
Proving and Explaining the Unfeasibility of
Message Sequence Charts for Hybrid Systems

Alessandro Cimatti Sergio Mover Stefano Tonetta
FBK-irst, I38050, Trento, Italy
{cimatti,mover,tonettas}@fbk.eu

Abstract—Networks of Hybrid Automata are a clean modelling
framework for complex systems with discrete and continuous
dynamics. Message Sequence Charts (MSCs) are a consolidated
language to describe desired behaviours of a network of interact-
ing components. Techniques to analyse the feasibility of anMSC
over a given HA network are based on specialised bounded model
checking techniques, and focus on efficiently constructingtraces
of the network that witness the MSC behaviour. Unfortunately,
these techniques are unable to deal with the “unfeasibility” of
the MSC, i.e. that no trace of the network satisfies the MSC.

In this paper, we tackle the problem of MSC unfeasibility:
first, we propose specialised techniques toprove that an MSC
can not be satisfied by any trace of a given HA network; second,
we show how toexplain why an MSC is unfeasible.

The approach is cast in an SMT-based verification framework,
using a local time semantics, where the timescales of the automata
in the network are synchronised upon shared events. In order
to prove unfeasibility, we generalise k-induction to deal with
the structure of the MSC, so that the simple path condition is
localised to each fragment of the MSC. The explanations are
provided as formulae in the variables representing the time
points of the events of the MSCs, and are generated using
unsatisfiable core extraction and interpolation. An experimental
evaluation demonstrates the effectiveness of the approachin
proving unfeasibility, and the adequacy of the automatically
generated explanations.

I. I NTRODUCTION

Complex embedded systems (e.g. control systems for rail-
ways, avionics, and space) are made of several interact-
ing components, and feature both discrete and continuous
variables. Networks of communicating hybrid automata [17]
(HAs) are increasingly used as a formal framework to model
and analyse the behaviour of such systems: local activitiesof
each component amount to transitions local to each HA; com-
munications and other events that are shared between/visible
for various components are modelled as synchronising transi-
tions of the automata in the network; time elapse is modelled
as implicit shared timed transitions.

A fundamental step in the design of these networks is the
validation of the models performed by checking if they accept
some desired interactions among the components. The lan-
guage of Message Sequence Charts (MSCs) and its extensions
are often used to express scenarios of such interactions. MSCs
are especially useful for the end users because of their clarity
and graphical content.

The ability to check whether a network of HAs may exhibit
behaviours that satisfy a given MSC is an important feature
to support user validation. Efficient techniques to analysethe

feasibility of an MSC over a given HA network are based on
specialised bounded model checking techniques, and focus on
efficiently constructing traces of the network that witnessthe
MSC behaviour. Unfortunately, these techniques are unableto
deal with the unfeasibility of the MSC, i.e. the case where no
trace of the network satisfies the MSC.

In this paper, we tackle the problem of MSC unfeasibility,
along two main directions: first, we propose specialised tech-
niques to prove that an MSC cannot be satisfied by any trace
of a given HA network; second, we show how to explain why
an MSC is unfeasible.

In order to prove unfeasibility, we propose a specialised
algorithm, which generalises k-induction to deal directlywith
the structure of the MSC. The search is structured around the
events in the MSC, which are used as intermediate “islands”.
In addition to are-simplifying the encoding of the fragments of
the MSC between events, we apply the simple path condition
to each fragment, so that the encoding length of each fragment
is no longer increased as soon as we detect that no new
states can be reached. The MSC is deemed unfeasible for the
network when no fragment can be further extended. To help
convergence of induction, we exploit invariants discovered by
applying discrete model checking on an abstraction of the
HAs.

In order toexplain why an MSC is unfeasible, our approach
can generate various information. One is a subset of the MSC
that is itself unfeasible for the network, which helps to focus
on a subset of the messages, and on the HA in the network that
are involved. Another one is a set of timing conditions over the
events in the MSC, which are themselves sufficient to conclude
unfeasibility. The explanations are provided as formulae in
linear arithmetic, constraining the assignments to the variables
representing (some of) the time points of the events of the
MSCs. To the best of our knowledge, this is the first work
explaining MSC unfeasibility. We remark that here we are
trying to provide diagnostic information in case of afalse
existential property, and thus the traditional diagnostics used in
model checking for universal properties (e.g. simulation traces)
provides no help.

The technical underpinning of this work is the “local time”
semantics [6] for HAs, which exploits the fact that automata
can be “shallowly synchronised”. The intuition is that eachau-
tomaton can proceed based on its individual “local time scale”,
unless they perform a synchronising transition, in which case
they must realign their absolute time. The framework allows

to reason locally about the simple path conditions for each
process, and also to extract more structured explanations,
possibly not involving all the processes in the network and
the MSC events.

We implemented the approach and carried out an extensive
evaluation, over a wide set of networks and benchmark MSCs.
The new approach is able to effectively refute MSCs, sig-
nificantly outperforming the corresponding approaches based
on automata construction, and to provide interesting explana-
tions.

The paper is structured as follows. In Section II, we present
some background on networks of HAs, on SMT, and on k-
induction. In Section III-A, we describe the language we use
to describe the scenarios and the SMT encoding based on
their structure. In IV we discuss MSC-direct induction. In
V we discuss method to find explanations of unfeasibility.
In Section VI we discuss related work. In Section VII we
experimentally evaluate our approach. In Section VIII we draw
some conclusions.

II. BACKGROUND

A. Networks of hybrid automata

A Labelled Transition System (LTS) is a tuple〈Q,A,Q0, R〉
whereQ is the set of states,A is the set of actions/events
(also called alphabet),Q0 ⊆ Q is the set of initial states,
R ⊆ Q×A×Q is the set of labeled transitions.

