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Abstract

1 A growing class of wireless sensor network (WSN) applications require
the use of sensed data inside the network at multiple, possibly mobile base
stations. Standard WSN routing techniques that move data from multiple
sources to a single, fixed base station are not applicable, motivating new
solutions that efficiently achieve multicast and handle mobility. This paper
explores in depth the requirements of this set of application scenarios and
proposes Froms, a machine learning-based multicast routing paradigm. Its
primary benefits are flexibility to optimize routing over a variety of prop-
erties such as route length, battery levels, etc., ease of recovery after node
failures, and native support for sink mobility. We provide theoretical, sim-
ulation and experimentation results supporting these claims, showing the
benefits of Froms in terms of low routing overhead, extended network life-
time, and other key metrics for the WSN environment.
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1. Introduction

The 1998 SmartDust [1] project is commonly used to mark the begin-
ning of wireless sensor network (WSNs) research, as it identified the vision
for large autonomous networks for monitoring environmental and industrial
parameters. Since then the price of individual sensors has been decreasing,
while memory, processing and sensory abilities have been increasing, simul-
taneously expanding the potential application scenarios. Researchers and
practitioners from many scientific and industrial areas have already lever-
aged the achievements of the WSN community, deploying sensor networks
for applications ranging from scientific monitoring of active volcanos [2] and
glaciers [3], through agricultural and environmental monitoring [4, 5, 6, 7],
military and rescue applications [8, 9], to the futuristic vision of the In-
terPlaNetary Internet [10, 11], designed to connect highly heterogeneous
devices such as satellites, Mars and Moon rovers, sensor networks, space
shuttles, and common handheld devices and laptops into one holistic net-
work.

The growing number of applications for WSNs and their heterogeneous
requirements and properties demand new communication protocols and ar-
chitectures. Routing for WSNs has attracted a lot of research in recent
years, and many different protocols have been developed for various ap-
plication scenarios and data traffic patterns. However, recently this area
has attracted also criticism: application scenarios are too restricted or not
carefully described, experimental setups are unrealistic, and simulation en-
vironments are too abstract [12]. Further, despite the overwhelming number
and variety of routing protocols, key problems remain unsolved, important
among them are energy efficiency for various application scenarios and for
multiple traffic patterns, as well as tolerance of failures and mobility. Addi-
tionally, the problem of sending data to multiple, possibly mobile sinks via
optimal paths (multicast) has not been solved efficiently.

This paper presents a novel multicast routing protocol called Froms
(Feedback ROuting to Multiple Sinks), which exploits reinforcement learn-
ing. Our target scenario includes applications with periodic, long-lasting
data reporting from several sources to multiple, mobile sinks in a multi-
hop environment. Froms easily accepts a range of cost metrics such as
hops, geographic distance, latency, remaining battery, etc. Its most salient
advantages are:

• Ability to find globally optimal multicast routes;

• Incorporation of different cost metrics and thus optimization goals;
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• Quick recovery in case of failures and sink mobility.

The main goal of Froms is to provide the WSN developer with a single
routing solution, able to be tuned to many different application scenarios.

This paper presents a comprehensive view of Froms, including a the-
oretical model and an analysis of its complexity and overall behavior; a
complete evaluation both in simulation and on real hardware; and a chal-
lenging comparison against both the geographic based multicast routing
protocol MSTEAM [13] and a multicast variation of Directed Diffusion [14].
The presented simulation environment uses sophisticated radio propagation
models and realistic MAC protocols. In contrast to our previously reported
results [15, 16], this paper offers significantly more depth to the character-
ization of the Froms parameter space and its properties, and a complete
comparison to other multicast routing protocols both in simulation and on
real hardware.

