
FROMS: Feedback Routing for Optimizing Multiple
Sinks in WSN with Reinforcement Learning

Anna Egorova-Förster† and Amy L. Murphy†‡
†University of Lugano, Switzerland, anna.egorova.foerster@lu.unisi.ch

‡FBK-IRST, Italy, murphy@itc.it

Abstract

In the domain of wireless sensor networks (WSNs), information
routing is both a fundamental and challenging problem. In this
work, we describe how information local to each node can be
shared without overhead as feedback to neighboring nodes,
enabling efficient routing to multiple sinks. Such a situation
arises in WSNs with multiple, possibly mobile users collecting
data from a monitored area. We formulate the problem as a
reinforcement learning task, and apply Q-Routing techniques
to derive a solution. Evaluation of the resulting FROMS
protocol demonstrates its ability to significantly decrease the
network overhead over existing approaches.1

1. INTRODUCTION

A challenging application in the wireless sensor network
(WSN) domain is to support multiple mobile users, each
requiring information from the environment to make future
movement decisions. This problem differs from the majority
of WSN applications, as the data is not centrally collected,
but rather used at multiple, internal points in the network.
The simple solution to keep distinct point to point paths for
all source-destination pairs unnecessarily wastes energy, and
instead, a favorable solution shares as many links as possible
as the data flows from each source to all destinations. In this
work, we provide a novel routing protocol that builds and
maintains this distribution tree in the presence of mobility and
failures.

This routing path is similar to a Steiner Tree whose cost is
calculated considering broadcast communication. As solving
the Steiner Tree offline is not appropriate, our goal is to
define a low-overhead, distributed approach. To cope with the
system dynamics, our solution exploits reinforcement learn-
ing, incrementally learning at each node sufficient network
knowledge to identify the next, best hop. We exploit the
broadcast nature of communication to share local information
among neighbors. Previous work has applied reinforcement
learning to routing [1], [2] and outlined solutions for multicast
communication MANETs [7], [8]. In comparison, our work
applies learning to multicast through a mechanism efficient
enough for use in WSNs.

1The work described in this paper is supported by the National Competence
Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322.

The work described here represents a significant extension
over our earlier introduction of the idea of applying reinforce-
ment learning to multiple sink routing [3]. This paper updates
both the feedback mechanism and the network cost function,
and, most significantly, formally frames the problem through a
reinforcement learning model (Section 2). We also outline new
extensions for mobility and failure recovery (Section 5), and
include an evaluation of the full parameter space (Section 6).
A comparison to related work is presented in Section 7.

2. MULTIPLE SINK ROUTING AS A RL PROBLEM

We begin by defining multiple sink routing, then model it as
a reinforcement learning problem solvable with Q-learning.

A. Problem definition

We consider the network of sensors as a graph G = (V,E)
where each sensor node is a vertex vi and each edge eij is a
bidirectional wireless communication channel between a pair
of nodes vi and vj . We consider a single source node s ∈ V
and a set of destination nodes D ⊂ V .

Routing to multiple destinations is defined as the minimum
cost path starting at the source vertex s, and reaching all
destination vertices D. This path is actually a spanning tree
T = (VT , ET) whose vertexes include the source and destina-
tions. The cost of a tree T is defined as the number of one-hop
broadcasts required to reach all destinations.

B. Q-learning approach

Finding the minimum cost tree T is NP-hard, even when the
full topology is known. Our goal, therefore, is to approximate
the optimal solution using localized techniques. For this, we
turn to reinforcement learning [4], as it has been successfully
applied to various routing problems [1], [2]. Here we extend
the model to accommodate the multiple sink scenario and use
Q-learning to solve it sub-optimally inside the network.

Q-learning [4] is a model-free reinforcement learning tech-
nique, based on receiving scalar rewards from the environment.
It assigns Q-values to each possible agent action, representing
the approximate goodness of the action. In the learning pro-
cess, the agent selects and executes one action and receives a
reward representing the goodness of that action. This reward
is used to update the Q-value. Over time the agent learns the
real action values and is able to select the most appropriate.