A trace is a sequence of eventsw = a1, . . . , ak ∈ A∗.
Given A′ ⊆ A, the projectionw|A′ of w on A′ is the sub-
trace ofw obtained by removing all events inw that are not
in A′. A path π of S over the tracew = a1, . . . , ak ∈ A∗

is a sequenceq0
a1→ q1

a2→ . . .
ak→ qk such thatq0 ∈ Q0 and,

〈qi−1, ai, qi〉 ∈ R for all i such that1 ≤ i ≤ k. We say that
π acceptsw.

The parallel composition S1||S2 of two LTSs S1 =
〈Q1, A1, Q01, R1〉 and S2 = 〈Q2, A2, Q02, R2〉 is the LTS
〈Q1 ×Q2, A1 ∪A2, Q01 ×Q02, R〉 where:
R :={〈〈q1, q2〉, a, 〈q′1, q

′
2〉〉 |〈q1, a, q

′
1〉 ∈ R1, 〈q2, a, q′2〉 ∈ R2}

∪{〈〈q1, q2〉, a, 〈q′1, q2〉〉 | 〈q1, a, q
′
1〉 ∈ R1, a 6∈ A2}

∪{〈〈q1, q2〉, a, 〈q1, q′2〉〉 | 〈q2, a, q
′
2〉 ∈ R2, a 6∈ A1}.

The parallel composition of two or more LTSsS1|| . . . ||Sn

is also called anetwork. If an event is shared by two or more
components, we say that the event is a synchronization event;
otherwise, we say that the event is local. We denote withτi
the set of local events of thei-th component.

Given a networkN and a stateq ∈ Q1 × . . . × Qn, the
reachability problem is the problem of checking if there is a
pathq0

a1→ q1
a2→ . . .

ak→ qk of S with qk = q.
A Hybrid Automaton (HA) [17] is a tuple

〈Q,A,Q0, R,X, µ, ι, ξ, θ〉 where:
• Q is the set of states,
• A is the set of events,
• Q0 ⊆ Q is the set of initial states,
• R ⊆ Q×A×Q is the set of discrete transitions,
• X is the set of continuous variables,
• µ : Q→ P (X, Ẋ) is the flow condition,
• ι : Q→ P (X) is the initial condition,

• ξ : Q→ P (X) is the invariant condition,
• θ : R → P (X,X ′) is the jump condition,

whereP represents the set of predicates over the specified
variables.

A Linear HA (LHA) is an HA where all the conditions
are Boolean combinations of linear inequalities and the flow
conditions contain variables inẊ only. We assume also
that the invariant conditions of a LHA is a conjunction of
inequalities.

A network H of HAs is the parallel composition of two
or more HAs. We consider the local-time semantics, which is
equivalent to the standard global-time semantics of [17], but
instead of synchronizing the components on a shared timed
event, it enriches all shared events with time-stamps, intro-
duces local timed events, and synchronizes the components on
shared events forcing the time-stamps to be equal [6], [10].

In the following, we consider a networkH = H1|| . . . ||Hn

of HAs withHi = 〈Qi, Ai, Q0i, Ri, Xi, µi, ιi, ξi, θi〉 such that
for all 1 ≤ i < j ≤ n Xi ∩Xj = ∅ (i.e. the set of continuous
variables of the hybrid automata are disjoint).

The local-time semantics (or time-stamps semantics) ofH
is the network of LTSsNLOCTIME (H) = S1|| . . . ||Sn with Si =
〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where:

• Q′
i = {〈q, x, t〉 | q ∈ Qi, x ∈ R

|Xi|, t ∈ R≥0},
• A′

i = {〈a, t〉 | a ∈ Ai, t ∈ R≥0} ∪ {TIMEi},
• Q′

0i = {〈q, x, 0〉 | q ∈ Q0i, x ∈ ιi(q)},
• R′

i = {〈〈q, x, t〉, 〈a, t〉, 〈q′, x′, t〉〉 | 〈q, a, q′〉 ∈
Ri, 〈x, x

′〉 ∈ θi(q, a, q
′), x ∈ ξi(q), x

′ ∈ ξi(q
′)} ∪

{〈〈q, x, t〉, TIMEi, 〈q, x
′, t′〉〉 | there existsf satisfying

µi(q) s.t. f(t) = x, f(t′) = x′, f(ǫ) ∈ ξi(q), ǫ ∈
[t, t′], t ≤ t′}.

The definition of the local-time semantics is such that the
set of actions of each LTS contains a local timed event TIMEi

and couples containing a discrete action and a time stamp
(i.e. the amount of time elapsed in the automaton). Thus, each
automaton performs the time transition locally, changing its
local time stamp. When two automata synchronize on〈a, t〉
they agree on the actiona and on the time stampt. Instead,
in the global-time semantics, all the automata are forced to
synchronize on the time transition〈TIME, δ〉, agreeing on the
time elapsed during the transition (δ variable).

If q = 〈〈q1, x1, t1〉, . . . , 〈qn, xn, tn〉〉 is a state ofNLOCTIME ,
we say thatq is synchronized iffti = tj for 1 ≤ i < j ≤ n,
i.e., the local times are equal.

B. SMT encoding of hybrid automata

As described in [17], LHAs can be analyzed with symbolic
techniques. Let us consider a networkH = H1|| . . . ||Hn

of LHAs whose semantics is given by the network of LTSs
S1|| . . . ||Sn whereSi = 〈Qi, Ai, Qi0, Ri〉. The statesQi can
be represented by a setVi of symbolic variables. The events of
Ai can be represented by a set of symbolic variablesWi. Sets
of states are represented with formulas overVi, while sets of
transitions are represented with formulas overVi, Wi, andV ′

i ,
which are the next values ofVi. In particular, it is possible to

define a formulaIi(Vi) that represents the initial states and a
formulaTi that represents the transitions ofHi.