Next, Section 2 motivates the work and our approach, describing major
challenges and related works. Section 3 gives an intuitive introduction to the
Froms routing protocol. Sections 4 and 5 present the theoretical aspects,
first modeling multicast routing as a reinforcement learning problem and
presenting our solution, then offering a theoretical complexity and conver-
gence analysis. Section 6 gives a glimpse into the protocol implementation
details before the simulation and testbed evaluations are discussed in Sec-
tions 7—9. Finally, Sections 10 and 11 discuss the versatility of Froms and
future directions.

2. Motivation and related efforts

This section outlines the requirements and properties of multiple, well-
known WSN deployments. We then discuss the current state of the art in
WSN routing protocols and how they meet the needs and challenges of the
identified scenario.

2.1. Target application scenario

Real WSN deployments typically follow one of two application styles: pe-
riodic reporting or event detection [17]. Our focus is on the first, exemplified
by disaster relief and military applications [8, 9], environmental monitoring
and surveillance [2, 4, 5, 6, 7] and the InterPlaNetary Internet [10, 11]. We
use these applications and scenarios to guide our requirements analysis, but
also extend them to incorporate future opportunities. The following details
several key parameters and assumptions.
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Network size. Deployments range in size from a few, carefully placed
nodes (e.g., volcano monitoring [2]) to hundreds of randomly placed nodes
(e.g., military or disaster recovery [8, 9]). We target large systems with
hundreds of nodes.

Data sources and sinks. An interesting class of applications collects
data from a subset of the nodes (possibly changing over time), and delivers
the data to a small number of possibly mobile sinks. In very large deploy-
ments the set of reporting nodes is usually small (in contrast to convergecast
applications with few nodes, all reporting), but the data must be delivered
to several, possibly mobile sinks.

Directly supporting sink mobility enables applications such as disaster
recovery [9] to send data directly to mobile users inside the network, rather
than collect data at a sink, then redirect it back into the network, incurring
additional costs. This increases the reliability of the full system.

Energy constraints. One of the main advantages of WSN nodes is
freedom of placement without wiring. This, however, introduces a primary
constraint: namely reliance on batteries in scenarios where replacement is
difficult or impossible. It is widely demonstrated that radio communication,
for both listening and sending, is the primary power consumer [18, 19].
Therefore, data dissemination protocols must consider energy consumption,
efficiently balancing usage throughout the network, avoiding the loss of any
portion of the network.

Node failures. Node losses are commonly caused by the exhaustion of
battery reserves or hardware faults, leading to nodes dropping out of the
network. A routing framework must cope with such failures and guarantee
continuous data delivery throughout the system lifetime. It should also
accommodate new nodes and make efficient use of all available resources.

Data rate and requirements. Generally data can be categorized as
high (e.g., from accelerometers) or low rate (e.g., from temperature sensors).
We target low rates that do not congest the network but can fluctuate under
application control.

2.2. Design and implementation requirements

In addition to application constraints, we consider several design criteria
for our protocol development process, with the overall goal to ensure the
real world applicability of our results.

Simplicity. The protocol must be easy to understand and implement,
making it feasible for deployments.
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Memory and processing requirements. The implementation must
fit onto a typical sensor node, leaving space for other protocols and applica-
tions.

Flexibility. The protocol must be adaptable to different applications
and optimization goals, such as different cost metrics.

Scalability. The implemented protocols must be reasonably scalable in
terms of network size, number of sources, and number of sinks.

2.3. Assumptions

Our work resides at the routing layer, assuming standard functionality
from other components of the communication stack:

Sink announcements. The sink uses a simple controlled flooding
mechanism to inform all network nodes about itself and its data require-
ments (e.g., data type and rate). During this controlled flooding, each node
sends the packet exactly once and gathers initial routing information such
as hops to the sink or sink location.

MAC layer. We assume a simple broadcast-enabled MAC protocol
without re-transmissions and without delivery guarantees. This class of
MAC protocols is broad and many WSN MAC protocols meet these crite-
ria [19]. Using a retransmission based MAC protocol is also possible, but
would require some adjustments to Froms, as detailed in Section 10.