In our multiple-sink scenario, each sensor node is an inde-
pendent learning agent, and actions are routing options using

different neighbor(s) for the next hop(s) toward a subset of
the sinks, Dp ⊆ D, listed in the data packet. The following
provides additional detail for the Q-learning solution.

Agent states: For multiple sink routing, we define the
state of an agent as a tuple {Dp, hopsN

Dp
}, where Dp are

the sinks the packet must reach and hopsN
Dp

is the routing
information through all neighboring nodes N to the individual
sinks. Depending on this state, different actions are possible.

Actions: In our model, an action is one possible routing
decision for a data packet. Specifically, we define a possible
action, a, as a set of sub-actions {a1 . . . ak}. Each sub-
action ai = (ni, Di) includes a neighbor ni and a set of
destinations Di ⊆ Dp indicating that neighbor ni is the
intended next hop for routing to destinations Di. A complete
action is a set of sub-actions such that {D1 . . . Dk} partitions
Dp (that is, each sink d ∈ Dp is covered by exactly one
sub-action ai). For example, consider a packet destined for
Dp = {A,B,C}. One possible complete action is the single
sub-action (N1, {A,B,C}), indicating neighbor N1 as the
next hop to all destinations. Alternately, a node may choose
two sub-actions, (N1, {A,B}) and (N2, {C}), indicating two
different neighbors should take responsibility to forward the
packet to different subsets of sinks.

The distinction between complete actions and sub-actions
is important, as we assign rewards to sub-actions.

Q-values: Q-values represent the goodness of actions and
the goal of the agent is to learn the actual goodness of the
available actions. In our case, Q-values represent an estimation
of the cost of the route, specifically the broadcast hop count
to reach all sinks from the agent. To initialize these values,
we could use random values, as is common in many learning
approaches. However, we use a more sophisticated approach
that calculates an estimate of the hop count cost based on the
individual hop counts available in a standard routing table,
such as that in Figure 1, thus speeding up the learning process.
Note that the table information in Figure 1 is different from
our target as it contains routes to single sinks, not multiple
sinks simultaneously.

We first calculate the value of a sub-action, then of a
complete action. Using the simple routing information, the
initial Q-value for a sub-action ai = (ni, Di) is:

Q(ai) =

(∑
d∈Di

hopsni

d

)
− 2(| Di | −1)

where hopsni

d are the number of hops to reach destination
d ∈ Di using neighbor ni and | Di | is the number of sinks in
Di. The first part of the formula calculates the total number
of hops to individually reach the sinks, and the second part
subtracts from this total based on the assumption that broadcast
communication is used both (hence the 2) for transmission
to ni as well as by ni to reach the next hop. Note that this
estimation is an upper bound of the actual value, as it assumes
that the packet will not share any links after the next hop.
Therefore, during learning, Q-values will decrease and the best
actions will be denoted with small Q-values.

The Q-value of a complete action a with sub-actions
{a1 . . . ak} is:

Q(a) =

(
k∑

i=1

Q(ai)

)
− (k − 1)

where k is the number of sub-actions. Intuitively this Q-value
is the broadcast hop count from the agent to all sinks.

Clearly, other cost metrics are possible such as including a
node’s battery level or, for power-aware routing, using a node’s
transmission power. We intend to explore these in future work.

Updating a Q-value: To learn the real values of the
actions, the agent must receive the reward values from the
environment. In our case, each neighbor to which a data packet
is forwarded sends the reward as feedback with its evaluation
of the goodness of the sub-action. The new Q-value of the
sub-action is:

Qnew (ai) = Qold(ai) + α(R(ai)−Qold(ai))

where R(ai) is the reward value and α is the learning rate of
the algorithm. We use α = 1 to speed up learning. Also, our
direct interpretation of the Q-values as real costs (broadcast
hop-count) forces us to use 1 to keep the Q-values meaningful
throughout learning. Therefore, with α = 1, the formula
becomes qnew (ai) = R(ai), directly updating the Q-value
with the reward. The Q-values of complete actions are updated
automatically, since their calculation is based on sub-actions.