The details of the encoding we use can be found in [8].
Here, we just notice that we use a scalar input variableε to
represent the events ofHi adding two distinguished values,
namelyT andS, to represent a timed transition and stuttering,
respectively. When stuttering, the system does not change any
variable. Moreover, when using the local-time semantics, the
variableti represents the local time ofHi and is also used as
time-stamp of the events (thus, to ensure that shared events
happen at the same time).

As standard in Bounded Model Checking, given an integer
k, we can build a formula whose models correspond to all
paths of lengthk of the represented LTSS. The formula
introducesk+1 copies of every variable in the encoding of the
automata. Given a formulaφ, we denote withφi the result of
substituting the current and next variables ofφ with their i-th
and (i+ 1)-th copy, respectively. The paths ofS of lengthk
can be encoded into the formulapath(k) := I0 ∧

∧
0≤i<k T

i.
A typical optimization used in BMC for timed and hybrid

systems is to force the alternation of timed and discrete
transitions [1], [4].

Most of modern solvers, both for SAT and SMT, have an
incremental interface such that, if a problem is fed to the solver
incrementally, the solver can first tackle smaller parts of the
problem and then pass to large parts managing to reuse the
lemmas discovered during the previous searches.

C. K-induction

K-induction [29] is a technique that proves that if a set of
states is not reachable ink steps, then it is not reachable at all.
On the lines of the induction principle, it consists of a base
step, which solves the bounded reachability problem with a
given boundk of steps, and an inductive step, which concludes
that k is sufficient to solve the (unbounded) reachability
problem. The idea of the inductive step is to check either
if the initial states cannot reach new (non-visited) statesin
k + 1 steps, or the target set of states cannot be reached in
k+1 steps (hereafter, we will consider only the first condition).
These checks can be solved by means of satisfiability.

The formulasimple(k) :=
∧

0≤i<j≤k ¬
∧

v∈V v
i = vj can

be used to strengthen the path encoding to represent only
simple (loop-free) paths. If the formulakind(k) := I(V0) ∧
π(k+1)∧simple(k+1) is unsatisfiable, then there is no initial
simple path with more thank states. Thus, if, for alli ≤ k,
path(k) ∧ targetk is unsatisfiable andkind(k) is unsatisfiable
as well, thentarget is not reachable.

If the target is not reachable in a finite-state LTS, there is a
k for which the above conditions are unsatisfiable. In hybrid
systems, it is very common that the LTSs contain infinite paths,
typically with monotonically increasing variables (such as the
local time) and, therefore, it is difficult to apply k-induction.

In [30], k-induction has been integrated with predicate
abstraction [16] to deal with infinite-state systems. Typically,
an abstraction defines an equivalence relationEQα among the
the concrete states that are not distinguished by the abstraction.

As for predicate abstraction, given a certain setP of predicates
over the variablesV , the equivalence relation is defined as
EQP(V, V) :=

∧
P∈P

P (V) ↔ P (V).
Abstract k-induction embeds the definition of the predicate

abstraction in the encoding of the path. In particular, the
formula pathα :=

∧
1≤h<k(T (Vh−1, V h) ∧ EQα(V h, Vh)) ∧

T (Vk−1, Vk) is satisfiable iff there exist a path ofk steps in
the abstract state space. The formulasimpleα is defined as
simpleα :=

∧
0≤i<j≤k ¬EQα(Vi, Vj). The formulapathα ∧

simpleα is satisfiable iff there exists a simple path of lengthk
in the abstract state space. Finally, the formulakindα, defined
as kindα := I(V 0) ∧ EQα(V 0, V0) ∧ pathα ∧ simpleα, is
satisfiable iff there exists an initial simple path of lengthk.

Similarly to the concrete case, if, for alli ≤ k, pathα ∧
EQα(Vk, V k)∧ targetk is unsatisfiable andkindα(k) is unsat-
isfiable as well, thentarget is not reachable in the abstraction
(and therefore also in the concrete state space).

III. MSC FEASIBILITY

A. Constrained Message Sequence Charts

A Message Sequence Chart (MSC) [19] defines a single
(partial-order) interaction of the components of a networkN .
MSCs have been extended in several ways. We consider here a
particular variant, enriched with additional constraints, which
turns out to be very useful and easy to handle with the SMT-
based approach.

An MSC m is associated with a set of eventsAm ⊆
AN , subset of the events of the network. We assume that
Am contains all and only the shared events of the network
(Am =

⋃
1≤i<j≤n Ai∩Aj). In particular, in the case of hybrid

automata the timed events are not part ofAm.
The MSC defines a sequence of events for every component

S of the network, called instance ofS. An instanceσ for the
LTS S is a sequencea1; . . . ; al ∈ (Am ∩ AS)∗ of events of
S. S accepts the instance (S |= σ) iff there exists a tracew
accepted byS such that the sub-sequence of events inAm is
equal toσ (w|Am

= σ). In other words,S accepts the instance
iff there exists a pathπ of S over a trace compatible with the
instanceσ. In such cases, we say thatπ |= σ.

We denote thej-th eventaj of the instanceσi with σi[j], the
numberl of events inσi with |σi|, the local segment between
the eventσi[j] andσi[j + 1] of σi with lsg(σi[j]), where the
first local segment from the initial state toa1 is lsg(σi[0]) and
the final local segment aftera|σi| is lsg(σi[|σi|]).

If π |= σ, π must be in the formq0
τ
→ . . .

τ
→ qh1

σ[1]
→

qh1+1
τ
→ . . .

τ
→ qh|σ|

σ[|σ|]
→ qh|σ|+1

τ
→ . . .