Neighborhood (link) management. Neighborhood management pro-
tocols keep consistent information at each node about the identity of its
neighbors as link qualities change and nodes fail. In this paper, we inten-
tionally do not employ such a protocol, but instead demonstrate that our
approach alone copes with link unreliability and the associated packet loss.
Notably, however, the combination of FROMS with a neighborhood man-
agement protocol would increase the overall delivery rate by forcing Froms
to use only good links. The implications of using a link management pro-
tocol and the needed adjustments to Froms are discussed in Section 10.

2.4. Related work

Many WSN routing protocols have emerged in recent years. We first
discuss traditional widely used routing protocols, then focus on solutions
that address the two key aspects of our application scenario: 1) routing to
multiple destinations in large networks, 2) mobility of those destinations.
We also devote space to machine learning-based techniques.
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Traditional WSN routing. Most of the applications outlined here [2,
4, 5, 7] use protocols from the same family, namely MintRoute [20], Multi-
hopLQI [21], or the Collection Tree Protocol (CTP) [22]. These protocols
target convergecast scenarios, with all nodes reporting to a single static
base station. While they perform well in this scenario, they cannot be eas-
ily extended to support multiple and mobile sinks. CTP, for example, uses
neighborhood beacons to update ETX-based routing costs to a sink and to
detect loops and/or failures. Beacons are exchanged throughout entire sub-
trees when routs need to be updated. Extending this mechanism to multiple
and/or mobile sinks will likely induce beacon storms for continuous route
cost updating.

Multicast routing for WSNs. Although multicast has been well stud-
ied in the resource constrained environment of mobile ad hoc [23] and mesh
networks [24], these protocols generate an unacceptable amount of commu-
nication overhead to construct and maintain the routing infrastructure and
thus cannot be successfully applied to WSNs [25].

One alternative comes with geographic routing solutions, which rely on
the location-awareness of the nodes and use only next hop information to
route packets. For example, GPSR [26] selects the next hop for a packet
based on its progress to the destination in terms of distance to the sink.
A special face routing procedure provides a mechanism to circumnavigate
void regions. GMR [27] and MSTEAM [13] provide geographic-based rout-
ing multicast solutions, however, the resulting paths are typically long with
long, lossy hops [28], especially when void regions exist. Their implementa-
tion is memory and processing intensive. Additionally, mobile sinks pose a
major challenge to these algorithms, since the new sink position needs to be
propagated to all network nodes.

Another approach is to adapt unicast protocols to send to multiple des-
tinations. Such solutions build paths from a source to each sink without
explicitly considering the sharing of paths or finding globally optimal ones.
For example, Directed Diffusion [14] can be easily extended to support mul-
tiple sinks, but the resulting multicast routes are not optimal.

The work described in [29] attempts to find shared routes from multiple
sources to multiple sinks. It works by merging next hops locally and does not
explore alternative routes, which can lead to sub-optimal multicast routes.
Furthermore, it does not support sink mobility nor recovery of routes.

Sink mobility. While most routing protocols assume fixed sinks, several
solutions consider sink mobility. For example, the spatiotemporal mobicast
routing algorithm [30] is an overlay routing protocol that decides when to
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forward the data through a geographic routing protocol and to which neigh-
bors by using the a-priori known mobility pattern of the sink. In this way
it guarantees timely delivery of data to needed regions. A similar approach
is taken by [31]. Unfortunately, these approaches exploit a prediction-based
routing approach that requires a-priori information of the sink mobility and
fails if the sink takes a sightly different route.

In TTDD [32] the authors concentrate on efficient delivery to multiple
mobile sinks by clustering nodes into cells. Mobile sinks flood requests only
in their local cell, and an overlay routing approach keeps track of the current
cells of the sinks for routing data to them. While effective in high mobility
scenarios, the overhead to build and maintain the overlay is significant,
especially in periodic reporting scenarios, which are more traffic intensive
than event-based reporting. Therefore, TTDD is better suited to event-
detecting sensor networks with sporadic rather than continuous traffic.