Reward function: Intuitively the reward function is the
downstream node’s opportunity to inform the upstream neigh-
bors of its actual cost for the requested action. Thus, when
calculating the reward, the node selects its lowest Q-value for
the destination set and adds the cost of the action itself:

R(ai) = ca + MIN aQ(a)

where ca is the action’s cost (always 1 in our hop count
metric). This propagation of Q-values upstream eventually
allows all nodes to learn the actual costs.

Exploration strategy (action selection policy): One final,
important learning parameter is the action selection policy. A
trivial solution is to greedily select the action with the best
(lowest) Q-value. However, this policy ignores some actions
which may, after learning, have lower Q-values, resulting in
a locally optimal solution. Therefore, a tradeoff is required
between exploitation of good routes and exploration among
available routes. This problem has been extensively studied in
machine learning [4]. In Section 6 we compare several explo-
ration strategies: greedy, stochastic, and weighted stochastic.

3. FEEDBACK ROUTING FOR OPTIMIZING MULTIPLE
SINKS (FROMS)

The benefits of finding shared routes to multiple sinks are
shown in the sample network of Figure 1 with one source and
two sinks. Considering broadcast hop count, the best route
from the source to both sinks goes through nodes 2, 4, and 5
with a total cost of 4. Finding this shared, lowest cost route
is our primary goal. This section describes FROMS, Feedback

point-to-point
optimal

sink A

sink B

source

1 6

4 52

3 7

Neighbor ID (sinkID, #hops)
1 (A,3), (B,5)
2 (A,4), (B,4)
3 (A,5), (B,3)

Fig. 1: Sample network with one source and two sinks with best shared route
(solid arrows) and best point-to-point routes (dashed arrows), together with
the Neighbor Table of the source.

1: routeData(DATA):
2: PST.updateQ(DATA.Routing, DATA.reward);
3: if (myAddr in DATA.Routing)
4: possActions =

PST.getAllActions(DATA.Routing.sinks);
5: action = explore.select(possActions);
6: DATA.reward =

PST.getBestQ(DATA.Routing.sinks) + 1;
7: DATA.Routing = action;
8: sendBroadcast(DATA);

Fig. 2: Processing of one DATA packet.

Routing for Optimizing Multiple Sinks, the implementation of
our Q-learning based approach. Subsequent sections provide
details and variations of the protocol.

A. Gathering initial routing information

For estimating the initial Q-values of the available sub-actions,
hop counts to all known sinks are required. This knowledge is
collected when a sink broadcasts an announcement indicating
its interest to receive a particular data type. The Neighbor
Table (see Figure 1) is filled and later used for Q-value
calculations. This approach is common to many protocols [5].

B. Learning the real Q-values

When data begins to flow in the network, agents start to learn
the real values of the shared paths in the network. Figure 2
outlines one iteration of our routing protocol, detailed below.

Identifying and selecting actions: A learning agent with
a data packet to route must select one action among those
available, as explained in Section 2. Continuing our example,
one possibility could be selecting two sub-actions (1, {A})
and (3, {B}). To manage effectively the options, we use a data
structure called the Path Sharing Tree, PST. Implementation
details are provided in [3]. Here, it is sufficient to understand
that the PST provides a set of actions for reaching the desired
sinks (line 4). The exploration strategy chooses one option
from this set (line 5), as discussed in Section 4.

The major drawback of the PST is its size, due to the large
number of possible sub-actions and actions. In Section 6 we
explore and evaluate some size reduction heuristics.

Sending back rewards: We assume that when messages
are wirelessly transmitted, they can be overheard by all
neighbors. Packets contain all required routing information
(e.g., which neighbors are responsible for routing to which
sinks), allowing recipients to decide whether to process or
drop the message (line 3). This broadcast model allows us
also to piggyback additional information for all neighbors, for
example, to provide reward values.

The reward value is calculated according to Section 2. In
our example, consider a packet sent to node 2, then to node 4.
When node 2 is forwarding the packet to 4, it piggybacks its
reward for the source: its current best Q-value for both sinks,
3 + 3− 2 = 4 plus 1. The source updates its Q-value for the
sub-action (2, {A,B}) (line 2) accordingly.

