTime of the z-th occurrence of an event which belongs to the set

Ai ∪ {ti}.

• l is the number of events in the path πLocTime which also belong to

Ai ∪ {ti}.

• s′0 := s0.

• for all 1 ≤ j ≤ l, s′j := sfAi∪{ti}(j)|Vi
.

• for all 1 ≤ j ≤ l, a′j := afAi∪{ti}(j)|Ai
.

116

CHAPTER 6. REACHABILITY 117

The following theorem states the relationship between the local-time

semantic and shallow synchronization1.

Theorem 10 If πLocTime := s0; a1; s1; . . . ; ah; sh is a path in the local-

time semantics then πshallow = 〈prj(πLocTime, 1), . . . , prj(πLocTime, n)〉 is

a shallowly synchronized path.

Vice versa, given a shallowly synchronized path πshallow there exists a

path πLocTime in SLocTime(N) such that πshallow = 〈prj(πLocTime, 1), . . . ,

prj(πLocTime, n)〉.

Proof. (⇒) πshallow is a shallowly synchronized path since:

• for all 1 ≤ i ≤ n, prj(πLocTime, i) |= Si: By construction, the pro-

jection of prj(πLocTime, i) removes from the network path πLocTime all

the transitions which are not over Ai ∪ {ti}. prj(πLocTime, i) |= Si,

since in the transitions removed from πLocTime Si stutters, thus it does

not change the value of its local states.

• for all 1 ≤ i < j ≤ n, prj(πLocTime, i) and prj(πLocTime, j) are con-

sistent: by construction, the projection does not change the order of

states and events of πLocTime, and restricts each projection to a given

alphabet. prj(πLocTime, i) is restricted to all the events in Ai ∪ {ti}
while prj(πLocTime, j) is restricted to all the events in Aj ∪{tj}. Con-

sider the projection of prj(πLocTime, i) and prj(πLocTime, j) over the

common set of events of Ai∩Aj. The two sequences contain the same

events and have the same order by hypothesis and, therefore, they are

equal. Moreover, since πLocTime is in SLocTime(N), the assignment to

the variables ti, tj in the last state of πLocTime is the same. Thus, also

1In the extended version [BCL+10b] of [BCL+10a] the theorem relates paths of the global-time se-

mantics with shallowly synchronized paths, instead of considering the local-time semantics. Applying

Theorem 8 we can get the same result.

117

118 6.2. BOUNDED MODEL CHECKING WITH SHALLOW SYNCHRONIZATION

the assignments to ti and tj in the last state of prj(πLocTime, i) and

prj(πLocTime, j) respectively must be the same.

(⇐) If πshallow is a shallowly synchronized path, then there exists

a path πLocTime in SLocTime(N) such that πshallow = 〈prj(πLocTime, 1),

. . . , prj(πLocTime, n)〉. πi := si0; a
i
1; s

i
1; . . . ; a

i
li; s

i
li. We recursively define

the function γ which maps πshallow to a path πLocTime ∈ SLocTime(N)

(πLocTime := γ(πshallow)):

• Base case: if πi = si0 for all 1 ≤ i ≤ n, then γ(πshallow) := s1
0, . . . , s

n
0

(i.e. all the local paths have a single state).

• Local transition: if there exists an i in 1 ≤ i ≤ n such that πi :=

si0; a
i
0; . . . ; s

i
li−1; a

i
li; s

i
li and ai0 is a local event of Si, then γ(πshallow) :=

s1
0, . . . , s

i
0, . . . , s

n
0 ; a1, . . . , an; γ(〈π1, . . . , π

′
i, . . . , πn〉), where

aj =




aj0 if i = i

aj s.t. aj |= εj = s otherwise

and π′i := si1; a
i
1; . . . ; s

i
li−1; a

i
li; s

i
li (i.e. when a process can move on a

local event, all the other processes stutter).

• Shared transitions: otherwise, since πshallow is a shallowly synchro-

nized path, there exists a set J of indexes and and event a ∈ ⋂i∈J Ai

such that for all i ∈ J , ai |= εi = a, and
∧
i,z∈J si(ti) = sz(tz) (i.e. all

the processes with index in J synchronize on the event a). In this case

γ(πshallow) := s1
0, . . . , s

i
0, . . . , s

n
0 ; a1, . . . , an; γ(〈π′1, . . . , π′n〉), where:

ai =




ai0 if i ∈ J
ai s.t. ai |= εi = s otherwise

and

π′i =




si1; a

i
1; . . . ; s

i
li−1; a

i
li; s

i
li if i ∈ J

πi otherwise

118

CHAPTER 6. REACHABILITY 119

We can prove by induction that πLocTime ∈ SLocTime(N). Moreover, since

the last time of all the components in γ(πshallow) are equal, then

〈prj(πLocTime, 1), . . . , prj(πLocTime,m)〉 is a shallowly synchronized path. �

6.2.2 Symbolic Encoding

In this section we first recall the Bounded Model Checking encoding for the

individual symbolic transition systems S1, . . . , Sn, and then the monolithic

encoding for the network SLocTime(N). Then, we show how we can encode

symbolically the problem exploiting shallow synchronization.

Given a transition system Si = 〈Vi,Wi, Initi, Invi, T ransi〉, its bounded

model checking encoding at depth k is defined as in Section 2.3.1:

BMCSi(k) := Init0i ∧
k∧

j=0

Invji ∧
k−1∧

j=0

Transji ∧ ¬P k

BMCSi(k) is satisfiable iff there exists a path reaching the target condition

in k steps.

Similarly, we can encode the reachability problem for a network N using

the monolithic transition system SLocTime(N) = 〈V,W , Init, Inv, Trans〉:

BMCSLocTime(N)(k) := Init0 ∧
k∧

i=0

Invi ∧
k−1∧

i=0

Transi ∧ ¬P k

Also the encoding in the case of global-time encoding SGlTime(N) is similar.

In both cases, the encoding is “compositional” in the sense that each

automaton is individually encoded. However, the necessity of stuttering

on non-shared events and of performing shared events in the same steps

may cause complex paths (as shown in Fig. 6.1).

In the experimental evaluation, we also consider the variant of the above

encoding where we allow discrete transitions in different automata to occur

at the same step of the encoding (e.g. the step semantic variant of the

synchronization constraints).

119

120 6.2. BOUNDED MODEL CHECKING WITH SHALLOW SYNCHRONIZATION

Now, we show the BMC encoding based on shallow synchronization. We

allow to unroll each transition system for a different bound k, we do not

force processes to stutter and we let shared events to occur at different (lo-

cal) steps. This means that each of the local encodings is able to construct

a local trace.

The reachability problem with bounds k = 〈k1, k2, . . . , kn〉 can be en-

coded as

BmcSS(k) :=
∧

1≤i≤n
BMCSi(ki) ∧ ShallowSync

where ShallowSync encodes the constraints enforcing that all the paths

must be consistent according to Definition 21. In the following, we present

different ways to encode ShallowSync: an encoding based on the enu-

meration of events, and encoding based on local reasoning and one variant

that exploits the Theory of Equalities and Uninterpreted Functions (we

assume to be in the case described in Remark 4, but all the encodings that

we are showing can be lifted to the general case.)

Encoding based on enumeration

The first way to encode ShallowSync is by enumerating all possible

combinations of steps on which the synchronization occurs. For example,

processes P1 and P2 may synchronize over event a, but a may occur in

step 2 for P1, and in step 4 for P2. ShallowSync guarantees that, for

all pairs of processes, (i) if a shared event occurs in the first process, then

the event must occur also in the second process at the same time (possibly

in different steps), and (ii) the final time of the two processes is the same.

120

CHAPTER 6. REACHABILITY 121

The encoding of ShallowSync is:

∧

1≤j<h≤n

∧

a∈Aj∩Ah

∧
1≤ij≤kj(ε

ij
j = a↔ ∨

1≤ih≤kh ε
ih
h = a ∧ tijj = tihh) ∧

∧
1≤ih≤kh(ε

ih
h = a↔ ∨

1≤ij≤kj ε
ij
j = a ∧ tijj = tihh) ∧

∧

1<j≤n
t
kj
j = tk11

Local reasoning

We propose a variant of the previous encoding which can be split into

constraints local to each automaton, and one for each step. The BMC

encoding uses several additional variables. We add the variables to the

BMC encoding and not to the symbolic transition systems. The additional

variables are:

• for each transition system Sj, for each shared event a (i.e. a ∈⋃
1≤z≤n,z 6=j(Aj ∩ Az)), for each step of the encoding i ≤ kj, we de-

clare an additional variable countia,j to represent how many times a

has occurred in Sj before step i;

• for each shared label a (i.e. a ∈ ⋃1≤z≤n,z 6=j(Aj ∩ Az)), a group of

variables occ timei,a to represent the time at which the i-th occurrence

of a is fired;

• for each shared label a, (i.e. a ∈ ⋃1≤z<j≤n(Aj ∩ Az)) a variable alast

to record how many times a has been fired in the whole path;

• a variable clast to record the time at which the system reaches the

target.

We may encode all the newly introduced counter variables using different

domains, like bounded integers (they could be bounded by the maximum

depth we want to reach) or reals. Also, note that the variables without

121

122 6.2. BOUNDED MODEL CHECKING WITH SHALLOW SYNCHRONIZATION

superscript are untimed, in the sense that they do not depend on any

temporal step.

The shallow synchronization formula ShallowSync can be encoded

as:

∧

1≤j≤n

(∧

0≤i<kj

(
ShallowStepij

)
∧CounterInitj∧

∧

0≤i<kj
CounterStepij ∧ FinalShallowj

)

where ShallowStepij states that if in the i-th step, an event a occurs in

the j-th process for the g-th time, then the local time of the process must

be occ timeg,a:

ShallowStepij :=
∧

a∈Aj
(εij = a→

∧

1≤g≤i
(countia,j = g → tij = occ timeg,a))

CounterInit and CounterStep encode how the counters evolve:

CounterStepij := (
∧

a∈Aj
(εij = a→ counti+1

a,j = countia,j + 1)) ∧

((εij = s ∨ εij = t)→ (counti+1
a,j = countia,j))

CounterInitj := (count0a,j = 0)

while FinalShallow states that the final values of the counters and the

local time must be the same:

FinalShallowj := (
∧

a∈Aj
count

kj
a,j = alast) ∧ (t

kj+1
j = clast))

Exploiting richer theories It is possible to represent the above encoding

with richer theories introducing uninterpreted functions symbols. In par-

ticular we represent the time of the i-th occurrence of a label a as a function

122

CHAPTER 6. REACHABILITY 123

occ timea from integers to reals. This way we can rewrite ShallowStep

into

ShallowStepij :=
∧

a∈Aj
(εij = a)→ (tij = occ timea(count

i
a,j))

6.2.3 Related Work

The shallow synchronization encoding can be used to falsify an invari-

ant property (i.e. proving that a set of states is reachable), There ex-

ists several approaches that focus on the falsification problem for hybrid

systems [NMA+02, ACKS02, Sor02, dMRS02, BZL10, ERNF11, IUH11,

GKC13, PKV13, NSF+10, MN10, BL11, CMT13b, BLW+10].

Some approaches [NMA+02, ACKS02, Sor02, dMRS02, ERNF11, IUH11,

GKC13, CMT13b] are based on Bounded Model Checking and SMT solvers.

The characterizing feature of our work is the attempt to leverage the struc-

ture induced by the synchronization of a network of hybrid automata.

The first approach that adopts a shallowly synchronized semantics is

presented in [BL11] for path-oriented bounded reachability analysis of a

network of LHAs. In the approach, one path is selected for each compo-

nent and all selected paths compose a path set for reachability analysis.

Each path is independently encoded to a set of constraints while synchro-

nization controls are encoded according to the position of shared labels.

By merging all the constraints, the path-oriented reachability problem can

be transformed to the feasibility problem of the resulting linear constraint

set, which can be solved by linear programming efficiently. This approach

has been extended in BACH [BLW+10] into a general bounded reachability

analysis technique. Differently from our approach, this technique traverses

the structure of a network of automata using depth-first search and checks

the abstract path set one by one.

In the approaches mentioned above, the search is carried out in two

123

124 6.2. BOUNDED MODEL CHECKING WITH SHALLOW SYNCHRONIZATION

stages: in the first, a discrete abstraction of the problem is constructed,

while in the second the candidate paths found in the abstract state are

checked for consistency in the concrete space. In our approach, the SMT

solver carries out the refinement automatically during the search, on de-

mand. With respect to explicit-state search, the symbolic representation

is less sensitive to the state-space explosion problem. With respect to

abstraction-based techniques, the BMC technique is more tailored to find

error paths.

The shallow semantics (defined in [BL11] and adopted in our BMC

encoding) bears many similarities with the “local-time” semantics defined

in [BJLY98] for networks of timed systems and can in fact be seen as a

generalization to the hybrid case of [BJLY98]. Indeed, neither requires the

synchronization of timed transitions of different components; they both

use local clocks that are re-synchronized upon shared events. The two

semantics differ in the types of runs used to solve the reachability problem:

the shallow semantics consists of sets of local runs, while the local-time

semantics consists of runs in the interleaving composition. As far as we

know, this is the first attempt to exploit the shallow/local-time semantics

to improve BMC.

Partial-Order Reduction (POR) [God96] is one of the most known and

used technique to tackle the state-space explosion problem due to inter-

leaving of concurrent systems. The idea is to identify cases when the order

of transitions is not relevant in order to prune the search space. The ap-

plication of POR techniques is difficult in the context of timed and hybrid

systems because the timed transitions are global actions which typically

interleave the local transition, and thus forbid the pruning performed by

POR. The local-time semantics was proposed in [BJLY98] to enable POR

by removing the synchronization on timed transitions. The main difference

between POR and our encoding is that while POR tackles the interleaving

124

CHAPTER 6. REACHABILITY 125

explosion problem by fixing the order of independent transitions, we allow

them to be executed in parallel.

Also related is the “step” semantics, used in [HN03] for an efficient

encoding of the reachability problem in a network of asynchronous systems.

The work in [HN03] is limited to the case of discrete transitions. Our

approach can be seen as a generalization of the step semantics to the case

of timed transitions.

6.3 K-induction and Implicit Predicate Abstraction

Note. This section presents a joint work with Alessandro Cimatti, Hendro

Hendro and Stefano Tonetta.

In this section we use the transition system definition without input

variables and the invariant formula.

In the following section we present a verification algorithm based on k-

induction and predicate abstraction. The algorithm can be applied to finite

and infinite-state transition systems, and thus can be applied also to the

infinite-state transition system either obtained from a hybrid automaton

H or from a network N = H1|| . . . ||Hn of hybrid automata.

The algorithm is suitable to verify infinite-state transition systems.

While k-induction can be directly applied to this kind of systems, it may

be ineffective. The intuition is that k-induction relies on an equivalence

relation to encode the “simple path condition” that avoids “loops” in the

symbolic exploration of the transition system paths. If the equivalence

relation is the equality between states of the system, then it may be inef-

fective in the case of infinite-state systems. For example, suppose to have

a system with a real counter that is incremented by 1 in each iteration.

Then, the simple path condition that uses equalities will not be effective

(e.g. the encoding is such that it can always find a new state of the system).

125

126 6.3. K-INDUCTION AND IMPLICIT PREDICATE ABSTRACTION

A viable solution is to analyze an abstraction [CGL94] of the original

system. Since the abstraction over-approximate the behavior of the system,

if there are no paths in the abstraction that violates the invariant property

P , then P is satisfied also in the concrete system (i.e. the original system

without abstraction). Among the existing abstraction techniques, Predi-

cate Abstraction [GS97] abstracts an infinite-state system in a finite-state

system: given a set of predicates P , the technique builds a finite-state

system where each finite-state represent all the states of the original sys-

tem that satisfy the same set of predicates. One of the main shortcomings

of predicate abstraction is that it needs to existentially quantify several

variables (all the concrete variables of the system) both in the initial and

in the transition relation of the concrete system. The abstraction can be

obtained computing the set of all the satisfying assignment over the set

of predicates [LNO06, CFG+10, CDJR09, CCF+07b]. This amounts to

perform an ALLSAT enumeration, which can be a bottleneck.

Implicit abstraction [Ton09] is an abstraction technique that perform the

model checking task in the abstract space defined by a set of predicates,

as in predicate abstraction, but without the need to compute the complete

abstraction beforehand. Instead, the abstraction is directly encoded in the

unrolling of the infinite-state system, avoiding expensive quantifier elimi-

nation procedures. The drawback of the approach is that the number of

variables of the system is doubled and there are additional constraints to

encode the abstraction. However, the approach is usually more effective

than computing the abstraction and model check it, also because one may

need to refine the abstraction several times before proving the property.

Instead, the refinement of implicit abstraction may be performed incre-

mentally, supposing that the abstraction is monotonic (i.e. the refinement

only adds new predicates, without removing them). We explore refine-

ment techniques based on interpolation [HJMM04], showing that implicit

126

CHAPTER 6. REACHABILITY 127

abstraction allow us to minimize the number of predicates to be added

during each refinement step. This seems to be really useful when implicit

abstraction is combined with k-induction, since the number of predicates

may impact on the depth needed to prove the property.

6.3.1 Predicate abstraction

In the following we represent the abstraction by a formula A(V, V̂) such

that s, ŝ |= A iff ŝ is the abstraction of s.

Definition 24 (Abstraction) Given a transition system S = 〈V, Init,
T rans〉, a set V̂ of abstract variables and the relation A, the abstract tran-

sition system Ŝ = 〈V̂A, ÎnitA, T̂ ransA〉 is defined as follows:

• ÎnitA(V̂) := ∃V (Init(V),∧A(V, V̂)),

• T̂ ransA(V̂ , V̂ ′) := ∃V, ∃V ′, (Trans(V, V ′) ∧ A(V, V̂) ∧ A(V ′, V̂ ′)).

Once the set V̂ of abstract variables and the relation A are given, the

abstraction ŜA is obtained by existentially quantifying the variables of S,

V and V ′.

The abstraction Ŝ preserves the satisfaction of several properties, such

as invariants. If Ŝ is an abstraction of S, if a condition is reachable in

S, then also its abstract version is reachable in Ŝ. Thus, if P (V) is an

invariant property and Ŝ |= P̂ (V̂), then S |= P .

Predicate abstraction is defined by a set of predicates P, such that each

predicate p ∈ P is a formula over the variables V of S. We define the set

VP := {xp|p ∈ P} of abstract variables (i.e. we define a Boolean variable

xp for each predicate of the abstraction). Then, the abstract relation for

predicate abstraction is defined as:

AP(V, VP) :=
∧

p∈P
xp ↔ p(V) (6.1)

127

128 6.3. K-INDUCTION AND IMPLICIT PREDICATE ABSTRACTION

E
Q

T

E
Q

E
Q

E
Q

T

T

Figure 6.2: Abstract path [Ton09].

Given a formula φ(V), the abstract version φ̂P is obtained by existen-

tially quantifying the variables V , i.e., φ̂P = ∃V, (φ(V) ∧ AP(V, VP)). Sim-

ilarly for a formula over V and V ′, φ̂P = ∃V, V ′.(φ(V, V ′) ∧ AP(V, VP) ∧
AP(V ′, V ′P)).

The abstract system with ŜP = 〈VP, ÎP, T̂P〉 is obtained by abstracting

the initial and the transition conditions.

Implicit predicate abstraction

Implicit predicate Abstraction [Ton09] (IA) embeds the definition of the

predicate abstraction in the symbolic encoding of paths. This is based on

the following formula:

EQP(V, V) :=
∧

p∈P
p(V)↔ p(V)

which relate two concrete states corresponding to the same abstract state.

The formula:

π̂k,P :=
∧

1≤h<k
(Trans(V

h−1
, V h) ∧ EQP(V h, V

h
)) ∧ Trans(V k−1

, V k)

is satisfiable iff there exists an uninitialized path of k steps in the ab-

stract state space. Intuitively, instead of having a contiguous sequence

of transitions, the encoding represents a sequence of disconnected tran-

sitions where every gap between two transitions is forced to lay in the

same abstract state (see Fig. 6.2). In the following, we assume that

128

CHAPTER 6. REACHABILITY 129

(∃V,¬P (V) ∧ AP(V, VP)) ↔ ¬(∃V, P (V) ∧ AP(V, VP)): this can be guar-

anteed adding all the predicates of P to the set of predicates P. BMCP(k)

encodes the abstract bounded model checking problem and is obtained

from π̂k,P by adding the abstract initial and target conditions:

BMCP(k) := Init(V 0) ∧ EQP(V 0, V
0
) ∧ π̂k,P ∧ EQP(V k, V

k
) ∧ ¬P (V

k
)

Similarly, we obtain the abstract encoding of the forward and backward

condition used in k-induction:

kindfwP(k) :=Init(V 0) ∧ EQP(V 0, V
0
) ∧ simpleP(k)

kindbwP(k) :=EQP(V 0, V
0
) ∧ simpleP(k) ∧ EQP(V k, V

k
) ∧ ¬P (V

k
)

simpleP(k) :=π̂k,P ∧
∧

0≤i<j≤k
¬EQP(V i, V j)

6.3.2 Refinement of implicit predicate abstraction

When the abstract model checking process finds that ŜP 6|= P̂P, we cannot

conclude that S |= P . Intuitively, since ŜP has more paths than S, the

abstract counterexample π̂ = ŝ0; . . . ; ŝk may be either a spurious (if it is

the result of the abstraction) or a real counterexample of S. In the case

π̂ is spurious, the precision of the abstraction must be increased and the

model checking task must be repeated until we obtain a result (i.e. S |= P

or S 6|= P). We refer to this iterative process as abstraction-refinement

loop.

The abstraction-refinement loop of implicit abstraction differs from the

standard Counterexample-Guided Abstraction Refinement [CGJ+00] (CE-

GAR) loop, since the computation and the model checking phase are not

separated. Figure 6.3 shows the standard CEGAR loop, which is com-

posed of 4 different phases: (i) computation of the abstraction, (ii) model

checking, (iii) simulation of the abstract counterexample, (iv) refinement

of the abstraction. Instead, implicit predicate abstraction is composed of

129

130 6.3. K-INDUCTION AND IMPLICIT PREDICATE ABSTRACTION

Compute the
abstraction ŜP

S, P,P Model Check
ŜP |= P̂P?

Simulate
Is π̂P spurious?

ŜP 6|= P̂P

Find predicates
P′ to refine the

abstraction

Yes

P := P ∪ P′

S |= P
Yes

S 6|= P
No

Figure 6.3: CEGAR loop.

Model Check
ŜP |= P̂P

S, P,P

Simulate
Is π̂P spurious?

No

Find predicates
P′ to refine the

abstraction

Yes

P := P ∪ P′

S |= P
Yes

S 6|= P
No

Figure 6.4: IA loop.

3 phases, since the computation of the abstraction and the model check-

ing are not separated (see Figure 6.4). In the following, we focus on the

simulation and the refinement phases of the implicit abstraction loop.

A standard technique to simulate an abstract counterexample is BMC.

One may perform BMC on the concrete system S up to the length of π̂,

asserting for each i-th step the assignment to the predicates in the i-th

state of π̂ (i.e. ŝi):

BMCπ̂(k) := BMCP(k) ∧
∧

0≤k
(EQc(V

i, V
i
)) ∧

∧

0≤i≤k
(ŝi)

where EQc(V, V) forces the encoding of the concrete system S, instead of

the predicate abstraction.

EQc(V, V) :=
∧

v∈V
v = v

If the encoding is satisfiable, then we found a concrete counterexample to

P in S, otherwise the counterexample is spurious. For implicit abstrac-

tion this procedure may be performed incrementally on the encoding of

130

CHAPTER 6. REACHABILITY 131

BMCP(k):

If BMCπ̂ is unsatisfiable, then it means that there are no concrete coun-

terexamples in S that corresponds to π̂. In this case, the abstraction can

be refined using interpolation [HJMM04]. In the following, we define the

prefix and the suffix of BMCπ̂ as follows:

Prefπ̂(j) :=Pref(j) ∧
∧

0≤i≤j
(ŝi)

Pref(j) :=Init(V 0) ∧ EQP(V 0, V
0
) ∧ π̂j,P

Suffπ̂(k − j) :=Suff(k − j) ∧
∧

j≤i≤k
(ŝi)

Suff(k − j) :=
∧

j≤h<k
(Trans(V

h−1
, V h) ∧ EQP(V h, V

h
))∧

Trans(V
j−1
, V j) ∧ EQP(V j, V

j
) ∧ ¬P (V

j
)

where Pref and Suff are similar to the definition of prefix and suffix of

Interpolation-based model checking of Section 2.3.1. For each step 0 ≤
i ≤ k we can compute the interpolant Ii of the formulas Prefπ̂(i) and

Suffπ̂(k − j) such that Ii |= Prefπ̂(i) and 6|= Ii ∧ Suffπ̂(k − i). Each Ii

is defined over the set of variables V i. Let Ii[V/ V
i] denote the formula

obtained from Ii replacing all the variables vi ∈ V i with v ∈ V and ρ(φ) be

a function that returns the set of all the predicates of the formula φ (e.g.

ρ(x ≥ 1 ∧ ¬(y + x = 0)) returns {x ≥ 1, x+ y = 0}).
We refine the abstraction adding the set of predicates P′ :=

⋃
0≤i≤k ρ(Ii)

to P. As proved in [HJMM04], the predicates will rule out the counterex-

ample π̂ from the abstraction.

In practice, the refinement is performed incrementally in the existing en-

coding of implicit abstraction, asserting the formula
∧

0≤i≤k EQP′(V
h, V

h
).

Note that, the predicate abstraction obtained from the set of predicates

P induce an abstract, finite-state model with 2P states. Thus, the number

of predicates may have a negative consequences on the performance of the

131

132 6.3. K-INDUCTION AND IMPLICIT PREDICATE ABSTRACTION

k-induction algorithm, that may be forced to explore more states to prove

that a property holds.

The encoding of implicit abstraction allow us to reduce the number of

predicates in P′ to obtain a coarser abstraction, exploiting incrementality

and the unsatisfiability core extraction.

The formula BMCP(k)∧∧0≤i≤k EQP′(V
h, V

h
) is unsatisfiable, since P∪

P′ is guaranteed to rule out all the spurious counterexamples at depth k.

We define a set of additional Boolean variables LP′ = {lp|p ∈ P′} and we

consider the formula:

BMCP(k) ∧
∧

0≤i≤k

∧

p∈P′
(lp → (p(V i)↔ p(V

i
))) (6.2)

The encoding allow us to find a subset of P′ such that the encoding is still

unsatisfiable. In practice, we can check if the spurious counterexample is

reachable in different abstractions changing the truth values of the Boolean

variables in LP′. We use an heuristic algorithm to reduce the predicates

in the refinement, using the incremental interface of the SMT solver. Let

P′′ = ∅. First we assert 2 in the solver the formula 6.2: γ(0) := BMCP(k)∧∧
0≤i≤k

∧
p∈P′(lp → (p(V h) ↔ p(V

h
))) Then, we assert a Boolean variable

lp ∈ LP′, P′′ = P′′ ∪ {p}, and we check the satisfiability of the encoding. If

the encoding is satisfiable, then we chose another predicate p′ from P′ \P′′,
we add it to P′′ and we assert l′p it in the solver. Eventually the encoding

will be unsatisfiable. The set P′′ ⊆ P′ is the set of reduced predicates.

Note that, in the worst case P′′ = P. In practice, we reduce the size of P′′

keeping only its elements that appear in the unsatisfiable core extracted

by the solver.

Note that we do not obtain neither the minimum nor a minimal set

of predicates. An algorithm that computes a minimal set of elements is

presented in [BM07b].

2In the real implementation the formula BMCP(k) is already in the solver stack.

132

CHAPTER 6. REACHABILITY 133

6.3.3 Related Work

The reachability problem for hybrid systems, and network of hybrid sys-

tems, has been extensively studied in the literature (see [Alu11] for a re-

cent survey). A possible classification of the existing approaches to prove

invariant properties divides them in three categories: symbolic reachabil-

ity [HHWT97, FGD+11b, TK04, BBC+12, BBC+14, RS07], deductive veri-

fication [Pla08, PJ04], and abstraction-based approaches [ADI06, CFH+03,

Tiw08].