SEAD [33] and its successor DEED [34] attempt to optimize routing
from a single source to multiple mobile sinks by allowing each sink to select
an access sensor node. A data delivery tree is built between the source and
all access nodes based on a geographic location heuristic. When the sink
moves, a path between its current nearest neighbor and the access node is
maintained, eliminating the need to rebuild the tree. However, if the sink
moves far away, a new access node is selected and the tree is rebuilt. The
approach shows good results in comparison to Directed Diffusion [14] and
TTDD [32] in terms of dissipated energy for data packets. However, no
evaluation of the control overhead with mobile sinks is presented, and this
value is expected to be high.

The authors of [35] present a unicast and multicast enabled protocol
for WSNs with strictly limited route length and memory requirements. Al-
though the work offers solid theoretical analysis, it has not been implemented
or even evaluated in simulation. Further, the protocol assumes static topolo-
gies and does not scale well to large networks, as it maintains routing infor-
mation to a large subset of network nodes (not only to next hops).

Machine learning based solutions. Machine learning has gained
much attention in recent years for solving challenging problems such as rout-
ing in wireless ad hoc networks. In a recent survey, reinforcement learning
was identified as a well-suited technique for routing in WSNs due to its low
overhead, high flexibility and robustness [36]. It has been successfully used
for multiple routing problems including geographic routing [37], discovering
routes between two nodes [38] and finding optimal compression routes in a
convergecast scenario [39]. While these works show clear advantages from
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sink P 3 hops
sink Q 5 hops

Neighbor B sink P 4 hops
sink Q 4 hops

Neighbor C sink P 5 hops
sink Q 3 hops

Figure 1: A sample topology with 2 sinks, the main routes to them from source S and its
initial routing table.

using ML techniques, they do impose moderate cost. Specifically, online
learning of the real route costs forces the protocols to sporadically use also
longer, non-optimal routes. Therefore, ML should only be applied when the
application data requirements remain consistent for long enough to over-
come the learning costs with the exploitation of the shorter, learned routes.
Fortunately this is common among many WSN application scenarios (see
also Section 2.1), making ML an appealing approach.

This paper represents the first application, to our knowledge, of machine
learning, reinforcement learning in particular, to multicast routing. As we
show in the remainder of this paper, this requires the design of a new ML
algorithm to correctly reflect the requirements arising from WSNs.

3. Protocol intuition and overview

To satisfy the application needs identified in Section 2.1, our goal is to
develop a protocol that finds the optimal path for data to follow from a
source to multiple, interested sinks. Optimal can be defined in many ways,
e.g., according to delay, hop count, geographic distance, remaining battery
level or any combination of the above. This section uses the number of hops
as a simple to understand metric, while Section 10 discusses other options
in depth.

To illustrate the potential benefits from identifying the optimal route,
consider the sample network in Figure 1 with one source and two sinks.
One possible path from the source to the sinks is formed by the union of the
individual shortest paths from the source to each sink (the dotted lines in the
figure). However going through nodes B, F and H yields a shorter route.
The challenge is to identify this route without full topology information.
The main task of our protocol is to exchange next-hop routing information
among neighbors such that the optimal route is discovered.
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Using Figure 1 as an example, the main functionality of our protocol is
as follows. An initial sink announcement phase allows all nodes to gather
preliminary routing information toward sinks. As shown, S gathers individ-
ual hop counts for each sink through each neighbor (right table in Figure 1).
When a data packet arrives, a node must select one or more nodes to serve
as the next hop(s) towards the destinations. While a node could simply
choose the best nodes with the shortest individual paths (in our example:
C to reach sink Q and A to reach sink P ), the node optionally explores non-
optimal routes based on the assumption that these might have lower costs
than those calculated from the individual costs in the routing table. Such
lower costs arise because neighboring nodes may be able to share subsequent
hops to reach the sinks.