τ
→ qh|σ|+1

, where
qh ∈ Q and τ are local events ofS. We denote the sub-
sequences of the pathπ in which it is split byσ as follows:

• prej(π) = qhj
, it is the source state of the transition

labeled withσ[j] in π.
• postj(π) = qhj+1, it is the destination state of the

transition labeled withσ[j] in π.
• locj(π) = qhj+1; . . . ; qhj+1

where we denoted0 with h0.
An MSC is the parallel compositionσ1|| . . . ||σn whereσi

is an instance ofSi. The networkN of LTSs accepts the MSC

m (N |= m) iff there exists a tracew accepted byN such
that, for everySi, the sub-sequence of events inAm ∩ASi

is
equal toσi (w|(Am∩ASi

) = σi). In other words,N accepts the
instance iff there exists a path ofN over a trace compatible
with every instance of the MSC. IfH is a network of HAs,
then we say thatH |= m iff NLOCTIME (H) |= m.

We define a Constrained MSC (CMSC) as a pair〈m,φ〉
wherem is an MSCσ1|| . . . ||σn andφ is a formula over the
variablesvi[j] with 1 ≤ i ≤ n and1 ≤ j ≤ |σi|, wherevi[j]
represents the value of the variablev of the i-th component
at the time of thej-th eventσi[j] of σi. N |= 〈m,φ〉 iff
there exists a pathπ = π1|| . . . ||πn such thatπi |= σi and the
assignments ofprej(πi) to vi[j] satisfyφ.

The model checking problem for a CMSC〈m,φ〉 is the
problem of checking if a network satisfies a CMSC. The
classical approach is based on the construction of a monitor
(or a network of monitors) that, composed withN , forcesN
to follow only paths that satisfy the MSC.

An MSC σ1|| . . . ||σn is consistent iff for every pair of
instancesσi andσj the projection on the common alphabet is
the same, i.e., ifA = Ai ∩ Aj , σi|A = σj|A. Henceforth, we
assume that the MSCs are consistent. The check of consistency
is trivial and can be done syntactically on the graphical
representation of the MSC.

B. Scenario-driven encoding

The drawbacks of the traditional SMT-based encoding is
that it cannot exploit the sequence of messages prescribed by
the MSC in order to simplify the search because of the uncer-
tainty on the number of local steps between two events. We
encode the path of each automaton independently, exploiting
the local time semantics, and then we add constraints that
force shared events to happen at the same time, as inshallow
synchronization [8]. Moreover, we fix the steps corresponding
to the shared events and we parametrize the encoding of the
local steps with a maximum number of transitions.

We extend the encoding presented in [10] with different
numbers of steps for different local segments of the MSC.

Let us consider a networkH = H1|| . . . ||Hn of LHAs and
the encoding〈Vi,Wi, Ii, Ti〉 representing the LHAHi, for 1 ≤
i ≤ n, in the local-time semantics. We denote withTi|φ the
transition condition restricted to the conditionφ, i.e., Ti|φ =
Ti ∧ φ. We abbreviateTi|ε=a with Ti|a andTi|ε∈τi∪{S} with
Ti|τ (notice thatτi, the set of local actions, contains also the
timed eventT).

We associate a boundki[j] to thej-th segmentlsg(σi[j]) of
thei-th instance.ki[j] is used to limit the number of transitions
in the local pathlocj(π) of a pathπ satisfying the instance
σi. We useki to denote〈ki[0], . . . , ki[hi]〉 and k to denote
〈k1, . . . , kn〉.

Note that the eventσi[j] is preceded by
∑j−1

v=0 ki[v] + j −
1 transitions consisting of local transitions (

∑j−1
v=0 ki[v]) and

shared events (j− 1). idxi[j] defines the index used to encode
the eventσi[j] as idxi[j] :=

∑j−1
v=0 ki[v] + j − 1.

The following encoding represents all paths of the network
compatible with the MSC where the local transitions of thej-

th segment of thei-th instance have been unrolled up toki[j]
times (note that the “up to” is due to the ability of stuttering):

enc(m, k) :=
∧

1≤i≤n

enc(σi, ki) ∧

∧

1≤j<i≤n

sync(σj , σi) ∧ (t
∑|σj |

v=0 kj [v]
j = t

∑|σi|
v=0 ki[v]

i)

enc(σi, k) := I0
i ∧

∧

1≤j≤k0
i

T j−1
i|τ ∧

∧

1≤j≤|σi|

(T
idxi[j]
i|aj

∧
∧

1≤h≤ki[j]

T
idxi[j]+h

i|τ)

sync(σj , σi) :=
∧

1≤z≤|σj|A
|=|σi|A

|

t
idxi[f

ij
i (z)]

i = t
idxj [f

ij
j (z)]

j

whereA = Ai ∩Aj and the functionf ij
i maps thez-th event

az shared betweenσi andσj to the index ofaz in σi. More,
specifically, ifσj|A = σi|A = a1; . . . al, thenf ij

i , f
ij
j : N → N

are such thataz = σi(f
ij
i (z)) = σj(f

ij
j (z)), for 1 ≤ z ≤ l.

Intuitively, enc(m, k) encodes the unrolling of each compo-
nent according to its instance and guarantees that the different
unrollings have the same time for every occurrence of a shared
event and the same final time.

In order to encode the paths that satisfy a CMSC we have
just to conjoin the additional constraints:

enc(〈m,φ〉, k) := enc(m, k) ∧ φ[v
idxi[j]
i /vi[j]]

Theorem 1: If enc(〈m,φ〉, k) is satisfiable thenH |=
〈m,φ〉. Vice versa, ifH |= 〈m,φ〉, then there exists integers
k such thatenc(〈m,φ〉, k) is satisfiable.

IV. SCENARIO-DRIVEN INDUCTION

In this section, we describe how the structure of the MSC
can be exploited to tailor k-induction to prove the unfeasibility
of the scenario. For the base case, we use the encoding
of [10]. For the inductive step, we apply the simple path
condition to each segment of the scenario and prove that
such partitioned simple-path condition is equivalent to the
path condition applied to composition of the network and
the scenario monitor. The use of different local bounds
as presented in Section III-B allows k-induction to stop the
unrolling of the local path at different depths according tothe
local structure of the component at the considered segment.