The symbolic transition system encoding presented in Part II allow us

to reduce the reachability problem of hybrid automata to the reachabil-

ity problem of symbolic transition systems. The main contribution of K-

induction and implicit predicate abstraction is orthogonal to the verifica-

tion technique for hybrid systems, since the technique works for general

infinite-state transition systems.

The main difference of implicit predicate abstraction [Ton09] with re-

spect to the the standard abstraction techniques, such as [LNO06, CFG+10,

CDJR09, CCF+07b], is that the abstraction has not to be computed before

starting the model checking process. Note that, for predicate abstraction,

the computation of the abstraction is the main bottleneck of the verifica-

tion task. A common way to tackle the complexity of predicate abstraction

is to approximate the computation by allowing more transitions (see, e.g.,

[CGJ+00, BPR03, STT09]). The complexity is shifted to the refinement

that must take care of removing spurious transitions, resulting in an in-

creased number of refinement iterations. Instead, we always consider the

abstraction induced by the set of predicates.

There exists a wide literature of technique that can be applied to verify

infinite-state transition systems.

Several approaches apply k-induction on the concrete model [dMRS03,

133

134 6.3. K-INDUCTION AND IMPLICIT PREDICATE ABSTRACTION

Pik07, SDS08, SD10]. However, the main issue with the approach is that

the inductive step may be ineffective on infinite-state systems, where there

exist infinite-paths that are not lasso-shaped.

Interpolation-based model checking [McM03] may be applied on the

infinite-state transition system. The algorithm works on the concrete sys-

tem but, since it builds an over-approximation of the set of the reachable

states, it may be effective.

Recently, several approaches adapted the original IC3 algorithm [Bra11]

to deal with infinite-state systems [CG12, HB12, KJN12b, WK13]. The

techniques presented in [CG12, HB12] extend IC3 to verify systems de-

scribed in the linear real arithmetic theory, and thus can be applied to the

symbolic transition system encodings of linear hybrid automata. These

techniques perform a search in the concrete space, but they may be effec-

tive since they incrementally construct an inductive invariant to prove the

property.

In a recent work [CGMT14a] we applied the implicit abstraction frame-

work to IC3. The result is an efficient algorithm that is not sensitive to

the number of predicates, and that extends the use of IC3 to transition

systems encoded in any background theory, provided that the satisfiability

of the theory is decidable and there is an effective refinement method (e.g.

interpolation). The main difference is that this work uses IC3 as backend

algorithm.

134

Chapter 7

Scenario verification

Note. The material presented in this chapter has already been presented

in [CMT11a, CMT11c, CMT13c].

In this chapter, we concentrate on the problem of scenario-based veri-

fication, that consist of checking if a network of hybrid automata accepts

some desired interactions among the components.

We use a variant of Message Sequence Charts [IT96] (MSCs) extended

with constraints, to express scenarios of such interactions. MSCs are espe-

cially useful for the end users because of their clarity and graphical content.

The ability to check whether a MSC is feasible in a network of HAs (i.e. if

the network may exhibit behaviors that satisfy a given MSC) is an impor-

tant feature to support user validation.

In principle, the problem could be reduced to the reachability of an ac-

cepting state in the composition of the network encoding and an observer

automaton, which is obtained translating the MSC. However, all the dif-

ferent construction may be inefficient and may not scale to more complex

models and scenarios. This because the verification algorithms must ex-

plore the paths in the composition of the system and the monitor. The

length of these paths depends on the model and also on the length of the

MSC.

135

136

We propose a novel approach that exploits the structure of the scenario

to partition and drive the search. We propose two different algorithms

based on Bounded Model Checking and k-induction, to either demonstrate

that a MSC is feasible or unfeasible for a network of hybrid automata.

Both the algorithms are based on an encoding similar to “shallow syn-

chronization” (See Section 6.2.1), where the encoding of each automata is

unrolled independently, and the synchronizations among the components

may happen at different steps.

In the case of BMC, we propose an encoding that is structured around

the events in the MSC, which are used as intermediate “islands”. The idea

is to pre-simplify fragments of the encoding based on the events attached

to the islands. The algorithm proceeds by incrementally increasing the

length of the local paths between two consecutive islands and linking the

local path to the next island by means of equalities. The k-induction

algorithm, that is used to prove the MSCs unfeasibility, is specialized to

the structure of the MSC, so that the “simple path” condition is localized

in the fragments between the events, rather than being imposed globally

on the whole network.

The encoding is also suitable to generate additional information for the

end user in the case a scenario is unfeasible. The problem of generating

an explanation for the unfeasibility of an MSC is of practical interest. Op-

posed to the feasible case, where the algorithm may produce a simulation

trace, in the unfeasible case the user does not have any additional debug

information. We also provide techniques to obtain additional information

that explain the reasons for unfeasibility (e.g. which components are in-

volved, which temporal restrictions between events in the MSC are too

strong).

The techniques exploit the SMT solver capabilities, like incrementality,

unsatisfiable core extraction and interpolation to generate explanations.

136

CHAPTER 7. SCENARIO VERIFICATION 137

First, in Section 7.1 we define the scenario-verification problem. Then,

we present the specialized verification techniques for both feasibility (Sec-

tion 7.2) and unfeasibility (Section 7.3). In Section 7.4 we describe different

explanation of unfeasibility for an MSC, and their usefulness on several case

studies. We conclude the Chapter discussing related works.

7.1 Problem definition

In order to support user validation, it is very important to be able to

check whether a HAN may exhibit behaviors that satisfy a certain scenario,

specifying some desired or undesired interactions among the components.

We use the language of Message Sequence Charts (MSCs) [IT96] and its

extensions to express scenarios of such interactions.

An MSC defines a single (partial-order) interaction of the components

of a network N = H1|| . . . ||Hn. MSCs have been extended in several ways.

We consider here a particular variant, enriched with additional constraints,

which turns out to be very useful and easy to handle with the SMT-based

approach.

An MSC m is associated with a set of events Am ⊆ AN , where AN =⋃
1≤i≤nAi is the set of all the events of the network N . The typical implicit

assumption is that the set Am contains all the synchronization events of

the network. Since we are dealing with networks of hybrid automata the

timed event is not part of Am and, thus, is not present in the sequence of

events specified by the MSC. Therefore, we assume that if N is a network

of the hybrid automata H1, . . . , Hn with alphabet respectively A1, . . . An,

then Am =
⋃

1≤i<j≤nAi ∩ Aj and thus the timed event is not part of Am
1.

The MSC defines a sequence of events for every component Hi of the net-

1The techniques presented in this chapter can be adapted to handle synchronizations which are not

in Am.

137

138 7.1. PROBLEM DEFINITION

work, called instance of Hi. An instance σi of Hi is a sequence a1; . . . ; al ∈
(Am ∩ Ai)

∗ of events of Hi. We denote the j-th event aj of the instance

σi with σi[j] and the length of σi with |σi|. Along each instance line σi

there is a finite set of local segments {lsg(σi[0]), . . . , lsg(σi[l])} that denote

the position between two consecutive events: lsg(σi[j]) is the local segment

between the j-th event and the j+1-th event of σi. The first local segment

from the beginning of the instance to the first event is lsg(σi[0]) and the

final local segment after the |σi|-th event is lsg(σi[l]).

In the following, we associate to each hybrid automaton Hi an infinite-

state transition system Si, defined as in the local time semantic encoding

of Section 4.2. Also, we denote with τi the set of local events of the i-th

automaton in the network, i.e. τi = Ai ⊆
⋃
j 6=iAj. Hi accepts the instance

σi with respect to Am iff the FOTS Si of Hi accepts σi with respect to Am

(Si |=m σi). Si |=m σi iff there exists a trace w accepted by Si such that

the sub-sequence of events in Am of w is equal to σi (i.e. w|∨a∈Am ε=a = σi).

In this case we say that w is compatible with σi. In other words, Si accepts

the instance with respect to Am iff there exists a path π of Si over a trace

compatible with σi. In such cases, we write π |=m σi.

If π |=m σ, π must be in the form s0; ε = τ ; . . . ; ε = τ ; sh1; ε = σ[1]; s(h1+1);

ε = τ ; . . . ; ε = τ ; sh|σ|; ε = σ[|σ|]; s(h|σ|+1); ε = τ ; . . . ; ε = τ ; sh(|σ|+1)
, where sh

is a model over the state variables Vi of Si and τ are local events of Hi. We

denote the sub-sequences of the path π in which it is split by σ as follows:

• prej(π) = shj is the source state of the transition labeled with ε = σ[j]

in π.

• postj(π) = shj+1 is the destination state of the transition labeled with

ε = σ[j] in π.

• locj(π) = shj+1; . . . ; shj+1
is the sequence of states between the j-th

and the j + 1-th shared events, where we denoted 0 with h0.

138

CHAPTER 7. SCENARIO VERIFICATION 139

GateControllerTrain

Exit

Raise

Lower

Approach

Figure 7.1: An MSC for the Train-Gate-Controller [Hen96].

An MSC is the parallel composition σ1|| . . . ||σn where σi is an instance

of Hi. An MSC σ1|| . . . ||σn is consistent iff for every pair of instances σi and

σj the projection on the common alphabet is the same, i.e., if A = Ai∩Aj,

σi|A = σj|A. Henceforth, we assume that the MSCs are consistent.

The network N accepts the MSC m iff the FOTS SLocTime(N) =

S1|| . . . ||Sn accepts m (SLocTime(N) |= m). SLocTime(N) |= m iff there

exists a trace w accepted by SLocTime(N) such that, for every Si, the

sub-sequence of events in Am ∩ Ai is equal to σi (w|(∨a∈Am ε=a) = σi). In

other words, SLocTime(N) accepts the MSC m iff there exists a path of

SLocTime(N) over a trace compatible with every instance of the MSC.

Vm :=
⋃

1≤i≤n Vσi is the set of variables of the CMSC m, where for all 1 ≤
i ≤ n, Vσi :=

⋃
0≤j≤(|σi|+1) V

j
i (e.g. vji represents the value of the variable vi

of the i-th component just before the j-th event σi[j] of σi). We define a

Constrained MSC (CMSC) as a pair 〈m,φ〉 where m is an MSC σ1|| . . . ||σn,
φ = φ0 ∧ φ1 ∧ . . . ∧ φn, φ0 is a formula over Vm and for all 1 ≤ i ≤ n, φi is

a formula over V j
i . Given a path π = s0; a1; s1; . . . ; ak; sk of NLocTime(H),

the projection of π over Si is the path prj(π, i) obtained projecting the

states over the Si-th component and removing all the transitions over events

139

140 7.2. SCENARIO-DRIVEN BMC

which are not in Ai. SLocTime(N) |= 〈m,φ〉 iff there exists a path π of

SLocTime(N) such that
⋃

1≤i≤n,0≤j≤|σi| prej(prj(π, i)) |= φ.

Example 10 Figure 7.1 shows an MSC for the railroad model from [Hen96].

There is an instance for each automaton in the network, Train, Controller

and Gate. The MSC represents a scenario where the Train communicates

with the controller when approaching the Gate and the controller synchro-

nizes with the Gate to close it. When the Train is far, it synchronizes with

the Controller, which opens the Gate.

The model checking problem for a CMSC 〈m,φ〉 is the problem of check-

ing if a network satisfies a CMSC.

The classical approach is based on the construction of a monitor that,

composed with SLocTime(N), forces SLocTime(N) to follow only paths that

satisfy the MSC. It is in spirit similar to the automata-approach to LTL

model checking [Var95]. The SMT-based verification techniques are applied

off the shelf on the resulting FOTS. The monitor can be one additional

component in the network or consist of many components one for each

instance of the CMSC. Exploiting local-time semantics, the monitor can

also be reduced to follow one interleaving of the partial-order reduction

defined by the CMSC. However, the experimental analysis of [CMT11a]

shows that the best option is to use a monitor per component.

7.2 Scenario-driven BMC

The drawbacks of the traditional SMT-based encoding is that it cannot

exploit the sequence of messages prescribed by the MSC in order to sim-

plify the search because of the uncertainty on the number of local steps

between two events. We encode the path of each automaton independently,

exploiting the local time semantics, and then we add constraints that force

140

CHAPTER 7. SCENARIO VERIFICATION 141

shared events to happen at the same time, as in shallow synchronization

[BCL+10a]. Moreover, we fix the steps corresponding to the shared events

and we parametrize the encoding of the local steps with a maximum num-

ber of transitions. The encoding is conceived in order to maximize the

incrementality of the solver, as described in Section 2.1.3, along the in-

crease of the number of local steps. The idea is that we keep the encodings

of the sequences of local transitions separated from the encoding of the

next shared event, and we unroll them incrementally, while we add and re-

move accordingly the equality constraints which glue such sequences. Note

that the encoding of a sequence of local transitions does not fix the exact

number of local transitions, since we allow the stutter action. This because

we do not known a priori what will be the exact length of each local path.

Let us consider a hybrid automata network N = H1|| . . . ||Hn and the

correspondent FOTS Si = 〈Vi,Wi, Initi, Invi, T ransi〉, representing Hi,

for 1 ≤ i ≤ n, in the local-time semantics. We denote with Ti|φ the

transition condition restricted to the condition φ, i.e., Ti|φ = Transi ∧ φ.

We abbreviate Ti|ε=a with Ti|a and Ti|ε∈τi∪{s,t} with Ti|τ . We associate a

bound ki[j] to the j-th segment lsg(σi[j]) of the i-th instance. ki[j] is used

to limit the number of transitions in the local path locj(π) of a path π

satisfying the instance σi. We use ki to denote 〈ki[0], . . . , ki[h|σi|]〉 and k

to denote 〈k1, . . . , kn〉. Moreover, for all 1 ≤ i ≤ n and 0 ≤ j ≤ |σi|, we

define the index idxi[j] such that idxi[0] = −1 and if 〈i, j〉 6= 〈i, j′〉 then

idxi[j] + h 6= idxi[j
′] + h′ for all h, h′ with 0 ≤ h ≤ ki[j] and 0 ≤ h′ ≤ ki[j

′]

(i.e. the indexes of two different segments do not overlap).

The following encoding represents all paths of the network compatible

with the MSC where the local transitions of the j-th segment of the i-th

instance have been unrolled up to ki[j] times (note that the “up to” is due

141

142 7.2. SCENARIO-DRIVEN BMC

to the ability of stuttering):

enc(m, k) :=
∧

1≤i≤n
enc(σi, ki) ∧

∧

1≤j<i≤n
sync(σj, σi) ∧

finalsync(m, k)

enc(σi, ki) := Init0i ∧ Inv0
i ∧ enc(σi, ki[0]) ∧∧

1≤j≤|σi|
(V idxi[j−1]+ki[j−1]+1 = V idxi[j] ∧

T
idxi[j]
i|σi[j] ∧ Inv

idxi[j]
i ∧ enc(σi, ki[j]))

enc(σi, ki[j]) :=
∧

1≤h≤ki[j]
(T

idxi[j]+h
i|τ ∧ Invidxi[j]+h

i)

sync(σj, σi) :=
∧

1≤z≤|σj|A{i,j} |=|σi|A{i,j} |
t
idxi[f

ij
i (z)]

i = t
idxj [f

ij
j (z)]

j

finalsync(m, k) :=
∧

1≤i<n,j=i+1

(t
idxi[|σi|]+ki[|σi|]+1
i = t

idxj [|σj |]+kj [|σj |]+1
j)

where A{i,j} = Ai ∩Aj and the function f iji maps the z-th event az shared

between σi and σj to the index of az in σi. More, specifically, if σj|A = σi|A =

a1; . . . ; al, then f iji , f
ij
j : N → N are such that az = σi[f

ij
i (z)] = σj[f

ij
j (z)],

for 1 ≤ z ≤ l.

Intuitively, enc(m, k) encodes the unrolling of each component according

to its instance and guarantees that the different unrollings have the same

time for every occurrence of a shared event and the same final time. In

order to encode the paths that satisfy a CMSC 〈m,φ〉 we have just to

conjoin the additional constraints φ:

enc(〈m,φ〉, k) := enc(m, k) ∧ φ[v
idxi[j]
i /vi[j]]

where for all the instances i, 1 ≤ i ≤ n, and all events j, 1 ≤ j ≤ |σi|, we

substitute vi[j] in φ with the timed variable v
idxi[j]
i .

142

CHAPTER 7. SCENARIO VERIFICATION 143

Example 11 The Figure 7.2 shows the encoding of the MSC of Exam-

ple 10, fixing the length of all the local steps to 1 (we abbreviated the name

of the components with their initial letter). Each sequence of states rep-

resents the encoding for a single instance of the MSC, the double arrows

represent the links of the local segments with the shared events, and the

dotted lines represent the equalities over the local time variables.

TT |τ TT |Approach TT |τ TT |Exit TT |τ

TC|τ TC|Approach TC|τ TC|Lower TC|τ TC|Exit TC|τ TC|Raise TC|τ

TG|τ TG|Lower TG|τ TG|Raise TG|τ

V 1 = V idxC [1] V idxC [1]+kT [1]+1 = V idxC [2] V idxC [2]+kT [2]+1 = V idxC [3] V idxC [3]+kT [3]+1 = V idxC [4]

V 1 = V idxT [1] V idxT [1]+kT [1]+1 = V idxT [2]

V 1 = V idxG[1] V idxG[1]+kT [1]+1 = V idxG[2]

tC = tT tC = tT

tC = tT

tC = tG tC = tG

tC = tT

Figure 7.2: Encoding for the Train-Gate-Controller MSC fixing to 1 the length of all the

local bounds.

Theorem 11 If enc(〈m,φ〉, k) is satisfiable then N |= 〈m,φ〉. Vice versa,

if N |= 〈m,φ〉, then there exist integers k such that enc(〈m,φ〉, k) is sat-

isfiable.

Proof. Let us consider a model µ of the formula enc(〈m,φ〉, k). µ is a

model over the variables of the network SLocTime(N). For all 1 ≤ i ≤ n,

consider the projection πi of µ over the symbols defined in the Σ-structure

Vi and Wi of Si. By construction πi is a path of Si (i.e. πi |= Si), πi |=m σi

and
⋃

1≤i≤n,0≤j≤|σi| prej(πi) |= φ. Moreover, for all 1 ≤ i < j ≤ j, πi and

πj are consistent, since the MSC is consistent and the events happen at

the same time due to sync. Thus, 〈π1, . . . , πn〉 is a shallowly synchronized

143

144 7.2. SCENARIO-DRIVEN BMC

path (See Definition 22). By Theorem 10, there exists a path πLocTime in

SLocTime(N) such that πshallow := 〈prj(πLocTime, 1), . . . , prj(πLocTime, n)〉.
By the definition in Section 7.1, it means that N |= 〈m,φ〉.

If N |= 〈m,φ〉, then there is a path πLocTime such that πLocTime |=
SLocTime(N). This means that prj(πLocTime, i) |=m σi, prj(πLocTime, i) |=
Si and

⋃
1≤i≤n,0≤j≤|σi| prej(prj(πLocTime, i)) |= φ.

By Theorem 10, 〈prj(πLocTime, 1); . . . ; prj(πLocTime, n)〉 forms a shallowly

synchronized path. Let us consider a k such that, for all 1 ≤ i ≤ n, for

all 0 ≤ j ≤ |σi|, ki[j] is equal to the length of the local segment lsg(σi[j])

in prj(πLocTime, i). prj(πLocTime, 1), . . . , prj(πLocTime, n) |= enc(〈m,φ〉, k),

since each prj(πLocTime, i) |= enc(σi, ki), the projections of the paths sat-

isfy the constraints of the CMSC φ by definition (i.e. for each automa-

ton i, 1 ≤ i ≤ n, and for each segment of the CMSC j, 0 ≤ j ≤ |σi|,
prej(prj(πLocTime, i)) |= φ), and, since 〈prj(πLocTime, 1); . . . ; prj(πLocTime, n)〉
is a shallowly synchronized path, the sync constraints holds in enc(〈m,φ〉, k)

(i.e. the synchronization happen at the same time and the time at the end

of all the paths is the same). �

In the following, we detail how we increase the bound of the local tran-

sitions incrementally adding new constraints to the solver. We consider

the same number k of local steps for each segment of the CMSC. This sim-

plifies the algorithm because it is not necessary to decide which segment

to increment and reduces the number of calls to the SMT solver.

With regard to the formulas introduced in Section 2.1.3 to describe the

incremental interface to the SMT solver2, we define the partial encoding

2In the definition the γ-s formulas are asserted in the solver and never removed, while the β-s formulas

are asserted and removed in every satisfiability check.

144

CHAPTER 7. SCENARIO VERIFICATION 145

for an instance σi as follows:

γenc(σi)(0) := Init0i ∧ Inv0
i ∧

∧

1≤j≤|σi|
T

idxi[j]
i|σi[j] ∧ Inv

idxi[j]
i

γenc(σi)(k) :=
∧

0≤j≤|σi|
T

idxi[j]+k
i|τ Inv

idxi[j]+k
i

βenc(σi)(k) :=
∧

0≤j<|σi|
V idxi[j]+k+1 = V idxi[j+1]

For each instance σi we encode the initial condition and all the |σi| events

in γenc(σi)(0). We incrementally increase the length of the local step in

γenc(σi)(k) and in βenc(σi)(k), which glues the last state of a sequence of

local steps with the first state that performs the next shared event.

The incremental encoding considering the whole MSC m is defined as

follows:

γ(0) :=
∧

1≤i≤n
γenc(σi)(0) ∧

∧

1≤i<j≤n
sync(σi, σj)

γ(k) :=
∧

1≤i≤n
γenc(σi)(k)

β(k) :=
∧

1≤i≤n
βenc(σi)(k) ∧ finalsync(m, k)

7.2.1 Invariant generation

In order to strengthen the scenario-driven encoding, and thus speed up the

search, we generate invariants for each automata in the network.

For each automaton Hi of N , we compute a finite-state abstraction of

its symbolic transition system Si, Then, we use standard techniques, in

our case BDDs, to compute invariants which holds in different sections of

σi. In particular, we find an over-approximation of the set of the reachable

states of Ŝi between two shared events, just before an event, and just after

an event. The invariants are then conjoined to the scenario encoding.

145

146 7.2. SCENARIO-DRIVEN BMC

Given an MSC instance σi = a1; . . . ; ah for the system Si, for all 0 ≤
u ≤ h, we find the constraints preu, postu, and locui, such that, for every π

such that π |= σ:

• for all u, 0 ≤ u ≤ h, prej(π) |= locu;

• for all u, 1 ≤ u ≤ h, postj(π) |= preu;

• for all u, 1 ≤ u ≤ h, locj(π) |= postu.

Thus, the constraints over-approximate the set of the reachable states

of the network that are consistent with the MSC. We can safely strengthen

the encoding of the scenario with such constraints in order to speed up the

search.

We perform the invariant generation process for Si and σ in three dif-

ferent steps: we compute the abstraction Ŝi, we perform a forward reach-

ability analysis computing a first set of invariants and finally we refine the

invariants with a backward reachability analysis. We compute the Boolean

Abstraction Ŝi of Si, replacing each predicate of Si with a fresh Boolean

variable, and we represent Ŝi with Binary Decision Diagrams (BDDs).

Then, we perform a forward reachability analysis on Ŝi computing an over-

approximation of posti and loci. We start the reachability analysis from

the initial states of Ŝi, and we compute loc0 with a fixed-point of the image

restricted to the local events τ . Then, starting from loc0, we compute post1

with a single image computation restricted to a1. We alternate these two

steps for all ai of σ. Finally, we perform a backward reachability analysis

on Ŝi to compute prei and to refine posti and loci. We start from posth and

we compute the precise preh as the intersection of loch−1 and the pre-image

of posth restricted to the event ah. Then, we refine loch−1, intersecting it

with the fixed-point of the pre-image which starts from preh and is re-

stricted to τ . At this point we refine posth−i, intersecting it with loch−1.

We iterate these steps following σ in reverse order.

146

CHAPTER 7. SCENARIO VERIFICATION 147

7.3 Scenario-driven Induction

In this section, we describe how the structure of the MSC can be exploited

to tailor k-induction to prove the unfeasibility of the scenario. For the

base case, we use the encoding of Section 7.2. For the inductive step, we

apply the simple path condition to each segment of the scenario. The

use of different local bounds as presented in Section 7.2 allows k-induction

to stop the unrolling of the local path at different depths according to the

local structure of the component at the considered segment.

The goal is to find an inductive condition kind(〈m,φ〉, k) such that, if

kind(〈m,φ〉, k) and enc(〈m,φ〉, k) are unsatisfiable for some k, then N 6|=
〈m,φ〉. It is not possible to apply the simple path condition independently

to each segment of the encoding. There exists two main difficulties. The

first is that the projection of a simple path on a component may not be a

simple path. The second is that if a simple path is the concatenation or

the parallel composition of two paths, these may not be the longest simple

paths of their segments.

The CMSC 〈m,φ〉 defines a partial order ≤m among the segments of m

defined as the transitive closure of the smallest relation such that:

• lsg(σi[j]) ≤m lsg(σi[j
′]) if 0 ≤ j ≤ j′ ≤ |σi|;

• lsg(σi[j]) ≤m lsg(σi′[j
′]) if lsg(σi[j]) = lsg(σi′[j

′]) or there exists a

lsg(σi′′[j
′′]) such that there is a synchronization between σi[j] and

σi′′[j
′′] and lsg(σi′′[j

′′]) ≤m lsg(σi′[j
′]).

Given a CMSC 〈m,φ〉 and the local segment lsg(σi[j]), 〈mi[j], φi[j]〉 is

partial CMSC where:

• mi[j] = σ1|| . . . ||σn such that for all 1 ≤ v ≤ n, |σv| ≤ |σv| and for all

1 ≤ z ≤ |σv| σv[z] = σv[z] and lsg(σv[z]) ≤m lsg(σi[j]) or lsg(σv[z]) =

lsg(σi[j]), while for all |σv| < z ≤ |σv| lsg(σv[z]) 6≤m lsg(σi[j]).

147

148 7.3. SCENARIO-DRIVEN INDUCTION

• φi[j] is the conjunction of all the conjuncts of φ which are over variables

in mi[j].

We define the local simple path condition as follows:

kindi[j] := enc(〈mi[j], φi[j]〉, k) ∧ simplei[j]
simplei[j] :=

∧

1≤h≤z≤ki[j]
s

idxi[j]+h
i 6= s

idxi[j]+z
i

Theorem 12 If there exist k s.t. enc(〈m,φ〉, k) is unsatisfiable and, for

all i, j, kindi[j] is unsatisfiable, then N 6|= m.

To prove the theorem we provide two additional lemmas.

We introduce the following notation short-hands. Given a tuple of

bounds k we write k
′ ≥ k iff for all 1 ≤ i ≤ n, for all 0 ≤ j ≤ |σi|,

k
′
i[j] ≥ ki[j]. Given a path π such that π |=m σi, |locj(π)| is the length of

the sequence of states locj(π) of π.

The CMSC 〈m,φ〉, defines a partial order <m among the segments of

m defined as the transitive closure of the smallest relation such that:

• lsg(σi[j]) <m lsg(σi[j
′]) if 0 ≤ j ≤ j′ < |σi|;

• lsg(σi[j]) <m lsg(σi′[j
′]) if there exists a lsg(σi′′[j

′′]) such that there

is a synchronization between σi[j] and σi′′[j
′′] and lsg(σi′′[j

′′]) <m

lsg(σi′[j
′]).

Note that <m is defined in a similarly to ≤m.

Lemma 2 Given a CMSC 〈m,φ〉 and a tuple of bounds k, if enc(〈m,φ〉, k)

is satisfiable then for all k
′ ≥ k, enc(〈m,φ〉, k′) is satisfiable.

Lemma 2 states that if enc(〈m,φ〉, k) is satisfiable, then all the encodings

which consider a k
′
>= k are satisfiable as well, due to the insertion of

stuttering action.

148

CHAPTER 7. SCENARIO VERIFICATION 149

Lemma 3 For all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|, if kindi[j] is unsatisfiable

for bounds k, then for all paths π such that π |= enc(〈mi[j], φi[j]〉, k) and

|locj(prj(i, π))| > ki[j], locj(prj(i, π)) is not simple.

The proof of both lemma is available in the Appendix A.1

Proof. Theorem 12 Suppose that N |= m.

By Theorem 11 there exist bounds k
′

and a path π′ such that:

• π′ |= enc(〈m,φ〉, k′);

• for all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|, locj(prj(π
′, i)) is of length k

′
i[j].