To show how information about the shorter paths propagates, consider
that initially S estimates that node A requires 7 hops to reach both sinks: 3
hops to sink P , 5 hops to sink Q and the first hop is shared (removing 1 from
the total). However, A’s initial estimate to reach both sinks through E is
only (2 + 4)−1 = 5 hops, implying that S can reach both sinks though A in
6 hops (the 5 hops of A plus the one hop from S to A). By propagating the
cost of 5 from A to S, S can update its routing estimate. This information
is piggybacked on all data packets. Therefore, by exploiting the broadcast
environment, data can be simultaneously sent to E and routing information
propagated back to S. Similarly, E piggybacks its cost estimate, informing
A, and so on.

We observe that piggybacked values, which we call feedback, propagate
backward in the direction from the sink to the source. Therefore, for accu-
rate hop count information to arrive at the source, multiple packets must
be sent down the same path. Further, a node must send packets to all
neighboring nodes to explore all possible paths for their real costs. We also
note that keeping all routes at all nodes and always supplying current cost
estimation as feedback innately allows our protocol to support recovery of
failed nodes and mobility.

As described, this solution is a reinforcement learning based routing
protocol. The next section formalizes the ideas discussed here and presents
the details of the Q-Learning model, offering a multicast solution for WSNs.

4. FROMS: Solving Multicast with Q-Learning

This section offers a model for our multicast routing problem and de-
scribes a reinforcement learning solution. This foundation enables our theo-
retical analysis of complexity, correctness and convergence in Section 5 and
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Figure 2: Reinforcement learning. In each step, the agent selects one action and executes
it. The environment responds to the agent with a reward, which is used to learn the best
possible sequence of actions to find the goal.

is the basis for the implementation described in Section 6.

4.1. Problem definition

We consider the network of sensors as a graph G = (V,E) where each
sensor node is a vertex vi and each edge eij is a bidirectional wireless com-
munication channel between a pair of nodes vi and vj . Without loss of
generality, we consider a single source node s ∈ V and a set of destination
nodes D ⊆ V .

Optimal routing to multiple destinations is defined as the minimum cost
path starting at the source vertex s, and reaching all destination vertices
D. This path is actually a spanning tree T = (VT , ET ) whose vertices
include the source and the destinations. The cost of a tree T is defined
as a function over its nodes and links C(T ), e.g., the number of one-hop
broadcasts required to reach all destinations. Alternate cost functions and
their usage are discussed in Section 10.1.2.

4.2. Multicast Routing with Q-Learning

Finding the minimum cost routing tree T is analogous to identifying the
Steiner tree, therefore finding the exact solution is NP-hard even when the
full topology is known. As outlined in Section 3, our goal is to find the
optimal route by exploiting only local interactions. For this, we turn to
reinforcement learning [40], extending the model that has been successfully
applied to other routing problems [39, 38] to accommodate the multiple
mobile sink scenario.
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Q-learning [40] is a model-free reinforcement learning technique exem-
plified in Figure 2. It assigns each possible action a Q-value representing
the approximate goodness of the action. During the learning process, the
agent selects and executes one action and receives a scalar reward from the
environment. This reward is used to update the Q-value. Over time the
agent learns the actual action goodness values and is able to select the most
appropriate.

In our multiple-sink scenario, each sensor node is an independent learn-
ing agent, and the possible actions are routing options using different neigh-
bor(s) for the next hop(s) toward any subset of the sinks, Dp ⊆ D, listed in
the data packet. Our main challenge is to model these actions as they con-
tain not a single next hop (route to some neighbor n), but a set of next hops
whose size is unknown a-priori. The following provides additional detail for
the Q-Learning solution.

Agent states. We define the state of an agent as a tuple {Dp, routesNDp
},

where Dp ⊆ D are the sinks the packet must reach and routesNDp
is the rout-

ing information about all neighboring nodes N with respect to the individual
sinks. Depending on this state, different actions are possible.

