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Abstract. Hybrid Automata (HAs) are a clean modeling framework for systems
with discrete and continuous dynamics. Many systems are structured into com-
ponents, and can be modeled as networks of communicating HAs. Message Se-
quence Charts (MSCs) are a consolidated language to describe desired behaviors
of a network of interacting components and have been extended in numerous
ways. The construction of traces witnessing such behaviorsfor a given system
is an important part of the validation. However, specialized tools to solve this
problem are missing. The standard approach encodes the constraints in a tempo-
ral logic formula or in additional automata, and then use an off the shelf model
checker to find witnesses. However, these approaches are toogeneric and often
turn out to be inefficient.
In this paper, we propose a specialized algorithm to find the behaviors of a given
network of HAs that satisfies a given scenario. The approach is based on SMT-
based bounded model checking. On one side, we construct an encoding which
exploits the events of the scenario and enables the incremental use of the SMT
solver. On the other side we simplify the encoding with invariants discovered
applying discrete model checking on an abstraction of the HAs. The experimental
results demonstrate the potential of the approach.

1 Introduction

Complex embedded systems (e.g. control systems for railways, avionics, and space)
are made of several interacting components, and feature both discrete and continuous
variables. Networks of communicating hybrid automata [16](HAs) are increasingly
used as a formal framework to model and analyze the behavior of such systems: local
activities of each component amount to transitions local toeach HA; communications
and other events that are shared between/visible for various components are modeled
as synchronizing transitions of the automata in the network; time elapse is modeled as
implicit shared timed transitions.

A fundamental step in the design of these networks is the validation of the models
performed by checking if they accept some desired interactions among the components.
The language of Message Sequence Charts (MSCs) and its extensions are often used
to express scenarios of such interactions. MSCs are especially useful for the end users
because of their clarity and graphical content.

The ability to construct traces of a network of HAs that satisfy a given MSC is an
important feature to support user validation. However, there has been little research to
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address the specific problem, and the typical approach reduces the problem to “off-the-
shelf” model checking solutions: the MSC is translated intoan equivalent automaton
and the required trace is found by reachability in the cross-product of the automaton
with the network. This can turn out to be ineffective, exacerbating the difficulty of the
reachability problem, which is already very complex in the case of HAs.

In this paper, we tackle the problem of efficiently finding thetraces of a network
of HAs that satisfy an MSC. We work in the framework of BoundedModel Check-
ing (BMC), which uses at its core an incremental encoding into Satisfiability-Modulo-
Theory (SMT).

We first investigate different automata constructions, exploiting optimizations such
as locality and partial-order reduction. Second, we propose a specialized, direct algo-
rithm, where the search is structured around the events in the MSC, which are used as
intermediate “islands”. The idea is to pre-simplify fragments of the encoding based on
the events attached to the islands and to incrementally increase the local paths between
two consecutive islands. Further simplifications are achieved by means of invariants
that are discovered by applying discrete model checking on an abstraction of the HAs.
The generated invariants are either over-approximations of the states that are visited
between two subsequent events, just before or just after an event of the scenario.

A key enabler for our work is the use of an alternative, “localtime” semantics [6] for
HAs, which exploits the fact that automata can be “shallowlysynchronized” [7]. The
intuition is that each automaton can proceed based on its individual “local time scale”,
unless they perform a synchronizing transition, in which case they must realign their
absolute time. This results in a more concise semantics, where traces of the network
are obtained by composing traces of local automata, each with local time elapse, by
superimposing structure based on shared communication.

We implement the various approaches in the sub-case of linear hybrid automata,
and we use an incremental SMT solver to check the satisfiability of the formulas en-
coding the reachability problem. We compare the proposed solutions over a wide set of
networks and benchmark MSCs. The results show that the direct algorithm is able to
construct witnesses for very wide networks, with very long traces, significantly outper-
forming the other approaches based on the automata construction, and that the use of
invariants can be helpful in further reducing computation time.

The paper is structured as follows. In Section 2 we present some background on net-
works of HAs, and the SMT-based methods for their reachability analysis. In Section 3
we present the language for describing scenarios, and the methods based on automata
construction. In 4 we discuss the proposed direct approach to MSC checking. In Sec-
tion 5 we discuss related work. In Section 6 we experimentally evaluate our approach.
In Section 7 we draw some conclusions.

2 Networks of hybrid automata

2.1 Networks of transition systems

We first defineLabelled Transition Systems(LTSs), which are then used to define the
semantics of Hybrid Automata. An LTS is a tuple〈Q, A, Q0, R〉 where:



– Q is the set of states,
– A is the set of actions/events (also called alphabet),
– Q0 ⊆ Q is the set of initial states,
– R ⊆ Q × A × Q is the set of labeled transitions.

A trace is a sequence of eventsw = a1, . . . , ak ∈ A∗. GivenA′ ⊆ A, the projection
w|A′ of w onA′ is the sub-trace ofw obtained by removing all events inw that are not

in A′. A pathπ of S over the tracew = a1, . . . , ak ∈ A∗ is a sequenceq0
a1→ q1

a2→

. . .
ak→ qk such thatq0 ∈ Q0 and,〈qi−1, ai, qi〉 ∈ R for all i such that1 ≤ i ≤ k. We

say thatπ acceptsw. The languageL(S) of an LTSS is the set of traces accepted by
some path ofS. Given a stateq ∈ Q, the languageLq(S) of an LTSS is the set of
traces accepted by some pathq0

a1→ q1
a2→ . . .

ak→ qk of S with qk = q.
Theparallel compositionS1||S2 of two LTSsS1 = 〈Q1, A1, Q01, R1〉 andS2 =

〈Q2, A2, Q02, R2〉 is the LTS〈Q, A, Q0, R〉 where:

– Q = Q1 × Q2,
– A = A1 ∪ A2,
– Q0 = Q01 × Q02,
– R := {〈〈q1, q2〉, a, 〈q′1, q

′
2〉〉 | 〈q1, a, q′1〉 ∈ R1, 〈q2, a, q′2〉 ∈ R2}

∪{〈〈q1, q2〉, a, 〈q′1, q2〉〉 | 〈q1, a, q′1〉 ∈ R1, a 6∈ A2}
∪{〈〈q1, q2〉, a, 〈q1, q

′
2〉〉 | 〈q2, a, q′2〉 ∈ R2, a 6∈ A1}.

The parallel composition of two or more LTSsS1|| . . . ||Sn is also called anetwork.
If an event is shared by two or more components, we say that theevent is a synchro-
nization event; otherwise, we say that the event is local. Wedenote withτi the set of
local events of thei-th component, i.e.,τi = Ai \

⋃
j 6=i Aj .