We consider the bounds k
′
such that k

′ ≥ k. If we show that the formula

enc(〈m,φ〉, k′) is unsatisfiable, then by Lemma 2 we known that for all the

k′′ ≤ k enc(〈m,φ〉, k′′) is unsatisfiable.

For all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|, by Lemma 3 it does not exist a π′′

consistent with 〈m,φ〉 such that its local segment locj(prj(π
′′, i)) is simple

and longer than ki[j].

Thus, there exists a path π such that:

• for all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|:

– prej(prj(π, i)) = prej(prj(π
′, i));

– postj(prj(π, i)) = postj(prj(π
′, i));

– the length of locj is ki[j].

• π |= enc(〈m,φ〉, k).

This contradicts the fact that by hypothesis enc(〈m,φ〉) is unsatisfiable. �
In order to check if k-induction holds incrementally, we visit the MSC m

according to the partial order ≤m. We incrementally apply the partitioned

simple path condition to the local segments of m. The incremental checks

exploit the incremental interface of the solver.

149

150 7.4. UNFEASIBILITY EXPLANATION

The structure of local transitions between two shared events is often

simple and without loops. In these cases, the alternation without stuttering

allows k-induction to prove the unfeasibility of scenarios. If there exists

a loop in the local structure of the automaton (i.e. a loop where all the

transitions are labelled with a local event), due to the infinite nature of

the state space we may have an infinite path in the system without loops,

so that the simple-path condition never holds. In order to prove the

unfeasibility of scenarios also in these cases, we combine k-induction with

predicate abstraction as described in Section 6.3. We can associate to

different segments of the MSC different abstractions of the local transition

relation. This way, we can obtain a fine-grained abstraction that abstracts

away the continuous components only where necessary.

7.4 Unfeasibility Explanation

In the case the CMSC 〈m,φ〉 is unfeasible in the network N we provide the

user with explanations that help to identify the reasons of the unfeasibility

of the CMSC. In this section we first describe what kind of explanations we

provide, their formalization and how we compute them. Then, we present

three different case studies where we use the unfeasibility explanation to

infer the cause of the unfeasibility of the scenario.

We identify the following three types of explanations:

1. an unfeasible prefix of the CMSC, which reduces the number of events

and constraints to be inspected by a user to find a bug (either in the

scenario or in the network);

2. why the paths of the network consistent with m cannot satisfy φ.

The explanation is a formula that helps the user to understand the

behaviors of N that are not consistent with φ;

150

CHAPTER 7. SCENARIO VERIFICATION 151

3. why the paths of a component consistent with the corresponding in-

stance of m are not consistent with the rest of m: this formula helps

the user in detecting if a component is involved in the unfeasibility

and, in that case, what synchronization constraints are not consistent

with the other components in the network.

A prefix of a CMSC 〈m,φ〉 is a CMSC 〈m,φ〉 such that: m := σ1|| . . . ||σn
and m is consistent; for all 1 ≤ i ≤ n, |σi| ≤ |σi| and for all 1 ≤ j ≤ |σi|,
σi[j] = σi[j]; φ contains only the conjunct of φ over the variables Vm.

Given a CMSC 〈m,φ〉 and a network N such that N 6|= 〈m,φ〉, the

unfeasibility explanation of the first type is an unfeasible CMSC prefix

〈m,φ〉 of 〈m,φ〉.
Given a path πi |= σi and a tuple of bounds ki := 〈ki[0], . . . , ki[|σi|]〉,

where ki[j] is the length of a local segment, we say that πi is bounded by ki

if for all 0 ≤ j ≤ |σi| the length of lsg(σi[j]) in πi is ki[j]. Given a path π of

SLocTime(N) compatible with m and k := 〈k1, . . . , kn〉, where ki is a tuple

of bounds, we say that π is bounded by k iff for all 1 ≤ i ≤ n, prj(π, i) is

bounded by ki.

Given a CMSC 〈m,φ〉 unfeasible in N and bounds k, an explanation

of the second type is a formula ψ over Vm such that N ‖ m |=k ψ and

ψ ∧ φ |= ⊥, where N ‖ m |=k ψ iff for all π of SLocTime(N) bounded by k,⋃
1≤i≤n,0≤j≤|σi|+1 prej(prj(π, i)) |= ψ.

Given a CMSC 〈m,φ〉 unfeasible in N and bounds k, an explanation

of the third type is a formula ψi over Vσi such that Si ‖ σi|φi |=k ψi and

‖j 6=i Sj ‖ σj|φj |=k ¬ψi. Si ‖ σi|φi |=k ψi iff for all paths πi of Si bounded by

ki
⋃

0≤j≤|σi|+1 prej(πi) |= ψi and ‖i6=j Sj ‖ σj|φj |=k ¬φ iff for i 6= j, for all

πj bounded by kj,
⋃
i6=j,0≤v≤|σj |+1 prev(πj) |= ¬ψi.

We extract the explanations by exploiting both unsatisfiable cores and

interpolation. In particular, when we perform the inductive check incre-

mentally on the CMSC 〈m,φ〉 we run a satisfiability check after we have

151

152 7.4. UNFEASIBILITY EXPLANATION

encoded all the synchronizations in the same partial order defined by ≤m.

If the encoding is unsatisfiable, by Theorem 12 we known that 〈m,φ〉 is

unfeasible. We extract the unsatisfiable core ξ of the encoding and different

interpolants from the same proof of unsatisfiability.

In order to compute an unfeasible CMSC prefix 〈m,φ〉, we use the unsat-

isfiable core ξ. ξ contains a subset of the encoding of the local paths, events,

and constraints, since they are encoded in different conjuncts. Thus, ξ is

fine-grained enough to obtain a precise subset X of the elements of the

CMSC. For example, if the formula Trans
idxi[j]
i|σi[j] ∧ Inv

idxi[j]
i is in ξ, it means

that the encoding of the event σi[j] is in X. The unfeasible CMSC prefix

〈m,φ〉 is obtained taking all the elements of 〈m,φ〉 that are in the relation

≤m with an element of X.

We compute the explanation of the second type ψ using interpolation.

We partition the formulas in the unsatisfiable core ξ in two different formu-

las, A and B. A is the conjunction of all the formulas of ξ that encodes the

parallel composition of the network N and the MSC m (i.e. enc(m, k)),

while B contains the other formulas of ξ (i.e. φ[v
idxi[j]
i /vi[j]]). ψ is an

interpolant of A and B. Note that, if ψ |= ⊥, we deduce that φ is not

responsible of the unfeasibility and that the unrolling of the network is

inconsistent by itself.

Finally, we compute the third explanation type ψi for the i-th compo-

nent of N . We partition the unsatisfiable core ξ in the formulas A and

B. A is the conjunction of all the formulas of ξ that encode the unrolling

of the i-th component along its instance σi and CMSC constraints (i.e.

enc(σi, ki) and φi), while B is the conjunctions of all the other formulas of

ξ. If ψi |= >, the component does not play a role in the unfeasibility. On

the contrary, if ψi |= ⊥, the component does not have a path compatible

with its instance.

Note that, when the abstraction is used to prove the unfeasibility of the

152

CHAPTER 7. SCENARIO VERIFICATION 153

scenario, the three types of explanations are still valid.

Distributed Controller [HH94]. This benchmark models the interactions

of two sensors (sensor1 and sensor2) with a controller of a robot. The

two sensors interact with a scheduler to access a shared processor. The

time needed for computation by the two sensors is bounded but it is non-

deterministic, and is tracked in the scheduler with two stopwatches (x1 and

x2). Also, the controller sets a time-out (variable z = 0) after the receipt

of the first message. If the time-out expires (z = 10) the controller discards

all the received data.

The MSC shown in Figure 7.3 models the interaction where sensor1

requests the processor; the scheduler grants it for a total duration of x2

time; sensor2, which has a higher priority, requests and receives grant to

the processor; when sensor2 finishes its computation (event read2), sensor1

accesses the processor (event read1); in parallel, sensor2 sends its data to

the controller; finally, the sensor1 and the controller synchronize on send1

and ack1. The time spent to process the data of sensor1 is given by the

stopwatch x1. In Figure 7.3 x1 is the sum of the intervals x′1 and x′′1.

Moreover, we add two additional conditions on the duration of x1 and x2

in the scheduler (x2 = 1.5 and x1 = 1.1), and we fix the maximum time

spent by the controller before receiving the data from sensor1 (z < 1). The

MSC augmented with these constraints is unfeasible.

The scenario is proved unfeasible. In Figure 7.3 we outline in gray the

elements of the scenario, events and constraints, which contribute to the

unfeasibility. In particular, the unsatisfiable core contains all the events of

the CMSC apart from Ack1 and Ack2. Thus, the unfeasible CMSC prefix

does not include the last event Ack1.

We exploit the interpolation techniques to get the constraints z >=

x1.All the interpolants are computed by the SMT solver, then we man-

153

154 7.4. UNFEASIBILITY EXPLANATION

Send1

Ack1

Ack2

Request1

Send2

Read1

Read2

Request2

z < 1

x′
1
+ x′′

1
= 11

10

x′′
1

x′
1

x2 = 3
2

Sensor2SchedulerSensor1 Controller

Figure 7.3: The MSC for the distributed controller.

ually simplify them removing redundant constraints. In fact, z counts

the time elapsed in the controller between the send1 event and the send2

event. This means that the controller cannot receive the send1 message

before x1 seconds, which is the time spent to process data from sensor1.

If we fix z >= 1.1 then the scenario is feasible. We find a similar re-

sult if we look at the interpolant obtained partitioning the encoding in

the constraints from sensor1 (the A formula) and the rest of the net-

work and the scenario (the B formula). We denote with timeevent
component

the time variable of component when performing event. The interpolant is

6 <= time
request1
sensor1 − timeread1

sensor1
+ timesend1

sensor1
. Since time

request1
sensor1 is 6, from the

initial condition and invariants of sensor1, we can infer that the scenario and

the other processes in the network do not allow timeread1
sensor1

<= timesend1
sensor1

,

which is a necessary condition for sensor1.

154

CHAPTER 7. SCENARIO VERIFICATION 155

Audio Control Protocol [HH94]. The benchmark models a protocol that

transmits an arbitrary-length bit sequence from a sender to a receiver based

on the timing-based Manchester encoding. The protocol relies on division

of the elapsed time in slots. Every slot corresponds to a bit. The sender

transmits a signal up in the slots corresponding to bits with value 1 (thus,

a slot without signals correspond to bit 0). The protocol is robust to

bounded errors in the timers used by the sender and receiver.

The considered scenarios consist of unfeasible timed sequences of up. For

example, the sequence 〈up, 4〉, 〈up, 8〉, 〈up, 12〉, 〈up, 16〉, 〈up, 19〉, 〈up, 23〉
does not respect the protocol, since the 4-th and 5-th events must be

separated by 3 seconds.

Once scenario-based induction proves that the scenario is unfeasible,

the unsatisfiable core contains the encoding of the 4-th and 5-th event,

thus the unfeasible CMSC prefix is the CMSC formed by the first 5 events.

Interpolation “explains” that the inconsistency arises because the sender

requires the 5-th event to happen after at least 3.8 seconds; it also shows

that the receiver does not play any role in the inconsistency.

Electronic Height Control System [MS00] . This industrial case study mod-

els a system that controls the height of a car’s chassis. A timer tells the

controller when to read the height from a filter, while disturbances which

changes the height of the vehicle are modeled by the environment. The

MSC describes a scenario where the height of the chassis falls outside the

allowed thresholds, first below and then above the permitted height inter-

vals.

The scenario is not feasible due to the timing constraints imposed by

the timer on each event and to the dynamics of the environment which

requires an incompatible time to pass from the initial level of the chassis

to a value read outside the allowed threshold. More precisely, the timer

155

156 7.4. UNFEASIBILITY EXPLANATION

forces every event to happen every second, while the filter chassis level f

read by the sensors evolves according to the differential equation ḟ = h−f
T ,

where h represents the current level. This is approximated by the linear-

phase portrait partitioning which linearizes the differential equation into

flow conditions of the form ḟ ∈ [a, b].

In order to prove the scenario unfeasible, abstraction is required. In

fact, in the concrete state space of the environment, the portrait parti-

tioning creates discrete loops that correspond to infinite simple paths, and

thus concrete K-induction can not converge. K-induction combined with

abstraction proves that the controller and the timer do not have a simple

path longer than 1 alternating timed and discrete transitions (since there

is no local transition).

For the environment we used a set of predicates in the form t ∈ [i, i+1],

h ∈ [at, bt] and f ∈ [at, bt] where i is an integer while a and b are the

constants used in the partitioning. We localize the abstraction by using

t ∈ [i, i+ 1] only in the i-th event and considering the partition consistent

with the initial, values. We added a total of 16 predicates to the first

two local segments of the environment. This way, the unfeasibility can be

proved unrolling the environment for 25 steps in the first segment and 20

steps in the second segment. The details of the abstraction are available

at http://es.fbk.eu/people/mover/tests/FMSD11/.

We extract an unfeasible CMSC formed by the first 2 events. Non-trivial

explanations of the third type are associated with the timer, where the 2-

nd event must happen in less then 3 seconds, and with the environment,

where the same event to happen not before 3.3 seconds.

156

http://es.fbk.eu/people/mover/tests/FMSD11/

CHAPTER 7. SCENARIO VERIFICATION 157

7.5 Related work

MSCs [IT96] are a basic building block to describe the interactions among

components.

Several works, such as High-Level Message Sequence Charts [MR97] and

Live Sequence Charts (LSC) [DH01], extend the language of the MSCs in-

creasing their expressive power. We consider a basic version of MSCs which

describes a single (partial-order) composition of sequences of events, aug-

mented with additional constraints [ABG07, BAL97, CM06]. We consider

a trace-based semantics for the MSC, where the MSC predicates range over

the observable events of a system [LL92, LL95]. While several works use

MSCs to describe the entire system [AY99, PBL09], we instead use the

MSC as a specification language.

A common approach to deal with the verification of MSC specifications

consists in translating the scenario into automata or temporal logic formu-

las. In [CM06] the authors consider the feasibility problem for MSCs with

timed constraints and a timed message-passing automaton. Their solution

consists of a translation of the timed MSC into an automaton, reducing the

problem to a reachability analysis for timed systems. They support also

“weak” embeddings, where the MSC specification can be partial. Live Se-

quence Charts (LSCs) are translated into timed automata in the Uppaal

model checker [LBD+10], while in [KW01] the authors propose a transla-

tion from charts with timing constraints and synchronous events to Timed

Büchi Automata. These works deal with expressive specification languages

but they do not exploit the structure of the scenario. Moreover, in case of

unfeasibility, these techniques do not provide explanations that narrow the

events of the scenario or that give meaningful information about a specific

component.

The approach which translates the MSC into an automaton reduces the

157

158 7.5. RELATED WORK

feasibility problem of the MSC to a reachability problem. Thus, the works

on Bounded Model Checking (BMC) for hybrid systems [ABCS05, FH05,

FH07, BCL+10a, ÁBKS05] can be used to solve the feasibility problem.

The use of the step semantics to optimize the BMC encodings for asyn-

chronous systems was investigated in [DJH12, HN03]. However, BMC

is unable to prove the unfeasibility of the MSC. When we encode the

MSC into an automaton the unfeasibility problem can be solved using

unbounded model checking techniques, such as k-induction [SSS00]. K-

induction is complete for finite state systems, but it was applied also to

infinite state systems in [dMRS03, Ton09, Pik05]. In [dMRS03] the authors

use k-induction to verify timed and hybrid automata and they generalize

the simple path condition to simulation relations. K-induction is combined

with predicate abstraction in [Ton09]. These works are not tailored to the

problem of deciding the unfeasibility of a scenario and do not provide ex-

planations in the case of unsatisfiability.

Unsat cores and interpolation are often used to explain and general-

ize the source of unsatisfiability. Unsat cores are typically subsets of the

conjuncts forming the unsatisfiable formula. However, other forms are pos-

sible, especially in the context of temporal unsatisfiability [Sch12, Sch09b].

Interpolation for temporal properties is proposed in [SV07] as a theoret-

ical framework for analyzing vacuity for discrete systems; the practical

implications are not addressed in depth. In [Sch09b], it is suggested that

k-induction can be used to find a k for which the BMC encoding of a tem-

poral formula yields its unsatisfiability and that the unsat core contains the

relevant parts of the formula that cause the unsatisfiability. However, map-

ping the BMC unsat core back to the original problem is not always easy.

We achieve this by exploiting the scenario-based encoding that respects

the structure of the scenario.

158

Chapter 8

Parameter synthesis

Note. The material presented in this chapter has already been presented

in [CGMT13].

Parametric systems arise in many application domains from real-time

systems to software to cyber-physical systems. Parameters allow to model

several features of the designed system. For example, they can model

unknown physical constants of the environment or other constants that

the designer must define of the system (e.g. timing constraint of real-time

systems). Moreover, in the context of hybrid systems, it is important to

guarantee the robustness with respect to the choice of parameters, that

can be in a range of values instead of being a fixed constant. Thus, the use

of parameters in the early phases of the development gives the possibility

to explore different design choices. In fact, note that a parametric system

represents a set of (non-parametric) systems, one for each valuation of the

parameters.

A key challenge for the design of parametric systems is the estimation

of the parameter valuations that guarantee the correct behavior of the

system (e.g. that the model satisfies an invariant property). The manual

estimation of the parameters values is a time-consuming task, that does

not allow the designer to either find the optimal values of the parameters

159

160

(this is useful to reduce costs or increase the performance of the model)

or to guarantee that the system behaves correctly for a specific range of

parameters values. Thus, there is the need of automatic techniques that

solve the parameter synthesis problem.

In this chapter, we present a parameter synthesis algorithm that is tar-

geted to infinite-state transition systems and invariant properties. While

the scope of the technique is general, it can be applied off-the-shelf to the

symbolic encoding of of an hybrid system.

The algorithm is based on a general SMT-based approach for parameter

synthesis that works by complement, building the set of “bad” parameter

valuations (i.e. the set of parameters valuations that may violates the

invariant property) It relies on the enumeration of counterexamples vio-

lating the properties, extracting from the counterexample a region of bad

parameter valuations by quantification of the state variables.

The novel synthesis algorithm is based on IC3, one of the major re-

cent breakthroughs in SAT-based model checking, and lately applied to

the SMT case. The key idea of the synthesis algorithm is to exploit the

features of IC3. First, IC3 may find a set of counterexamples consisting

of a sequence of set of states so, . . . , sk, where each state in si is guaran-

teed to reach some of the bad states in sk in k steps; this is exploited in

the expensive quantification of the state-variables, that can be performed

on shortest, and thus more amenable, counterexamples. Second, the in-

ternal structures of IC3 allows our extension to be integrated in a fully

incremental fashion, never restarting the search from scratch to find a new

counterexample.

Various approaches already solve the parameter synthesis problem for

several kind of systems, like infinite-state transition systems [BCGR12]

and timed and hybrid automata [HH94, Wan05, FJK08, CPR08, AK12,

BLR05]. The advantages of the new algorithm are that it synthesizes an

160

CHAPTER 8. PARAMETER SYNTHESIS 161

optimal region of parameters (unlike [FJK08, AK12]), it is incremental

and applies quantifier elimination only to small formulas (unlike [FJK08,

CPR08]), and it avoids computing the whole set of the reachable states

(unlike [HH94, Wan05]).

In the following, we formally introduce the parameter synthesis problem

in Section 8.1 and the general approach based on reachability and quantifier

elimination in Section 8.2. Then, we show our new approach based on

IC3 in Section 8.3 and we conclude the Chapter describing some related

work 8.4.

8.1 Problem definition

In this chapter we use the transition system definition without input vari-

ables and the invariant formula.

In parametric systems, besides the standard constants, the formulas can

include also parameters, which are rigid symbols with “unknown” values.

Let U be the set of parameters. A parameter valuation is as assignment to

the parameters. Given a formula φ and a parameter valuation γ, we denote

with γ(φ) the formula obtained from φ by replacing each parameter in U

with the assignment given by γ.

Definition 25 (Parametric transition system) A parametric transition

system S is a tuple S = 〈U, V, Init, T rans〉 where U is the set of pa-

rameters, V is the set of variables, Init(U, V) is the initial formula, and

Trans(U, V, V ′) is the transition formula. Each parameter valuation γ in-

duces a transition system Sγ = 〈V, γ(Init), γ(Trans)〉.

Given a parametric transition system S = 〈U, V, Init, T rans〉 and a

formula P (U, V), we say that a parameter valuation γ is feasible iff Sγ |=
γ(P).

161

162 8.2. SOLVING THE SYNTHESIS PROBLEM WITH REACHABILITY

Definition 26 (Parameter synthesis problem) The parameter synthe-

sis problem is the problem of finding the set ρ(U) of all the feasible param-

eter valuations (i.e., for every γ ∈ ρ, Sγ |= γ(P)).

Thus, we solve the optimal parameter synthesis problem, where we find

the set of feasible parameter valuations ρ(U) that contains all the feasible

parameter valuations.

8.2 Solving the synthesis problem with reachability

A naive approach to synthetize the set of parameters ρ(U) is to incremen-

tally find the complement set β(U) (thus, ρ = ¬β) of unfeasible parameter

valuations rephrasing the problem as a reachability problem for a transition

system Sρ and iteratively removing the counterexamples to Sρ |= P .

More specifically, given the parametric transition system S = 〈U, V, Init,
T rans〉, the algorithm keeps an over-approximation ρ(U) (initially true)

of the safe region. The encoding of S is the transition system Sρ =

〈V ∪ P, Initρ, T ransρ〉 where Transρ = Trans∧∧p∈U p
′ = p forces param-

eters to not change their value in the evolution of the system and Initρ =

Init ∧ ρ restricts the parameter valuations to the over-approximation.

At every iteration, a new parameter valuation is removed from ρ. The

algorithm terminates if it proves that Sρ |= P , and ρ is the solution to the

synthesis problem.

This simple approach does not work in the context of infinite-state tran-

sition systems, where in general the possible number of counterexamples

and the values of the parameters are infinite. For this reason, we need an

algorithm that removes a set of parameters, instead of a single point.

162

CHAPTER 8. PARAMETER SYNTHESIS 163

8.3 Description of the synthesis algorithm with IC3

We embed a reasoning similar to the naive algorithm in IC3, exploiting the

generalization of counterexamples and the incremental behavior. The gen-

eralization avoids the explicit enumeration of the counterexamples, while

the incrementality allows us to completely reuse all the clauses learned by

IC3 across different safety checks.

Therefore, IC3 is used to prove that Sρ |= P . If it is successful (recall

that in the SMT extension, the problem is undecidable), we can conclude

that ρ is a set of feasible parameters and, in particular, is optimal. Instead,

if there exists a set of parameters such that S 6|= P , IC3 will might find a

counterexample to P . The counterexample is found in the blocking phase

as a sequence π := (s0, 0); . . . ; (sn, n), where s0 |= Init, sn |= ¬P and for

0 < i < n−1, si∧Trans |= si+1. Possibly, π does not represent a single path

of the system that reaches a violation, but a set of paths that reach ¬P .

This is an intrinsic feature of IC3, which generalizes the counterexamples

to induction found in the blocking phase, trying to block set of states

rater than a single state. The state so represents a set of states that will

eventually reach ¬P . Thus, we compute from s0 a set of bad parameters

βso(U) that will eventually reach sn: βso(U) := ∃V.so(U, V). We rely on a

quantifier elimination procedure to obtain a quantifier-free formula for βso.

The algorithm refines its conjecture about the unfeasible parameters

of the system. Let β′ := β ∨ βso and ρ′ := ρ ∧ ¬βso be the new ap-

proximations of unfeasible and feasible regions of parameters. We have to

prove that Sρ′ |= P . We perform the verification incrementally, reusing

all the frames of IC3. Since ρ′ := ρ ∧ ¬βso, we have that Sρ′ = 〈V ∪
P, Initρ ∧ ¬βso, T ransρ〉.1 Thus, we incrementally encode Sρ′ strengthen-

ing the initial condition and the transition relation used in the algorithm,

1We also add ¬βso also to Transρ, since it is an inductive invariant of Sρ′ .

163

164 8.3. DESCRIPTION OF THE SYNTHESIS ALGORITHM WITH IC3

and also strengthening the first frame kept by the IC3 algorithm (i.e.

F0 := F0∧¬(βso)). The strengthening of F0 removes the state so from Init

(possibly blocking also other bad states).

Since Sρ is an overapproximation of Sρ′, the invariant kept by IC3 (i.e.

F0 = Init, Fi |= Fi+1, Fi |= P and Fi(V) ∧ Trans(V, V ′) |= Fi+1(V
′)) also

holds for the new problem Sρ′ |= P .

From this point, we rely on the usual behavior of IC3, which tries to

block (s1, 1) with the strengthened frame F0. The algorithm terminates

if either P is proved or the F0 becomes unsatisfiable, showing that ρ is

empty.

We show the parameter synthesis algorithm ParamIC3 in the Figure 8.1,

highlighting in red the modifications to the original IC3.

Theorem 13 Given a parametric transition system S = 〈U, V, Init, T rans〉
and a formula P (V), ρ(U) := ParamIC3(U, Init, T rans, P) is the optimal

set of feasible parameter valuations.

Proof. The proof is by induction on the number of iterations of

ParamIC3. The proof shows that if the algorithm terminates, it returns

the optimal region of parameters.

Consider the first iteration of the algorithm.

Suppose we prove Sρ |= P . Then, we know that there are no bad

parameter valuations such that Sρ is not safe. Also, ρ = > is the optimal

parameter region.

Instead, suppose we find π = s0; . . . ; sn, a counterexample to Sρ |= P .

The counterexample π found by IC3 is such that for each state u in s0

there exists a path u0; . . . ;un, where un |= ¬P . We compute the set of bad

parameters βs0(U) := ∃V.s0(U, V). From π, we know that for all parameter

valuations γ ∈ βso, there exists a state u0 in s0 (i.e. u0 |= s0) and a path

u0; . . . ;un such that γ |= u0 and un |= ¬P . Thus, Sργ 6|= P for all γ ∈ βs0.

164

CHAPTER 8. PARAMETER SYNTHESIS 165

Intuitively, it means that ParamIC3 only removes valuations of unfeasible

parameters.

The new under-approximation of bad parameters is β′ := β(s0), while

the over-approximation of the good parameters is ρ′ := ρ ∧ ¬β(so). We

consider the transition system Sρ′ and the new problem Sρ′ |= P . Then,

the algorithm set the following variables (here, we use the primed notation

to refer to the value of the variables after the assignment): Initρ′ := Init∧
¬β(so), Transρ′ := Trans ∧ ¬β(s0), F

′
0 := Init ∧ ¬β(so). The invariants

on the IC3 traces (the one presented in the Subsection 2.3.1) holds for

checking the problem Sρ′ |= P :

• F ′0 = Initρ′: it holds, since F ′0 := Init ∧ ¬β(so) = Initρ′;

• F ′i |= Fi+1: it holds, since F ′0 |= F1;

• F ′0 |= F1 and for 1 ≤ i ≤ n, Fi(V) ∧ Transρ′(V, V ′) |= Fi+1(V
′).

Consider F ′0(V) ∧ Transρ′(V, V ′) |= Fi+1(V
′).

We have to prove that F ′0(V) ∧ Transρ′(V, V ′) ∧ ¬Fi+1(V
′) |= ⊥. By

hypothesis, we know that F0(V) ∧ Transρ(V, V ′) ∧ ¬Fi+1(V
′) |= ⊥.

Suppose there exists a model µ such that µ |= F ′0(V)∧Transρ′(V, V ′)∧
¬Fi+1(V

′). Recall that F ′0(V)∧Transρ′(V, V ′)∧¬Fi+1(V
′) is F0(V)∧

(¬βs0) ∧ Transρ(V, V ′) ∧ (¬βs0) ∧ ¬Fi+1(V
′). Thus, µ |= F0(V) ∧

Transρ(V, V
′)∧¬Fi+1(V

′), contraddicting the hypothesis. By a similar

reasoning, we can prove that Fi(V)∧Transρ′(V, V ′) |= Fi+1(V
′) holds,

for 1 ≤ i ≤ n.

• for all i < k, Fi |= P : it holds, since F ′0 |= P .

Now, suppose we are at the n − th iteration, where ρn and βn are the

approximations of good and bad parameters found so far.