Actions. In our model, an action is one possible routing decision for a
data packet. Note that the routing decision can include one or more different
neighbors as next hops. Consequently, we need to modify the original Q-
Learning algorithm and define a possible action, a, as a set of sub-actions
{a1 . . . ak}. Each sub-action ai = (ni, Di) includes a single neighbor ni and a
set of destinations Di ⊆ Dp indicating that neighbor ni is the intended next
hop for routing to destinations Di. A complete action is a set of sub-actions
such that {D1 . . . Dk} partitions Dp (that is, each sink d ∈ Dp is covered by
exactly one sub-action ai).

Continuing with the example from Figure 1, consider a packet destined
for Dp = {P,Q}. One possible complete action of the source S is the single
sub-action (B, {P,Q}), indicating neighbor B as the next hop to all desti-
nations. Alternately, S may choose two sub-actions, (A, {P}) and (C, {Q}),
indicating two different neighbors should take responsibility to forward the
packet to different subsets of sinks.

The distinction between complete actions and sub-actions is important,
as we assign rewards to sub-actions.

Q-Values. Q-Values represent the goodness of actions and the goal of
the agent is to learn the actual goodness of the available actions. The original
Q-Learning approach randomly initializes Q-Values, and exploits them only
for quantitative comparison among actions. Instead, in our case Q-Values
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represent the real cost of the routes. For example, if the cost function is the
number of hops, the Q-Value of a route is also the number of hops of this
route. Further, to initialize Q-Values, we use a more sophisticated approach
than random assignment. Specifically we calculate a cost estimate based on
the individual information known about the involved neighbor and sinks.
This non-random initialization significantly speeds up the learning process
and avoids oscillations of the Q-Values.

Continuing our example with a hop-based cost function, we estimate the
route cost by using the hop counts in a standard routing table, such as that
shown in Figure 1. We first calculate the value of each sub-action, then of
the complete action. The initial Q-Value for a sub-action ai = (ni, Di) is
thus:

Q(ai) =

∑
d∈Di

hopsni
d

− 2(| Di | −1) (1)

where hopsni
d is the number of hops to reach destination d ∈ Di using neigh-

bor ni and | Di | is the number of sinks in Di. The first part of the formula
calculates the total number of hops to individually reach the sinks, and the
second part subtracts from this total based on the assumption that broad-
cast communication is used both for transmission to ni as well as by ni to
reach the next hop, hence subtracting double. Note that this estimation
is an upper bound on the actual value, as it assumes that the packet will
not share any links after the next hop. During learning in a static system,
Q-Values will always decrease and the best actions are identified as those
with small Q-Values.

The Q-Value of a complete action a with sub-actions {a1, . . . , ak} is:

Q(a) =

(
k∑

i=1

Q(ai)

)
− (k − 1) (2)

where k is the number of sub-actions. Intuitively this Q-Value is the broad-
cast hop count from the agent to all sinks.

It is worth noting that we use hop counts as an easy to understand
example, but the Q-Value calculations can be easily modified to incorporate
alternate cost metrics. Further discussion appears in Section 10.1.2.

Updating a Q-Value. Agents learn the real values of the actions by
incorporating rewards received from the environment. In our case, each
neighbor to which a data packet is forwarded sends the reward as feedback
describing its evaluation of the goodness of the sub-action. The new Q-Value

12



of the sub-action is:

Qnew (ai) = Qold (ai) + γ(R(ai)−Qold (ai)) (3)

where R(ai) is the reward value and γ is the learning rate of the algorithm.
With randomly initialized Q-Values, a low learning rate is used to avoid
heavy oscillation at the beginning of the learning process. However, since
we initialize the values with over-estimations of the cost values, and fur-
ther guarantee that the values only decrease, we avoid the learning delay
associated with a low γ and instead use γ = 1, updating Equation 3 to:

Qnew (ai) = R(ai) (4)

which directly updates the Q-Value with the reward. Further, the Q-Values
of complete actions are automatically updated as their calculation is based
on sub-actions (Equation 2).