Given a network, thelanguage emptiness problemis the problem of checking if the
language of a network is empty. Given a networkN and a predicateq ∈ Q1× . . .×Qn,
thereachability problemis the problem of checking if the languageLq(N ) is empty.

2.2 Hybrid automata

A Hybrid Automaton(HA) [16] is a tuple〈Q, A, Q0, R, X, µ, ι, ξ, θ〉 where:

– Q is the set of states,
– A is the set of events,
– Q0 ⊆ Q is the set of initial states,
– R ⊆ Q × A × Q is the set of discrete transitions,
– X is the set of continuous variables,
– µ : Q → P (X, Ẋ) is the flow condition,
– ι : Q → P (X) is the initial condition,
– ξ : Q → P (X) is the invariant condition,
– θ : R → P (X, X ′) is the jump condition,

whereP represents the set of predicates over the specified variables.
A Linear HA (LHA) is an HA where all the conditions are Booleancombinations

of linear inequalities and the flow conditions contain variables inẊ only. We assume
also that the invariant conditions of a LHA is a conjunction of inequalities.



A networkH of HAs is the parallel composition of two or more HAs. We consider
two semantics for networks of HAs: the global-time semantics, where all components
synchronize on timed events, and the local-time (or time-stamps) semantics, where the
timed events are local and components must synchronize the time on shared events.

In the following, we consider a networkH = H1|| . . . ||Hn of HAs with Hi =
〈Qi, Ai, Q0i, Ri, Xi, µi, ιi, ξi, θi〉 such that for all1 ≤ i < j ≤ n Xi ∩ Xj = ∅ (i.e.
the set of continuous variables of the hybrid automata are disjoint).

Theglobal-time semantics(or time-action semantics) [16] ofH is the network of
LTSsNGLTIME (H) = S1|| . . . ||Sn with Si = 〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where

– Q′
i = {〈q, x〉 | q ∈ Qi, x ∈ R

|Xi|},
– A′

i = Ai ∪ {〈TIME, δ〉 | δ ∈ R≥0},
– Q′

0i = {〈q, x〉 | q ∈ Q0i, x ∈ ιi(q)},
– R′

i = {〈〈q, x〉, a, 〈q′, x′〉〉 | 〈q, a, q′〉 ∈ Ri, 〈x, x′〉 ∈ θi(q, a, q′), x ∈ ξi(q), x
′ ∈

ξi(q
′)} ∪ {〈〈q, x〉, 〈TIME , δ〉, 〈q, x′〉〉 | there existsf satisfyingµi(q) s.t.f(0) =

x, f(δ) = x′, f(ǫ) ∈ ξ(q), ǫ ∈ [0, δ]}.

The local-time semantics(or time-stamps semantics) [6] ofH is the network of
LTSsNLOCTIME (H) = S1|| . . . ||Sn with Si = 〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where

– Q′
i = {〈q, x, t〉 | q ∈ Qi, x ∈ R

|Xi|, t ∈ R≥0},
– A′

i = {〈a, t〉 | a ∈ Ai, t ∈ R≥0} ∪ {TIMEi},
– Q′

0i = {〈q, x, 0〉 | q ∈ Q0i, x ∈ ιi(q)},
– R′

i = {〈〈q, x, t〉, 〈a, t〉, 〈q′, x′, t〉〉 | 〈q, a, q′〉 ∈ Ri, 〈x, x′〉 ∈ θi(q, a, q′), x ∈
ξi(q), x

′ ∈ ξi(q
′)} ∪ {〈〈q, x, t〉, TIMEi, 〈q, x

′, t′〉〉 | there existsf satisfyingµi(q)
s.t.f(t) = x, f(t′) = x′, f(ǫ) ∈ ξi(q), ǫ ∈ [t, t′], t ≤ t′}.

The definition of the local-time semantics is such that the set of actions of each
LTSs contains a local timed event TIMEi and couples containing a discrete action and
a time stamp (i.e. the amount of time elapsed in the automaton). Thus, each automaton
performs the time transition locally, changing its local time stamp. When two automata
synchronize on〈a, t〉 they agree on the actiona and on the time stampt. Instead, in the
global-time semantics, all the automata are forced to synchronize on the time transition
〈TIME, δ〉, agreeing on the time elapsed during the transition (δ variable).

If q = 〈〈q1, x1, t1〉, . . . , 〈qn, xn, tn〉〉 is a state ofNLOCTIME , we say thatq is syn-
chronized iffti = tj for 1 ≤ i < j ≤ n, i.e., the local times are equal.

Theorem 1 ( [6]).〈〈q1, x1〉, . . . , 〈qn, xn〉〉, is reachable inNGLTIME (H) iff there exists
a synchronized state〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉 reachable inNLOCTIME (H).

In an extended version of this paper, available athttp://es.fbk.eu/people/mover/

hybrid_scenario/, we prove a stronger version of the theorem, which shows that
also a time-abstract version of the traces is preserved.

2.3 SMT encoding of hybrid automata

As described in [16], LHAs can be analyzed with symbolic techniques. Let us consider
a networkH = H1|| . . . ||Hn of LHAs whose semantics (either global or local time)



is given by the network of LTSsS1|| . . . ||Sn whereSi = 〈Qi, Ai, Qi0, Ri〉. The states
Qi can be represented by a setVi of symbolic variables such that there exists a map-
ping χ from the assignments ofVi to the states of theSi. The events ofAi can be
represented by a set of symbolic variablesWi such thatχ maps every assignment of
variables inWi to an event inAi. Sets of states are represented with formulas overVi,
while sets of transitions are represented with formulas over Vi, Wi, andV ′

i , which are
the next values ofVi. In particular, it is possible to define a formulaIi(Vi) such that
µ(Vi) |= Ii iff χ(µ) ∈ Qi0, and a formulaTi such thatµ(Vi), ν(Wi), µ

′(V ′
i ) |= Ti iff

(χ(µ), χ(ν), χ(µ′)) ∈ Ri, whereµ(Vi), ν(Wi) andµ(V ′
i ) are assignments to the set of

variablesVi, Wi andV ′
i .

The details of the encoding we use can be found in [7]. Here, wejust notice that we
use a scalar input variableε to represent the events ofHi adding two distinguished
values, namelyT and S, to represent a timed transition and stuttering, respectively.
When stuttering, the system does not change any variable. Moreover, when encoding
the global-time semantics a further real input variableδi represents the time elapsed in
a timed transition. Instead, when using the local-time semantics, the variableti repre-
sents the local time ofHi and is also used as time-stamp of the events (thus, to ensure
that shared events happen at the same time).

As standard in Bounded Model Checking, given an integerk, we can build a formula
whose models correspond to all paths of lengthk of the represented LTSS. The formula
introducesk + 1 copies of every variable in the encoding of the automata. Given a
formulaφ, we denote withφi the result of substituting the current and next variables
of φ with their i-th and(i + 1)-th copy, respectively. The paths ofS of lengthk can be
encoded into the formulapath(k) := I0 ∧

∧
0≤i<k T i.