• Suppose we prove Sρn |= P . Thus, we proved that ρn is a region of

good parameters.

165

166 8.3. DESCRIPTION OF THE SYNTHESIS ALGORITHM WITH IC3

Note that, by induction every bad region found by ParamIC3 β1∧. . . βn
contains only unfeasible parameter valuations and ρn := ¬(β1 ∨ . . . ∨
βn). Thus, ρn is optimal.

• Instead, suppose we still find a counterexample π = s0; . . . ; sn. We

compute β(s0), which is a set of bad parameter valuations for Sρn. We

can prove that β(s0) only contains valuations for “bad” parameters

applying the same reasoning done in the first iteration.

We have that Sρn+1
= Sρn ∧ (¬β(s0)). With a reasoning similar to

the one that we did in the fist iteration case, we can prove that the

invariant on the frames of IC3 holds for the model checking problem

Sρn+1
|= P .

�

8.3.1 Optimization

We presented a version of the algorithm which computes a region of bad

states βso only from the initial states of π := s0; . . . ; sn. However, this is

only one of the possible choices, since more general regions of bad parame-

ters can be found considering each si in π. In fact, βso is one of the extreme

cases, while the other one is βn(U) := ∃V.(BMC(n)), which encodes the

set of all the parameters that may reach ¬P in n steps, where BMC(n)

denotes Init0 ∧∧n−1
i=0 Trans

i ∧ ¬P n. However, the cost of eliminating the

quantifiers grows as well, and it might in fact become impractical. In prin-

ciple, one may consider the intermediate cases βsi (that is, the reachability

of one of the intermediate states si in π) to trade the generality of the

result with the cost of the quantifier elimination. Furthermore, we notice

that for soundness we do not need the precise set βsi, but we can con-

sider its under-approximations, since this still guarantees to remove only

bad parameters valuations. As an advantage, in this case the quantifier

166

CHAPTER 8. PARAMETER SYNTHESIS 167

elimination problems are easier to solve and are more general than βso. In

practice, we use an heuristic which tries to combine the precise and the

under-approximated approach, enabling us to find a trade-off between gen-

erality and the cost of quantifier elimination. The heuristic that we use is

described in the experimental evaluation (Section 10.5).

8.4 Related work

The IC3 [Bra11] algorithm was first proposed to prove safety property

for finite-state transition systems. Several approaches adapted the original

algorithm to deal with infinite-state systems [CG12, HB12, KJN12b].

The works presented in [CG12, HB12] may be used as backends to syn-

thesize the parameters via reachability. However, they need to perform a

quantifier elimination step on an entire path and they will not be able to

exploit the information discovered by IC3 while finding violations to the

property. Instead, [KJN12b] cannot be used as a reachability backends,

since it is restricted to timed automata without parameters.

The parameter synthesis for infinite-state transition systems can be

solved combining a reachability algorithm with a quantifier elimination

procedure, as proposed by [CPR08]. While the approach was proposed in

the context of parametric timed automata, it may applied to infinite-state

systems. Our approach follows the same general idea, which is to itera-

tively find the unfeasible regions of parameters. However, a key difference

is in the computation of a set of bad region with the quantifier elimination

procedure, since we apply the quantifier elimination to a set of states and

not to a set of traces. The approach proposed in [BCGR12] deals with

infinite-state systems with an unbounded number of processes and several

kind of properties, like mutual exclusion and deadlock detection. While

this setting is more general than ours, it does not synthesize the entire

167

168 8.4. RELATED WORK

region of parameters, but it instantiates the values of the parameters for a

given template.

Other works [HH94, Wan05, FJK08, CPR08, AFKS12, AK12, GSV13]

synthesize parameters for real-time and hybrid systems.

Tools like HyTech [HH94], TReX [ABS01] or Red [Wan05] synthesize

the parameters computing the reachable states of the system. All these

techniques are precise, but they are forced to compute the entire set of

reachable states, which may be unfeasible in several cases.

The technique proposed by Frehse [FJK08] handles linear hybrid au-

tomata, using an approach similar to [CPR08]. The approach is not precise

and underapproximates the region of feasible parameters. Instead, we find

the precise region of parameters.

The tools IMITATOR [AFKS12] and HYMITATOR [AK12], which

respectively handle timed and hybrid systems, solve a different but related

problem to parameter synthesis. Given a parameter valuation, they com-

pute all the parameter values that induce the same set of discrete traces

as the given parameter valuation. This approach requires an initial as-

signments for the parameters and in general it will not find the maximum

region of feasible parameters.

Finally, the work [GSV13] synthetize specific parameters (sensing and

actuation intervals) for lazy linear hybrid automata (LLHA) [JBS07]. The

approach uses BMC as primitive to find the two intervals, using a search

based on bisection. The approach is specifically designed for the control

strategy problem for LLHA and it relies on the fact that LLHA are fi-

nite, due to discretization. The assumption is exploited to fix a bound of

the BMC unrolling and to encode the problem to theories different from

rational numbers, like the Theory of Bit-Vector. Our technique is more

general, since it can synthetize non-convex regions. However, our current

implementation is specialized to handle problems in the Linear Arithmetic

168

CHAPTER 8. PARAMETER SYNTHESIS 169

over Rationals, since our implementation relies on a quantifier elimination

procedure for that theory. In principle it could be applied off-the shelf to

synthetize control strategies for LLHA through bit-blasting.

We stress that our approach is not specific to timed and hybrid au-

tomata, but it may be applied to every infinite-state transition systems

expressed using Linear Rational Arithmetic.

169

170 8.4. RELATED WORK

bool ParamIC3 (U , Init, Trans, P):

1. β(U) = ⊥ # underapproximation of the unfeasible parameters

2. trace = [Init] # first elem of trace is init formula

3. trace.push() # add a new frame to the trace

4. while True:

blocking phase

5. while there exists a cube c s.t. trace.last() ∧ Trans ∧ c is satisfiable

and c |= ¬P :

6. recursively block the pair (c, trace.size()− 1)

7. if a pair (p, 0) is generated:

8. βp = ∃V.p(U, V)

9. β := β ∨ βp.
10. Init := Init ∧ ¬βp and Trans := Trans ∧ ¬βp .

11. add ¬βp to trace[0].

12. remove (p, 0) from the set of states to be blocked.

13. if Init |= ⊥ # the initial states are empty

14. return ⊥

propagation phase

15. trace.push()

16. for i = 1 to trace.size()− 1:

17. for each clause c ∈ trace[i]:

18. if trace[i] ∧ c ∧ Trans ∧ ¬c′ is unsatisfiable:

19. add c to trace[i+1]

20. if trace[i] == trace[i+1]:

21. return ¬β # P proved, return good params region

Figure 8.1: High-level description of ParamIC3. The bold and red text shows the code

which differ from the IC3 algorithm used for verification.

170

Part IV

Tools and Experimental Results

Chapter 9

HyCOMP

Note. Part of the material presented in this chapter has already been

presented in [CMT11b].

HyComp is a model checker for asynchronous hybrid systems. Hy-

Comp analyzes hybrid systems specified in the HyDI input language.

HyDI allow an user to model asynchronous hybrid systems with differ-

ent dynamics (Linear Hybrid Automata, Linear Hybrid Systems, Polyno-

mial Hybrid Systems) and to analyze them with different verification algo-

rithms. HyComp allows to verify invariant properties, Linear Time Tem-

poral Logic (LTL) properties, and scenario specifications. Moreover, the

tool allow to perform other kinds of analysis, such as parameter synthesis.

HyComp is based on the nuXmv [nux] model checker, which in turn

it is based on the NuSMV model checker [CCG+02], and the MathSAT

SMT solver [CGSS13]. The tool was used in several projects. In the

MISSA (More Integrated Systems Safety Assessment) project [MIS] Hy-

Comp was used to support the translation of industrial designs written in

the Altarica language [BCL+11], while in the IRONCAP (Innovative

Rover Operations Concepts Autonomous Planner) project the tool was

used for the modeling and the validation of planning problems.

173

174 9.1. TOOL FEATURES

9.1 Tool features

HyComp provides several functionalities.

Infinite-state transition systems encoding of Hybrid Automata Network The

first functionality of HyComp is to encode a network of hybrid automata

in an infinite-state transition system. HyComp implements the encoding

techniques presented in Part II.

HyComp encodes linear hybrid automata as shown in the Example 2.

Related to the dynamic of the system, HyComp constructs automatically

the quantifier-free encoding of Chapter 3. Currently, the encoding is im-

plemented for the class of Polynomial Hybrid Systems (See Section 3.3)

and for the class of Linear Hybrid Systems in the case the matrix of the

system is nilpotent (See Section 3.4.1). Then, HyComp implements the

time-aware relational abstraction technique of Chapter 5.

HyComp handles a network of hybrid automata. With respect to net-

work, HyComp may generate either the global-time encoding or the local-

time encoding presented in Chapter 4.

The tool has several options, that allow to tune the resulting encoding.

For example, the user can choose to substitute the state variable that keeps

track of the elapsed time, and encode only the amount of time elapsed with

a single (input) variable δ (See Remark 2). Another option forces that a

path in the resulting encoding can never have two consecutive continuous

transitions. This optimization may be useful to increase the performance of

the model checking tasks (See [ÁBKS05]) or to help inductive verification

algorithms such as k-induction. Other options refer to the encoding of

the synchronization constraints. The user can choose to use the “step

semantic” variant of the synchronization’s encoding.

The encoding is performed compositionally for each automaton in the

174

CHAPTER 9. HYCOMP 175

network. This allow us to produce intermediate results in the encoding

(e.g. a set of discrete transition systems that represent the encoding of

the hybrid automata in the network). This feature is important to develop

the algorithms based on the structure of the network, such as “Shallow

Synchronization” and the scenario-based verification algorithms.

The resulting transition systems are either used internally by the Hy-

Comp algorithms or are used by the nuXmv algorithms, since the tran-

sition systems can be printed using the concrete syntax of nuXmv. This

allow us to exploit all the capabilities of the nuXmv model checker.

HyDI currently allows limited verification capabilities for non-linear

hybrid automata. Since the encoding relies on non-linear real arithmetic,

the tool needs to use an SMT solver that handle this kind of theory. At

the moment we interfaced only a version of Bounded Model Checking and

induction (1-step induction) with such kind of SMT solvers. In practice,

HyComp calls the Z31 and the iSAT2 SMT solvers.

At the moment of this writing HyComp is not officially released. The

tool will be released publicly and will be available at https://es.fbk.eu/

tools/hycomp/.

Invariant model checking The main task of HyComp is to model check

invariant properties.

One flow of verification uses the algorithms internally implemented in

HyComp. These algorithms exploit the features of the input model, such

as the continuous evolution or the structure of the network. HyComp

implements the Bounded Model Checking algorithm based on “Shallow

Synchronization” (Section 6.2), and variants for both BMC and k-induction

where the discrete and the continuous transitions are alternated in the

1http://research.microsoft.com/en-us/um/redmond/projects/z3/
2http://isat.gforge.avacs.org/

175

https://es.fbk.eu/tools/hycomp/
https://es.fbk.eu/tools/hycomp/

176 9.1. TOOL FEATURES

BMC algorithm (i.e. the algorithm uses the transition relation restricted

to the discrete transitions in the odd steps and the transition relation

restricted to the continuous transition in the even steps of the encoding).

The alternative flow of verification exploits the invariant algorithms

for infinite state systems implemented in the nuXmv model checker. To

both falsify and prove an invariant property, nuXmv implements several

SMT-based algorithms: IC3 [CG12], a version of IC3 that integrates im-

plicit predicate abstraction [CGMT14a], interpolation-based model check-

ing [McM03], k-induction and k-induction with implicit predicate abstrac-

tion (See Section 6.3). To falsify an invariant property, nuXmv implements

Bounded Model Checking.

LTL model checking HyComp can check LTL properties (without the next

operator) interpreted over the discrete sequences of states.

First, HyComp can use the LTL model checking features of nuXmv.

nuXmv implements Bounded Model Checking for LTL properties3. Then,

nuXmv implements a version of the k-liveness algorithm [CS12b].

Since k-liveness may be ineffective for hybrid systems, HyComp extends

k-liveness to prove LTL properties for hybrid systems [CGMT14b].

Scenario-based verification HyComp implements all the scenario verifica-

tion presented in Chapter 7. The Constrained Message Sequence Chart

(CMSC) can be written in a specific input language. Then, HyComp al-

lows to check both the feasibility and the unfeasibility of the CMSC, using

the specialized algorithms or constructing a monitor.

Parameter Synthesis nuXmv implements the parameter synthesis algo-

rithm described in Chapter 8. Thus, HyComp can be used to perform
3Note that, for infinite-state transition systems, this algorithm cannot find a counterexample that is

not lasso-shaped.

176

CHAPTER 9. HYCOMP 177

parameter synthesis for Linear Hybrid Automata.

9.2 Tool architecture

HyComp is written in C and is about 50000 lines of code. From a high

level point of view, HyComp uses both the nuXmv and the NuSMV

model checkers as libraries.

NuSMV provides the basic functionalities to represent formulas, sym-

bols with their types and state machines. Then, NuSMV implements

several verification algorithms for finite-state transition systems based on

SAT solvers and Binary Decision Diagrams (BDDs). Also, NuSMV wraps

the CUDD BDD package (http://vlsi.colorado.edu/~fabio) functionalities.

HyComp currently uses these functionalities to analyze abstractions in

the case of scenario-based verification.

nuXmv provides several verification algorithms both for finite-state and

infinite-state systems (e.g. IC3) and an interface to the MathSAT SMT

solver.

Internally, HyComp is divided in several sub-packages.

• Parser : the package implements the parsing of HyDI models.

• Network : the package provides the data structures used to represent

hybrid automata networks and also networks of symbolic transition

systems.

• Encoding : the package implements the encoding of hybrid automata

as symbolic transition systems and the local-time and global-time en-

codings.

• Scenario: implements the scenario verification algorithms.

177

http://vlsi.colorado.edu/~fabio

178 9.3. THE HYDI LANGUAGE

• BMC : implements the Bounded Model Checking algorithm of Hy-

Comp.

• LTL: implements the LTL verification algorithm based on k-liveness.

• CMD : implements several utility commands that wraps the nuXmv

verification algorithms. This allow an user to call the algorithm in

HyComp, without using nuXmv or NuSMV.

9.3 The HyDI language

The HyDI language can be used to model a network of symbolic hybrid au-

tomata. HyDI extends the language of the nuXmv model checker [nux],

that in turns extend the language of NuSMV [CCG+02]. nuXmv ex-

tends the NuSMV language with infinite types, like integer and real. The

nuXmv language can represent synchronous, symbolic infinite state tran-

sition systems. Thus, it cannot represent hybrid systems and asynchronous

systems. HyDI extends the nuXmv language in two main directions:

1. Hybrid Automata: HyDI is interpreted with a continuous time seman-

tic, introducing continuous type variables and constructs that define

the continuous evolution with differential equations.

2. Asynchronous systems: HyDI can represent a network of symbolic

hybrid automata, which move asynchronously and synchronize via

message passing (or via shared variables).

In the following section we give an informal overview of the language.

A deeper insight about the concrete syntax may be found in the HyDI

language tutorial [CMT13a]. Then, we give a formal characterization of

the language, giving its abstract syntax and semantics.

178

CHAPTER 9. HYCOMP 179

9.3.1 Overview of the language

A HyDI model is given by a set of modules, a set of processes, and a set

of synchronization constraints. Figure 9.1 shows a small example of the

HyDI specification of two gates. A gate is open, closed, it is opening or

closing. Both gates must open and close together.

Modules

HyDI modules (e.g., the Gate module) extend SMV modules in order

to specify explicitly the events used for the synchronization and timing

aspects, such as continuous variables and flow conditions. The SMV lan-

guage has been widely used to specify complex finite-state systems. The

system description is typically decomposed into modules. Essentially, a

module is a set of declarations and constraints on the declared variables.

Modules can be instantiated several times and nested to form a complex

synchronous hierarchy.

In particular, modules may contain VAR sections with the declaration

of state variables (the states of the system consist of assignments to these

variables); IVAR sections with the declaration of input variables; INIT con-

straints which must be satisfied by the valid initial states; INVAR con-

straints which must be satisfied by any valid state; and TRANS constraints

which must be satisfied by any valid transition. For example, the state

s1 = 〈location = opened, timer = 10〉 is a valid state but not initial; it

can go to the state s2 = 〈state = closing, timer = 0〉 but not to the state

s3 = 〈state = closing, timer = 10〉 (because the transition would violate

the constraint next(timer) = 0).

HyDI modules inherit all the constructs of SMV modules and add

three main new features:

• events, a list of symbols used in the synchronizations; these are intro-

179

180 9.3. THE HYDI LANGUAGE

MODULE main

VAR gate1 : gate;

VAR gate2 : gate;

SYNC gate1, gate2 EVENTS open, open;

SYNC gate1, gate2 EVENTS close, close;

MODULE gate

VAR

location : {closed, opening, opened, closing};

timer : continuous;

EVENT open, close, tau;

INIT

location = closed & timer = 0;

TRANS

EVENT = open ->

(location = closed & next(location) = opening & next(timer) = 0)

TRANS

EVENT = close ->

(location = opened & next(location) = closing & next(timer) = 0)

TRANS

EVENT = tau ->

((location = opening & next(location) = opened) |

(location = closing & next(location) = closed))

TRANS

EVENT = tau -> (timer >= 10 & next(timer) = timer)

INVAR

(location = opening -> timer <= 10) &

(location = closing -> timer <= 10)

FLOW

(location in {closed, opened) -> der(timer) = 0) &

(location = {opening, closing} -> der(timer) = 1)

Figure 9.1: Gate model written in HyDI.

180

CHAPTER 9. HYCOMP 181

duced with the keyword EVENT, which can also be used in the TRANS

constraints as it was an input variable; intuitively, transitions are

distinguished by the event which is being fired; for example, the tran-

sition from state s1 to state s2 is labelled with the event closing.

• continuous variables, a new type of variables declared with the key-

word continuous; these are variables which are allowed to change in a

timed transition and evolve according to some function continuous in

time; for example, the variable timer is continuous and changes only

during timed transitions; all other variables (Boolean, real, integer,

etc.) are considered discrete, i.e., they change only during discrete

instantaneous transitions.

• flow conditions, used to constrain the continuous evolution of contin-

uous variables; the constraints are introduced with the keyword FLOW

and may refer to the derivatives of continuous variables, denoted with

der; for example, in the state s2, the variable timer can only increase.

Intuitively, the system performs discrete and continuous transitions. In

the former case, the whole system evolves as stated in the TRANS declara-

tions. In the latter case, the discrete variables do not change, while the

continuous variables change according to the FLOW conditions and to the

elapsed time. For example, s2 = 〈state = closing, timer = 0〉 moves to

s3 = 〈state = closing, timer = 10〉 with a continuous transition if

der(timer) = 10 and the elapsed time is 10.

Processes

HyDI processes are instantiation of HyDI modules (in the example, gate1

and gate2 are processes). Differently from SMV processes, they can run

both asynchronously or synchronize on shared events. Processes are de-

clared in the main module of a HyDI model. They represent the compo-

181

182 9.3. THE HYDI LANGUAGE

nents of a network whose topology is defined by the synchronizations. The

network is not hierarchical in that there is no further asynchronous de-

composition of a process, although the modules may contain synchronous

instantiation of other modules.

Processes can share variables through the passage of parameters in the

instantiation. However, they are limited to read the variables of other

processes. This permits an easy identification of when the variables do

not change even if the transitions are described with a generic relation

(compared to a more restrictive functional description).

Synchronizations

Synchronizations specify if two events of two processes must happen at

the same time. If two events are not synchronized, they interleave. Such

synchronization is quite standard in automata theory and process algebra.

It has been generalized with guards to restrict when the synchronization

can happen. In the example, all the transitions of gate1 labelled with open

have to synchronize with a transition of gate2 labelled with open.

In order to capture the semantics of some design languages, it is neces-

sary to enrich the synchronization with further constraints that specify a

particular policy scheduling the interaction of the processes. For this rea-

son, it is possible to specify a scheduler in the main module of the HyDI

model in terms of state variables, initial and transition conditions. These

conditions may predicate over the events of the processes.

9.3.2 HyDI- syntax and semantics

In this section we present the abstract syntax and semantics of the HyDI

language. Here we present the semantic of the language without shared

variables and custom scheduler in the main module (See [CMT11b] for the

details).

182

CHAPTER 9. HYCOMP 183

Abstract Syntax

A HyDI program is defined by a set of processes and by a set of synchro-

nization constraints among the processes. Each process defines a (sym-

bolic) hybrid automaton, while the synchronization constraints define a

mapping among the labels of the automata to force a synchronization.

A process is defined with a HyDI module. A HyDI module is a tuple

〈param,var, ivar, init,trans, invar, flow〉, where:

• param is a set P of formal parameters,

• var is a set of variable declarations defining a set of variables and, for

each variable v, a type τ(v). The type τ(v) may be also continuous,

to specify a continuous variable. Let X be the set of the continuous

variables (the one declared of continuous type) declared in var and

V be the set of the discrete variables declared in var,

• ivar is a set of input variable declarations defining a set W of variables

and for each variable w a type τ(w),

• init is a set of initial condition declarations defining a formula Init

over the variables V ∪X ∪ P ,

• trans is a set of transition condition declarations defining a formula

Trans over the variables V ∪X ∪ P ∪W ∪ V ′ ∪X ′ ∪ P ′,

• invar is a set of invariant condition declarations defining a formula

Invar over the variables V ∪X ∪ P ,

• flow is a set of flow condition declarations defining a formula Flow

over the variables V ∪X ∪ P ∪ Ẋ ∪ Ṗ ,

The var declaration may contain also module instantiation, i.e., vari-

ables whose type is in the form 〈M,β〉, where M is a module and β is

183

184 9.3. THE HYDI LANGUAGE

a function that associates each formal parameter to an actual parameter.

For every parameter p ∈ P , the actual parameter β(p) must evaluate to

the same type of p.

A HyDI program is composed of a set of module declarations and a

main module. The main module declares the set of process instances I and

constraints over the variables of the processes. In the following, we assume

that the main module does not declare variables that are not instances and

constraints different from the synchronization constraints. In [CMT11b]

we define an extension of the language where the main module declares

variables and arbitrary constraints.

A HyDI program PHyDI is a tuple 〈M,main〉 where:

• M = {M1, . . . ,Mm}, such that each Mi is a module declaration

〈parami,vari, ivari, initi,transi, invari, flowi〉,

• main = 〈var, sync〉 is the main module such that:

– var is a set of declarations defining the set of instances I,

– sync is a set if synchronization constraints. A synchronization

in sync is a tuple 〈i, j, ai, aj〉, where i, j ∈ I, ai ∈ τ(i.EVENTi)

and aj ∈ τ(j.EVENTi) (See the requirement on EVENTi for

each instance i ∈ I).

• for all the instances i ∈ I = {i|i ∈ V and τ(i) = 〈Mi, βi〉}:

– Mi = 〈parami,vari, ivari, initi,transi, invari, flowi〉 ∈ M,

– parami = ∅ is a set of empty parameters,

– there exists an input variable EVENTi ∈ Wi, such that

τ(EVENTi) = {a1, . . . , aj}, such that ak 6= s, for 1 ≤ k ≤ j.

parami = ∅ means that there are no shared variables among the HyDI

processes. In [CMT11b] we present the extended semantic with shared

184

CHAPTER 9. HYCOMP 185

variables4. A synchronization 〈i, j, ai, aj〉 in sync enforces the instances i

and j to perform a transition labelled with the event ai and aj at the same

time.

HyDI- Semantics

In the following, we define the semantic of a HyDI program PHyDI =

〈M,main〉 as a network of hybrid automata N = ||i∈IHi, where each Hi

is obtained from one instance i ∈ I.

Each instance i ∈ I may declare sub-instances of another module type.

For example, the i-th process instance may declare an instance of type

〈Mj, βj〉. Then, also Mj may declare instances of some module type, thus

allowing for a hierarchical definition of the program. We assume that the

program does not have circular dependencies among modules (See [McM93]

for details).

We define the function φ that, given a module definition M , returns the

module definition M ′ where all the instances of M have been instantiated.

Given a module definition M = 〈param,var, ivar, init,trans, invar,
flow〉, φ(M) = 〈param′,var′, ivar′, init′,trans′, invar′, flow′〉 is de-

fined as follows. If M does not define any instance (i.e. for each v ∈ V ,

τ(v) 6= 〈Mj, βj〉, for some module definition Mj), then φ(M) = M .

Otherwise, let IM be the set of instances of M . For each i ∈ IM with

type τ(i) = 〈Mi, βi〉, we consider the type 〈φ(Mi), βi〉, obtained recursively

applying φ to the module type of the instance i (i.e. by recursively apply-

ing φ we assume that the module type of each i is already instantiated).

Let φ(Mi) = 〈parami,vari, ivari, initi,transi, invari, flowi〉. φ(M) is

defined as follows:

4When there are shared variables among processes we cannot define anymore the local-time semantic

encoding. Moreover, the language restricts shared variables to be read-only (i.e. a process can never

write a variable of another process).

185

186 9.3. THE HYDI LANGUAGE

• param′ = param.

• var′ = (var \ IM) ∪⋃i∈IM (i.vari),

where with i.vari we denote the set of declarations obtained copying

all the declarations vari renaming each variable v with i.v,

• ivar′ = ivar ∪⋃i∈IM (i.ivari),

• init = init ∪⋃i∈IM init′i,

where init′i is obtained from initi renaming each variable v ∈ Xi ∪
Vi ∪Wi with i.v and each variable p ∈ Pi with i.β(p),

• trans′ = trans′ ∪⋃i∈IM trans′i,

where trans′i is obtained from transi renaming each variable v ∈
Xi ∪ Vi ∪Wi with i.v and each variable p ∈ Pi with i.β(p), and each

variable v′ ∈ X ′i ∪ V ′i ∪W ′
i with i.v and each variable p′ ∈ P ′i with

β(p)′,

• invar′ = invar ∪⋃i∈IM invar′i
where invar′i is obtained from invari renaming each variable v ∈
Xi ∪ Vi ∪Wi with i.v and each variable p ∈ Pi with i.β(p),

• flow′ = flow ∪⋃i∈IM flow′i
where flow′i is obtained from flowi renaming each variable v ∈
Xi ∪ Vi ∪Wi with i.v, each variable p ∈ Pi with i.β(p) and replacing

the occurrences of v̇ with ˙i.v.

For each instance i ∈ I of a program 〈M,main〉 we assume that it has

been instantiated (i.e. we consider the type 〈φ(Mi), βi〉 instead of the type

τ(〈Mi, βi〉). Thus, we assume that vari of Mi does not contain instance

declarations anymore.

The synchronization constraints are declared between couples of pro-

cesses. We define the transitive synchronization relation sync∗ from sync,

186

CHAPTER 9. HYCOMP 187

which represents the set of all the possible pairwise synchronization of the

network. The tuple 〈i, j, ai, aj〉 is in SYNC* iff there exists a sequence of

instances l1, l2, . . . , ln such that 〈lk, lk+1, alk, alk+1
〉 ∈ sync for 1 ≤ k ≤ n,

i = l1 and j = ln.

Note that each process in the program declares events with different

domains. Then, the synchronization constraint 〈i, j, ai, aj〉 forces that every

time the process i move with event ai also the process j moves with event

aj. In the hybrid automata network formalism automata move on the same

label. Thus, we define a renaming function for the event values, ρ. The

function ρ(i, ai) returns the event value ai if the event ai is not involved in

any synchronization of the process i. Otherwise, it returns the same values

for all the processes and events involved in the same synchronization (e.g.

if sync∗ = {〈i, j, ai, aj〉, 〈j, i, aj, ai〉, 〈i, k, ai, ak〉, 〈k, i, ak, ai〉, 〈j, k, aj, ak〉,
〈k, j, ak, aj〉}, then ρ(i, ai) = ρ(j, aj) = ρ(k, ak)). Moreover, we assume

that this value is unique for each synchronization and does not clash with

local event values.