By repeating this process at each hop, accurate information
propagates backward from the sinks to the sources, while the
data flows forward. Note that rewards are exchanged only with
one-hop neighbors, forcing the source to use the same route
several times in order to receive rewards from distant nodes.
Nevertheless, nodes other than the previous hop can benefit
from the feedback and update their Q-values accordingly
(line 2).

C. Behavior after convergence

After a finite number of steps the learning protocol converges,
meaning the Q-values no longer change. Assuming that the
network topology is stable, the balance between exploration
and exploitation must be updated, as further exploration of
actions with sub-optimal Q-values is unnecessary. Thus, our
exploration strategy should switch to greedy action selection,
minimizing routing costs (see Section 4).

If topology changes occur, e.g., due to node failure or
mobility, the exploration rate must be adjusted. Details are
discussed in Section 5.

4. EXPLORATION STRATEGIES

The exploration strategy or action selection policy is the
heart of the FROMS learning mechanism. It decides which
action proposed by the PST to select for each data packet.
Its most important properties are the exploration/exploitation
ratio and convergence behavior. Exploitation of the best routes
guarantees low network costs, however, to avoid local minima,
exploration of non-optimal routes is required. Thus a balance is
needed to achieve both energy-efficiency and near-optimality.

A. Choosing a route to explore

We focus on two techniques: greedy and stochastic.
Greedy exploration: This is a pure exploitation policy, al-

ways selecting the actions with the best (lowest) Q-values. We
evaluate greedy because it provides a baseline for comparison
and demonstrates the benefits of explorative learning.

Stochastic exploration: Stochastic techniques select
among available routes, where each route has an assigned
probability to be chosen. These probabilities change contin-
uously during the learning process, giving priority to different
routes over time. There are several options to initialize the
route probabilities. One is to assign equivalent values, with
the intention to treat all routes equally. Alternately, we set the
initial probability to the inverse of its initial Q-value, giving
preference to initially “good” routes.

At runtime, we adjust the probabilities by a tunable factor,
f , each time the route is used and according to the reward
received. When a route is used, its probability is decreased
proportionally by f to give precedence to less-explored routes.

Second, we adjust the probabilities as rewards arrive. We
differentiate between three types of reward, positive, neutral
and negative. We respond to both positive and negative rewards
by increasing the probability and priority by the factor f , since
they signal a less-explored region or a change in the topology.
A neutral reward, on the other hand, means that the current Q-
value is correct and the probability of the route is not changed.

Section 6 evaluates the parameter space of these exploration
options. Depending on the scenario, however, additional strate-
gies can be applied.

B. Convergence behavior

An important property of an exploration strategy is its con-
vergence behavior. During the learning process, Q-values are
continuously updated through feedback rewards. After some
finite number of steps the Q-values no longer change and the
learning process is said to converge. After this, we should
switch to a greedy policy, as further exploration will not reveal
routes with lower costs. Implementing this behavior, however,
is challenging since the convergence itself must be detected.

To address this issue, we introduce stopping strategies to
define when the system has converged. Many possible options
exist depending mainly on the energy restrictions of the
network, for example, using the number of neutral rewards
received, using the number of already explored routes, setting
a cost threshold for the whole exploration process, etc. We
consider two strategies, reward-based and a combination of
reward- and route-based. They are evaluated in Section 6.

Reward-based strategy: counts the number of neutral
rewards received, stopping exploration after N such rewards.
In some sense, this considers the final system convergence.

Route- and reward-based strategy: combines with the
first, but requires that at least M routes are explored before
counting the neutral rewards, making sure distant rewards have
the chance to arrive.

5. FAILURE RECOVERY AND SINK MOBILITY

The feedback and learning techniques in FROMS enable it
to naturally handle recovery and mobility of nodes with no
changes or optimizations.