Theorem 2. There exists a mappingχ from the models ofpath(k) to the paths ofS of
lengthk.

Most of modern solvers, both for SAT and SMT, have anincrementalinterface
such that, if a problem is fed to the solver incrementally, the solver can first tackle
smaller parts of the problem and then pass to large parts managing to reuse the lemmas
discovered during the previous searches. Suppose the problem is parametrized by a
certaink, i.e. PB = ∃k.PB(k). In order to exploit the incremental interface of the
solver, the problemPB(k) is formulated into two partsPB(k) = α(k) ∧ β(k), as
in [9], such thatα(0) = γ(0) andα(k + 1) = α(k) ∧ γ(k + 1). This way, the solver
faces sub-problems of incremental difficulties and can reuse previous results:
γ(0) ∧ β(0)
γ(0) ∧ γ(1) ∧ β(1)
γ(0) ∧ γ(1) ∧ γ(2) ∧ β(2)
...

If we want to solve the reachability problem, we look for ak for which the problem
PB(k) = path(k) ∧ targetk is satisfiable. The problem is usually presented to the
solver in the following form:γ(0) := I0, γ(k) := T k−1, β(k) := targetk, for k > 0.

The non-monotonicity of the encoding is handled with a standard stack-based in-
terface of the SMT solver (PUSH, ASSERT, SOLVE, POP primitives). This allows, after
assertingγ(k), to set a backtrack point (PUSH), assertβ(k) (ASSERT), check the satis-
fiability of the conjunction of the asserted formulas (SOLVE), and to restore the state



of the solver (i.e. asserted formulas and learned clauses) at the backtrack point (POP).
This way, thek+1-th problem is solved keeping all the learned clauses related toγ(k).

3 Message Sequence Charts

3.1 MSCs for networks of hybrid automata

GateControllerTrain

Exit

Raise

Lower

Approach

Fig. 1. An MSC for the Train-Gate-
Controller model [16].

A Message Sequence Chart (MSC) [23]
defines a possible interaction of compo-
nents in a networkN . An MSCm is as-
sociated with a set of eventsAm ⊆ AN ,
subset of the events of the network. The
MSC defines a sequence of events for ev-
ery componentS of the network, called
instance ofS.

The typical implicit assumption is
that the setAm contains all the synchro-
nization events of the network. However,
if N is a network of hybrid automata,
even if we consider the global-time se-
mantics in which the timed event is shared, the timed event isnot part ofAm and,
thus, is not present in the sequence of events specified by theMSC. Therefore, we as-
sume that independently from the semantics, ifN is a network of the hybrid automata
H1, . . . , Hn with alphabet respectivelyA1, . . . An, thenAm =

⋃
1≤i<j≤n Ai ∩Aj and

thus the (global or local) timed event is not part ofAm
1.

An instanceσ for the LTSS is a sequencea1; . . . ; ah ∈ (Am ∩ AS)∗ of events of
S. S accepts the instance (S |= σ) iff there exists a tracew accepted byS (w ∈ L(S))
such that the sub-sequence of events inAm is equal toσ (w|Am

= σ). In other words,
S accepts the instance iff there exists a pathπ of S over a trace compatible with the
instanceσ. In such cases, we say thatπ |= σ.

An MSC is the parallel compositionσ1|| . . . ||σn of σ1, . . . , σn whereσi is an in-
stance ofSi. The networkN of LTSs accepts the MSCm (N |= m) iff there exists a
tracew accepted byN (w ∈ L(N )) such that, for everySi, the sub-sequence of events
in Am ∩ ASi

is equal toσ (w|(Am∩ASi
) = σ). In other words,N accepts the instance

iff there exists a path ofN over a trace compatible with every instance of the MSC. If
H is a network of HAs, then we say thatH |= m iff NGLTIME (H) |= m.

The model checking problem for an MSCm is the problem of checking if a network
satisfies an MSC. If we define the languageL(m) of an MSCm as the traces compatible
with the instances ofm, the model checking problem can be seen as the problem of
checking ifL(N ) ∩ L(m) 6= ∅.

An MSC σ1|| . . . ||σn is consistent iff for every pair of instancesσi and σj the
projection on the common alphabet is the same, i.e., ifA = Ai ∩ Aj , σi|A = σj|A. In
other words, the MSCm is consistent iffL(m) 6= ∅. Henceforth, we assume that the

1 The techniques presented in this paper can be adapted to consider also the case where a syn-
chronization is not inAm.



MSCs are consistent. The check of consistency is trivial andcan be done syntactically
on the graphical representation of the MSC.

Example 1.Figure 1 shows an MSC for the railroad model from [16]. There is an in-
stance for each automaton in the network,Train, Controller andGate. The MSC repre-
sents a scenario where theTrain communicates with the controller when approaching
the Gateand the controller synchronizes with theGate to close it. When theTrain is
far, it synchronizes with theController, which opens theGate.

3.2 Standard global automata construction

The classic construction of an automaton which monitors thesatisfaction of an MSC
m proceeds by building one state for combination of locations. Every instance has one
location before each event and a final location after the lastevent. A cut throughm is
a set of locations, one for each instance (we do not require the cuts to be downward
closed with regard to the events because we guarantee that the reachable cuts respect
the events). It is called “cut” because it cuts the graphicalrepresentation of the MSC
into two parts, the one already visited and the one to be monitored.

Formally, if the instanceσi = ai
1; . . . ; a

i
hi

, we represent a location with indexes
from 0 to hi. A cut is therefore a tuple of indexes. Given a cutc = 〈c1, . . . , cn〉, an
eventa is said enabled inc iff there exists a set of indexesJ ⊆ [1, n] such that for all
j ∈ J , a ∈ Aj , the event after the locationcj is a (i.e.,ai

cj+1 = a), and, for allj 6∈ J ,
a 6∈ Aj . Note that for a given eventa, the setJ is unique and we denote it withJc

a.
The LTSSm corresponding to an MSCm = σ1|| . . . ||σn, with σi = ai

1; . . . ; a
i
hi

, is
defined as follows:

– Q = [0, h1] × . . . × [0, hn],
– A = Am,
– Q0 = 〈0, . . . , 0〉,
– R = {(c, a, c′) | a is enabled inc and, for allj ∈ Jc

a, i′j = ij + 1, and, for all
j 6∈ Jc

a, i′j = ij}.

Theorem 3. L(m) = L(Sm).