Now, we provide the semantic of the HyDI program PHyDI = 〈M,main〉
as a network of hybrid automata N = ||i∈IHi. For each i ∈ I with type

τ(〈M〉, β), we defineHi as the hybrid automatonHi = 〈VHi
, XHi

, εHi
, InitHi,

InvarHi
, T ransHi

, F lowHi
〉 such that:

• VHi
= Vi ∪ (Wi \ {EVENTi}),

• XHi
= Xi,

• εHi
is such that its domainDom(εHi

) = {ρ(i, ai) | ai ∈ τ(i.EVENTi)},

• InitHi
= Initi,

• InvarHi
= Invari,

• TransHi
is obtained substituting in Transi each predicate EVENTi ./

a, where ./∈ {=, 6=}, with εHi
./ ρ(i, a),

187

188 9.4. RELATED WORK

• FlowHi
= Flowi.

9.4 Related work

There exists several tools and languages to analyze and verify Hybrid Sys-

tems.

Several tools verify invariant properties computing the set of the reach-

able states. Uppaal [BLL+95] model checks a subset of TCTL (Timed

Computation Tree Logic) [ACD90] properties for timed automata. It com-

putes the set of the reachable states using specialized data structures (Dif-

ference Bounded Matrix). The reachability is explicit in the discrete states

of the automata. The tool does not handle hybrid systems, arbitrary data

types and LTL properties. Moreover, Uppaal does not allow the user to

model parametric designs. HyTech [HHWT97] is a model checker for lin-

ear hybrid automata, which represents the continuous part of the reachable

states using polyhedra. Phaver [Fre08] and SpaceEx [FGD+11a] model

affine continuous dynamics with inputs. They check invariant properties

computing an approximation of the set of the reachable states using differ-

ent techniques (Polyhedra and support functions). Other model checkers,

HSolver [RS07], d/dt [ADM02] and Ariadne [BBC+14], verify invari-

ants of non-linear hybrid systems.

KeYmaera [PQ08] is a theorem prover for hybrid systems. It can

handle non-linear hybrid systems, with symbolic parameters and also with

an unbounded number of components. It is based on deductive verification

techniques.

HybridSAL [Tiw12] is very similar to HyComp. The tool encodes

linear hybrid systems as infinite-state transition systems, which can be

verified using the SAL [dMOR+04] model checker. HybridSAL also im-

plements other abstraction techniques (e.g. See [ZST12]), but it does not

188

CHAPTER 9. HYCOMP 189

implement the quantifier free encoding for polynomial hybrid systems. The

tool cannot prove LTL properties, it does not provide verification algo-

rithms that exploit the hybrid automata network, and does not implement

the efficient verification algorithms for invariant properties (e.g. IC3).

Finally, Atmoc verifies invariant, LTL [KJN12a] and MITL [KJN13]

properties for symbolic timed automata.

Comparing the existing input languages for hybrid automata, the one

adopted by the explicit verification tools (Uppaal, HyTech, Phaver,

SpaceEx, d/dt, HSolver, Ariadne) use an explicit representation of

the discrete locations and transitions, which are explicitly enumerated in

the model. For this reason they cannot specify flow and invariant condi-

tions for a set of locations. Moreover, these tools do not allow rich types

for discrete variables, such as Boolean, Enumeration, Word, Unbounded

Integer and Unbounded Real. HyTech assumes the parallel composition

of all automata, which synchronize on labels with the same name, while in

Phaver the user can specify which automata synchronize. SpaceEx has

a compositional language based on the Hybrid I/O automata formalism

that enables compositional verification.

Other languages proposed to model hybrid systems focus on hierarchical

specifications (e.g. Charon [AGH+00]) or compositionality (e.g. Masac-

cio [Hen00]). The Hybrid Systems Interchange Format (Hsif) [tea02] and

the Common Interchange Format (Cif) [vBRSR07] were proposed as stan-

dards to represent and interchange models of Hybrid Systems. Hsif does

not allow hierarchical state machines, while Cif allows to write rich con-

straints (DAE, Differential Algebraic Equations), which mix also variables

and derivatives.

With respect to languages that use a fully symbolic representation,

HybridSAL allow for a hierarchical definition of synchronous and asyn-

chronous systems. In the language it is not easy to to express the syn-

189

190 9.4. RELATED WORK

chronization of asynchronous components via discrete interaction, as in

the hybrid automata case. TSMV is the language used by Atmoc. It

extends the language of NuSMV adding clocks and reset of continuous

variables. The language only consider synchronous systems (i.e. it does

not consider networks of automata) and is limited to timed automata. The

language HLang [FHSW07] is very close to HyDi and was developed in

the project area H of AVACS as intermediate input language for several

verification tools (e.g. HySAT [FH07], FOMC [DDD+12]). The language

employs a symbolic representation for hybrid automata and enables very

expressive constraints for continuous variables, also affine and non-linear.

The language allows to express the composition of hybrid automata. How-

ever, the automata communicates through shared variables and automata

are composed interleaving their transitions. Thus, there is no native sup-

port for event-based synchronizations.

Hybrid programs [BS10, Pla10] are similar to programs for discrete sys-

tems, but they add the description of the continuous evolution. [BS10]

extends the synchronous language Quartz [Sch09a] with continuous vari-

ables. The user specifies in the program when the continuous evolution

can happen. The semantic is such that the discrete statements in the

program are instantaneous, while the statements over continuous variables

allow the elapse of time. The continuous evolution is specified using ODE

(Ordinary Differential Equations). Assignments in the program are ex-

pressed in a functional form, thus they are less expressive than the re-

lational representation of HyDi. Two blocks of statements can run in

parallel (synchronous composition), while there is no support for asyn-

chronous composition. These hybrid programs are then translated into

a monolithic extended finite state machine. Also the hybrid programs

used in KeYmaera, defined by Platzer in [Pla10], allow rich constraints

over continuous variables, sequences, loops and non-deterministic choices

190

CHAPTER 9. HYCOMP 191

of statements. However, they miss the possibility of expressing the parallel

execution of programs. Hybrid programs are very different in nature from

the representation used in HyDi.

191

192 9.4. RELATED WORK

192

Chapter 10

Experimental Results

193

194

Note. The material presented in this chapter has already been pre-

sented in [CMT12, CMT13b, MCTT13, BCL+10a, CMT11a, CMT11c,

CMT13c, CGMT13]

In this chapter we report the experimental evaluations performed to

assess the efficiency of the techniques described in the thesis.

All the technique proposed in the thesis, except for time-aware rela-

tional abstraction, have been implemented in the HyComp [hyc] and in

the nuXmv [nux] tools.

The nuXmv tool extends the NuSMV [CCG+02] model checker in

two main directions. The first direction is the implementation of effi-

cient model checking algorithms for finite-state systems, like IC3 and k-

liveness [CS12b]. Then, nuXmv extends the input language of NuSMV

adding infinite-state types (e.g. real and integers), an interface to the

MathSAT SMT solver [CGSS13] and the implementation of several algo-

rithms for the verification of infinite state systems. nuXmv implements the

implicit abstraction technique presented in Section 6.3 and the parameter

synthesis algorithm of Chapter 8.

HyComp implements the encoding techniques presented in Chapters 3,4

and Chapter 5, the bounded model checking algorithm based on shallow

synchronization 6.2 and all the scenario verification techniques 7. Note that

HyComp may exploit all the algorithms for infinite-state systems imple-

mented by nuXmv, since the tool encodes a network of hybrid automata

in a symbolic transition systems, either in the internal representation of

nuXmv or as a file in the concrete syntax of its input language.

Instead, for the evaluation of the time-aware relational abstraction we

implemented the technique in the HybridSAL tool [Tiw12]. Then, we

used the K-induction implementation of the SAL model checker [dMOR+04],

which is based on the SMT solver Yices1. Both tools are freely available

1http://yices.csl.sri.com/

194

http://yices.csl.sri.com/

CHAPTER 10. EXPERIMENTAL RESULTS 195

from SRI International.

The Chapter mainly follows the structure of the thesis and report, for

each technique, the related experimental evaluation. Before presenting the

experimental results, in Section 10.1 we describe the set of benchmarks

that we used in the different experimental evaluations. In details, in Sec-

tion 10.2.1 we report the experimental evaluation related to the different

encodings of hybrid automata and to relational abstraction. Then, in Sec-

tion 10.3 we present the experiments related to reachability analysis, both

for falsifying a property with Bounded Model Checking and for proving

it using implicit abstraction. In Section 10.4 we present a thorough ex-

perimental evaluation on the scenario verification problem. Finally, Sec-

tion 10.5 presents the effectiveness of the parameter synthesis algorithm

based on IC3.

10.1 Benchmarks

In this section we describe the different benchmarks used in the experi-

mental evaluation. When the experiments have been performed with Hy-

Comp, we used HyDI as language to describe the input models. In the

case of time-aware relational abstraction, the benchmarks where modeled

in HybridSAL.

ETCS [HEFT08]. Industrial case study of the braking control system of

trains. The example is inspired by the European Train Control System

(ETCS) specification that controls the movement of trains on a track di-

vided into sections. We consider the version of [HEFT08] where trains

move with a uniformly accelerated motion, and a second version where the

dynamic is approximated with linear constraints.

195

196 10.1. BENCHMARKS

Bouncing Ball . The benchmark models a ball that fall vertically and

bounce on a surface. We used four variants: 1. a ball moving vertically in

one dimension and bouncing on a plain floor, 2. a two-dimensional variant,

where the ball falls and also moves horizontally with constant horizontal

speed, 3. a ball always moving in two dimension as before, but bouncing

on a hill (vertical parabola) and 4. a ball bouncing on a slope (horizontal

parabola).

Ballistic. The benchmark models an object that flies above an obstacle

(a hill) keeping below a flat ceiling.

Fischer protocol benchmarks. We considered different versions of the Fis-

cher mutual exclusion protocol that regulates the access of processes to a

critical section:

• Fischer timed : standard version of the Fischer protocol with clock

variables (i.e. timed automata).

• Star-shape Fischer [Wan05]: hybrid version of the protocol where

clocks are replaced by continuous variables with rectangular dynamic

(i.e. ẋ ∈ [lower, upper]), and where the shared variable is modeled

with an additional automaton. For parameter synthesis we consider a

version with a free parameter, while in both reachability and scenario

verification we fixed the parameter to a constant.

• Ring-shape Fischer : this variant always considers rectangular dynam-

ics but contains a ring of processes, where each process shares a vari-

able with its left and right neighbors; the variables are used to access

the critical sections in mutual exclusion with the neighbors.

196

CHAPTER 10. EXPERIMENTAL RESULTS 197

Simple Ring . This example is a simple ring of processes where each pro-

cess only communicates with its left and right neighbors.

Motorcycle. This example is inspired by the automated highway system

from [JKWC07]. This system models a sequence of n motorcycles. Ev-

ery motorcycle needs to preserve its relative position in the sequence by

synchronizing shared labels with neighbors to accelerate/decelerate. Each

motorcycle i needs to wait the signal from the previous one to move, and

it needs to keep the sequence during the parade by synchronizing shared

labels with neighbors. Once two motorcycles i and i+ 1 find the distance

between them are not safe, they will use share label close i i+ 1 to jump to

accelerate and decelerate mode from cruise mode and come back to cruise

mode by share label not close i i+ 1.

FDDI Protocol . This example is a ring topology model based on the sys-

tem in [ZLZZ03]. It is a set of standards for data transmission on fiber

optic lines in a LAN. Each component in the system waits for the signal

of previous one to transmit data. For parameter synthesis, we used the

version of [BLN03] with unbounded parameters.

Nuclear Reactor [Wan05]. The benchmark models the control system of

a nuclear reactor with n rods, and uses these rods to absorb neutrons one

by one. Each rod that has just been moved out must stay out of the water

and cool for several time units.

Multi-Frequency . This example models a global controller that periodi-

cally samples the value of a variable from n local controllers. Each local

controller reads the value of a sensors with a higher frequency than the

global controller. Moreover, all the controllers have a different phase (i.e.

197

198 10.1. BENCHMARKS

they start the sampling cycle with a different time offset, which shifts the

cycle by a constant amount of time).

Audio Protocol [HH94]. The benchmark models a protocol that transmits

an arbitrary-length bit sequence from a sender to a receiver based on the

timing-based Manchester encoding. The protocol relies on division of the

elapsed time in slots. Every slot corresponds to a bit. The sender transmits

a signal up in the slots corresponding to bits with value 1 (thus, a slot

without signals correspond to bit 0). The protocol is robust to bounded

errors in the timers used by the sender and receiver.

Distributed Controller [HH94]. The benchmark models the interactions

of n sensors with a preemptive scheduler and a controller. The sensors

interact with the scheduler to access the controller, which must read data

from all the sensors in order to complete the computation.

Electronic Height Control System [MS00]. The benchmark is an industrial

case study of the system that controls the height of a car’s chassis. It

consists of a controller that changes the height of the chassis (turning on

or off a compressor and opening a valve) in order to keep its height in

a desired interval. A timer tells the controller when sampling the height

from a filter, while disturbances that changes the height of the vehicle are

modeled by the environment.

CSMA/CD [Wan05]. The benchmark is a model of the CSMA/CD pro-

tocol.

Schedulability [CPR08]. The benchmark models the schedulability prob-

lem of several tasks with a network of timed automata.

198

CHAPTER 10. EXPERIMENTAL RESULTS 199

Train Gate Controller [Wan05]. This is a parametric and scalable model

of the train-gate-controller benchmark. The model guarantees that bars

at a railroad crossing are closed when a train passes. The model has an

unknown parameter on the amount of time needed to lower the bar.

PID controller. We considered several version of a Proportional-Integral-

Derivative (PID) controller taken from a Matlab tutorial 2. The controller

is continuous and reads the error signal specified by the output signal of

the plant and a reference signal. The output of the controller is given as

input to the plant. The goal of the controller is to minimize the error signal

(i.e. the difference between the signal of the plant and the desired behavior

for the plant).

In our benchmark, the plant is a simple mass, spring and damper system.

The modeling equation of the mass, spring, and damper system (plant) is

Mẍ+ bẋ+ kx = F

where M = 1kg, b = 10Ns/m, k = 20N/m are the given parameters of

the plant, and F is the (controllable) force. Suppose the goal is to make

the plant reach a steady state where x = 1 with the some requirements on

the overshoot and rise time (that we will precisely specify later). Suppose

the desired trajectory r(t) for reaching the steady state x = 1 is a step

function: at time t = 0, we want the system to go from its initial state

(say, x = 0) to its steady state x = 1; that is, r(t) = 0 for t < 0 and

r(t) = 1 for t ≥ 0.

Let us assume that we are given a PID controller that has gains Kp =

350, Ki = 300, Kd = 50. The equation describing the composed controller

and plant system is

Mẍ+ bẋ+ kx = Kd(˙r − x) +Kp(r − x) +Ki

∫
(r − x)

2ctms.engin.umich.edu/CTMS/

199

ctms.engin.umich.edu/CTMS/

200 10.2. ENCODINGS

Note that r−x is the error in tracking the desired trajectory r. Substituting

the parameters given above in this equation, we get the following state-

space model of the controller and the plant subsystem. (Since r is not

differentiable at t = 0, we have used ṙ = 0 here).

dxint

dt
= x

dx

dt
= xder

dxder

dt
= −60 ∗ xder − 370 ∗ x− 300 ∗ xint+ 350 + 300 ∗ t

dt

dt
= 1

where x, xder (denoting ẋ), xint (denoting
∫
x), and t are the four state

variables.

The benchmark was modeled in HybridSAL.

Active suspension. The model was derived from the paper [FB02]. The

1/4-car active suspension model consists of 5 state variables. There are four

modes in the hybrid automaton. The modes arise from gain scheduling –

essentially different parameters are used in the controller in different regions

of the state space. The benchmark was modeled in HybridSAL.

10.2 Encodings

10.2.1 Quantifier-free encoding

Evaluation Settings

We performed several experimental evaluation on benchmarks from the

class polynomial hybrid automata (we considered the ETCS , the Bounc-

ing Ball and the Ballistic benchmarks). First, we evaluated the feasi-

bility of using quantifier-elimination procedures to remove the quantifier

200

CHAPTER 10. EXPERIMENTAL RESULTS 201

from the encoding. Then, we performed Bounded Model Checking on sev-

eral instances to asses the feasibility of the quantifier-free encoding and

to compare the performances with the encoding obtained using quantifier-

elimination procedures. Finally, we tried to apply our encoding to a simple

inductive property.

The encoding in the polynomial case is automatic and it is implemented

in HyComp. The Bounded Model Checking is non-incremental and uses

iSAT3 as backend to solve the resulting satisfiability queries. In the BMC

settings we usually perform a search where we check if the target is violated

for an increasing path length. Then, the removal of the quantifiers requires

more continuous transitions, thus increasing the size of the formula passed

to the solver. We considered a “layered” approach, where we first reach

the target in an over-approximation of the system, where invariants are not

guaranteed to hold, and then we check if there exists a path that reaches

the target and for which invariants hold.

All the benchmarks are publicly available at http://es.fbk.eu/people/mover/

tests/FMSD_FMCADSI/. The archive also include the non-linear benchmarks de-

scribed in Section 3.2.4.

Results

We evaluated the alternative use of quantifier elimination procedures, within

their range of applicability, i.e. polynomial hybrid automata. We exper-

imented with Cylindrical Algebraic Decomposition (CAD) (using Qep-

CAD4) and Virtual Substitution (using RedLog5). Table 10.1 reports,

for each polynomial benchmark, the time needed to obtain a quantifier

free formula of the invariants using QepCAD and RedLog. The Virtual

Substitution approach of RedLog can only handle formulas quantified

3http://isat.gforge.avacs.org/
4http://www.usna.edu/cs/ qepcad/B/QEPCAD.html
5http://redlog.dolzmann.de/

201

http://es.fbk.eu/people/mover/tests/FMSD_FMCADSI/
http://es.fbk.eu/people/mover/tests/FMSD_FMCADSI/

202 10.2. ENCODINGS

vars Max degree RedLog QepCAD

etcs braking 4 2 0.14 0.05

ball 1d plain 4 2 0.10 0.03

ball 2d plain 4 2 0.10 0.03

ball 2d hill 5 2 0.15 T.O. > 3600.00

ball 2d slope 5 4 N.A. T.O. > 3600.00

simple ballistics 5 4 N.A. T.O. > 3600.00

Table 10.1: Results of applying quantifier elimination to the polynomial benchmarks (max

degree is the maximum degree of the quantified variable,T.O.is a time out of 3600 seconds,

N.A. means not applicable).

over a quadratic variable. QepCAD is slightly more general, but de facto

less useful: the results highlight the dramatic computational complexity of

the procedure (e.g. ball 2d hill, with 5 variables, times out in one hour).

Thus, the quantifier elimination approach cannot even handle the polyno-

mial benchmarks ballistic and ball 2d slope (in addition to the benchmarks

with transcendental functions).

We used the bounded model checking functionalities enabled by our

approach to validate the various models and to evaluate the performance of

the invariant encoding. For each model we generated different reachability

properties which are falsified by traces with an increasing length. We

evaluated the encoding of the invariant by comparing the time needed

to find these traces with BMC. When quantifier elimination was able to

produce a result, we also compared it with our approach using the same

SMT-based technique, in order to evaluate the overhead caused by the

splitting. The results are shown in Table 10.2. The encoding time of

our approach is instantaneous in all cases. In the cases where quantifier

elimination is feasible, the resulting encoding may induce traces with a

smaller number of steps, because timed transitions must not be split. This

happens for the ball 1d plain and the ball 2d hill benchmarks. The reduced

202

CHAPTER 10. EXPERIMENTAL RESULTS 203

quantifier-free encoding qelim (qepcad) qelim (redlog)

etcs braking 66.75 / 17 161.52 / 17 168.16 / 17

ball 1d plain.01 0.05 / 2 0.05 / 2 0.03 / 2

ball 1d plain.02 25.50 / 6 0.09 / 4 0.06 / 4

ball 1d plain.03 31.43 / 10 0.28 / 6 0.40 / 6

ball 1d plain.04 36.23 / 14 0.46 / 8 0.65 / 8

ball 1d plain.05 151.41 / 18 1.27 / 10 1.51 / 10

ball 2d plain.01 0.08 / 2 0.18 / 2 0.28 / 2

ball 2d plain.02 4.20 / 6 3.14 / 6 3.64 / 6

ball 2d plain.03 16.04 / 10 15.90 / 10 62.64 / 10

ball 2d hill.01 1.30 / 4 na / na 0.94 / 2

ball 2d hill.02 118.67 / 8 na / na 15.36 / 4

ball 2d slope.01 to / na na / na na / na

simple ballistics 8.31 / 1 na / na na / na

Table 10.2: Results (running time / path length) of BMC with the different encodings.

number of steps also reduces the time needed to generate the trace.

Our approach was also able to prove a simple invariant on the ballistics

example, that was beyond the applicability of SMT-based techniques. We

chose as obstacle a circle shape with center in (c, 0) and radius r. If the

ceiling level is less than r, the object cannot clearly pass. This has been

proved with HyComp and iSAT. Ignoring the invariant along the timed

transitions (keeping it only on the discrete points) allows for spurious traces

that forbid the inductive proof. Note that this small example is beyond

the applicability of quantifier elimination (see Table 10.1).

Some remarks are in order. Our approach strongly depends on the avail-

ability of SMT solvers for quantifier-free theories of nonlinear arithmetic,

to solve the formulas resulting from our SMT-based verification engines.

To this end, we tried to use all the available solvers for nonlinear arith-

203

204 10.2. ENCODINGS

metic: Z36, SMT-RAT7, CVC38, miniSMT9, RAHD10, hydlogic11, dReal12.

and iSAT13. Z3 and SMT-RAT implement two complete decision proce-

dures for the non-linear arithmetic over reals. Currently, neither solver

integrate a layering with the linear arithmetic solver: in this case all the

linear arithmetic constraints are handled using the non-linear solver, thus

resulting in an inefficient approach. This is the case for our BMC case

studies, which have a significant part of linear constraints. Instead, CVC3

and miniSMT implement an incomplete decision procedure for non-linear

arithmetic (and miniSMT is tailored only to check satisfiable formulas).

As a result, these solvers turned out to return “unknown” on most of the

queries generated from our benchmarks. The hydlogic system turned out

to be immature, while RAHD exports functionalities that are closer to a

theory solver than a full SMT solver, requiring an explicit treatment of

disjunctions. iSAT and dReal differ from the other solvers, since they can

also provide approximate solutions. dReal returns an unsatisfiable answer

or a satisfiable answer if the formula is satisfiable under a bounded nu-

merical perturbations. iSAT may return “unknown” exposing the results

of interval constraints propagation: it produces the intervals found in the

search, if these are below a user-defined threshold, as a candidate solution.

In many practical cases, this is not spurious, and represents a satisfying

assignment of the formula.

Overall, despite some recent progress, our experience has shown that the

field still requires additional research to deliver what our approach requires,

both in terms of completeness, and performance. However, we argue that

6http://research.microsoft.com/en-us/um/redmond/projects/z3/
7http://smtrat.sourceforge.net/
8http://cs.nyu.edu/acsys/cvc3/
9http://cl-informatik.uibk.ac.at/software/minismt/

10http://homepages.inf.ed.ac.uk/s0793114/rahd/
11http://code.google.com/p/hydlogic/
12http://www.cs.cmu.edu/ sicung/dReal/
13http://isat.gforge.avacs.org/

204

CHAPTER 10. EXPERIMENTAL RESULTS 205

our method is valuable regardless of the current status of SMT for nonlinear

arithmetic. First, we proposed a solution to a problem that was a show-

stopper for SMT-based verification. In fact, we are now able to solve some

benchmarks that cannot be solved by overapproximation, just forgetting

about the quantified invariants. Second, we are hopeful that the field of

SMT can deliver quick progress in quantifier-free nonlinear arithmetic. In

fact, the development of SMT solving for non-linear arithmetic has been

influenced by benchmarks from other domains (e.g. most of the SMT-LIB

benchmarks in NRA are from the software domain). To this extent, we

generated and submitted to the SMT-LIB a vast number of benchmarks,

that will trigger additional research in practically relevant directions.

10.2.2 Time-aware relational abstraction

Evaluation Settings

We extended the HybridSAL tool to compute also the time-aware rela-

tional abstractions. The computation of the abstraction has three param-

eters:

• l,m: determine the first, (−∞, e−l], and the last, [em,∞), intervals

for the piecewise approximations of logarithms (See Equations 5.9

for details). Recall from Section 5.3.3 that we guarantee a fixed er-

ror γ to compute the logarithm ln(x) for the unbound intervals of

(−∞, e−l], [e−l, e−l+1], . . . , [em−1, em], [em,∞), while the unbounded

intervals only guarantee soundness.

• n: determine the number of complete cycles that lie between the initial

and final state (See Equation 5.13 for details). For values greater than

n we guarantee soundness, but the abstraction is less precise.

First, note that a bigger value of all three the parameters results in a more

fine-grained approximation. Then, note that in the current implementation

205

206 10.2. ENCODINGS

the parameters of the abstraction are the same for the whole abstraction:

this means that we do not specify different parameters for different loca-

tions of the systems or for different eigenvalue and eigenvector pairs or for

different logarithm functions. In principle, the refinement could be more

fine-grained to achieve different precision.

HybridSAL generates abstractions in the language of the SAL model

checker. We used SAL and its implementation of k-induction to prove

safety properties on two case studies, the PID controller and the active

suspension benchmark.

We consider several versions of the PID controller: a PD controller, a

PI controller and a PID controller. Dropping one of the component of

the controller (the proportional, P, or the integral, I, or the derivative, D)

changes the behavior of the controller. The intuition is that the propor-

tional component takes into account the current error, the integral com-

ponent accumulates the past errors and the derivative component predicts

the future errors. For each of the three controllers, we also consider two

variants: one in which the integral term goes through a saturation block

(suffixed with “Sat”) and one in which there is no such saturation block.

(In PD, the coefficient of the integral term is zero, but the integral is still

computed and hence, saturated in PDSat.) For the PID controller, we wish

to check the following rise time requirement: after t=0.5 units, x reaches

within 90% of its steady-state value. We check a stronger variant of this

requirement, namely

G(t > 0.5⇒ x ≥ 0.9 ∧ x ≤ 1.1)

which says that it is always true that whenever time is greater than 0.5,

then x is in the [0.9, 1.1] interval.

For the active suspension benchmark, we wish to prove that the deflec-

tion of the suspension always remains within a safe interval.

206

CHAPTER 10. EXPERIMENTAL RESULTS 207

We evaluate our approach trying to prove the properties on both the case

studies using the time-unaware and the time-aware relational abstraction

with different precisions.

Results

In Table 10.3, we present the results of analyzing the rise-time require-

ments for different PID controllers. We analyze the six system models

using time-agnostic relational abstraction, and using time-aware relational

abstraction. The analysis with time-aware relational abstraction is carried

out with four different settings of the three parameters (l,m, n).

We note that we cannot prove the rise-time requirement for any of the

system models using only time-agnostic relational abstraction. Using time-

aware abstraction, we also cannot prove the rise-time requirement for any

of the models unless we pick l ≥ 3. Note that the PD and PID systems

(and their saturated counterparts) satisfy the desired rise-time require-

ment, whereas the PI system does not.

Note that we perform bounded model checking on the computed time-

aware abstractions. In general, failure to find a counter-example in a

bounded run does not imply the validity of the property. But, for single

locations hybrid systems (such as PD, PI and PID), if there is no depth 1

counter example, then the property is valid. This is because (time-agnostic

and time-aware) relational abstractions over-approximate unbounded time

reach sets (for each mode). For hybrid systems with multiple locations, a

proof using k-induction is required to prove a property.