Reward function. Intuitively the reward is the downstream node’s
opportunity to inform the upstream neighbors of its actual cost for the
requested action. Thus, when calculating the reward, the node selects its
lowest (best) Q-Value for the destination set and adds the cost of the action
itself:

R(ai) = cai + min
a
Q(a) (5)

where cai is the action’s cost (always 1 in our hop count metric). This
propagation of Q-Values upstream eventually allows all nodes to learn the
actual costs.

In contrast to the original Q-Learning algorithm, low reward values are
good and large values are bad. This is because our Q-Values represent the
real costs of a route and low hop counts (Q-Values) are better. Furthermore,
rewards from the environment are generated and sent in broadcast, and
therefore without real knowledge of who receives them. Note also that the
reward values are completely localized and simply indicate the current best
Q-Value at the rewarding node.

Exploration strategy (action selection policy). One final, impor-
tant learning parameter is the action selection policy. A trivial solution is to
greedily select the action with the best (lowest) Q-Value. However, this pol-
icy may result in a locally optimal solution as it will ignore some actions that
may, after learning, have lower Q-Values. Therefore, a tradeoff is required
between exploitation of good routes and exploration among available routes.
A typical widely used efficient strategy is ε-greedy, which selects the best
available action with probability 1− ε and a random one with probability ε.
Several variants are considered in Section 7.4.2.
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Parameter Description

|N | number of nodes in the network N

D number of destinations

M network diameter

Y maximum network density (maximum number of
1-hop neighbors)

A Maximum number of possible actions at each node

S Maximum number of action steps (sent packets) at
the source before convergence

Table 1: Summary of network scenario and complexity parameters.

5. Theoretical analysis of FROMS

Next we concentrate on the theoretical analysis of Froms, namely its
convergence, complexity, memory, and processing requirements. First we
explore an idealized model of the environment and then introduce realistic
properties such as asymmetric links and link failures.

5.1. Worst-case complexity and convergence

We discuss first the worst-case complexity of Froms (time to stabilize)
and thus implicitly its convergence. In our scenario, convergence means
that first, the protocol is stable and the Q-Values no longer change, and
second and more importantly, that the optimal route has been identified.
The original Q-Learning algorithm has been shown to converge after an
infinite number of steps [41]. Here we need to show that our Q-Learning
based protocol converges after a finite number of steps. For this, we start
by calculating the number of steps until convergence.

First, we assume a Q-Learning algorithm such as the one just presented
in Section 4 with γ = 1, a hop-based cost metric, and a deterministic ex-
ploration strategy that chooses routes in a round-robin manner. We further
assume a network with nodes in the set N with the following properties,
summarized in Table 1: D is the number of destinations, M is the diam-
eter N (the longest shortest path between any two nodes in N) and Y is
the maximum density of N (the maximum number of 1-hop neighbors of
any node in N). We assume stationary nodes and sinks and perfect, stable
communication among neighbors. Without loss of generality, we assume a
single source. This is possible because the routes are constructed depending
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on the destinations, not on the sources. Nevertheless, we discuss multiple
sources at the end of this section.

The maximum number of possible actions A at any node is, according
to the definition of actions in Section 4, the number of permutations of size
D over a maximum of Y neighbors with repetitions (because we can use the
same neighbor to reach multiple sinks) or:

A ≤ Y D (6)

In the worst case the source of the data, the initiator of the learning
process, is at the maximum distance M from all of the sinks. Our goal is to
compute how many action selection steps must be taken by all nodes in N ,
such that the Q-Values stabilize to the optimal, minimum cost. With γ = 1
the feedback of any 1-hop neighbor directly replaces the old Q-Value. Thus,
to learn the real cost of any route of length M we need exactly M − 1 steps,
as the real cost propagates backward from the destination one step each
time the path is used. However, the source must wait for all other nodes to
stabilize their Q-Values before it can be guaranteed that its Q-Values are
also stable. In the worst case it must fully explore all possible routes in the
whole network.