3.3 Exploiting independent events

Reduced global automata In the case of synchronizations on discrete events as for
hybrid automata (thus without shared variables), two transitions on different compo-
nents with different events are independent. This means that the order of the transitions
does not affect the state after their application. If the order is irrelevant for the search
problem, we can fix an arbitrary interleaving. As noted in [6], this reduction can be am-
plified if we adopt the local-time semantics, since timed transitions become local and
independent from the timed transitions of other components.

In the case of model checking MSC, since we are interested in finding one trace
compatible with the MSC, if we use the local-time semantics,we can fix an arbitrary
interleaving of parallel events in an MSC, and produce an automaton which is linear in
the number of events.



If J andJ ′ are subsets of[1, n], we say thatJ < J ′ if J contains an integer lower
than any integer inJ ′. If a1 anda2 are enabled inc, we say thata1 < a2 iff Jc

a1
< Jc

a2
.

Clearly, given a cutc, there exists a minimum enabled event.
We can build a reduced LTSSm corresponding to an MSCm as follows:

– Q = [0, h1] × . . . × [0, hn],
– A = Am × R≥0,
– Q0 = 〈0, . . . , 0〉,
– R = {〈c, 〈a, t〉, c′〉 | c ∈ Q, t ∈ R≥0 anda is the minimum enabled event inc and,

for all j ∈ Jc
a, i′j = ij + 1, and, for allj 6∈ Jc

a, i′j = ij}.

Theorem 4. If NLOCTIME (H) = S1|| . . . ||Sn, H |= m iff L(S1|| . . . ||Sn||Sm) 6= ∅.

Distributed automata Another way to exploit the independence of the parallel events
in a MSC is to build a distributed version of the LTSSm, with one component for
every component of the network. We then apply the step-semantics encoding [14] to
parallelize the encoding of independent transitions. Let us define theSi

m as follows:

– Q = [0, hi],
– A = Am × R≥0,
– Q0 = 0,
– R = {〈u, 〈a, t〉, u′〉 | u ∈ Q, a = ai

u+1 andu′ = u + 1}.

Theorem 5. If NLOCTIME (H)= S1|| . . . ||Sn,H |= m iff L(S1||S1
m|| . . . ||Sn||S1

m) 6= ∅.

A similar result can be obtained for the global-time semantics, as proposed in [19].

4 Scenario-driven encoding

4.1 Encoding tailored to MSCs

The drawbacks of the traditional SMT-based encoding is thatit cannot exploit the se-
quence of messages prescribed by the MSC in order to simplifythe search because
of the uncertainty on the number of local steps between two events. We encode the
path of each automaton independently, exploiting the localtime semantics, and then
we add constraints that force shared events to happen at the same time, as inshallow
synchronization[7]. Moreover, we fix the steps corresponding to the shared events and
we parametrize the encoding of the local steps with a maximumnumber of transitions.

Let us consider a networkH = H1|| . . . ||Hn of LHAs and the encoding〈Vi, Wi,
Ii, Ti〉 representing the LHAHi, for 1 ≤ i ≤ n, in the local-time semantics. We denote
with Ti|φ the transition condition restricted to the conditionφ, i.e.,Ti|φ = Ti ∧ φ. We
abbreviateTi|ε=a with Ti|a andTi|ε∈τi∪{S} with Ti|τ (notice thatτi, the set of local
actions, contains also the timed eventT).

Let us fix a maximum numberk of local events between two shared events. We
encode the path of thei-th component along the instanceσi = a1; . . . ; ahi

of an MSC
into the following formula:



enc(σi, k) := I0
i ∧

∧

1≤j≤k

T j−1
i|τ ∧

∧

1≤u≤hi

(T
(u∗k)+u−1
i|au

∧
∧

1≤j≤k

T
(u∗k)+u+j−1
i|τ ) (1)

Intuitively, enc(σi, k) encodes the alternation of sequences of at mostk local steps
with the events in the instanceσi. Note that theu-th event is encoded at the((u ∗ k) +
u−1)-th step because it is preceded byu∗k many local events andu−1 shared events.

The run of a network along a consistent MSCm =σ1|| . . . ||σn can be encoded into:

enc(m, k) :=
∧

1≤j≤n

enc(σj , k) ∧
∧

1≤j<i≤n

sync(σj , σi) ∧ (t
lastj

j = tlasti

i ) (2)

where lasti = (k + 1) ∗ hi + k is the index of the last state of the encoding and
sync(σj , σi) says that theh-th occurrence of a shared event must occur at the same
time inσj andσi. More, specifically, ifA = Ai ∩ Aj andσj|A = σi|A = a1; . . . al and
fi, fj : N → N are such thataz = σi(fi(z)) = σj(fj(z)), for 1 ≤ z ≤ l, then:

sync(σj , σi) :=
∧

1≤z≤l

t
(fi(z)∗k)+fi(z)−1
i = t

(fj(z)∗k)+fj(z)−1
j (3)

The functionfi(z) maps thez-th eventaz in σi|A to the index ofaz in σi. Thus, the
index(fi(z) ∗ k) + fi(z) − 1 is the same index used in the encoding ofenc(σi, k) to
encode the transition labeled with the shared eventaz.

Note that the encoding allows to express very complex constraints on the MSC. In
fact, it is possible to formulate constraints on the states of the network along events just
referring to the symbolic variables that represent them.

Example 2.We show the encoding of the MSC of Example 1 for theTrain automaton
with 2 local steps and the synchronization constraints with theController automaton.
ITrain andTTrain are the initial condition and the transition relationTrain.

enc(σtrain, 2) := I0
Train ∧ T 0

Train|τ ∧ T 1
Train|τ ∧

T 2
Train|Approach ∧ T 3

Train|τ ∧ T 4
Train|τ ∧

T 5
Train|Approach ∧ T 6

Train|τ ∧ T 7
Train|τ ∧

sync(σTrain, σController) := t2Train = t2Controller ∧ t5Train = t11Controller

Theorem 6. 2 Given a consistent MSCm for the networkH, if enc(m, k) is satisfiable
thenH |= m. Vice versa, ifH |= m, then there exists an integerk such thatenc(m, k)
is satisfiable.

4.2 Incrementality

The encoding is conceived in order to maximize the incrementality of the solver, as
described in Section 2.3, along the increase ofk, the length of a sequence of local steps.

2 The proof of the theorem is available athttp://es.fbk.eu/people/mover/hybrid_scenario/.



The idea is that we keep encodings of the sequences of local transitions separated and
we unroll them incrementally, while we add and remove accordingly the constraints
which glue such sequences.