We applied the time-aware relational abstraction technique to verifying

bounded deflection in the active suspension model. Time-agnostic rela-

tional abstraction is unable to verify this safety property; it always pro-

duces a spurious counterexample. However, the time-aware abstraction

constructed using parameter values l = 2,m = 2, n = 2, was sufficient to

207

208 10.2. ENCODINGS

Time-Unaware Abstraction Time-Aware Abstraction

Model HybridSAL

Time

SAL

Time

Result l m n HybridSAL

Time

SAL

Time

Result

PD 0.6 0.4 U 2 0 0 1.1 0.2 U

3 0 0 0.4 0.2 U

0 2 0 0.4 0.2 U

4 2 2 0.6 0.6 P

PI 0.4 0.1 U 2 0 0 0.6 0.6 U

3 0 0 0.4 0.2 U

0 2 0 1.2 0.6 U

4 2 2 0.5 0.2 U

PID 1.1 0.1 U 2 0 0 0.4 0.2 U

3 0 0 0.4 0.2 P

0 2 0 0.8 0.6 U

4 2 2 1.2 0.8 P

PDSat 1.5 0.4 U 2 0 0 1.5 0.7 U

3 0 0 0.5 0.2 U

0 2 0 0.8 0.7 U

4 2 2 0.8 0.7 P

PISat 0.6 0.2 U 2 0 0 1.2 0.3 U

3 0 0 0.6 0.3 U

0 2 0 0.9 1.1 U

4 2 2 0.6 0.5 U

PIDSat 1.5 0.4 U 2 0 0 1.2 1.1 U

3 0 0 0.6 0.3 P

0 2 0 0.8 0.35 U

4 2 2 1.3 1.6 P

Table 10.3: Results on verifying feedback PD, PI and PID controllers, with and without

saturation, using different parameters for the time-aware relational abstraction. Model

names with suffix “Sat” are versions that have saturation applied on the integral term.

“HybridSAL time” is the time took by HybridSAL to compute the abstraction, “SAL

time” is the time took by SAL to run k-induction at depth 1, l,m, n are the parameters

of the time-aware relational abstraction. “Result” may be not-proved (U), if we find a

counterexample, or proved (P) if k-induction proves the property.

208

CHAPTER 10. EXPERIMENTAL RESULTS 209

show that there were no counterexamples up to depth 4.

10.3 Reachability

10.3.1 Shallow synchronization

Evaluation Settings

In this section we evaluate the effectiveness of the different encodings pre-

sented in Section 6.2.2. With respect to the different options of the encod-

ing, we use the following notation:

• e for the enumerative encoding,

• r for the local reasoning encoding,

• t for the local reasoning with uninterpreted functions encoding.

With regards to the incrementality, when we use local reasoning, we can

add the synchronization constraints during the unrolling (denoted with

u) or add them after the unrolling (denoted with f). Overall, we have

5 different configurations: ru, rf, ef, tu, tf (e.g., ru means using local

encoding with the constraints added during the unrolling).

To evaluate the approach, we use the following benchmarks: Simple

Ring , Star-shape Fischer , Ring-shape Fischer , ETCS , Motorcycle, FDDI

Protocol , Nuclear Reactor , Multi-Frequency .

We check reachability problems comparing the encodings based on the

global time semantic with and without the step semantic optimization and

all the different options for the shallow synchronization. We compared the

results only on reachable instances. For unreachable cases, since we are

using a BMC approach, the results strongly depend on the fixed bound, but

the meaning of the bound depends on the semantics: for the interleaving,

it represents the total number of local and global steps; for the shallow

209

210 10.3. REACHABILITY

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8

inter
step

ru
ef
tu
rf
tf

(a : Star-shape Fischer) (b : Nuclear Reactor)

Figure 10.1: Scalable plots showing the run times (seconds on the y axes) to solve a

problem with an increasing number of processes (on the x axes). For Star-shape Fischer

and Nuclear Reactor length of a local run depends on the number of processes.

synchronization, it represents the maximum bound of a local run. Thus,

any bound would be unfair for either semantics. Nevertheless, note that all

algorithms check the unreachability of the target for path lengths smaller

than the final one. So, the performance does not depend on the chance

of finding the right path. We ran the experiments on a Red Hat 4.1.2

machine, with Intel(R) Core(TM)2 Quad CPU 2.66*4, and 4GB of RAM

with a time out of 600 seconds.

Results

The results of the comparison are shown in Figures 10.1 and 10.2, where

the time to solve the reachability problem is plotted in log scale against the

number of automata in the network. Each line corresponds to a particular

option. Table 10.4 shows some of the features of the benchmarks, such as

the length of the paths found by reachability analysis as a function of n

(the number of processes in the benchmark family). Results are reported

for interleaving, step semantic and shallow synchronization.

The main finding of the experimental results is that the efficiency of the

210

CHAPTER 10. EXPERIMENTAL RESULTS 211

Benchmark Path length Hardest instance attempted

Inter Step Shallow Inter Step Shallow

Simple Ring 5n 6 6 5[to] 20[1.1] 20[3.1] - 20[5.5]

Ring-shape Fischer 7n 7 7 5[to] 20[8.9] 20[24.2] - 20[130.2]

Star-shape Fischer 3n 3n 3n 8[to] 9[to] 5[to] - 6[to]

FDDI Protocol 2n+ 1 5 3..5 15[to] 15[to] 20[0.7] - 20[7.3]

Nuclear Reactor 4n 4n 4n 8[to] 8[to] 6[to] - 7[to]

Motorcycle 4n+ 3 4n+ 3 7..9 7[to] 6[to] 20[22.4] - 20[259.5]

ETCS NA NA 17 2[to] 2[to] 7[to] - 14[to]

Multi-Frequency NA 3(n− 1)..3n 9 4[to] 8[to] 20[20.4] - 20[115.6]

Table 10.4: Columns 2, 3 and 4 report the length of the path found with the different

semantics in function of the number of processes n. Columns 5, 6, 7 report the size of the

hardest instance attempted, and, in square brackets, the corresponding time, or “TO”

in case of timeout. For Shallow, we report the best and worst result over the different

options.

bounded model checker depends on necessary depth of the search regard-

less the adopted semantics. The interleaving performs better than shallow

synchronization in the cases where the depth of the search is the same

for the different semantics (because one process interacts with all the oth-

ers and its local run of one process interleaves the synchronization with all

other processes): in these cases, the shallow synchronization is penalized by

the overhead of the synchronizing constraints. Nevertheless, in many cases

(see Fig. 10.2), the length of local runs do not depend on the number of

processes. Thus, using the shallow semantics, we reach the target at same

depth. In these cases, the encoding based on shallow synchronization scales

exponentially better than the one based on interleaving. The shorter depth

of the encoding pays off the overhead due to the more complex synchro-

nizing constraints. The same happens for the step semantics, which is the

winner when it is possible to parallelize independent transitions. Among

the different options of the shallow synchronization encodings, there is no

211

212 10.3. REACHABILITY

winner, but using the local encoding added after reaching the target seems

to win in most of cases.

We also compared our implementation with BACH [BLW+10], which

results to be faster on many examples, while on others it does not termi-

nate with few processes. The comparison does not help in understanding

which encoding is more efficient, but rather it confirms that explicit-state

search is faster on automata with a small graph, while does not compete on

automata with complex graph structure. Finally, we played with different

search strategies but they do not modify the outcome of the presented re-

sults. All results, together with the binaries and test cases necessary to re-

produce them, are available at http://es.fbk.eu/people/tonetta/tests/forte10/.

10.3.2 K-induction and Implicit Predicate Abstraction

Evaluation Settings

We evaluated the verification technique based on k-induction and implicit

predicate abstraction presented in Section 6.3.

We evaluated the algorithm considering four different variants. All the

four variants uses the MathSAT SMT solver, and the refinement based

on interpolation. The first variant, K-Ind+IA, implements the basic ap-

proach, without optimization. The second variant, K-Ind+IA+Red, im-

plements the heuristic that reduces the number of predicates. The third

variant, K-Ind+IA+Inv, implements an heuristic that discovers induc-

tive invariants: the algorithm checks, for each predicate found by interpo-

lation, if the predicate is an inductive invariant. The last variant uses both

optimization (i.e. the reduction of predicates and the heuristic invariant

generation).

We compared the approach with k-induction performed in the concrete

space (K-Ind) and with the implementation of IC3 [CG12] in the con-

212

http://es.fbk.eu/people/tonetta/tests/forte10/

CHAPTER 10. EXPERIMENTAL RESULTS 213

crete state space. Then, we also report the result obtained using a recent

approach [CGMT14a], where we integrate IC3 with implicit predicate ab-

straction (IC3+IA).

We performed the evaluation on two different classes of benchmarks.

First, we used several hybrid systems benchmarks. In details, we used

Audio Protocol , FDDI Protocol , CSMA/CD , Distributed Controller , Star-

shape Fischer , Fischer timed , Nuclear Reactor and Train Gate Controller.

We scaled the number of the benchmarks increasing the number of pro-

cesses involved (apart for the FDDI Protocol). We mostly considered safe

properties, but in the test cases we also had some unsafe properties. In

total, we generated 180 instances.

Then, we considered several benchmarks taken from different sources:

the Software Verification Competition SV-COMP [Bey13], interpreting

them over Bit Vectors as done in [CGMT14a], the instances from the test

suite of InvGen [GR09], the benchmarks used in [CG12] and the bench-

marks of the KIND model checker [KT11]. These benchmarks contains

integer, bit-vector and real type variables operations. Thus, we did not

include in the evaluation IC3, which works only if the transition system is

expressed using Linear Arithmetic over Rationals. In total, we considered

900 instances, with true and false properties. All results, together with

the binaries and test cases necessary to reproduce them, are available at

http://es.fbk.eu/people/mover/tests/KINDIA/kindia.tar.bz2.

Results

We have run our experiments on a cluster of Linux machines with a 2.27GHz

Xeon CPU, using a timeout of 900 seconds and a memory limit of 4Gb for

each instance.

In Figure 10.3.2 we compare the optimization of K-Ind+IA for the hy-

brid automata benchmarks: the version of K-Ind+IA that performs both

213

http://es.fbk.eu/people/mover/tests/KINDIA/kindia.tar.bz2

214 10.3. REACHABILITY

the reduction and the simple invariant discovery (K-Ind+IA+Red+Inv)

seems to perform better than all the other variants. In fact, it seems that

for hybrid automata benchmarks the approach may find several invariants

on the continuous variables. For example, in several cases the variables

increase monotonically and are never set to a negative value in a discrete

transition. Thus, the approach may find that a variable is always positive.

These kind of simple invariants may help the inductive step of k-induction

to prove that a property holds. Also, note that the reduction of the num-

ber of predicates is effective. In fact K-Ind+IA+Red+Inv solves more

instances than K-Ind+IA+Inv and is usually faster.

In Figure 10.3.2 we compare K-Ind+IA+Red+Inv, the best configu-

ration among the K-Ind+IA approaches, with the other verification algo-

rithms, K-Ind, IC3+IA and IC3. First, K-Ind+IA+Red+Inv outper-

forms K-Ind on most of the benchmarks, demonstrating the effectiveness

of implicit predicate abstraction. For a class of benchmarks (FDDI Proto-

col) and one of its safety properties instead K-Ind performs consistently

better than K-Ind+IA+Red+Inv. In this case, K-Ind is able to prove

the property without the need of any abstraction, while K-Ind+IA finds

an abstraction that is harder to prove. Then, we see that the recent ap-

proaches based on IC3 are more effective than the one based on K-Ind.

While this is not surprising in general, what it worth to note is that IC3

seems more efficient than IC3+IA on the hybrid automata benchmarks.

Analyzing the results obtained on the software verification benchmarks,

we see from Figure 10.3.2 that the reduction of the number of predicates is

crucial for K-Ind+IA to obtain good performances. Instead, the heuristic

used to discovery invariant is not effective for this class of benchmarks.

Comparing K-Ind+IA with K-Ind, from Figure 10.3.2, we see that K-

Ind cannot solve most of the instances that K-Ind+IA+Red+Inv can

solve. As before, the implicit abstraction technique based on IC3 solves

214

CHAPTER 10. EXPERIMENTAL RESULTS 215

more instances that K-Ind+IA+Red+Inv cannot solve before the time-

out. However, on several instances where the property does not hold K-

Ind+IA+Red+Inv is faster than IC3+IA.

10.4 Scenario

10.4.1 Evaluation Settings

We compared the scenario-based encodings with the different approaches

based on the automata construction [CMT11a]. After the reduction of the

problem to reachability using an automata encoding of the scenario, we

rely on the implementation of Bounded Model Checking and K-induction

of nuXmv, which uses MathSAT as the implementation of the scenario-

based encoding, and is incremental (i.e. the SMT solver state is not reset

when increasing the depth of the BMC search).

In the experimental evaluation, we used the following benchmarks: Dis-

tributed Controller , Nuclear Reactor , Electronic Height Control System,

Audio Protocol , Star-shape Fischer and Ring-shape Fischer .

First we compare the scenario-based encoding with the automata-based

approach on feasible MSCs. Then we evaluate the scenario-driven induc-

tion with the k-induction performed on the system composed with the

monitor. The experimental comparison does not take into account the com-

putation of unfeasibility explanations. On the one hand, the extraction of

explanation does not appear to be straightforward for the automata-based

approach (i.e. it is not clear how one can extract the same information ap-

plying the automata encoding). On the other hand, the overhead largely

depends on the fact that the SMT solver must be run with proof logging

activated. This can in general lead to non-negligible overheads, but in the

benchmarks we analyzed this did not turn out to be the case.

The experiments were run on two Linux machine (with an Intel i7 CPU

215

216 10.4. SCENARIO

2.93 for feasible MSCs and an Intel Core 2 Quad CPU 2.66 for unfeasible

MSCs), setting the timeout and the memory out for a single run to 900

seconds and to 4 GB. The test cases, the executable and the results are

available at http://es.fbk.eu/people/mover/tests/FMSD11/.

10.4.2 Results - Feasibility

We compare the scenario-based approach with the automata-based ap-

proach on a set of feasible meaningful scenarios, which describe the inter-

action of all the automata in the benchmarks, possibly containing parallel

event synchronizations. We evaluate the scalability of the proposed ap-

proaches with respect to the number of components in the network and to

the length of the MSCs. We increase the number of the components for all

the benchmarks, except for the Electronic Height Control System and the

Audio Protocol , which have a fixed number of processes.

For the automata-based approach we exploit two different construction

of the monitor. In the approach called Global we construct a single mon-

itor that represents one of the possible equivalent partial-orders imposed

by the scenario, while in DistribLocal we build a distributed monitor,

one for each hybrid automaton in the network. In both construction, we

used the optimization of step semantics. The details on the automata con-

struction can be found in [CMT11a]. Then, we check the reachability of

the target state of the monitor in the model obtained composing the moni-

tor with the original system. The search is performed using an incremental

BMC.

For the scenario approach, we evaluate two different variant: one is

the plain scenario encoding, called Scenario, while the other is the vari-

ant (called ScenarioSimpl) where we statically compute the invariants

using BDD-based reachability. Note that, in this case, the reported run

times already includes the time needed to compute the invariants via BDD

216

http://es.fbk.eu/people/mover/tests/FMSD11/

CHAPTER 10. EXPERIMENTAL RESULTS 217

reachability on a discrete abstraction of the hybrid automata.

Additionally, we evaluate for both the automata-based and the scenario-

based approach the optimization where we alternate the timed and the

discrete transitions in the encoding. We add the suffix Alt to the names

of the approaches to denote this variant.

The main findings of the experimental evaluation regard the effective-

ness of the scenario-based encoding, which outperforms the optimized

automata-based techniques. The Figure 10.7 (a) shows a cactus plot (in

logarithmic scale) for all the tested instances of benchmarks and scenarios.

The plot shows the cumulative time (on the y axes, in seconds) to solve a

given number of instances (on the x axes). From the plot it is clear that

the scenario-driven encoding solves more instances than the automata ap-

proaches, and is significantly faster. Moreover, we note that the alternation

improves the performances for the scenario and for the global automaton,

while it is counterproductive for DistribLocal.

Figure 10.7 (b) shows a scatter plot that compares the run-times of the

best overall configurations available for both the automata and the sce-

nario algorithms (DistribLocalAlt and ScenarioInvAlt). A point

in the scatter plot represents the time used by DistribLocalAlt (x

axes) and by ScenarioInvAlt (y axes) to solve an instance. Scenari-

oInvAlt outperforms DistribLocalAlt in almost all the benchmarks,

solving several instances that the DistribLocalAlt cannot solve within

the timeout.

Now, we evaluate the scalability of the scenario approach with respect

to the number of automata in the network and with respect to the length

of the scenario specifications.

In Figure 10.8 we show the plots for three benchmarks (Star-shape Fis-

cher ,Ring-shape Fischer ,Nuclear Reactor), where on the y axes we plot

the run time (in seconds) and on the x axes the number of automata in the

217

218 10.4. SCENARIO

benchmark. Each point represents the time took by one of the approaches

to solve the problem for a fixed number of processes. For each benchmark,

we show the result fixing the length of the verified scenario. The plots

show that the scenario based encoding scales increasing the number of au-

tomata in the network, while it is not the case for the automata based

approach. Several aspects justify the increased efficiency. First, the encod-

ing of the MSC model checking problem in the scenario-driven approach is

done keeping the encoding of each single automaton local. This helps, since

it allow us to keep the unrolling of the single automaton shorter (i.e. the

automata in the network are unrolled for a shorter length with respect to

the length of an interleaving path). This is not the case with the automata

approach. Second, the search performed on the scenario-driven encoding

does not have to face with the problem of finding a good interleaving of

shared actions, but rather it has to find consistent local times between fixed

synchronization points of the encoding. Third, the encoding simplified by

the scenario results in an easier problem for the SMT solver. Comparing

the optimization on the different scenario encodings, we see that on these

three benchmarks both the invariant generation and the alternation of the

discrete and continuous steps do not help to improve the performance. In-

stead, since the invariant are not effective to speed up the search, they

worse the run time, due to the additional time needed to compute them

(that depends on the number of automata in the network).

We show the scalability with respect to the length of the scenario in Fig-

ure 10.9 for two benchmarks, Audio Protocol and Electronic Height Control

System. For the Audio Protocol benchmark, all the automata approaches

have poor scalability, while the scenario-based encoding scales well increas-

ing the length of the scenario. However, note how both alternation and

the invariant optimization pay off in this case. For the Electronic Height

Control System benchmark the construction based on the local monitors

218

CHAPTER 10. EXPERIMENTAL RESULTS 219

is effective. However, the configuration where we enable both the addi-

tional invariants and where we alternate the discrete and continuous steps,

ScenarioInvAlt, outperforms all the other approaches and scale well

increasing the length of the scenario.

10.4.3 Results - Unfeasibility

We compared the scenario-based induction with k-induction applied to the

monolithic encoding of the network of HAs and the automata translated

from the MSC. The monolithic encoding is obtained composing the net-

work with the automata obtained from the MSC, using the DistribLocal

construction with step semantics.

In order to test the scalability of both approaches, we considered a set

of unfeasible MSCs of different lengths, and parameterized the number of

HAs in the network. The scatter plot in Figure 10.10 shows the execution

time for both methods on all the instances. The Scenario-based induction

is clearly superior to monolithic k-induction. This because it exploits the

structure of the MSC, resulting in localized simple path conditions, which

are both simpler, and more effective, so that unsatisfiability is detected

with a much shorter unrolling.

10.5 Parameter Synthesis

10.5.1 Evaluation Settings

We implemented the parameter synthesis in the nuXmv model checker.

The implementation is based on the fully symbolic SMT-based IC3 of

[CG12] and uses MathSAT [CGSS13] as backend SMT engine, working

transition systems with linear arithmetic constraints.

Our evaluation consists of three parts. In the first, we compare our

219

220 10.5. PARAMETER SYNTHESIS

implementation (called ParamIC3 in what follows) with the approach de-

scribed in [CPR08], in order to evaluate the viability of our technique when

compared to other SMT-based solutions. For this, we have implemented

the algorithm described in [CPR08] using our “regular” SMT-based IC3

implementation as the backend engine for reachability checking (called

Iterative-Block-Path(IC3) in what follows). We remark that the tool of

[CPR08] was based only on Bounded Model Checking (BMC), and ex-

ploited domain-specific information for computing the maximum needed

bound, which is not available in our more general context.

In the second part, we evaluate the effectiveness of the optimization

related to the computation of bad parameters, by comparing the default

heuristic used by ParamIC3, using both the full counterexample path π

and its initial state (s0, 0) for blocking bad regions of parameters, with the

basic strategy using only (s0, 0) (called ParamIC3-basic in the following).

In particular, the default heuristic used by ParamIC3 works as follows. At

the beginning, only initial states (s0, 0) of counterexample paths are used

to block bad regions of parameters. If the algorithm starts enumerating

too many bad regions, it starts exploiting also full paths π, by computing

the bad region βπk (U) = ∃X.BMCπ
k , where k is the length of π, and BMCπ

k

is the formula encoding all the counterexample traces of length k where

the values for the Boolean variables are the same as in π, similarly to what

is done in [CPR08]. The computation of βπk is aborted if it becomes too

expensive14 , in order to control the tradeoff between the quality of the

obtained bad region and the cost of performing quantifier elimination.

Finally, in the third part of our evaluation, we compare ParamIC3 against

Red [Wan05], a state-of-the-art tool for parameter synthesis for linear-

hybrid automata.

14We currently use a cutoff value on the number of elementary operations in the quantifier elimination

module of MathSAT for this.

220

CHAPTER 10. EXPERIMENTAL RESULTS 221

We have selected a set of the benchmark problems used in previous work

on parameter synthesis for hybrid systems. Most of them come from the

suite of Red. We have a total of 92 instances from 13 different families.

All the instances, the scripts and the tools used for reproducing our exper-

iments are available at http://es.fbk.eu/people/mover/fmcad13.tar.gz. For the

first two parts of our evaluation, we have experimented with two different

ways of encoding linear hybrid automata into symbolic transition systems,

resulting in a set of 192 instances. For the comparison with Red, we picked

the encoding giving the best overall performance for ParamIC3.

10.5.2 Results

We have run our experiments on a cluster of Linux machines with a 2.27GHz

Xeon CPU, using a timeout of 600 seconds and a memory limit of 3Gb for

each instance. Figure 10.11 shows the scatter plots that compare the total

run time (in seconds) of the different techniques. From the plots, we can

make the following observations. (i) Our new algorithm is clearly superior

to the technique of [CPR08], both in number of completed instances and

in execution time. Overall, ParamIC3 successfully solves 5 more instances

than Iterative-Block-Path(IC3), and it is almost always faster. We remark

that both algorithms use the same implementation of IC3 as backend, run

with the same options. (ii) Our heuristic for using full counterexample

paths π for blocking bad regions of parameters pays off for harder prob-

lems. With it, ParamIC3 solves 6 more instances which were previously out

of reach, without any overhead for the other instances. (iii) The comparison

with Red shows that our technique is very promising. Although there is

no clear winner, there are more instances for which ParamIC3 outperforms

Red than the converse. In general, the two tools seem to be somewhat

complementary. We remark that Red is specialized for timed and linear-

hybrid automata and that most of the benchmarks we used come from its

221

http://es.fbk.eu/people/mover/fmcad13.tar.gz

222 10.5. PARAMETER SYNTHESIS

suite, whereas ParamIC3 works for arbitrary transition systems and it is

not tuned for linear hybrid systems in any way.

222

CHAPTER 10. EXPERIMENTAL RESULTS 223

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

inter
step

ru
ef
tu
rf
tf

(a : Simple ring) (b : Ring-shape Fischer)

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

inter
step

ru
ef
tu
rf
tf

(c : Motorcycle) (d : FDDI Protocol)

 10

 100

 1000

 2 4 6 8 10 12 14

inter
step

ru
ef
tu
rf
tf

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

inter
step

ru
ef
tu
rf
tf

(e : ETCS) (f : Multi frequency)

Figure 10.2: Scalable plots showing the run times (seconds on the y axes) to solve a

problem with an increasing number of processes (on the x axes). For the benchmarks

showed in the Figure, the length of the local runs does not depend on the number of

processes.

223

224 10.5. PARAMETER SYNTHESIS

K
-I
n
d
+
IA

+
R
e
d
+
In

v

 1

 10

 100

 1000

 1 10 100 1000

unsatisfiable
satisfiable

 1

 10

 100

 1000

 1 10 100 1000

unsatisfiable
satisfiable

 1

 10

 100

 1000

 1 10 100 1000

unsatisfiable
satisfiable

K-Ind+IA K-Ind+IA+Red K-Ind+IA+Inv

Figure 10.3: Run time comparison (sec.) between K-Ind+IA+Red+Inv and K-

Ind+IA, K-Ind+IA+Red and K-Ind+IA+Inv on hybrid automata benchmarks.

K
-I
n
d
+
IA

+
R
e
d
+
In

v

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable

K-Ind IC3+IA IC3

Figure 10.4: Run time comparison (sec.) between K-Ind+IA+Red+Inv and K-Ind,

IC3+IA and IC3 on hybrid automata benchmarks.

K
-I
n
d
+
IA

+
R
e
d
+
In

v

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable

K-Ind+IA K-Ind+IA+Red K-Ind+IA+Inv

Figure 10.5: Run time comparison (sec.) between K-Ind+IA+Red+Inv and K-

Ind+IA, K-Ind+IA+Red and K-Ind+IA+Inv on sw benchmarks.

224

CHAPTER 10. EXPERIMENTAL RESULTS 225

K
-I
n
d
+
IA

+
R
e
d
+
In

v

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

unsatisfiable
satisfiable 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

unsatisfiable
satisfiable

K-Ind IC3+IA

Figure 10.6: Run time comparison (sec.) between K-Ind+IA+Red+Inv and K-Ind

and IC3+IA on sw benchmarks.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350

DistribLocal
DistribLocalAlt

Global
GlobalAlt
Scenario

ScenarioInvar
ScenarioAlt

ScenarioAltInvar

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

(a) Cactus plot of run times (sec.). (b) Scatter plots of run times (sec.).

Figure 10.7: (a) Cactus plot with the cumulative time (y axes) and # of solved instances

(x axes); (b) Scatter plots with ScenarioInvAlt (y axes) vs. DistribLocalAlt (x

axes)

225

226 10.5. PARAMETER SYNTHESIS

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

DistribLocal
DistribLocalAlt

Global
GlobalAlt
Scenario

ScenarioInvar
ScenarioAlt

ScenarioAltInvar
 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

DistribLocal
DistribLocalAlt

Global
GlobalAlt
Scenario

ScenarioInvar
ScenarioAlt

ScenarioAltInvar
 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30

DistribLocal
DistribLocalAlt

Global
GlobalAlt
Scenario

ScenarioInvar
ScenarioAlt

ScenarioAltInvar

(a) Star-shape Fischer (b) Ring-shape Fischer (c) Nuclear Reactor

Figure 10.8: Scalable plots showing the run times (sec. on the y axes) to solve a problem

with an increasing the number of processes (on the x axes).

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

DistribLocal
DistribLocalAlt

Global
GlobalAlt
Scenario

ScenarioInvar
ScenarioAlt

ScenarioAltInvar
 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

DistribLocal
DistribLocalAlt

Global
GlobalAlt
Scenario

ScenarioInvar
ScenarioAlt

ScenarioAltInvar

(a) Audio Protocol (b) Electronic Height Control System

Figure 10.9: Scalable plots showing the run times (sec. on the y axes) to solve a problem

with a scenario of increasing length (on the x axes).

226

CHAPTER 10. EXPERIMENTAL RESULTS 227

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Figure 10.10: Run times (sec.): monolithic induction (x axes) vs. scenario-induction (y

axes).

P
a
r
a
m
IC

3

 1

 10

 100

 1000

 1 10 100 1000

 1

 10

 100

 1000

 1 10 100 1000

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Iterative-Block-Path(IC3) ParamIC3-basic Red

Figure 10.11: Run time comparison (sec.) between ParamIC3 and Iterative-Block-

Path(IC3), ParamIC3-basic and Red.

227

228 10.5. PARAMETER SYNTHESIS

228

Part V

Conclusion

Chapter 11

Conclusion and Future Work

11.1 Conclusion

A key issue during the design of an embedded systems is to identify errors.

Since embedded systems are used in safety critical applications, an error

may cause their failure, and thus, possibly a huge loss of money. Formal

verification helps to find bugs in the early design phases of the system.

Moreover, the adoption of formal techniques is required to adhere to certi-

fication standards (e.g. see the standard DO-178b [do192] for the avionics

domain). However, the verification and the automatic analysis of complex

embedded systems is challenges. These systems are usually hybrid, since

they are formed by several components that interact with the physical

environment.

In this thesis we investigated novel formal verification techniques for

hybrid systems, exploiting the capabilities of SMT solvers.

To recap, the contributions of this thesis are the following.