A. Recovery after node failure

Keeping all possible routes in the PST not only enables us
to select routes for learning, but also gives alternate routing
options in case a node fails. For example, when a node used in
the best shared route fails, its neighbors automatically switch
to the next-best alternative, thus guaranteeing continuous de-
livery to all sinks. Further, updates relevant to the failed node
propagate through the system as rewards, since also the Q-
values will change.

The only new aspect we must explicitly address is neighbor
failure detection. Here we assume a node sends a special dying
message just before switching off, emulating a scenario where
node failures are due to battery discharge and can be predicted.
Clearly other scenarios and solutions are available.

The behavior of our protocol in the presence of a node
failure is shown in comparison to Directed Diffusion in

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Delivery rate at all sinks over time

time [sec]

D
e
li
v
e
ry

 r
a
te

 [
%

]

DirectedDiffusion

FROMS

20 40 60 80 100 120 140
350

400

450

500

550

600

650

Energy expenditure for all nodes over time

time [sec]

E
n

e
rg

y
 e

x
p

e
n

d
it

u
re

 [
m

A
/s

e
c
]

DirectedDiffusion

FROMS

failureend of
exploration phase

end of
exploration
phase after

 failure

resending of
sink requestsinitial sink

requests

Delivery rate at all sinks over time

Energy expenditure for all nodes over time

De
liv

er
y r

at
e [

%
]

time [sec]

En
er

gy
 ex

pe
nd

itu
re

 [m
A/

se
c]

Fig. 3: Delivery rate and energy expense after failure, as handled by FROMS
and DIRECTEDDIFFUSION.

Figure 3. This example shows a network with 50 nodes, one
source, and five sinks. A single node on the best route to the
sinks of both protocols fails (at time=59), and the topology
remains connected. We show two different metrics: the data
delivery ratio and the energy expenditure over time.

Before the node fails, both protocols deliver data at almost
100%, all losses are due to packet collisions. FROMS maintains
this nearly perfect data rate after the node failure, because it
simply switches to a different route (action) available from
the PST. DIRECTEDDIFFUSION, on the other hand, does not
maintain enough information to switch, thus its delivery drops
to 20% until the next periodic sink announcement.

Considering system cost, the high cost of periodic sink
broadcasts is evident. Additionally, the benefits of FROMS
learning approach are shown by the lower, overall cost com-
pared to DIRECTEDDIFFUSION. Although we normally expect
increased costs during exploration, in this sample topology, the
increases were insignificant. Finally, although DIRECTEDDIF-
FUSION has a lower cost between the failure and the next sink
request announcement, it delivers only 20% of the packets.

Clearly DIRECTEDDIFFUSION can be tuned for faster re-
covery, however these changes always come with increased
costs. For example, the re-broadcast frequency of the sink
announcement can be increased, but at the cost of a dramatic
increase of the network energy expenditure even when no
nodes are failing. Instead, FROMS has the innate ability to
elegantly recover after node failure.

B. Sink mobility

WSN scenarios with fixed sensor nodes and mobile sinks, e.g.,
laptops or PDAs, are common. Such sink mobility represents a
challenge to existing routing protocols, as it constantly changes
the topology and makes efficient routing difficult. From the
perspective of FROMS, mobility of sinks is a two-step process:
first, one or more network links are broken, then new links are
added. The first step, link failure, is handled directly by our

TABLE 1: PST PRUNING HEURISTICS, EVALUATED IN TERMS OF PST SIZE
(IN BYTES) AND ACHIEVED OVERHEAD PER PACKET (NORM. BY OPTIMAL)

heuristic number of sinks
N C 2 3 4 5 6

PS
T

si
ze

[b
yt

es
] 10 3 25 115 737 2469 17326

5 1 29 77 369 1437 6590
4 1 19 51 253 671 4682
2 1 10 36 192 215 1731

O
ve

rh
ea

d
[n

or
m

.] 10 3 1 1 1.03 1.03 1.06
5 1 1 1.07 1.08 1.09 1.12
4 1 1.05 1.06 1.04 1.06 1.12
2 1 1 1 1.02 1.03 1.15

FROMS recovery mechanism as described above. To handle
link addition, we assume sinks periodically broadcast their
interest among their one-hop neighbors. This updates both the
Neighbor Table and the PST.