Let us fix a maximumK as a bound for the numberk of local transitions between
two shared events. We useK for distancing enough the (fixed) positions of events. With
regard to the formulas introduced in Section 2.3, we define the partial encoding for an
instanceσi as follows:

γenc(σi)(0) := I0
i ∧

∧

1≤u≤hi

T
(u∗K)+u−1
i|au

γenc(σi)(k) :=
∧

0≤u≤hi

T
(u∗K)+u+k−1
i|τ

βenc(σi)(k) :=
∧

0≤u≤h−1

V (u∗K)+u+k = V (u∗K)+u+K

For each instanceσi we encode the initial condition and all thehi events inγenc(σi)(0).
We incrementally increase the length of the local step inγenc(σi)(k) and inβenc(σi)(k),
which glues the last state of a sequence of local steps with the first state that performs
the next shared event.

The incremental encoding considering the whole MSCm is defined as follows:

γ(0) :=
∧

1≤i≤n

γenc(σi)(0) ∧
∧

1≤i<j≤n

sync(σi, σj)

γ(k) :=
∧

1≤i≤n

γenc(σi)(k)

β(k) :=
∧

1≤i≤n

βenc(σi)(k) ∧
∧

1≤j<n

t
lastj

j = t
lastj+1

j+1

Theorem 7. There exists a renaming of variablesι such thatenc(m, k) and∧
0≤j≤k γ(j) ∧ β(k) are the syntactical equal modulo the renaming.

4.3 Scenario-driven invariants generation

In order to strengthen the scenario-driven encoding of Section 4.1, and thus speed up the
search, we generate invariants from abstractions of the hybrid automata in the network.

Each instanceσ of the MSC restricts the behavior of the automatonS. We abstract
S to a finite state system̂S and we use standard techniques, in our case BDDs, to
generate invariants which holds in different sections ofσ. In particular, we find the
reachable states of̂S between two events, just before an event, and just after an event.
The invariants are then conjoined to the scenario encoding.

Consider the instanceσ = a1; . . . ; ah of an MSCm. If S |= σ, by definition, there
exists a pathπ of S over tracew such thatw|Am

= σ. In order to satisfyσ, π alternates
sequences of consecutive local events with shared events. More, specifically, ifπ |= σ,
π must be in the formq0

τ
→ . . .

τ
→ qj1

a1→ qj1+1
τ
→ . . .

τ
→ qjh

ah→ qjh+1
τ
→ . . .

τ
→

qjh+1
, whereqi ∈ Q andτ are local events ofS. We split the pathπ into a setΥ of

sub-sequences such thatΥ ={πprei
, πposti

| i ∈ 1, . . . , h}∪{παi
|i ∈ 0, . . . , h}, where:



– πprei
= {qji

}, it is the source state of the transition labeled withai in π.
– πposti

= {qji+1}, it is the destination state of the transition labeled withai in π.
– παi

= {qji+1, . . . , qji+1
} where we denoted0 with j0 + 1.

Given an MSC instanceσ = a1; . . . ; ah for the systemS, we find the constraints
prei, posti, 1 ≤ i ≤ h andαi, 0 ≤ i ≤ h, such that, for everyπ such thatπ |= σ:

– for all u, 0 ≤ u ≤ h, for all q ∈ παu
, q |= αu;

– for all u, 1 ≤ u ≤ h, for all q ∈ πpreu
, q |= preu;

– for all u, 1 ≤ u ≤ h, for all q ∈ πpostu
, q |= postu.

Thus, the constraints are necessary conditions for the paths to satisfy the instance.
We can safely strengthen the encoding of the scenario with such constraints in order to
speed up the search.

We perform the invariant generation process forS andσ in three different steps: we
compute the abstraction̂S, we perform a forward reachability computing a first set of
invariants and finally we refine the invariants with a backward reachability analysis. We
compute the Boolean Abstraction̂S of S, replacing each predicate ofS with a fresh
Boolean variable, and we representŜ with Binary Decision Diagrams (BDDs). Then,
we perform a forward reachability analysis on̂S computing an over-approximation
of posti and αi. We start the reachability analysis from the initial statesof Ŝ, and
we computeα0 with a fixed-point of the image restricted to the local eventsτ . Then,
starting fromα0, we computepost1 with a single image computation restricted toa1.
We alternate these two steps for allai of σ. Finally, we perform a backward reachability
analysis onŜ to computeprei and to refineposti andαi. We start fromposth and
we compute the precisepreh as the intersection ofαh−1 and the pre-image ofposth
restricted to the eventah. Then, we refineαh−1, intersecting it with the fixed-point
of the pre-image which starts frompreh and is restricted toτ . At this point we refine
posth−i, intersecting it withαh−1. We iterate these steps followingσ in reverse order.

5 Related Work

There have been a lot of extensions to MSC: High-Level Message Sequence Charts [20],
UML’s sequence diagrams and Live Sequence Charts [10]. While several works aim to
increase the expressiveness of these languages, MSCs are a basic building blocks, used
to describe the parallel composition of sequences of sharedevents among components.
In this paper, we consider the basic version of MSCs, which describe the parallel com-
position of sequences of events and, as in [18], we consider the semantics of MSCs
in terms of traces, i.e., they constrain the sequence of observable/shared events.Our
approach can be extended to manage more expressive languages, such as High-Level
Message Sequence Chart, which adds the alternative, sequential and parallel compo-
sition of MSCs, using the scenario-based encoding as a building block. We can easily
manage time constraints in the MSC as introduced in [2,5].

MSC and its extensions have been used in [3,22] to describe anentire system. In [3]
they solve the model checking problem for a system expressedwith MSCs translating
then into automata, while in [22] the authors check the consistency of UML Message



Sequence Charts using linear programming. Both approachesdiffer from ours, since
MSCs are used as a modeling language and not as a specificationlanguage.

Many works present different translations of MSCs into temporal logics or automata
used for model checking a design. Most of these works focus oncovering different as-
pects of the extensions proposed by LSCs. In [11], the authors study the expressive
power of LSCs compared to CTL*. In [17], the authors considercharts with universal
semantics concentrating on (discrete-time) timing constraints and synchronous events;
they translate the charts into Timed Büchi Automata which are then translated into tem-
poral logic to be checked with the model checker STATEMATE. The work is extended
in [19] to handle more expressive timing constraints, translating an LSC either into a
global timed automaton or into a network of timed automata; moreover, the translation
is integrated with the UPPAAL model checker. In these works, the model checking tech-
niques are used off-the-shelf, but the verification engine is not optimized to deal with
the scenario specification. Surprisingly, there are not many works that optimize the al-
gorithms in order to scale up the analysis exploiting the structure of the scenarios. The
key difference with such works is in that here we focus on efficiency, rather than on
covering all the features provided by MSC extensions. We note that our approach can
be easily extended to deal with several features of extendedMSCs.