First, we proposed a technique to encode hybrid automata with non-

linear dynamics in an encoding that does not rely on quantifiers. The

technique is general enough to be applied automatically to Polynomial

Hybrid Automata and to sub-classes of Linear Hybrid Systems. Moreover,

we also showed that the approach can be applied to some non-linear hybrid

231

232 11.1. CONCLUSION

systems, although manually. The approach extends the applicability of the

existing verification techniques based on SMT, such as Bounded Model

Checking. While the performance of the current SMT solvers may not be

satisfactory on the problems generated with this encoding, the approach is

an enabler for future research.

Second, we investigated an improvement of the relational abstraction

technique for Linear Hybrid Systems. We proposed a novel abstraction,

time-aware relational abstraction, that has two main advantages: it is more

precise and it can be refined. We demonstrated the effectiveness of the

abstraction on several interesting case studies that cannot be verified with

the previous approach.

Third, we proposed a Bounded Model Checking algorithm that, exploit-

ing the structure of the hybrid automata network, may obtain performance

improvements over a monolithic BMC approach.

Fourth, we showed an abstraction-refinement technique based on im-

plicit predicate abstraction and k-induction. The refinement of the ab-

straction is fully incremental and enables for interesting optimization, like

the reduction of predicates. With an experimental evaluation we showed

that the technique is effective in proving invariant properties on infinite-

state transition systems, also from the software domain.

Fifth, we proposed novel algorithms to solve the scenario-verification

problem. Scenario are an important tool for the validation of a design,

since they allow the user to test the feasibility of complex interactions in

the system. We proposed two algorithms that exploit the hybrid automata

network with the goal of increasing the performance of the verification

task. We empirically showed that the algorithms work well compared to

the state of the art. Moreover, we exploited the SMT framework to extract

debug information in the case a scenario is unfeasible.

Sixth, we developed a novel algorithm that solve the parameter synthesis

232

CHAPTER 11. CONCLUSION AND FUTURE WORK 233

problem. Also in this case, we showed empirically that the new approach

is competitive with the state of the art.

In conclusion, the thesis demonstrate three findings. First, it is possi-

ble to analyze hybrid systems with complex dynamics (beyond the linear

hybrid automata case) using the SMT framework. Then, the thesis shows

that the hybrid automata network formalism can be exploited to design

better verification algorithms that are aware of the input problem, like the

structure of the automata network. Finally, the thesis shows that the SMT

framework is suitable to design efficient verification and analysis algorithms

for infinite-state transition systems.

11.2 Future work

The work presented in the thesis open for several future research directions.

First, to effectively apply verification to hybrid systems in an industrial

context (e.g. in the analog-mixed signals domain), there is the need to

handle complex and non-linear dynamics efficiently. The approach pre-

sented in Chapter 3 gives a partial solution to the problem. However, as

shown by our experimental evaluation, there is the need of more scalable

verification algorithms able to reason on infinite-state transition systems

expressed in the Theory of Reals. To improve the existing techniques, a

possible solution is to develop more efficient decision procedures for the

Theory of Reals. Another approach to solve the problem is to investigate

the use of the Theory of Reals in the recently proposed verification algo-

rithms, such as IC3 (e.g. note that in IC3 a single satisfiability query is

less demanding compared to other approaches like, e.g. BMC). Moreover,

a promising research direction regards relational abstraction (Chapter 5),

which could be extended to handle non-linear hybrid systems.

Moreover, there is a demand from industrial users to solve more expres-

233

234 11.2. FUTURE WORK

sive problems than invariant verification. For example, the SMT-based

techniques could be extended to verify LTL properties or HRELTL prop-

erties [CRT09].

Regarding time-aware relational abstraction, we plan to investigate sev-

eral open problems. For example, the proposed technique seems amenable

for an abstraction-refinement approach. However, an open question is to

find an effective simulation and refinement technique. Then, we would like

to apply the technique to networks of hybrid automata.

In the thesis we investigated verification techniques that exploit the

structure of the automata network, with the goal of improving the scal-

ability of the approaches. The experimental results were promising, and

demonstrate that it could be interesting to push the research efforts in this

direction. For example, we could investigate invariant property algorithms

that exploit the structure of the automata network.

234

Bibliography

[ABCS05] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, and

Roberto Sebastiani. Verifying industrial hybrid systems with

MathSAT. Electr. Notes Theor. Comput. Sci., 119(2):17–32,

2005.

[ABG07] S. Akshay, Benedikt Bollig, and Paul Gastin. Automata and

logics for timed message sequence charts. In Vikraman Arvind

and Sanjiva Prasad, editors, FSTTCS, volume 4855 of Lecture

Notes in Computer Science, pages 290–302. Springer, 2007.

[ÁBKS05] Erika Ábrahám, Bernd Becker, Felix Klaedtke, and Martin

Steffen. Optimizing bounded model checking for linear hybrid

systems. In Radhia Cousot, editor, VMCAI, volume 3385 of

Lecture Notes in Computer Science, pages 396–412. Springer,

2005.

[ABS01] Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu.

Trex: A tool for reachability analysis of complex systems. In

Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV,

volume 2102 of Lecture Notes in Computer Science, pages 368–

372. Springer, 2001.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-

checking for real-time systems. In LICS, pages 414–425. IEEE

Computer Society, 1990.

235

236 BIBLIOGRAPHY

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas. A. Henzinger,

and Pei-Hsin Ho. Hybrid automata: An algorithmic approach

to the specification and verification of hybrid systems. In Hy-

brid Systems, pages 209–229, 1992.

[ACKS02] Gilles Audemard, Alessandro Cimatti, Artur Kornilowicz, and

Roberto Sebastiani. Bounded model checking for timed sys-

tems. In Doron Peled and Moshe Y. Vardi, editors, FORTE,

volume 2529 of Lecture Notes in Computer Science, pages 243–

259. Springer, 2002.

[ADI06] Rajeev Alur, Thao Dang, and Franjo Ivancic.

Counterexample-guided predicate abstraction of hybrid

systems. Theor. Comput. Sci., 354(2):250–271, 2006.

[ADM02] Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool

for verification of hybrid systems. In Brinksma and Larsen

[BL02], pages 365–370.

[ADMB00] Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez.

Approximate reachability analysis of piecewise-linear dynam-

ical systems. In Lynch and Krogh [LK00], pages 20–31.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Ro-

main Soulat. Imitator 2.5: A tool for analyzing robustness

in scheduling problems. In Dimitra Giannakopoulou and Do-

minique Méry, editors, FM, volume 7436 of Lecture Notes in

Computer Science, pages 33–36. Springer, 2012.

[AGH+00] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and

Insup Lee. Modular specification of hybrid systems in charon.

In Lynch and Krogh [LK00], pages 6–19.

236

BIBLIOGRAPHY 237

[AK12] Étienne André and Ulrich Kühne. Parametric analysis of hy-

brid systems using HyMITATOR. In iFM, pages 16–19, 2012.

[Alu11] Rajeev Alur. Formal verification of hybrid systems. In

Samarjit Chakraborty, Ahmed Jerraya, Sanjoy K. Baruah,

and Sebastian Fischmeister, editors, EMSOFT, pages 273–

278. ACM, 2011.

[AN95] Vangalur S. Alagar and Maurice Nivat, editors. Algebraic

Methodology and Software Technology, 4th International Con-

ference, AMAST ’95, Montreal, Canada, July 3-7, 1995, Pro-

ceedings, volume 936 of Lecture Notes in Computer Science.

Springer, 1995.

[AP04] Rajeev Alur and George J. Pappas, editors. Hybrid Sys-

tems: Computation and Control, 7th International Workshop,

HSCC 2004, Philadelphia, PA, USA, March 25-27, 2004, Pro-

ceedings, volume 2993 of Lecture Notes in Computer Science.

Springer, 2004.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of mes-

sage sequence charts. In Jos C. M. Baeten and Sjouke Mauw,

editors, CONCUR, volume 1664 of Lecture Notes in Computer

Science, pages 114–129. Springer, 1999.

[BAL97] Hanêne Ben-Abdallah and Stefan Leue. Timing constraints

in message sequence chart specifications. In Atsushi Togashi,

Tadanori Mizuno, Norio Shiratori, and Teruo Higashino, ed-

itors, FORTE, volume 107 of IFIP Conference Proceedings,

pages 91–106. Chapman & Hall, 1997.

[BBB07] Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo,

editors. Hybrid Systems: Computation and Control, 10th In-

237

238 BIBLIOGRAPHY

ternational Workshop, HSCC 2007, Pisa, Italy, April 3-5,

2007, Proceedings, volume 4416 of Lecture Notes in Computer

Science. Springer, 2007.

[BBC+12] Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Fer-

rari, Luca Geretti, and Tiziano Villa. Ariadne: Dominance

checking of nonlinear hybrid automata using reachability anal-

ysis. In Alain Finkel, Jérôme Leroux, and Igor Potapov, edi-

tors, RP, volume 7550 of Lecture Notes in Computer Science,

pages 79–91. Springer, 2012.

[BBC+14] Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Fer-

rari, Luca Geretti, and Tiziano Villa. Assumeguarantee ver-

ification of nonlinear hybrid systems withariadne. Interna-

tional Journal of Robust and Nonlinear Control, 24(4):699–

724, 2014.

[BC10] Armin Biere and Koen Claessen. Hardware model checking

competition, 2010.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and

Yunshan Zhu. Symbolic model checking without bdds. In

Rance Cleaveland, editor, TACAS, volume 1579 of Lecture

Notes in Computer Science, pages 193–207. Springer, 1999.

[BCGR12] Roberto Bruttomesso, Alessandro Carioni, Silvio Ghilardi,

and Silvio Ranise. Automated analysis of parametric timing-

based mutual exclusion algorithms. In Alwyn Goodloe and

Suzette Person, editors, NASA Formal Methods, volume

7226 of Lecture Notes in Computer Science, pages 279–294.

Springer, 2012.

238

BIBLIOGRAPHY 239

[BCL+10a] Lei Bu, Alessandro Cimatti, Xuandong Li, Sergio Mover, and

Stefano Tonetta. Model checking of hybrid systems using

shallow synchronization. In John Hatcliff and Elena Zucca,

editors, FMOODS/FORTE, volume 6117 of Lecture Notes in

Computer Science, pages 155–169. Springer, 2010.

[BCL+10b] Lei Bu, Alessandro Cimatti, Xuandong Li, Sergio Mover,

and Stefano Tonetta. Model checking of hybrid systems us-

ing shallow synchronization (extended version). Technical

report, 2010. http://es.fbk.eu/people/tonetta/papers/

forte10/.

[BCL+11] Marco Bozzano, Alessandro Cimatti, Oleg Lisagor, Cristian

Mattarei, Sergio Mover, Marco Roveri, and Stefano Tonetta.

Symbolic model checking and safety assessment of altarica

models. ECEASST, 46, 2011.

[Bey13] Dirk Beyer. Second competition on software verification -

(summary of sv-comp 2013). In Piterman and Smolka [PS13],

pages 594–609.

[BH11] Armin Biere and Keijo Heljanko. Hardware model checking

competition, 2011.

[BHSW12] Armin Biere, Keijo Heljanko, Martina Seidl, and Siert

Wieringa. Hardware model checking competition, 2012.

[BHSW13] Armin Biere, Keijo Heljanko, Martina Seidl, and Siert

Wieringa. Hardware model checking competition, 2013.

[BJ06] Thomas Ball and Robert B. Jones, editors. Computer Aided

Verification, 18th International Conference, CAV 2006, Seat-

239

http://es.fbk.eu/people/tonetta/papers/forte10/
http://es.fbk.eu/people/tonetta/papers/forte10/

240 BIBLIOGRAPHY

tle, WA, USA, August 17-20, 2006, Proceedings, volume 4144

of Lecture Notes in Computer Science. Springer, 2006.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang

Yi. Partial order reductions for timed systems. In Davide

Sangiorgi and Robert de Simone, editors, CONCUR, volume

1466 of Lecture Notes in Computer Science, pages 485–500.

Springer, 1998.

[BL02] Ed Brinksma and Kim Guldstrand Larsen, editors. Com-

puter Aided Verification, 14th International Conference, CAV

2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,

volume 2404 of Lecture Notes in Computer Science. Springer,

2002.

[BL11] Lei Bu and Xuandong Li. Path-oriented bounded reachabil-

ity analysis of composed linear hybrid systems. International

Journal on Software Tools for Technology Transfer, 13(4):307–

317, 2011.

[BLL+95] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson,

Paul Pettersson, and Wang Yi. Uppaal - a tool suite for

automatic verification of real-time systems. In Rajeev Alur,

Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hy-

brid Systems, volume 1066 of Lecture Notes in Computer Sci-

ence, pages 232–243. Springer, 1995.

[BLN03] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A

tool for bdd-based verification of real-time systems. In Jr. and

Somenzi [JS03], pages 122–125.

[BLR05] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum

Rasmussen. Beyond liveness: Efficient parameter synthesis

240

BIBLIOGRAPHY 241

for time bounded liveness. In Paul Pettersson and Wang Yi,

editors, FORMATS, volume 3829 of Lecture Notes in Com-

puter Science, pages 81–94. Springer, 2005.

[BLW+10] Lei Bu, You Li, Linzhang Wang, Xin Chen, and Xuandong

Li. Bach 2 : Bounded reachability checker for compositional

linear hybrid systems. In DATE [DBL10], pages 1512–1517.

[BM07a] Aaron R. Bradley and Zohar Manna. The calculus of compu-

tation - decision procedures with applications to verification.

Springer, 2007.

[BM07b] Aaron R. Bradley and Zohar Manna. Checking safety by in-

ductive generalization of counterexamples to induction. In

FMCAD [DBL07], pages 173–180.

[BM09] Ahmed Bouajjani and Oded Maler, editors. Computer

Aided Verification, 21st International Conference, CAV 2009,

Grenoble, France, June 26 - July 2, 2009. Proceedings, volume

5643 of Lecture Notes in Computer Science. Springer, 2009.

[BPR03] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani.

Boolean and cartesian abstraction for model checking c pro-

grams. STTT, 5(1):49–58, 2003.

[BPST10] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and

Aliaksei Tsitovich. The opensmt solver. In Esparza and Ma-

jumdar [EM10], pages 150–153.

[Bra11] Aaron R. Bradley. Sat-based model checking without un-

rolling. In Ranjit Jhala and David A. Schmidt, editors, VM-

CAI, volume 6538 of Lecture Notes in Computer Science,

pages 70–87. Springer, 2011.

241

242 BIBLIOGRAPHY

[Bro03] Christopher W. Brown. QEPCAD B: A program for com-

puting with semi-algebraic sets using CADs. SIGSAM BUL-

LETIN, 37:97–108, 2003.

[BS10] Kerstin Bauer and Klaus Schneider. From synchronous pro-

grams to symbolic representations of hybrid systems. In Jo-

hansson and Yi [JY10], pages 41–50.

[BS11] Per Bjesse and Anna Slobodová, editors. International Con-

ference on Formal Methods in Computer-Aided Design, FM-

CAD ’11, Austin, TX, USA, October 30 - November 02, 2011.

FMCAD Inc., 2011.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and

Cesare Tinelli. Satisfiability modulo theories. In Armin Biere,

Marijn Heule, Hans van Maaren, and Toby Walsh, editors,

Handbook of Satisfiability, volume 185 of Frontiers in Artificial

Intelligence and Applications, pages 825–885. IOS Press, 2009.

[BZL10] Lei Bu, Jianhua Zhao, and Xuandong Li. Path-oriented reach-

ability verification of a class of nonlinear hybrid automata us-

ing convex programming. In Gilles Barthe and Manuel V.

Hermenegildo, editors, VMCAI, volume 5944 of Lecture Notes

in Computer Science, pages 78–94. Springer, 2010.

[CCF+07a] Alberto Casagrande, Kevin Casey, Rachele Falchi, Carla Pi-

azza, Benedetto Ruperti, Giannina Vizzotto, and Bud Mishra.

Translating time-course gene expression profiles into semi-

algebraic hybrid automata via dimensionality reduction. In

Hirokazu Anai, Katsuhisa Horimoto, and Temur Kutsia, edi-

tors, AB, volume 4545 of Lecture Notes in Computer Science,

pages 51–65. Springer, 2007.

242

BIBLIOGRAPHY 243

[CCF+07b] Roberto Cavada, Alessandro Cimatti, Anders Franzén, Kr-

ishnamani Kalyanasundaram, Marco Roveri, and R. K. Shya-

masundar. Computing predicate abstractions by integrating

bdds and smt solvers. In FMCAD [DBL07], pages 69–76.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia,

Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto

Sebastiani, and Armando Tacchella. Nusmv 2: An opensource

tool for symbolic model checking. In Brinksma and Larsen

[BL02], pages 359–364.

[CD09] Ana Cavalcanti and Dennis Dams, editors. FM 2009: Formal

Methods, Second World Congress, Eindhoven, The Nether-

lands, November 2-6, 2009. Proceedings, volume 5850 of Lec-

ture Notes in Computer Science. Springer, 2009.

[CDJR09] Alessandro Cimatti, Jori Dubrovin, Tommi A. Junttila, and

Marco Roveri. Structure-aware computation of predicate ab-

straction. In FMCAD, pages 9–16. IEEE, 2009.

[CFG+10] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Krish-

namani Kalyanasundaram, and Marco Roveri. Tighter inte-

gration of bdds and smt for predicate abstraction. In DATE

[DBL10], pages 1707–1712.

[CFH+03] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H.

Krogh, Joël Ouaknine, Olaf Stursberg, and Michael Theobald.

Abstraction and counterexample-guided refinement in model

checking of hybrid systems. Int. J. Found. Comput. Sci.,

14(4):583–604, 2003.

243

244 BIBLIOGRAPHY

[CG12] Alessandro Cimatti and Alberto Griggio. Software model

checking via ic3. In Madhusudan and Seshia [MS12], pages

277–293.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,

and Helmut Veith. Counterexample-guided abstraction refine-

ment. In E. Allen Emerson and A. Prasad Sistla, editors, CAV,

volume 1855 of Lecture Notes in Computer Science, pages 154–

169. Springer, 2000.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long.

Model Checking and Abstraction. ACM Trans. Program.

Lang. Syst., 16(5):1512–1542, 1994.

[CGMT13] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Ste-

fano Tonetta. Parameter synthesis with ic3. In FMCAD

[DBL13], pages 165–168.

[CGMT14a] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Ste-

fano Tonetta. Ic3 modulo theories via implicit predicate ab-

straction. In TACAS, 2014.

[CGMT14b] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Ste-

fano Tonetta. Verifying ltl properties of hybrid systems with

k-liveness. Technical report, 2014.

[CGS10] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani.

Efficient generation of craig interpolants in satisfiability mod-

ulo theories. ACM Trans. Comput. Log., 12(1):7, 2010.

[CGS11] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani.

Computing small unsatisfiable cores in satisfiability modulo

theories. J. Artif. Intell. Res. (JAIR), 40:701–728, 2011.

244

BIBLIOGRAPHY 245

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaaf-

sma, and Roberto Sebastiani. The mathsat5 smt solver. In

Piterman and Smolka [PS13], pages 93–107.

[CM06] Prakash Chandrasekaran and Madhavan Mukund. Matching

scenarios with timing constraints. In Eugene Asarin and Patri-

cia Bouyer, editors, FORMATS, volume 4202 of Lecture Notes

in Computer Science, pages 98–112. Springer, 2006.

[CMT11a] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Effi-

cient scenario verification for hybrid automata. In Gopalakr-

ishnan and Qadeer [GQ11], pages 317–332.

[CMT11b] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Hydi:

A language for symbolic hybrid systems with discrete interac-

tion. In EUROMICRO-SEAA, pages 275–278. IEEE, 2011.

[CMT11c] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Prov-

ing and explaining the unfeasibility of message sequence charts

for hybrid systems. In Bjesse and Slobodová [BS11], pages 54–

62.

[CMT12] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. A

quantifier-free smt encoding of non-linear hybrid automata.

In Cabodi and Singh [CS12a], pages 187–195.

[CMT13a] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. HyDI

- Language Tutorial. Technical report, 2013. https://es.

fbk.eu/tools/hycomp/documents/language.pdf.

[CMT13b] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta.

Quantifier-free encoding of invariants for hybrid systems. For-

mal Methods in System Design, pages 1–24, 2013.

245

https://es.fbk.eu/tools/hycomp/documents/language.pdf‎
https://es.fbk.eu/tools/hycomp/documents/language.pdf‎

246 BIBLIOGRAPHY

[CMT13c] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. Smt-

based scenario verification for hybrid systems. Formal Meth-

ods in System Design, 42(1):46–66, 2013.

[Col75] George E. Collins. Hauptvortrag: Quantifier elimination

for real closed fields by cylindrical algebraic decomposition.

In H. Barkhage, editor, Automata Theory and Formal Lan-

guages, volume 33 of Lecture Notes in Computer Science,

pages 134–183. Springer, 1975.

[CPR08] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. Sym-

bolic computation of schedulability regions using parametric

timed automata. In RTSS, pages 80–89. IEEE Computer So-

ciety, 2008.

[CRT09] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Re-

quirements validation for hybrid systems. In Bouajjani and

Maler [BM09], pages 188–203.

[CS12a] Gianpiero Cabodi and Satnam Singh, editors. Formal Methods

in Computer-Aided Design, FMCAD 2012, Cambridge, UK,

October 22-25, 2012. IEEE, 2012.

[CS12b] Koen Claessen and Niklas Sörensson. A liveness checking al-

gorithm that counts. In Cabodi and Singh [CS12a], pages

52–59.

[dAM95] Luca de Alfaro and Zohar Manna. Verification in continuous

time by discrete reasoning. In Alagar and Nivat [AN95], pages

292–306.

246

BIBLIOGRAPHY 247

[DBL07] Formal Methods in Computer-Aided Design, 7th International

Conference, FMCAD 2007, Austin, Texas, USA, November

11-14, 2007, Proceedings. IEEE Computer Society, 2007.

[DBL10] Design, Automation and Test in Europe, DATE 2010, Dres-

den, Germany, March 8-12, 2010. IEEE, 2010.

[DBL13] Formal Methods in Computer-Aided Design, FMCAD 2013,

Portland, OR, USA, October 20-23, 2013. IEEE, 2013.

[DDD+12] Werner Damm, Henning Dierks, Stefan Disch, Willem Hage-

mann, Florian Pigorsch, Christoph Scholl, Uwe Waldmann,

and Boris Wirtz. Exact and fully symbolic verification of lin-

ear hybrid automata with large discrete state spaces. Sci.

Comput. Program., 77(10-11):1122–1150, 2012.

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast

linear-arithmetic solver for dpll(t). In Ball and Jones [BJ06],

pages 81–94.

[DE73] George B. Dantzig and B. Curtis Eaves. Fourier-motzkin elim-

ination and its dual. Journal of Combinatorial Theory(A),

1973.

[DH01] Werner Damm and Dave Harel. LSCs: Breathing life into

message sequence charts. Formal Methods in System Design,

19(1):45–80, 2001.

[DJH12] Jori Dubrovin, Tommi A. Junttila, and Keijo Heljanko. Ex-

ploiting step semantics for efficient bounded model check-

ing of asynchronous systems. Sci. Comput. Program., 77(10-

11):1095–1121, 2012.

247

248 BIBLIOGRAPHY

[DM12] Parasara Sridhar Duggirala and Sayan Mitra. Lyapunov ab-

stractions for inevitability of hybrid systems. In Thao Dang

and Ian M. Mitchell, editors, HSCC, pages 115–124. ACM,

2012.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An

efficient smt solver. In C. R. Ramakrishnan and Jakob Rehof,

editors, TACAS, volume 4963 of Lecture Notes in Computer

Science, pages 337–340. Springer, 2008.

[dMOR+04] Leonardo Mendonça de Moura, Sam Owre, Harald Rueß,

John M. Rushby, Natarajan Shankar, Maria Sorea, and Ashish

Tiwari. Sal 2. In Rajeev Alur and Doron Peled, editors, CAV,

volume 3114 of Lecture Notes in Computer Science, pages 496–

500. Springer, 2004.

[dMRS02] Leonardo Mendonça de Moura, Harald Rueß, and Maria

Sorea. Lazy theorem proving for bounded model checking over

infinite domains. In Andrei Voronkov, editor, CADE, volume

2392 of Lecture Notes in Computer Science, pages 438–455.

Springer, 2002.

[dMRS03] Leonardo Mendonça de Moura, Harald Rueß, and Maria

Sorea. Bounded model checking and induction: From refu-

tation to verification (extended abstract, category a). In Jr.

and Somenzi [JS03], pages 14–26.

[do192] Software Considerations in Airborne Systems and Equipment

Certification DO-178-B/ED-12-B. Requirements and Techni-

cal Concepts for Aviation/European Organization for Civil

Aviation Equipement, 1992.

248

BIBLIOGRAPHY 249

[DS96] Andreas Dolzmann and Thomas Sturm. REDLOG Computer

Algebra Meets Computer Logic. ACM SIGSAM Bulletin,

31:2–9, 1996.

[DSW98] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning.

Real quantifier elimination in practice. In Alg. Algebra and

Number Theory, pages 221–247. Springer, 1998.

[EM10] Javier Esparza and Rupak Majumdar, editors. Tools and Al-

gorithms for the Construction and Analysis of Systems, 16th

International Conference, TACAS 2010, Held as Part of the

Joint European Conferences on Theory and Practice of Soft-

ware, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Pro-

ceedings, volume 6015 of Lecture Notes in Computer Science.

Springer, 2010.

[EMB11] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Ef-

ficient implementation of property directed reachability. In

Bjesse and Slobodová [BS11], pages 125–134.

[ERNF11] Andreas Eggers, Nacim Ramdani, Nedialko Nedialkov, and

Martin Fränzle. Improving sat modulo ode for hybrid sys-

tems analysis by combining different enclosure methods. In

Gilles Barthe, Alberto Pardo, and Gerardo Schneider, editors,

SEFM, volume 7041 of Lecture Notes in Computer Science,

pages 172–187. Springer, 2011.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by in-

cremental sat solving. Electr. Notes Theor. Comput. Sci.,

89(4):543–560, 2003.

249

250 BIBLIOGRAPHY

[FB02] Ian Fialho and Gary J. Balas. Road adaptive active suspen-

sion design using linear parameter-varying scheduling. IEEE

Trans. on Control Sys. Tech., 10(1), 2002.

[FGD+11a] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot-

ton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine

Girard, Thao Dang, and Oded Maler. Spaceex: Scalable ver-

ification of hybrid systems. In Gopalakrishnan and Qadeer

[GQ11], pages 379–395.

[FGD+11b] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cot-

ton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine

Girard, Thao Dang, and Oded Maler. Spaceex: Scalable ver-

ification of hybrid systems. In Gopalakrishnan and Qadeer

[GQ11], pages 379–395.

[FH05] Martin Fränzle and Christian Herde. Efficient proof engines

for bounded model checking of hybrid systems. Electr. Notes

Theor. Comput. Sci., 133:119–137, 2005.

[FH07] Martin Fränzle and Christian Herde. Hysat: An efficient proof

engine for bounded model checking of hybrid systems. Formal

Methods in System Design, 30(3):179–198, 2007.

[FHSW07] Martin Fränzle, Hardi Hungar, Christian Schmitt, and Boris

Wirtz. Hlang: Compositional representation of hybrid systems

via predicates. Reports of SFB/TR 14 AVACS 20, July 2007.

ISSN: 1860-9821, http://www.avacs.org.

[FJK08] Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A

counterexample-guided approach to parameter synthesis for

linear hybrid automata. In Magnus Egerstedt and Bud

250

BIBLIOGRAPHY 251

Mishra, editors, HSCC, volume 4981 of Lecture Notes in Com-

puter Science, pages 187–200. Springer, 2008.

[Frä01] Martin Fränzle. What will be eventually true of polynomial

hybrid automata? In Naoki Kobayashi and Benjamin C.

Pierce, editors, TACS, volume 2215 of Lecture Notes in Com-

puter Science, pages 340–359. Springer, 2001.

[Fre08] Goran Frehse. Phaver: algorithmic verification of hybrid sys-

tems past hytech. STTT, 10(3):263–279, 2008.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke. Satisfia-

bility modulo odes. In FMCAD [DBL13], pages 105–112.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification

of Concurrent Systems - An Approach to the State-Explosion

Problem, volume 1032 of Lecture Notes in Computer Science.

Springer, 1996.

[GQ11] Ganesh Gopalakrishnan and Shaz Qadeer, editors. Com-

puter Aided Verification - 23rd International Conference,

CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-

ings, volume 6806 of Lecture Notes in Computer Science.