Both steps only change Q-values at the one-hop neighbors
of the sink, the continuous reward exchange disseminates the
changes throughout the network, and triggers exploration that
quickly converges because the changes are minimal. With low
speed mobility, continuous packet delivery is possible.

6. SIMULATION RESULTS

Next we demonstrate the behavior of our protocol, compar-
ing it to both an implementation of one-phase-pull Directed
Diffusion[5] and a broadcast based Steiner Tree solution.
Directed Diffusion is the mostly relevant comparison point,
since it is defined under the same scenario and uses the same
initialization process as FROMS.

For simulation, we used the Mobility Framework in Om-
net++ (www.omnetpp.org). The various routing protocols
are implemented using standard physical layer (interference-
based, simple bit error function), MAC layer (non persistent
CSMA), and battery consumption models (simulated MICA-2
nodes). The Steiner tree uses an exact enumeration algorithm
in MatLab on limited size networks, and considers broadcast
costs. Code and precise simulation parameters are available
online (www.inf.unisi.ch/projects/mics).

Unless otherwise stated, all evaluations present averages
over 50 different random, connected 50-node topologies, on a
field of 1500x1500 m, with a maximum communication radius
of 400 m. To even out the effects of the stochastic nature of
FROMS, we ran each topology with 5 random seeds. Data is
sent every second from the sources to all sinks for 500 sec.

We use three exploration strategies with varying parameters:
UNIFORMEXPLORE initializes all action selection probabilities
to 1, with f = 1; STOCHASTICEXPLORE with initial probabil-
ity of 1 and varying f ; and STOCHASTICWEIGHTEDEXPLORE
with initial probability of the inverted Q-value and varying f .
GREEDYEXPLORE provides a comparison point.

A. Tree pruning heuristics parameters

As discussed in Section 3, different heuristics can be applied to
the PST, limiting its size and thus saving memory on the nodes
and speeding up the learning process. We consider two PST
pruning heuristics: limiting the number of routes per sink to N
and limiting the maximum route cost to a sink to bestCost+C.

2 3 4 5 6
0

50

100

150

200

250

300

350

400

450

500

Num. of sinks

B
r
e
a
k
e
v
e
n

p
o
i
n
t

[
s
e
c
]
.

routes=10, feedbacks=10

routes=10, feedbacks=20

feedbacks=10

feedbacks=5

rewards=10
rewards=20

rewards=10
rewards=5

2 3 4 5 6
0

10

20

30

40

50

60

Num. of sinks

B
r
e
a
k
e
v
e
n

p
o
i
n
t

c
o
m
p
a
r
e
d

t
o

g
r
e
e
d
y
E
x
p
l
o
r
e

[
s
e
c
]
.

stochasticExplore, f=0.3

stochasticWeigtedExplore, f=0.3

stochasticWeightedExplore, f=0.9

uniformExplore2 3 4 5 6
0

10

20

30

40

50

60

Num. of sinks

B
r
e
a
k
e
v
e
n

p
o
i
n
t

c
o
m
p
a
r
e
d

t
o

g
r
e
e
d
y
E
x
p
l
o
r
e

[
s
e
c
]
.

stochasticExplore, f=0.3

stochasticWeigtedExplore, f=0.3

stochasticWeightedExplore, f=0.9

uniformExplore

(a)

(b)

Fig. 4: The breakeven point for stopping (a) and exploration (b) strategies

Both types of information refer to the Neighbor Table (see
Figure 1), before the sub-actions and actions are computed
and initialized. As the PST size decreases, fewer actions are
available for selection. Because the best route may be among
those pruned, we expect the protocol performance to decrease
as the size of the PST decreases. This trend is shown for
UNIFORMEXPLORE in Table 1 for various values of N and
C and for multiple numbers of sinks. The remainder of our
experiments use a moderate size PST (N = 4, C = 1) that
yields route costs close enough to optimal.