A. Partitioned simple-path condition

Our goal is to find an inductive conditionkind(〈m,φ〉, k)
such that, in the finite-state case,N 6|= 〈m,φ〉 if and only if
there existk such thatenc(〈m,φ〉, k) and kind(〈m,φ〉, k)
are unsatisfiable. In the hybrid case, we would like that
the “if” condition still holds, while the “only if” condition
should hold when the corresponding inductive condition for
the composition of the network with the MSC monitor holds
(relatively complete). The difficulties are that:

• the projection of a simple path on a component may be
not a simple path;

• if a simple path is the concatenation or the parallel
composition of two paths, these may be not the longest
simple paths of their segments.

The CMSC 〈m,φ〉 defines a partial order<m among the
segments ofm defined as the reflexive and transitive closure
of the smallest relation such that:

• lsg(σi[j]) <m lsg(σi[j
′]) if 0 ≤ j < j′ ≤ hi;

• lsg(σi[j]) <m lsg(σi′ [j
′]) if there existslsg(σi′′ [j

′′]) such
that there is a synchronisation betweenσi[j] andσi′′ [j

′′]
and lsg(σi′′ [j

′′]) <m lsg(σi′ [j
′]).

Given a CMSC〈m,φ〉 and the local pathlsg(σi[j]) we
define the partial CMSC〈mi[j], φi[j]〉 where:

• mi[j] = σ1|| . . . ||σn such that for all1 ≤ v ≤ n,
|σv| ≤ |σv| and for all 1 ≤ z ≤ |σv| σv[z] = σv[z]
and lsg(σv[z]) <m lsg(σi[j]) or lsg(σv[z]) = lsg(σi[j]),
while for all |σv| < z ≤ |σv| lsg(σv[z]) 6<m lsg(σi[j]).

• φi[j] contains only the constraints ofφ which are over
variables inmi[j].

We define the local simple path condition as follows:

kindi[j] := enc(〈mi[j], φi[j]〉, k) ∧ simplei[j]

simplei[j] :=
∧

1≤h,z≤ki[j]

s
idxi[j]+h
i 6= s

idxi[j]+z
i

Theorem 2: If there existk s.t. enc(〈m,φ〉, k) is unsatisfi-
able and, for alli, j, kindi[j] is unsatisfiable, thenN 6|= m.

In order to check if k-induction holds incrementally, we
visit the MSC m according to the partial order<m. We
incrementally apply the partitioned simple path conditionto
the local segments ofm. The incremental checks exploit the
standard Push/Pop/Assert incremental interface of the solver.

B. K-induction for hybrid systems

1) Alternation of timed and discrete transitions: The al-
ternation of timed and discrete transitions has been proposed
in different works to optimise the search of BMC for timed
and hybrid systems [1], [4]. With k-induction, the alternation
is fundamental to allow a concrete search to close. In fact,
without forcing the alternation, the system will likely have
infinite loop-free paths where timed transitions change some
continuous variables infinitely often.

In order to enhance k-induction with alternation, the follow-
ing points must be taken into account:

• since consecutive discrete transitions are possible, the
timed transition must be permit the elapsed time to be
zero; therefore, the loop-free condition of k-induction
must be relaxed in order to allow self loops with a timed
transition with no elapsed time;

• the scenario-based encoding of the bounded model check-
ing problem exploits stutter transitions in order to encode
path with up tok steps (instead of exactlyk steps);
the stuttering makes the alternation ineffective because
it allows infinite loop-free paths alternating timed and
stutter transitions; therefore, it is fundamental to avoid
stuttering when considering the simple path condition.

2) Enabling a partitioned abstraction: The structure of
local transitions between two shared events is often simpleand
without loops. In these cases, the alternation without stuttering
allows k-induction to prove the unfeasibility of scenarios.
If instead there are loops in the local structure, they may
correspond to infinite loop-free paths. In order to prove the
unfeasibility of scenarios also in these cases, we combine k-
induction with predicate abstraction as in [30].

We can associate to different segments of the MSC different
abstractions of the local transition relation. This way, wecan
obtain a fined-grained abstraction which abstract away the
continuous components only where necessary.

V. UNFEASIBILITY EXPLANATION

We identify the following types of explanations to under-
stand the reasons of the unfeasibility of the CMSC〈m,φ〉: 1)
which parts of the CMSC cannot be executed by the network;
2) why the paths of the network consistent withm cannot
satisfy φ; 3) why the paths of a component consistent with
the corresponding instance ofm are inconsistent with the rest
of the CMSC.

We answer these questions by exploiting both unsat cores
and interpolation. The unsatisfiable core for an unsatisfiable
formulaφ is a formulaψ iff ψ is unsatisfiable andφ = ψ∧ψ′,
for a (possibly empty) formulaψ′. Given two formulasA and
B, withA∧B |= ⊥, the Craig interpolant ofA∧B is a formula
I such that|= A → I, B ∧ I |= ⊥, and which contains only
variables common toA andB. Intuitively, the interpolant is
an over-approximation ofA “guided” by B.

In particular, after reaching the maximum bound in ev-
ery local segment of the CMSC, we can build the proof
of unsatisfiability of the BMC problem with such bounds.
The unsat core extracted from the proof contains a subset
of the unrolling of the components along the MSC and a
(possibly empty) subset of the CMSC constraints which are
incompatible. Since the local paths, events, and constraints are
asserted in different conjuncts of the encoding, the unsat core
is find-grained enough to distinguish them.