Springer, 2011.

[GR09] Ashutosh Gupta and Andrey Rybalchenko. Invgen: An ef-

ficient invariant generator. In Bouajjani and Maler [BM09],

pages 634–640.

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract

state graphs with pvs. In Orna Grumberg, editor, CAV, vol-

ume 1254 of Lecture Notes in Computer Science, pages 72–83.

Springer, 1997.

251

252 BIBLIOGRAPHY

[GSV13] Luigi Di Guglielmo, Sanjit A. Seshia, and Tiziano Villa. Syn-

thesis of implementable control strategies for lazy linear hy-

brid automata. In Maria Ganzha, Leszek A. Maciaszek, and

Marcin Paprzycki, editors, FedCSIS, pages 1369–1376, 2013.

[HB12] Krystof Hoder and Nikolaj Bjørner. Generalized property di-

rected reachability. In Alessandro Cimatti and Roberto Sebas-

tiani, editors, SAT, volume 7317 of Lecture Notes in Computer

Science, pages 157–171. Springer, 2012.

[HEFT08] Christian Herde, Andreas Eggers, Martin Fränzle, and Tino

Teige. Analysis of hybrid systems using hysat. In ICONS,

pages 196–201. IEEE Computer Society, 2008.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In

LICS, pages 278–292. IEEE Computer Society, 1996.

[Hen00] Thomas A. Henzinger. Masaccio: A formal model for em-

bedded components. In Jan van Leeuwen, Osamu Watanabe,

Masami Hagiya, Peter D. Mosses, and Takayasu Ito, editors,

IFIP TCS, volume 1872 of Lecture Notes in Computer Sci-

ence, pages 549–563. Springer, 2000.

[HH94] Thomas A. Henzinger and Pei-Hsin Ho. Hytech: The cornell

hybrid technology tool. In Panos J. Antsaklis, Wolf Kohn,

Anil Nerode, and Shankar Sastry, editors, Hybrid Systems,

volume 999 of Lecture Notes in Computer Science, pages 265–

293. Springer, 1994.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.

Hytech: A model checker for hybrid systems. STTT, 1(1-

2):110–122, 1997.

252

BIBLIOGRAPHY 253

[HHWT98] Thomas A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi. Algo-

rithmic Analysis of Nonlinear Hybrid Systems. 1998.

[Hil00] Roman Hilscher. Surprises about some elementary functions:

uniform linear approximations. Technical report, 2000.

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and

Kenneth L. McMillan. Abstractions from proofs. In Neil D.

Jones and Xavier Leroy, editors, POPL, pages 232–244. ACM,

2004.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and

Pravin Varaiya. What’s decidable about hybrid automata?

J. Comput. Syst. Sci., 57(1):94–124, 1998.

[HN03] Keijo. Heljanko and Ilkka Niemelä. Bounded LTL model

checking with stable models. Theory and Practice of Logic

Progr., 3(4-5):519–550, 2003.

[hyc] HyCOMP tool. https://es.fbk.eu/tools/hycomp.

[IT96] ITU-T. Recommendation Z.120 - Message Sequence Charts.

1996.

[IUH11] Daisuke Ishii, Kazunori Ueda, and Hiroshi Hosobe. An

interval-based sat modulo ode solver for model checking non-

linear hybrid systems. STTT, 13(5):449–461, 2011.

[JBS07] Susmit Jha, Bryan A. Brady, and Sanjit A. Seshia. Symbolic

reachability analysis of lazy linear hybrid automata. In Jean-

François Raskin and P. S. Thiagarajan, editors, FORMATS,

volume 4763 of Lecture Notes in Computer Science, pages 241–

256. Springer, 2007.

253

https://es.fbk.eu/tools/hycomp

254 BIBLIOGRAPHY

[JdM12] Dejan Jovanovic and Leonardo Mendonça de Moura. Solving

non-linear arithmetic. In Bernhard Gramlich, Dale Miller, and

Uli Sattler, editors, IJCAR, volume 7364 of Lecture Notes in

Computer Science, pages 339–354. Springer, 2012.

[JKWC07] Sumit Kumar Jha, Bruce H. Krogh, James E. Weimer, and

Edmund M. Clarke. Reachability for linear hybrid automata

using iterative relaxation abstraction. In Bemporad et al.

[BBB07], pages 287–300.

[JS03] Warren A. Hunt Jr. and Fabio Somenzi, editors. Computer

Aided Verification, 15th International Conference, CAV 2003,

Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725

of Lecture Notes in Computer Science. Springer, 2003.

[JY10] Karl Henrik Johansson and Wang Yi, editors. Proceedings of

the 13th ACM International Conference on Hybrid Systems:

Computation and Control, HSCC 2010, Stockholm, Sweden,

April 12-15, 2010. ACM, 2010.

[KJN12a] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä.

Beyond lassos: Complete smt-based bounded model check-

ing for timed automata. In Holger Giese and Grigore Rosu,

editors, FMOODS/FORTE, volume 7273 of Lecture Notes in

Computer Science, pages 84–100. Springer, 2012.

[KJN12b] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä.

Smt-based induction methods for timed systems. In Marcin

Jurdzinski and Dejan Nickovic, editors, FORMATS, volume

7595 of Lecture Notes in Computer Science, pages 171–187.

Springer, 2012.

254

BIBLIOGRAPHY 255

[KJN13] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä.

Bounded model checking of an mitl fragment for timed au-

tomata. In ACSD, pages 216–225. IEEE, 2013.

[KMNP13] Johannes Kloos, Rupak Majumdar, Filip Niksic, and Ruzica

Piskac. Incremental, inductive coverability. In Natasha Shary-

gina and Helmut Veith, editors, CAV, volume 8044 of Lecture

Notes in Computer Science, pages 158–173. Springer, 2013.

[KT11] Temesghen Kahsai and Cesare Tinelli. Pkind: A parallel k-

induction based model checker. In Jiri Barnat and Keijo Hel-

janko, editors, PDMC, volume 72 of EPTCS, pages 55–62,

2011.

[KW01] Jochen Klose and Hartmut Wittke. An automata based in-

terpretation of live sequence charts. In Tiziana Margaria and

Wang Yi, editors, TACAS, volume 2031 of Lecture Notes in

Computer Science, pages 512–527. Springer, 2001.

[LBD+10] Shuhao Li, Sandie Balaguer, Alexandre David, Kim G. Larsen,

Brian Nielsen, and Saulius Pusinskas. Scenario-based verifi-

cation of real-time systems using uppaal. Formal Methods in

System Design, 37(2-3):200–264, 2010.

[LK00] Nancy A. Lynch and Bruce H. Krogh, editors. Hybrid Sys-

tems: Computation and Control, Third International Work-

shop, HSCC 2000, Pittsburgh, PA, USA, March 23-25, 2000,

Proceedings, volume 1790 of Lecture Notes in Computer Sci-

ence. Springer, 2000.

[LL92] Peter B. Ladkin and Stefan Leue. On the semantics of message

sequence charts. In Hartmut König, editor, FBT, pages 88–

104. K. G. Saur Verlag, 1992.

255

256 BIBLIOGRAPHY

[LL95] Peter B. Ladkin and Stefan Leue. Interpreting Message Flow

Graphs. Formal Asp. Comput., 7(5):473–509, 1995.

[LNO06] Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliv-

eras. Smt techniques for fast predicate abstraction. In Ball

and Jones [BJ06], pages 424–437.

[LPY01] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine.

Symbolic Reachability Computation for Families of Linear

Vector Fields. J. Symb. Comput., 32(3):231–253, 2001.

[LSV03] Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid

i/o automata. Information and Computation, 185(1):105 –

157, 2003.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying linear quan-

tifier elimination. Comput. J., 36(5):450–462, 1993.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[McM03] Kenneth L. McMillan. Interpolation and sat-based model

checking. In Jr. and Somenzi [JS03], pages 1–13.

[McM05] Kenneth L. McMillan. Applications of craig interpolants in

model checking. In Nicolas Halbwachs and Lenore D. Zuck,

editors, TACAS, volume 3440 of Lecture Notes in Computer

Science, pages 1–12. Springer, 2005.

[MCTT13] Sergio Mover, Alessandro Cimatti, Ashish Tiwari, and Ste-

fano Tonetta. Time-aware relational abstractions for hybrid

systems. In EMSOFT, pages 1–10. IEEE, 2013.

[MIS] The MISSA Project. http://www.missa-fp7.eu.

256

http://www.missa-fp7.eu

BIBLIOGRAPHY 257

[MN10] Janusz Malinowski and Peter Niebert. Sat based bounded

model checking with partial order semantics for timed au-

tomata. In Esparza and Majumdar [EM10], pages 405–419.

[Mon10] David Monniaux. Quantifier elimination by lazy model enu-

meration. In Tayssir Touili, Byron Cook, and Paul Jackson,

editors, CAV, volume 6174 of Lecture Notes in Computer Sci-

ence, pages 585–599. Springer, 2010.

[MR97] Sjouke Mauw and Michel A. Reniers. High-level message se-

quence charts. In Ana R. Cavalli and Amardeo Sarma, editors,

SDL Forum, pages 291–306. Elsevier, 1997.

[MS00] Olaf Müller and Thomas Stauner. Modelling and verification

using Linear Hybrid Automata - a case study. Mathemati-

cal and Computer Modelling of Dynamical Systems, 71:71–89,

2000.

[MS12] Parthasarathy Madhusudan and Sanjit A. Seshia, editors.

Computer Aided Verification - 24th International Conference,

CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,

volume 7358 of Lecture Notes in Computer Science. Springer,

2012.

[NMA+02] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius

Bozga, Oded Maler, and Navendu Jain. Verification of timed

automata via satisfiability checking. In Werner Damm and

Ernst-Rüdiger Olderog, editors, FTRTFT, volume 2469 of

Lecture Notes in Computer Science, pages 225–244. Springer,

2002.

[NSF+10] Truong Nghiem, Sriram Sankaranarayanan, Georgios E.

Fainekos, Franjo Ivancic, Aarti Gupta, and George J. Pappas.

257

258 BIBLIOGRAPHY

Monte-carlo techniques for falsification of temporal properties

of non-linear hybrid systems. In Johansson and Yi [JY10],

pages 211–220.

[nux] nuXmv tool. https://es.fbk.eu/tools/nuxmv.

[PBL09] Minxue Pan, Lei Bu, and Xuandong Li. Tass: Timing ana-

lyzer of scenario-based specifications. In Bouajjani and Maler

[BM09], pages 689–695.

[PC07] André Platzer and Edmund M. Clarke. The image computa-

tion problem in hybrid systems model checking. In Bemporad

et al. [BBB07], pages 473–486.

[PC09] André Platzer and Edmund M. Clarke. Formal verification of

curved flight collision avoidance maneuvers: A case study. In

Cavalcanti and Dams [CD09], pages 547–562.

[Pik05] Lee Pike. Real-Time System Verification by k-Induction.

Technical Report NASA/TM-2005-213751, NASA, 2005.

[Pik07] Lee Pike. Modeling time-triggered protocols and verifying

their real-time schedules. In FMCAD [DBL07], pages 231–

238.

[PJ04] Stephen Prajna and Ali Jadbabaie. Safety verification of hy-

brid systems using barrier certificates. In Alur and Pappas

[AP04], pages 477–492.

[PKV13] Erion Plaku, Lydia E. Kavraki, and Moshe Y. Vardi. Fal-

sification of ltl safety properties in hybrid systems. STTT,

15(4):305–320, 2013.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems.

J. Autom. Reasoning, 41(2):143–189, 2008.

258

https://es.fbk.eu/tools/nuxmv

BIBLIOGRAPHY 259

[Pla10] André Platzer. Differential-algebraic dynamic logic for

differential-algebraic programs. J. Log. Comput., 20(1):309–

352, 2010. Advance Access published on November 18, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages

46–57. IEEE Computer Society, 1977.

[PQ08] André Platzer and Jan-David Quesel. Keymaera: A hybrid

theorem prover for hybrid systems (system description). In

Alessandro Armando, Peter Baumgartner, and Gilles Dowek,

editors, IJCAR, volume 5195 of Lecture Notes in Computer

Science, pages 171–178. Springer, 2008.

[PS13] Nir Piterman and Scott A. Smolka, editors. Tools and Algo-

rithms for the Construction and Analysis of Systems - 19th

International Conference, TACAS 2013, Held as Part of the

European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2013, Rome, Italy, March 16-24, 2013. Pro-

ceedings, volume 7795 of Lecture Notes in Computer Science.

Springer, 2013.

[Rab98] Alexander M. Rabinovich. On the decidability of continuous

time specification formalisms. J. Log. Comput., 8(5):669–678,

1998.

[RS07] Stefan Ratschan and Zhikun She. Safety verification of hy-

brid systems by constraint propagation-based abstraction re-

finement. ACM Trans. Embedded Comput. Syst., 6(1), 2007.

[Sch09a] Klaus Schneider. The synchronous programming language

quartz. Technical report, Department of Computer Science,

University of Kaiserslautern, Kaiserslautern, Germany, 2009.

Internal Report 375.

259

260 BIBLIOGRAPHY

[Sch09b] Viktor Schuppan. Towards a notion of unsatisfiable cores for

ltl. In Farhad Arbab and Marjan Sirjani, editors, FSEN, vol-

ume 5961 of Lecture Notes in Computer Science, pages 129–

145. Springer, 2009.

[Sch12] Viktor Schuppan. Towards a notion of unsatisfiable and unre-

alizable cores for ltl. Sci. Comput. Program., 77(7-8):908–939,

2012.

[SD10] Wilfried Steiner and Bruno Dutertre. Smt-based formal ver-

ification of a ttethernet synchronization function. In Ste-

fan Kowalewski and Marco Roveri, editors, FMICS, volume

6371 of Lecture Notes in Computer Science, pages 148–163.

Springer, 2010.

[SDS08] Maria Sorea, Bruno Dutertre, and Wilfried Steiner. Modeling

and verification of time-triggered communication protocols. In

ISORC, pages 422–428. IEEE Computer Society, 2008.

[Sor02] Maria Sorea. Bounded model checking for timed automata.

Electr. Notes Theor. Comput. Sci., 68(5):116–134, 2002.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Check-

ing safety properties using induction and a sat-solver. In War-

ren A. Hunt Jr. and Steven D. Johnson, editors, FMCAD, vol-

ume 1954 of Lecture Notes in Computer Science, pages 108–

125. Springer, 2000.

[ST11a] Sriram Sankaranarayanan and Ashish Tiwari. Relational ab-

stractions for continuous and hybrid systems. In Gopalakrish-

nan and Qadeer [GQ11], pages 686–702.

260

BIBLIOGRAPHY 261

[ST11b] Thomas Sturm and Ashish Tiwari. Verification and synthesis

using real quantifier elimination. In Éric Schost and Ioannis Z.

Emiris, editors, ISSAC, pages 329–336. ACM, 2011.

[STT09] Natasha Sharygina, Stefano Tonetta, and Aliaksei Tsitovich.

The synergy of precise and fast abstractions for program veri-

fication. In Sung Y. Shin and Sascha Ossowski, editors, SAC,

pages 566–573. ACM, 2009.

[SV07] Marko Samer and Helmut Veith. On the notion of vacuous

truth. In Nachum Dershowitz and Andrei Voronkov, editors,

LPAR, volume 4790 of Lecture Notes in Computer Science,

pages 2–14. Springer, 2007.

[TD12] Ashish Tiwari and Bruno Dutertre. Modeling and analysis of

asynchronous systems using SAL and Hybrid SAL. Technical

report, 2012.

[tea02] MoBIES team. Hsif semantics. Technical report, University

of Pennsylvania, 2002.

[Tiw08] Ashish Tiwari. Abstractions for hybrid systems. Formal Meth-

ods in System Design, 32(1):57–83, 2008.

[Tiw12] Ashish Tiwari. HybridSAL Relational Abstracter. In Mad-

husudan and Seshia [MS12], pages 725–731.

[TK04] Ashish Tiwari and Gaurav Khanna. Nonlinear systems: Ap-

proximating reach sets. In Alur and Pappas [AP04], pages

600–614.

[Ton09] Stefano Tonetta. Abstract model checking without computing

the abstraction. In Cavalcanti and Dams [CD09], pages 89–

105.

261

262 BIBLIOGRAPHY

[Var95] Moshe Y. Vardi. An automata-theoretic approach to linear

temporal logic. In Faron Moller and Graham M. Birtwistle,

editors, Banff Higher Order Workshop, volume 1043 of Lecture

Notes in Computer Science, pages 238–266. Springer, 1995.

[vBRSR07] Dirk A. van Beek, Michel A. Reniers, Ramon R. H. Schiffelers,

and J. E. Rooda. Foundations of a compositional interchange

format for hybrid systems. In Bemporad et al. [BBB07], pages

587–600.

[Wan05] Farn Wang. Symbolic parametric safety analysis of linear hy-

brid systems with bdd-like data-structures. IEEE Trans. Soft-

ware Eng., 31(1):38–51, 2005.

[WK13] Tobias Welp and Andreas Kuehlmann. Qf bv model checking

with property directed reachability. In Enrico Macii, editor,

DATE, pages 791–796. EDA Consortium San Jose, CA, USA

/ ACM DL, 2013.

[ZLZZ03] Jianhua Zhao, Xuandong Li, Tao Zheng, and Guoliang Zheng.

Removing irrelevant atomic formulas for checking timed au-

tomata efficiently. In Kim Guldstrand Larsen and Peter

Niebert, editors, FORMATS, volume 2791 of Lecture Notes

in Computer Science, pages 34–45. Springer, 2003.

[ZST12] Aditya Zutshi, Sriram Sankaranarayanan, and Ashish Tiwari.

Timed Relational Abstractions for Sampled Data Control Sys-

tems. In Madhusudan and Seshia [MS12], pages 343–361.

262

Index

S-trace, 115

HyDI, 178

IC3, 25

BMC, 21

Bounded Model Checking, 21

CNF, 16

Consistent traces, 115

Constrained Message Sequence Chart

(CMSC), 139

Craig Interpolant, 16

Finite variability, 48

First-Order Transition System, 18

input, 18

parallel composition, 20

path, 19

state, 18

trace, 19

Global-time semantic, 74

Hybrid Automata, 31

event, 31

flow condition, 31

invariant condition, 31

labels, 32

location, 32

parallel composition, 35

path, 32

Hybrid Automata encoding, 43

Hybrid Automata Network, 36

Hybrid trace, 47

Implicit predicate abstraction, 128

Interpolation-based Model Checking,

24

K-induction, 22

Linear Hybrid Automata, 33

Linear Hybrid System, 35

Local-time semantic, 76

Message Sequence Chart (MSC), 139

MSC instance, 137

ODEs, 34

Ordinary Differential Equations, 34

Parameter synthesis problem, 161

Parameter valuation, 161

Parametric transition system, 161

Path projection, 116

263

264 INDEX

Predicate Abstraction, 127

Reachability problem, 112

Relational abstraction, 87

Relative induction, 26

Sampling refinement, 48

Scenario verification problem, 140

Scenario-based BMC, 142

Shallow synchronization encoding, 120

Shallowly synchronized path, 115

SMT

Σ-atom, 13

Σ-formula, 13

Σ-term, 13

Σ-theory, 13

incremental interface, 16

Linear predicate, 14

Satisfiability Modulo Theory prob-

lem, 14

Theory of Rationals, 14

Theory of Reals, 15

Synchronized state, 77

Time-abstract trace (global time en-

coding), 78

Time-abstract trace (local time en-

coding), 79

Time-aware relational abstraction, 93

Unfeasibility explanation, 150

Unsatisfiable core, 16

264

Appendix A

Appendix

A.1 Additional Proofs

Proof. Lemma 2 If enc(〈m,φ〉, k) is satisfiable then there exists a path

π consistent with 〈m,φ〉 such that for all 1 ≤ i ≤ n, for all 1 ≤ j ≤ |σi|,
|locj(prj(i, π))| is ki[j].

π can be extended to a path π′ as follows. For all 1 ≤ i ≤ n, 0 ≤ j ≤ |σi|:

• prej(prj(π, i)) = prej(prj(π
′, i)),

• postj(prj(π, i)) = postj(prj(π
′, i)),

• locj(prj(π
′, i)) := locj(prj(π, i)); ε = s; s1; . . . ; ε = s; sk′i[j]−ki[j], where

for 1 ≤ z ≤ k
′
i[j]− ki[j], sz is equal to the last state of locj(prj(π, i)).

locj(prj(π
′, i)) is the concatenation of the j-th local sequence of π

(locj(prj(π, i))) with a sequence of stutter actions (i.e. ε = s).

Thus, π′ extends all the local sequences of π by stuttering actions s.

Since stutter does not change the state reached by the system, π′ |=
enc(〈m,φ〉, k′). �

Proof. Lemma 3 For all 1 ≤ i ≤ n and j = 0 if kindi[j] is unsatis-

fiable, π |= enc(〈mi[0], φi[0]〉, k) and |loc0(prj(i, π))| > ki[j]. In this case

265

266 A.2. RELATIONAL ABSTRACTION

enc(〈mi[0], φi[0]〉, k) encodes the local segment lsg(σi[0]) and kindi[0] is un-

satisfiable. Thus, it does not exist a simple path loc0(prj(i, π)) longer than

lsg(σi[0]).

Consider the local segment lsg(σi[j]) and suppose that the lemma holds

for all l, h such that lsg(σl[h]) <m lsg(σi[j]) (i.e. the theorem holds for all

the local segment which are found “before” in the partial order defined by

<m). Suppose that the bounds k
′
are the same as k

′
, except for k

′
i[j] which

is ki[j] + 1. For every path π such that π |= enc(〈mi[j], φi[j]〉, k
′
), we have

that locj(prj(i, π)) is not a simple path, since kindi[j] is unsatisfiable.

By induction, the lemma holds for all locj(prj(i, π)). �

A.2 Relational abstraction

Consider the linear system ~̇x = A~x+ b.

The system of differential equations is modified partitioning e the vari-

ables ~x into ~y and ~z such that:1

[
~̇y

~̇z

]
=

[
A1 A2

0 0

][
~y

~z

]
+

[
~b1

~b2

]

Where A1 ∈ Rn1×n1, A2 ∈ Rn2×n2, ~b1 ∈ Rn1, ~b2 ∈ Rn2 and n = n1 + n2.

A.2.1 Real eigenvalues

Suppose ~c is a left eigenvector of A1 corresponding to some real eigenvalue

λ (i.e. ~cTA = λ~cT). Then we define the linear expression p(x) as follows:

p(~x) := ~cT~y + ~dT~z + e

~dT := ~cTA2

λ

e := ~cT ~b1+~dT ~b2
λ

1Note that if there are no variables with constant derivative the dimension of ~z is 0, which is a simpler

special case.

266

APPENDIX A. APPENDIX 267

Thus, p(~x) = ~cT~y + ~dT + ~z + e and it is such that:

dp(~x)
dt = d(~cT~y+~dT~z+e)

dt

= ~cT d~ydt + ~dT d~zdt
= ~cT (A1~y + A2~z + ~b1) + ~dT b2

= λ~cT~y + ~cTA2~z + ~cT ~b1 + ~dT b2

= λ(~cT~y + ~cTA2~z
λ + ~cT ~b1+~dT b2

λ)

= λ(~cT~y + ~dT~z + e)

= λp(~x)

Thus, also for the general case when n2 > 0 it holds that:

p(~x(t)) = p(~x(0))eλt (A.1)

A.2.2 Complex eigenvalues

Let ~v := ~c + ι~d be a left eigenvector of A corresponding to the complex

eigenvalue λ := a+ ιb:

(~dT + ι~eT)A = (a+ ιb)(~dT + ι~eT)

Equating the real and imaginary parts in the above equation, we get:

~cTA1 = a~cT − b~dT ~dTA1 = b~cT + a~dT (A.2)

Consider the two expressions:

p(~x) = ~cT~y + ~c1
T~z + e1 q(~x) = ~dT~y + ~c2

T~z + e2 (A.3)

where ~c1 ∈ Rn, ~c2 ∈ Rn, e1 ∈ R and e2 ∈ R.

We compute ~c1, ~c2, e1 and e2 to satisfy:

d

dt
~p = ap− bq d

dt
~q = bp+ aq (A.4)

267

268 A.2. RELATIONAL ABSTRACTION

First, let’s compute the time derivative of p and q:

d

dt
~p =~cTA1~y + ~cTA2~z + ~cT ~b1 + ~c1

T b2 (A.5)

d

dt
~q =~dTA1~y + ~dTA2~z + ~dT ~b2 + ~c2

T b2 (A.6)

Equating ~y, ~z and the constant terms of Equations A.4 and Equa-

tions A.5,A.6 we get the following equations among the unknown parame-

ters ~c1, ~c2, e1 and e2:

~cTA2 = a~c1
T − b~c2

T ~dTA2 = a~c2
T + b~c2

T (A.7)

~cT ~b1 + ~c1
T b2 = ae1 − be2

~dT ~b1 + ~c2
T b2 = ae2 + be1 (A.8)

From Equations A.7 we compute the values of ~c1
T and ~c2

T :

~c1
T =

a~dT − b~cT
a2 + b2

A2 (A.9)

~c2
T =

a~cT + b~dT

a2 + b2
A2 (A.10)

Now, define k1 = ~cT ~b1+~c1
T b2 and k2 = ~dT ~b1+~c2

T b2. From Equations A.8,

we compute the values of e1 and e2:

e1 =
ak1 + bk2

a2 + b2
(A.11)

e2 =
ak2 − bk1

a2 + b2
(A.12)

Now, note that the relationship between p and q is the same as the one

presented in Section 5.3.4. Thus, all the results obtained in the simpler

case Flow(q) = A~x hold also for the case Flow(q) = A~x+~b.

268

	Introduction
	Motivations
	Contribution of the thesis
	Structure of the thesis

	I Background notions
	Background
	Satisfiability Modulo Theory
	The SMT Problem
	Theories of interest
	SMT solvers

	First-order Transition Systems
	SMT-based verification
	Verification Algorithms

	Hybrid Systems
	Hybrid Automata
	Classes of Hybrid Systems
	Hybrid Automata Network

	II Encoding Techniques
	Hybrid Automata Encoding
	Encoding of a single automaton
	Quantifier-free encoding for non-linear hybrid automata
	Hybrid traces
	Removing quantified disjunctions from the invariants
	Reduction to flow invariants
	Applications

	Encoding of systems with Polynomial Dynamics
	Encoding of systems with Linear Dynamics
	Reduction in the nilpotent case
	Reduction in the real eigenvalues case

	Related work

	Encoding of Hybrid Automata Network
	Global-time semantic
	Local-time semantic
	Local time vs. global time

	Time-Aware Relational Abstraction
	Relational Abstraction
	Eigenstructure-based relational abstraction

	Simple Motivating Example
	Time-Aware Relational Abstraction
	Overall Approach
	Constant Rate
	Real Eigenvalues
	Complex Eigenvalues
	Correctness

	Related Work

	III Verification Techniques
	Reachability
	Problem Definition
	Bounded Model Checking with Shallow Synchronization
	Shallow Synchronization Semantics
	Symbolic Encoding
	Related Work

	K-induction and Implicit Predicate Abstraction
	Predicate abstraction
	Refinement of implicit predicate abstraction
	Related Work

	Scenario verification
	Problem definition
	Scenario-driven BMC
	Invariant generation

	Scenario-driven Induction
	Unfeasibility Explanation
	Related work

	Parameter synthesis
	Problem definition
	Solving the synthesis problem with reachability
	Description of the synthesis algorithm with IC3
	Optimization

	Related work

	IV Tools and Experimental Results
	HyCOMP
	Tool features
	Tool architecture
	The HyDI language
	Overview of the language
	HyDI- syntax and semantics

	Related work

	Experimental Results
	Benchmarks
	Encodings
	Quantifier-free encoding
	Time-aware relational abstraction

	Reachability
	Shallow synchronization
	K-induction and Implicit Predicate Abstraction

	Scenario
	Evaluation Settings
	Results - Feasibility
	Results - Unfeasibility

	Parameter Synthesis
	Evaluation Settings
	Results

	V Conclusion
	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Appendix
	Additional Proofs
	Relational abstraction
	Real eigenvalues
	Complex eigenvalues