Bounded model checking for hybrid systems using SMT solvershas been investi-
gated in [1,4,7,12,13]. These techniques can be used to verify a scenario by translating
the scenario into an automaton. Still, such techniques are not tailored to the verification
of a scenario, and they result in a loss of efficiency since thestructure of the problem un-
der analysis is not taken into account. Existing optimizations to the BMC encoding [1]
are orthogonal to the scenario-based encoding and can be applied when encoding se-
quence of local events. Our specific encoding guided by the scenario is inspired by [7],
where the authors present a different semantics of the BMC problem for hybrid systems,
obtained by composing traces of the local automata, and superimposing compatibility
constraints resulting from the synchronizations. In fact,in our approach, the encodings
of the automata are local, and a synchronization between twoor more automata can
happen at different times in the encoding.

6 Experimental evaluation

The techniques discussed in previous sections were implemented on top of the model
checker NUSMV3, that features a bounded model checking approach to thereacha-
bility in networks of HAs., and uses at its core the MATHSAT SMT solver. We im-
plemented the approach based on the automata constructions, for which we perform a
reachability analysis using the incremental BMC search of NUSMV3 on the composi-
tion of the network and the scenario automaton. The reachability target is given by the
final states of the automaton. The scenario-driven encodings were implemented in the
same framework; for the invariant computation we use the BDD-based model checking
of NUSMV3 applied on a Boolean abstraction of the HAs. Also the scenario-driven
encoding search was implemented exploiting the incrementality of the SMT solver. In
the following, we call SCENARIO the scenario-driven encoding and SCENARIOINVAR

its variant simplified with invariants. As for the translations of the MSC into automata,



GLOBAL is the reduced global automata which uses the local time semantics, DISTRIB

is the distributed automata with global time semantics, andDISTRIBLOCAL is the dis-
tributed automata with local time semantics.

In the experimental evaluation, we used the following benchmarks taken from the
literature and formalized using the HYDI language [8].Star-shape Fischeris a hybrid
version of the Fischer mutual exclusion protocol, that usesa shared variable to control
the access to a critical session.Ring-shape Fischeris hybrid variant where processes
are in a ring, and each process shares a lock variable with itsneighbors.Nuclear Reac-
tor [25] model the control of a nuclear reactor withn rods. Distributed Controller[15]
models the interactions ofn sensors with a preemptive scheduler and a controller.Elec-
tronic Height Control System (EHC)[21] is an industrial case study of a system which
controls the height of a chassis by pneumatic suspension. The original non-linear model
is linearized usinglinear-phase portrait partitioning, as proposed in [21]. For each
benchmark, we defined meaningful MCSs that describe the interaction of all the au-
tomata in the benchmarks, possibly containing parallel event synchronizations. All the
MSCs used in the experimental evaluation are satisfiable.

We evaluated the scalability of the proposed approaches with respect to the number
of components in the network and with respect to the length ofthe MSCs. We increase
the number of the components for all the benchmarks, except for theEHC which has a
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Fig. 2. (a)-(c) Scatter plots of run times (sec.). (d) the reductiondue to invariants on search time.
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Fig. 3. Run times (sec. on the y axes) increasing the number of automata (x axes).

fixed number of processes. We increase the length of the MSCs repeating the sequence
of messages of the scenario for an arbitrary number of times.All the experiment were
run on a Linux machine equipped with an Intel i7 CPU at 2.93 GHz, setting the timeout
and the memory out for a single benchmark to300 seconds and to2 GB of RAM. All
the results, the test cases and the executable used in the experimental evaluation are
available athttp://es.fbk.eu/people/mover/tests/CAV11/.

The main findings of the experimental evaluation regard the effectiveness of the
scenario-based encoding, which outperforms the approaches based on the optimized
automata construction. In Figure 2 we compare the run times (in logarithmic scale) for
all the tested instances of benchmarks and scenarios of the scenario-driven encoding
and the automata approaches. The scenario-driven encodingdemonstrates its efficiency
outperforming the automata approaches in nearly all the benchmarks, sometimes by
orders of magnitude, terminating the execution on benchmarks where the automata ap-
proach reaches the time-out.

The plots in Figure 3 show the scalability with respect to thenumber of the automata
in the network for all the benchmarks, except theEHC, for MSC of fixed structure. Each
plot from Figure 3 shows the run time (in seconds) of the different methods on the y
axes and the number of automata on the x axes. A point in one of these plots is the run
time of a specific method for a specific number of automata. These plots show that the
scenario-based encoding scales much better than the automata-based approaches.
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Figure 4 (a)-(e) shows the effect of increasing the size of the scenario, fixing the
number of automata in the network. In general, again, the scenario-driven encoding is
more efficient and scales better than the automata-based approaches.

The simplification brought by the invariants computed from the abstraction is not
always useful, although they rarely are detrimental (see Figure 3 and 4). When the
system under analysis has a small discrete state space the invariants do not bring a
speed up to the search. The impact of invariants is very strong when the complexity
of the automata increases, as in the case of theDistributed Controllerbenchmark. The
effect of the invariants on the search is highlighted in Figure 2(d), where we plot the
searchtimes, excluding the time taken to generate the invariants.

7 Conclusions

In this paper we have addressed the problem of finding traces satisfying MSCs. The
problem is highly relevant to verification, in that MSCs are very useful to allow end
users to validate both requirements and designs. We investigated the use of a specialized
algorithm that uses the segments of the MSC to guide the search, based on the use of
a local time semantics. The experiments show that the proposed method significantly
outperforms optimized techniques based on automata construction.

In the future, we will extend the language support for MSCs and we apply tech-
niques such as k-induction and abstraction [24] to prove that a network does not satisfy
an MSC.
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A Proofs

A.1 Local time vs. global time

In order to prove Theorem 6, we need a stronger version of the theorem of [6], which
limits itself to the preservation of the reachability passing from local time to global time
and vice versa. Here, we define a mapping between the paths of the local time and the
path of the global time which preserve their abstract-time version.

For a tracew ∈ (A∪{TIME}×R≥0)
∗, in the language of the global-time semantics,

we define the time-abstract traceα(w) ∈ A∗ as the trace obtained fromw by removing
all letters in{TIME} × R≥0.

For a tracew ∈ (A × R≥0 ∪ {TIMEi}1≤i≤n)∗, in the language of the local-time
semantics, we define the time-abstract traceα(w) ∈ A∗ as the trace obtained fromw
by removing all letters in{TIMEi}1≤i≤n and projecting the letters inA×R≥0 overA.

If q = 〈〈q1, x1, t1〉, . . . , 〈qn, xn, tn〉〉 is a state ofNLOCTIME , we say thatq is syn-
chronized iffti = tj for 1 ≤ i < j ≤ n}, i.e., the components of the state agree on the
elapsed time.

Theorem 8. qGLTIME = 〈〈q1, x1〉, . . . , 〈qn, xn〉〉 is reachable inNGLTIME with a pathπ
over the time-abstract tracew iff there exists a synchronizedqLOCTIME = 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉
reachable inNLOCTIME (H) with pathπ′ overw.