By partitioning the encoding into the constraints obtainedby
unrolling the network (A) and the constraints of the CMSC
(B), we can compute an interpolant of their unsatisfiability.
This way, we obtain a formula over the variables at the time
of the events implied by the network executing the MSC and
inconsistent with the constraints of the CMSC. Note that if
the interpolant is false, we can deduce that the constraintsare
not responsible of the unfeasibility and that the unrollingof
the network is inconsistent by itself.

Finally, by partitioning the encoding into the unrolling
of one component along its instance and the rest (other
components and constraints), the interpolation produces a
formula over the variables at the time of the events implied
by component executing the instance and inconsistent with the
other components or with the constraints of the CMSC. Note
that if the interpolant is true, it means that the component
does not play a role in the unfeasibility. On the contrary, if

the interpolant is false, the component does not have a path
compatible with the instance.

Note that, when the abstraction is used to prove the unfea-
sibility of the scenario, the explanations based on unsat core
and interpolation are still valid.

VI. RELATED WORK

MSCs [19] are a basic building block to describe the inter-
actions among components. Several works, such as High-Level
Message Sequence Charts [23] and Live Sequence Charts
(LSC) [12], extend the language of the MSCs increasing their
expressive power. We consider a basic version of MSCs which
describes a single (partial-order) composition of sequences
of events, augmented with additional constraints [2], [5].We
consider a trace-based semantics for the MSC, where the MSC
predicates over the observable events of a system [21]. While
several works use MSCs to describe the entire system [3],
[25], we instead use the MSC as a specification language.

A common approach to deal with the verification of MSC
specifications consists in translating the scenario into automata
or temporal logic formulas. LSCs are translated into timed
automata in the UPPAAL model checker [22], while in [20]
the authors propose a translation from charts with timing
constraints and synchronous events to Timed Büchi Automata.
These works deal with expressive specification languages but
they do not exploit the structure of the scenario. Moreover,
in case of unfeasibility, these techniques do not provide
explanations that narrows the events of the scenario or that
gives meaningful information about a specific component.

The approach which translates the MSC into an automaton
reduces the feasibility problem of the MSC to a reachabil-
ity problem. Thus, the works on Bounded Model Checking
(BMC) for hybrid systems [1], [4], [8], [14], [15] can be used
to solve the feasibility problem. However, BMC is unable to
prove the unfeasibility of the MSC. When we encode the
MSC into an automaton the unfeasibility problem can be
solved using unbounded model checking techniques, such as k-
induction [29]. K-induction is complete for finite state systems,
but it was applied also to infinite state systems in [13], [26],
[30]. In [13] the authors use k-induction to verify timed and
hybrid automata and they generalise the simple path condition
to simulation relations. K-induction is combined with predicate
abstraction [16] in [30]. These works are not tailored to the
problem of deciding the unfeasibility of a scenario and do not
provide explanations in the case of unsatisfiability.

In [10] we propose a Bounded Model Checking encoding
tailored to check the feasibility of a scenario in a network of
hybrid automata. This approach turns out to be very efficientin
dealing with complex scenarios, since it exploit the local-time
semantics [6] in order to partition the encoding with respect
to the MSC structure. However, the approach is unable to
prove the unfeasibility of the scenario. We extend that work
in order to prove the unfeasibility of a scenario and to provide
meaningful explanations of unfeasibility.

Unsat cores and interpolation are often used to explain
and generalise the source of unsatisfiability. Unsat cores are

typically subsets of the conjuncts forming the unsatisfiable
formula. However, other forms are possible, especially in
the context of temporal unsatisfiability [28]. Interpolation
for temporal properties is proposed in [27] as a theoretical
framework for analysing vacuity for discrete systems; the
practical implications are not addressed in depth. In [28],it
is suggested that k-induction can be used to find ak for
which the BMC encoding of a temporal formula yields its
unsatisfiability and that the unsat core contains the relevant
parts of the formula that cause the unsatisfiability. However,
mapping the BMC unsat core back to the original problem is
not always easy. We achieve this by exploiting the scenario-
based encoding that respects the structure of the scenario.

VII. E XPERIMENTAL EVALUATION

The techniques discussed in the previous sections were
implemented in NuSMV3, a model checker based on
NuSMV [9], and that is able to deal with networks of HAs,
formalised in the HYDI language [11]. NuSMV3 features an
SMT-based approach to the verification of hybrid systems,
and is tightly integrated with MathSAT [7], a state-of-the-art,
full-fledged Satisfiability-Modulo-Theory (SMT). MathSAT
provides the functionalities of incremental reasoning, unsat-
isfiable core extraction, and interpolation, which are usedfor
bounded model checking, inductive reasoning, and explanation
extraction.

In the experimental evaluation, we used the following
benchmarks: theDistributed Controller [18], the Audio Pro-
tocol proposed in [18], theNuclear Reactor [31], a hybrid
version of the Fischer mutual exclusion protocol, and the
Electronic Height Control System (EHC) described in [24]. All
the test cases, the executable and the results of the evaluation
are available athttp://es.fbk.eu/people/mover/tests/FMCAD11/.

A. Scenario-driven Induction vs K-Induction

First, we compared the scenario-based induction with k-
induction applied to the monolithic encoding of the network
of HAs and the automata translated from the MSC.

We first compared Scenario-Driven Induction with K-
Induction applied to the composition of the monolithic encod-
ing of the network with the automata obtained from the MSC
(see [10] for details on the automata construction). In order
to test the scalability of both approaches, we considered a
set of unfeasible MSCs of different length, and parameterized
the number of HAs in the network. We set a time out of
300 seconds and a memory out of2 GB. The scatter plot in
Figure 1 shows the execution time for both methods on all
the instances. Scenario-based induction is clearly superior to
monolithic k-induction. This is due to the exploitation of the
structure of the scenario: this results in localized simplepath
conditions, that are both simpler, and more effective, so that
unsatisfiability is detected with a much shorter unrolling.