Interestingly the largest tree does not always discover the
best routes. This is due mainly to communication failures.

B. Stopping strategy parameters

Section 4 outlined several stopping strategies based on the
minimum number of routes to be explored and the number
of neutral rewards received. To evaluate these, we introduce a
new metric, namely the breakeven point, which defines the
amount of time that the system must execute in order for
the expense of the exploration to be compensated by the
low, stable costs, compared to GREEDYEXPLORE. Figure 4(a)
shows that for UNIFORMEXPLORE, as the time to converge
increases because of growing number of routes to explore, the
time to break even also increases. Note that the overall time
to break even is low compared to typical system lifetimes.

Based on this, we select the best stopping strategy for
UNIFORMEXPLORE as 5 neutral rewards. Similar experiments
for STOCHASTICEXPLORE and STOCHASTICWEIGHTEDEX-
PLORE determined their best parameters.

C. Comparing exploration strategies

To show the performance benefits of learning, we use again
GREEDYEXPLORE for comparison and consider the breakeven
metric for several strategies introduced earlier.

Figure 4(b) clearly shows that some strategies minimize
breakeven time better than others. Because STOCHASTICEX-
PLORE slowly reduces route probabilities, it needs longer
to converge, and takes longer to break even. On the other
hand, STOCHASTICWEIGHTEDEXPLORE uses initial Q-values

2 3 4 5 6
0.75

0.8

0.85

0.9

0.95

1

1.05

Num. of sinks

N
e
tw

o
rk

 o
v
e
rh

e
a
d
 p

e
r

p
a
c
k
e
t

(n
o
rm

a
liz

e
d
 b

y
 D

D
).

(a) 1 source, 50 nodes, variable number of sinks

DirectedDiffusion

greedyExplore

FROMS

50 75 100 125 150 175 200
0.75

0.8

0.85

0.9

0.95

1

1.05

Num. of nodes

N
e
tw

o
rk

 o
v
e
rh

e
a
d
 p

e
r

p
a
c
k
e
t

(n
o
rm

a
liz

e
d
 b

y
 D

D
).

(b) 1 source, variable number of nodes, 4 sinks

DirectedDiffusion

FROMS

greedyExplore

2 3 4 5
0.75

0.8

0.85

0.9

0.95

1

1.05

Num. of sources

N
e
tw

o
rk

 o
v
e
rh

e
a
d
 p

e
r

p
a
c
k
e
t

(n
o
rm

a
liz

e
d
 b

y
 D

D
).

(c) Variable number of sources, 50 nodes, 3 sinks

DirectedDiffusion

FROMS

greedyExplore

Fig. 5: Comparison between FROMS, GREEDYEXPLORE and DIRECTEDDIFFUSION in routing costs per packet.

to weight probabilities, and with f = 0.9 rapidly decreases all
probabilities, converging faster, yet finding good enough routes
to quickly break even with respect to GREEDYEXPLORE.

D. Comparing FROMS to DIRECTEDDIFFUSION

Finally we compare FROMS (UNIFORMEXPLORE with f =
1) and GREEDYEXPLORE against DIRECTEDDIFFUSION [5],
showing the normalized routing costs per packet for various
numbers of sources, sinks and network sizes after conver-
gence. In all scenarios, FROMS outperforms DIRECTEDDIF-
FUSION, showing significant cost improvements.

Figure 5(a) shows a scenario with 50 nodes, a single
source and a variable number of sinks. In general, FROMS
decreases the network overhead per packet by 20% over
DIRECTEDDIFFUSION, due to its ability to find shared routes.
Figure 5(b) shows the behavior as the network density in-
creases (increasing number of nodes in the same area) and
thus the scalability of FROMS.

Finally, Figure 5(c) considers a multiple-source scenario,
demonstrating good performance also for this task. Note that
no data aggregation from different data sources is considered,
which would lead to even better performance.

7. RELATED WORK
Here we place our work in the context of related WSN
research, specifically routing to multiple sinks and use of
learning techniques in WSN.