Proof. We define a function̺ that maps a path ofNGLTIME to a path ofNLOCTIME . ̺ is
defined by simply adding the time elapsed from the beginning of the path to the states
and the shared events and by replacing a global timed transition with a sequence of
equivalent local timed transitions. Formally, we define̺ recursively on the length of
the path. The definition keeps invariant that the last state of ̺(π) is synchronized. Ifπ
is a path ofNgltime, then̺(π) is defined recursively as follows:

– if k = 0 andπ = 〈〈q1, x1〉, . . . , 〈qn, xn〉〉, then̺(π) := 〈〈q1, x1, 0〉, . . . , 〈qn, xn, 0〉〉;
note that the last state of̺(π) is synchronized;

– if π = π′ ak→ 〈〈q1, x1〉, . . . , 〈qn, xn〉〉, then
• if ak ∈ A is a discrete event, then lett be the time of the last state of̺(π′)

(which is synchronized by construction);̺(π) := ̺(π′)
〈ak,t〉
→ 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉;

thus, the last state of̺(π) is synchronized;
• if ak = 〈TIME , δ〉, then lett be the time of the last state of̺(π′) (which is syn-

chronized by construction);̺(π) := ̺(π′)
〈TIME1〉
→ . . .

〈TIME n〉
→ 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉

(this is possible since theXi are disjoint and the continuous evolutions of the
components are independent); thus, the last state of̺(π) is synchronized.

We can easily prove by induction that the time-abstract trace accepted byπ is the same
time-abstract trace accepted by̺(π).

Following the opposite direction, we define a function̺′ that maps a path ofNLOCTIME

that ends in a synchronized state into a path ofNGLTIME . ̺′ is defined by shuffling in-
dependent transitions so that all the components can take a timed transitions. Timed
transitions are split to allow components to take a discretetransition when necessary.
Formally, we define̺ ′ recursively on the length of the path. We use the concept of first



i-th step to denote the first transition labeled with an event of the i-th component. Ifπ
is a path that ends in a synchronized state ofNloctime, then̺′(π) is defined recursively
as follows:

– if k = 0 andπ = 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉, then̺′(π) := 〈〈q1, x1〉, . . . , 〈qn, xn〉〉;
– if, for some i, the first i-th step is a discrete eventak, we consider the first of

suchi, and without changing the time-abstract trace, take such step as first; thus

π = 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉
〈ak,t〉
→ π′ with ak ∈ A a discrete event, then

̺′(π) := 〈〈q1, x1〉, . . . , 〈qn, xn〉〉
ak→ ̺′(π′);

– if, for all i, the firsti-th step is a timed event, we consider the smallest delta time
δ of such timed events, and without changing the time-abstract trace, we refine the
path by splitting each of these timed transitions into two, of which the first takes
δ time; still without changing the time-abstract trace, we take such timed steps as

first; thusπ = 〈〈q1, x1, t〉, . . . , 〈qn, xn, t〉〉
TIME1→ . . .

TIME n→ π′ whereπ′ starts with

〈〈q1, x1
′, t + δ〉, . . . , 〈qn, xn

′, t + δ〉〉; thus,̺ ′(π) := 〈〈q1, x1〉, . . . , 〈qn, xn〉〉
〈TIME ,δ〉
→

̺′(π′).

We can easily prove by induction that the time-abstract trace accepted byπ is the same
time-abstract trace accepted by̺′(π).

A.2 Shallowly synchronization

Before proving Theorem 6, we briefly recap the concept of shallowly synchronized
paths from [7].

Definition 1 (S-trace).Given a set of eventsS ⊆ A and a pathπ = q0
〈a1,t1〉
→ q1

〈a2,t2〉
→

. . .
〈an,tn〉
→ qn, theS-traceτS(π) is the sequence of events〈a1, t1〉, 〈a2, t2〉, . . . , 〈ak, tk〉

wheretj is the time at which the eventaj occurs inπ andaj ∈ S for 1 ≤ j ≤ k.

Definition 2 (Consistent traces).Let π1 andπ2 two paths with sets of eventsA1 and
A2 respectively andS be the intersection ofA1 and A2 (S = A1 ∩ A2). The pair
〈π1, π2〉 is consistentiff the S-trace of π1 is equal to theS-trace of π2 (τS(π1) =
τS(π2)) and the final time ofπ1 is equal to the final time ofπ2.

Definition 3 (Shallowly synchronized path).A shallowly synchronized pathof a net-
workNLOCTIME (H) is a tupleπ = 〈π1, . . . , πn〉 such thatπj is the path ofSj and, for
all j, h, 1 ≤ j < h ≤ n, πj andπh are consistent.

Definition 4 (Projection). Given Si and a pathπLOCTIME in NLOCTIME (H), the pro-
jection of πLOCTIME over Si is the pathπi(πLOCTIME ) obtained projecting the states
over theSi-th component and removing all the transitions over events which are not
in Ai, the alphabet ofSi. Formally, given the componentSi with alphabetAi and

πLOCTIME = 〈q0, t0〉
〈a1,t1〉
→ . . .

〈an,tn〉
→ 〈qn, tn〉, the projection ofπLOCTIME overSi is the

pathπi(πLOCTIME ) = 〈q′0, t
′
0〉

〈a′

1,t′1〉→ . . .
〈a′

m,t′m〉
→ 〈q′m, t′m〉 such that:



– fAi
: N ×N is a function such thatfAi

(z) maps the index inπLOCTIME of thez-th
occurrence of an event which belongs to the setAi.

– m is the number of events in the pathπLOCTIME which also belong toAi.
– vj

i: is thei-th element of the arrayvj .
– 〈q′0, t

′
0〉 = 〈q0

1, t0
1
〉.

– for all 1 ≤ j ≤ m, 〈a′
j , t

′
j〉 = 〈afAi

(j), tfAi
(j)〉

– for all 1 ≤ j ≤ m, 〈q′j , t
′
j〉 = 〈qfAi

(j)
i, tfAi

(j)
i
〉

Theorem 9. If πLOCTIME = q0
〈a1,t1〉
→ q1

〈a1,t1〉
→ . . .

〈am,tm〉
→ qm is a path in the local-

time semantics such thattm
i
=tm

j
for 1 ≤ i < j ≤ n, thenπSHALLOW = 〈π1(πLOCTIME ), . . . , πn(πLOCTIME )〉

is ashallowly synchronized path.
Vice versa, given ashallowly synchronized pathπSHALLOW , there exist a pathπLOCTIME in
NLOCTIME (H) such thatπSHALLOW = 〈π1(πLOCTIME ), . . . , πm(πLOCTIME )〉 and tm

i
=tm

j

for 1 ≤ i < j ≤ n.