B. Unfeasibility Explanation

Then, we analysed the unfeasibility explanations on the
three benchmarks with non-trivial scenarios, showing their
usefulness in identifying the causes of unfeasibility.

to
mo

 0.1

 1

 10

 100

to mo 0.1 1 10 100

sc
en

ar
io

-in
du

ct
io

n

monolithic-induction

Time (sec.) monolithic-induction vs. scenario-induction

Fig. 1. Run times (sec.): monolithic induction (x axes) vs. scenario-induction
(y axes)

1) Distributed Controller [18]: the benchmark models the
interactions of two sensors (sensor1 and sensor2) with a
controller of a robot. The two sensors interact with a scheduler
to access a shared processor. The time needed for computation
by the two sensors is bounded but it is non-deterministic, and
is tracked in the scheduler with two stopwatches (x1 andx2).
Also the controller sets a time-out (variablez = 0) after the
receipt of the first message. If the time-out expires (z = 10)
the controller discards all the received data.

The MSC shown in Figure 2 models the interaction where
sensor1 requests the processor; the scheduler grants it for a
total duration ofx2 time; sensor2, which has a higher priority,
requests and receives grant to the processor; when sensor2

finishes its computation (eventread2), sensor1 finishes to read
data while, in parallel, sensor2 sends its data to the controller;
finally, the sensor1 and the controller synchronize onsend1 and
ack1. The time spent to process the data of sensor1 is given
by the stopwatchx1. In Figure 2x1 is the sum of the intervals
x′1 andx′′1 . Moreover, we add two additional conditions on the
duration ofx1 andx2 in the scheduler (x2 = 1.5 andx1 =
1.1), and we fix the maximum time spent by the controller
before receiving the data from sensor1 (z < 1). The MSC
augmented with these constraints is unfeasible.

We prove the unfeasibility of the scenario directly on the
concrete systems, since all the automata cannot loop perform-
ing only local transitions. The analysis takes 3 seconds and
the longest simple path is 2 in the controller automaton, and
1 in the other automata. In the Figure 2 we outline in gray
the elements of the scenario, events and constraints, which
contribute to the unfeasibility. In particular, we find thatthe
unfeasibility depends on all the events of the MSC apart from
the eventsAck1 andAck2. Moreover, we discover that all the
additional constraints of the scenario,x2 = 1.5, x1 = 1.1 and
z < 1, contribute to the unfeasibility.

We exploit the interpolation techniques to get the constraints
z >= x1. In fact, z counts the time elapsed in the controller
between the send1 event and the send2 event. This means
that the controller cannot receive the send1 message beforex1

seconds, which is the time spent to process data from sensor1.
If we fix z >= 1.1 then the scenario is feasible. We find a
similar result if we look at the interpolant obtained partitioning
the encoding in the constraints from sensor1 (theA formula)

Ack2

Send1

Send2

Request2

Read2

Ack1

Read1

Request1

x
′′
1

x
′
1

x
′
1 + x

′′
1 =

11

10

x2 =
3

2

z < 1

SchedulerSensor1 ControllerSensor2

Fig. 2. The MSC for the distributed controller

and the rest of the network and the scenario (theB formula).
The interpolant is6 <= time

request1
sensor1 −timeread1

sensor1 +timesend1
sensor1 .

Sincetimerequest1
sensor1 is 6, from the initial condition and invariants

of sensor1, we can infer that the scenario and the other pro-
cesses in the network do not allowtimeread1

sensor1 <= timesend1
sensor1 ,

which is a necessary condition for sensor1.
2) Audio Control Protocol [18]: this protocol transmits

an arbitrary-length bit sequence from a sender to a receiver
based on the timing-based Manchester encoding. The protocol
relies on division of the elapsed time in slots. Every slot
corresponds to a bit. The sender transmits a signalup in the
slots corresponding to bits with value1 (thus, a slot without
signals correspond to bit0). The protocol is robust to bounded
errors in the timers used by the sender and receiver.

The considered scenarios consist of unfeasible timed se-
quences ofup. For example, the sequence〈up, 4〉, 〈up, 8〉,
〈up, 12〉, 〈up, 16〉, 〈up, 19〉, 〈up, 23〉 does not respect the pro-
tocol, since the 4-th and 5-th events must be separated by3
seconds.

Scenario-based induction proves that the scenario is unfea-
sible in 41.16. The explanation extracted from the unsat core
identifies the 4-th and 5-th events as the cause of unfeasibility.
Interpolation “explains” that the inconsistency arises because
the sender requires the 5-th event to happen after at least3.8
seconds; it also shows that the receiver does not play any role
in the inconsistency.

3) Electronic Height Control System [24]: this benchmark
presents a case where the concrete k-induction is not able to
prove the unfeasibility. We therefore rely on abstraction and
we show that, despite the over-approximation, the explanation
is effective in pinpointing the cause of unfeasibility.

This industrial case study models a system that controls the
height of a car’s chassis. A timer tells the controller when to
read the height from a filter, while disturbances which changes
the height of the vehicle are modelled by the environment.
The structure of the controller is depicted in Figure 3. The
MSC describes a scenario where the height of the chassis
falls outside the allowed thresholds, first below and then above
the permitted height intervals. The sequence of events in the
scenario is highlighted by the dashed line.

The scenario is not feasible due to the timing constraints

fotu

finlow

fotlfotu

fitu

finup fotlsetf

fotl

fin

setf

unfeasible core

Fig. 3. The automaton structure of the EHC controller with a line that traces
the scenario sequence of events.

imposed by the timer on each event and to the dynamics of
the environment which requires an incompatible time to pass
from the initial level of the chassis to a value read outside the
allowed threshold. More precisely, the timer forces every event
to happen every second, while the filter chassis levelf read
by the sensors evolve according to the differential equation
ḟ = h−f

T
, where h represents the current level. This is

approximated by the linear-phase portrait partitioning which
linearizes the differential equation into flow conditions of the
form ḟ ∈ [a, b]. The constants fixed by the authors of [24] are
sufficient to prove the inconsistency.