Multiple sink routing in WSN and MANET: Most efforts
in WSN routing research concentrate on the multiple sources-
single sink scenario. However, some protocols implicitly or
explicitly support multiple sink routing. The approach most
related to ours uses feedback among neighbors to merge
existing, single source-sink routes [6]. The key difference w.r.t.
FROMS is our explicit exploration that eventually locally learns
multi-hop information.

The multiple-sink problem can also be seen as an instance
of a content-based networking system in which destinations
express interest, and matching data is routed accordingly.
Several efforts [5] address this for WSNs, but in contrast to
our work, they do not optimize routes for multiple sinks.

Many multicast protocols have been developed in the
MANET domain [7], [8]. However, they either assume dif-
ferent scenarios (known geographic node locations [8]) or
incur large communication overhead for constructing and
maintaining the multicast tree.

Learning approaches: The cornerstone of our approach
is its ability to learn better path information over time. It
was partially inspired by AntHocNet [9], an approach for
learning routes in wireless ad hoc networks based on ant

colony optimization. A similar SI-based approach is taken
in [10] to build optimal multicast trees in a MANET. In WSNs,
however, the overhead of sending ants through the network
unnecessarily wastes energy.

Reinforcement Learning [4] has also been applied to WSN
routing to single sinks [1], [2], however they either assume
global topology knowledge, or solve different problems such
as optimal data compression along the path to a single sink [1].

8. CONCLUSION AND FUTURE WORK

This paper presents both a formal definition of the multi-
ple sink routing problem as a reinforcement learning task
and FROMS, an implementation of our Q-learning approach.
Our evaluation clearly shows that the additional expense of
learning, combined with the negligible overhead to piggyback
reward information significantly lowers routing cost. The ob-
servation that FROMS innately supports node failure and sink
mobility further increases its applicability.

Our immediate plans include further study of FROMS in var-
ious mobility and failure environments. We are also working
on a real implementation and deployment to accurately assess
performance outside the inherent boundaries of simulation.

REFERENCES

[1] P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe, “Routing with
Compression in Wireless Sensor Networks: a Q-Learning approach,”
in Proc. of the 5th Eur. Wkshp on Adaptive Agents and Multi-Agent
Systems, 2005.

[2] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” Advances in Neural
Information Processing Systems, vol. 6, 1994.

[3] A. Egorova-Förster and A. L. Murphy, “A Feedback Enhanced Learning
Approach for Routing in WSN,” in Proc. of the 4th Wkshp on Mobile
Ad-Hoc Networks. Bern, Switzerland: Springer-Verlag, 2007.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, March 1998.

[5] F. Silva, J. Heidemann, R. Govindan, and D. Estrin, Frontiers in
Distributed Sensor Networks. CRC Press, Inc., 2003, ch. Directed
Diffusion.

[6] P. Ciciriello, L. Mottola, and G. Picco, “Efficient routing from multiple
sources to multiple sinks in wireless sensor networks,” in Proc. of the
4th European Conf. on Wireless Sensor Networks, 2007.

[7] R. Sun, S. Tatsumi, and G. Zhao, “Q-map: a novel multicast routing
method in wireless ad hoc networks with multiagent reinforcement
learning,” in Proc. of the IEEE Conf. on Computers, Communications,
Control and Power Engineering, vol. 1, 2002, pp. 667–670 vol.1.

[8] J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic, “GMR: Geographic
multicast routing for wireless sensor networks,” in Proc. of the 3rd
Annual IEEE Conf. on Sensor and Ad Hoc Communications and
Networks, vol. 1, 2006, pp. 20–29.

[9] G. Di Caro, F. Ducatelle, and L. Gambardella, “AntHocNet: an Ant-
Based Hybrid Routing Algorithm for Mobile AdHoc Networks,” in
Proc. of the 8th Int. Conf. on Parallel Problem Solving from Nature,
Birmingham, UK, 2004.

[10] C.-C. Shen and C. Jaikaeo, “Ad hoc multicast routing algorithm with
swarm intelligence,” Mobile Netwworks and Applications, vol. 10, no.
1-2, pp. 47–59, 2005.