Proof. πLOCTIME is ashallowly synchronized pathsince for all1 ≤ i < j ≤ n πi(πLOCTIME )
andπj(πLOCTIME ) are consistent.

– By construction, the projection does not change the order ofstates and events of
πLOCTIME , and restricts each projection to a given alphabet.πi(πLOCTIME ) is re-
stricted to all the events inAi while πj(πLOCTIME ) is restricted to all the events
in Aj . τAi∩Aj

(πi(πLOCTIME )) andτAi∩Aj
(πj(πLOCTIME )) restrict both sequences to

events inAi ∩ Aj . The two sequences contains the same events and have the same
order and, therefore, they are equal.

– Since last statem of πLOCTIME the projection of the time variable oni (i.e. tm
j
) is

equal to the projection of the time variable ofj (i.e. tm
i
), then also the time at the

final state ofπi(πLOCTIME ) and the time on the final state ofπj(πLOCTIME ) are equal.

For all 1 ≤ i ≤ n thei-th element ofπSHALLOW is πi = 〈qi
0, t

i
0〉

〈a1,t1〉
→ . . .

〈ami
,tmi

〉
→

〈qi
mi

, timi
〉. We recursively define the functionγ which mapsπSHALLOW to a pathπLOCTIME ∈

NLOCTIME (H):

– if πi = 〈qi
0, t

i
0〉 for all 1 ≤ i ≤ n (i.e. we are in the last state of all the local paths

of πSHALLOW ), thenγ(πSHALLOW ) = 〈〈q1
0 , . . . , qn

0 〉, 〈t
1
0, . . . , t

n
0 〉〉.

– if there exists ani such that1 ≤ i ≤ n, 〈qi
0, t

i
0〉

〈ai,ti〉
→ 〈qi

1, t
i
1〉 and〈ai, ti〉 is a local

event ofAi, thenγ(πSHALLOW ) = 〈〈q1
0 , . . . , qi

0, . . . , q
n
0 〉, 〈t

1
0, . . . , t

i
0, . . . , t

n
0 〉〉

〈ai,ti〉
→

γ(〈π1, . . . , π
′
i, . . . , πn〉), whereπ′

i = 〈qi
1, t

i
1〉

〈ai
2,ti

2〉→ . . .
〈ai

mi
,ti

mi
〉

→ 〈qi
mi

, timi
〉.

– Otherwise, sinceπSHALLOW is a shallowly synchronized path, there exists a setJ

of indexes such that, for alli ∈ J , 〈qi
0, t

i
0〉

〈ai,ti〉
→ 〈qi

1, t
i
1〉 and 〈a, t〉 = 〈ai, ti〉

(i.e. all the components inJ synchronize on〈a, t〉). In this caseγ(πSHALLOW ) =

〈〈q1
0 , . . . , qn

0 〉, 〈t
1
0, . . . , t

n
0 〉〉

〈a,t〉
→ γ(〈π′

1, . . . , π
′
n〉), whereπ′

i = πi, if i /∈ J , π′
i =

〈qi
1, t

i
1〉

〈ai
2,ti

2〉→ . . .
〈ai

mi
,ti

mi
〉

→ 〈qi
mi

, timi
〉 otherwise.

We can prove by induction thatπLOCTIME ∈ NLOCTIME (H). Moreover, since the last
time of all the components inπLOCTIME are equal, then〈π1(πLOCTIME ), . . . , πm(πLOCTIME )〉
is ashallowly synchronized path.



A.3 Proof of Theorem 6

Proof. Let us consider a modelµ of the formulaenc(m, k). Note that the formula
enc(σi, k) is stronger (the implication is valid) thanpath((h ∗ k) + h + k), whereh
is the length ofσi. Thus, if we consider the modelµi obtained by restrictingµ to the
variables inenc(σi, k), we can apply Theorem 2 and build the local pathπi,µ of Hi

asχ(µi). By construction the path satisfies the instanceσi. The paths{πi,µ}1≤i≤n are
consistent because the MSC is consistent and the events happen at the same time due
to sync. Thus, they form a shallowly synchronized runπSHALLOW = 〈π1,µ, . . . , πn,µ〉
of the network. By Theorem 9, there exists a pathπLOCTIME in NLOCTIME (H) such that
πSHALLOW = 〈π1(πLOCTIME ), . . . , πn(πLOCTIME )〉 andπLOCTIME ends in a synchronized
state. Note that the time-abstract trace ofπLOCTIME is compatible with the MSCm. By
Theorem 8, there exists a pathπgltime of NGLTIME (H) over the same time-abstract trace
and thusH |=G m.

If H |=G m, there exists a pathπgltime of NGLTIME (H) over a trace compatible
with m. By Theorem 8, there exists a pathπloctime of NLOCTIME (H) over the same
time-abstract trace such thatπLOCTIME ends in a synchronized state. Let us consider the
projectionsπi = πi(πloctime) on the components. By Theorem 9, they form a shallowly
synchronized path and thus they are consistent. Let us consider the maximumk of local
consecutive transitions between two events inπi for all i, 1 ≤ i ≤ n. Let us stutter the
last state before an event till obtainingk local transitions before that event. Let us call
π′

i the new path. Then, the combinationµ of π′
i, 1 ≤ i ≤ n, is a model forenc(m, k).

A.4 Proof of Theorem 7

Proof. For all i, u, j, with 1 ≤ i ≤ n, 1 ≤ u ≤ hi, and1 ≤ j ≤ k, ι(V (u∗K)+u+j)) =
V (u∗k)+u+j).

B Additional constraints on the MSC

With respect to the Remark??, we can easily extend the scenario-based encoding to
handle the following constraints:

– suppose we want to specify a local constraintα(Vi) on the states of a processSi

between two eventsau andau+1 of the corresponding instance; we can add to the
encoding the formulasα(V j

i ) for (u ∗ k) + u ≤ j ≤ (u ∗ k) + u + k;
– suppose we want to specify a conditionα(Vi) on the states of a processSi when

the eventau happens; we can add to the encoding the formulaα(V
(u∗k)+u−1

i );
– suppose we want to specify a conditionα(Vi, V

′
i ) on the states of a processSi be-

fore and after the eventau; we can add to the encoding the formulaα(V
(u∗k)+u−1
i , V

(u∗k)+u
i );

– suppose we want to specify a timing constraintα(ti, t
′
i) between the eventsau and

av; we can add to the encoding the formulaα(t
(u∗k)+u−1
i , t

(v∗k)+v−1
i );

– suppose we want to specify a global constraintα(Vi, Vj) on the states ofSi andSj

after synchronizing on the eventa which occurs at the positionu in the instance of
Si and at positionv in the instance ofSj ; we can add to the encoding the formula

α(V
(u∗k)+u

i , V
(v∗k)+v
j ).