K-induction proves that the controller and the timer do
not have a simple path longer than1 alternating timed and
discrete transitions (since there is no local transition).While,
on the concrete state space of the environment, the portrait
partitioning creates discrete loops that correspond to infinite
simple paths. Therefore we rely on abstraction. We use a set of
predicates in the formt ∈ [i, i+1], h ∈ [at, bt] andf ∈ [at, bt]
wherei is an integer whilea andb are the constants used in the
partitioning. We localise the abstraction by usingt ∈ [i, i+ 1]
only in the i-th event and considering the partition consistent
with the initial values.

With this setting, the tool proves the unfeasibility of the
scenario in4.4 seconds reaching a depth of the longest abstract
simple path equal to6 for the local path before the first event
and9 as for the local path before the second event. The tool
correctly reports an unsat core which identifies the first two
events as the cause of unfeasibility. The interpolation with
regards to components reports that while the timer requires
that the second event must happen in no more then3 seconds,
the environment requires the same event to happen at least
after 3.3 seconds.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a new approach to proving
that a network of hybrid automata has no trace that satisfies
a given MSCs. We have also proposed the first algorithm
to explain the unfeasibility of a scenario. The approach
is made practical by the use of segments of the MSC to
guide the search, and on the localisation of simple paths.
The experiments show that the proposed method significantly
outperforms techniques based on the reduction to reachability,
and is able to construct interesting explanations.

In the future, we will address the issue of non-linear hybrid
systems, the use of hierarchical information that is often

available in the network, and an automation of the abstraction-
refinement loop.

REFERENCES

[1] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing
bounded model checking for linear hybrid systems. InVMCAI, pages
396–412, 2005.

[2] S. Akshay, B. Bollig, and P. Gastin. Automata and logics for timed
message sequence charts. InFSTTCS, pages 290–302, 2007.

[3] R. Alur and M. Yannakakis. Model checking of message sequence
charts. InCONCUR, pages 114–129, 1999.

[4] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
Industrial Hybrid Systems with MathSAT.ENTCS, 119(2):17–32, 2005.

[5] H. Ben-Abdallah and S. Leue. Timing constraints in message sequence
chart specifications. InFORTE, pages 91–106, 1997.

[6] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions
for Timed Systems. InCONCUR, pages 485–500, 1998.

[7] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, andR. Sebastiani.
The MathSAT 4 SMT Solver. InCAV, pages 299–303. Springer, 2008.

[8] L. Bu, A. Cimatti, X. Li, S. Mover, and S. Tonetta. Model Checking
of Hybrid Systems using Shallow Synchronization. InFORTE, pages
155–169, 2010.

[9] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. InCAV, pages 359–364, 2002.

[10] A. Cimatti, S. Mover, and S. Tonetta. Efficent Scenario Verification for
Hybrid Automata. InCAV, 2011.

[11] A. Cimatti, S. Mover, and S. Tonetta. Hydi: a language for symbolic
hybrid systems with discrete interaction. InEUROMICRO-SEAA, 2011.

[12] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45–80, 2001.

[13] L. de Moura, H. Rueß, and M. Sorea. Bounded Model Checking and
Induction: From Refutation to Verification. InCAV, pages 14–26, 2003.

[14] M. Fränzle and C. Herde. Efficient Proof Engines for Bounded Model
Checking of Hybrid Systems.ENTCS, 133:119–137, 2005.

[15] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems.Formal Methods in System Design,
30(3):179–198, 2007.

[16] S. Graf and H. Saı̈di. Construction of Abstract State Graphs with PVS.
In CAV, pages 72–83, 1997.

[17] T. A. Henzinger. The Theory of Hybrid Automata. InLICS, pages
278–292. IEEE CS, 1996.

[18] T. A. Henzinger and P. Ho. Hytech: The cornell hybrid technology tool.
In Hybrid Systems II, LNCS 999, pages 265–293, 1995.

[19] ITU-T. Recommendation Z.120 - Message Sequence Charts. 1996.
[20] J. Klose and H. Wittke. An automata based interpretation of live

sequence charts. InTACAS, pages 512–527, 2001.
[21] P. Ladkin and S. Leue. On the semantics of message sequence charts.

In FBT, pages 88–104, 1992.
[22] S. Li, S. Balaguer, A. David, K. G. Larsen, B. Nielsen, and S. Pusinskas.

Scenario-based verification of real-time systems using uppaal. Formal
Methods in System Design, pages 200–264, 2010.

[23] S. Mauw and M. A. Reniers. High-level message sequence charts. In
SDL Forum, pages 291–306, 1997.

[24] O. Müller and T. Stauner. Modelling and verification using linear hybrid
automata - a case study.Mathematical and Computer Modelling of
Dynamical Systems, 71, 2000.

[25] M. Pan, L. Bu, and X. Li. Tass: Timing analyzer of scenario-based
specifications. InCAV, pages 689–695, 2009.

[26] L. Pike. Real-time system verification by k-induction.Technical Report
NASA/TM-2005-213751, NASA, 2005.

[27] M. Samer and H. Veith. On the Notion of Vacuous Truth. InLPAR,
pages 2–14, 2007.

[28] V. Schuppan. Towards a Notion of Unsatisfiable Cores forLTL. In
FSEN, pages 129–145, 2009.

[29] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties
Using Induction and a SAT-Solver. InFMCAD, pages 108–125, 2000.

[30] S. Tonetta. Abstract Model Checking without Computingthe Abstrac-
tion. In FM, pages 89–105, 2009.

[31] F. Wang. Symbolic parametric safety analysis of linearhybrid systems
with BDD-like data structures.IEEE TSE, 31(1):38–51, 2005.