To count the number of action selection steps S for the whole system
to converge we assume the learning is initiated by the source, and by the
previous reasoning we know that we must select each of the available routes
M − 1 times. Using Equation 6 we have:

S ≤ (M − 1) · Y D

The 1-hop neighbors of the source must do the same. Their distance to the
sinks is also at most M . Note this is the worst case and in a real network
it cannot be the case that all nodes are M hops away from the sinks: if all
neighbors of some node are at the same distance from the sinks as the node
itself, the network is disconnected. Thus, all nodes must select each of their
routes at most M times and for the complexity, we have:

S ≤ (M − 1) · |N | · Y D = O
(
(M − 1) · |N | · Y D

)
(7)

This is the worst-case number of actions across all nodes (packet broadcasts)
for the protocol to converge. After convergence, exploration can be stopped
and the algorithm can proceed in a greedy mode, as the best, optimal, route
has been identified as that with the lowest Q-Value. If more than one route
have the same Q-Value, a node can alternate between them to spread energy
expenditure.
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This, admittedly, is a very loose upper bound of the complexity as no
real networks have the worst-case properties such as all neighbors being M
hops away from the destinations. On the other hand, this analysis does offer
an idea of scalability and expected performance. In the next paragraphs we
discuss how the convergence behavior changes with various network param-
eters and the consequences for the protocol. Later, in Sections 7–9, we use
experimental evaluations to show the real behavior of the protocol.

Parameter analysis. The number of destinations D and the density
Y are neither dependent on the number of network nodes |N | nor on its
diameter M . To understand the expected performance of Froms as these
parameters vary, we explore how they individually influence the protocol.

The number of sinks D is application defined, and the relationship to
other parameters is D < |N |. With a growing number of sinks, complexity
grows exponentially, as D is in the exponent of Equation 7.

With a growing number of nodes |N |, it is most common that either the
diameter M or the density Y grow, or both increase but at a lower rate. In
either case, according to Equation 7, the complexity has polynomial growth.

Instead, in a network with a constant number of nodes |N |, M and Y
depend on each other. As the diameter grows, the number of neighbors
decreases; and vice versa. In the extreme case of a chain of nodes where
nodes have at most two neighbors, Y = 2, and the diameter is approximately
the same as the network size M ≈ |N |, we have:

S = O
(
|N |2 · 2D

)
(8)

Another extreme case is when the density Y grows toward |N | and M
decreases toward 2. Note that the case M = 1 does not make sense, as any
source will be exactly one hop from any sink and routing is trivial. In the
case of M → 2 we have:

S = O
(
2|N |D+1

)
(9)

Nevertheless, these equations do not consider behavior for intermediate
values. We, therefore, need to explore complexity in a network with constant
|N | and different M and Y values. Figure 3 shows a case study for a network
of 100 nodes, 3 sinks and varying densities and diameters. The worst-case
complexity is presented from two different points of view. As expected,
with growing M and Y , the complexity grows. The thick line shows exactly
the development when M is growing and Y decreasing. It shows that the
function has a maximum between the two extreme cases. As a rule of thumb
for practical networks, we can generally state that having a lower density is
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complexitycomplexity

Figure 3: Worst-case complexity for some M and Y values from different views. The
number of sinks is fixed to D = 3, |N | = 100. The thick line at the welding of the graph
corresponds to maximum expected complexity and the single point near the origin to a
real dense network with M = 10 and Y = 10.

always a good idea, since Y is in the power of D in Equation 7, unless M is
very low, as the complexity decreases again. Note also that in the extreme
case of Figure 3 where both M and Y grow towards |N | is impossible in
practice [42]. Realistic values for a network with 100 nodes will be M = 10
and Y = 10, which corresponds to the single point shown in Figure 3.

Probabilistic exploration strategy. The above complexity analysis
applies to a deterministic round-robin exploration strategy. However, both
the original Q-Learning algorithm and our protocol use probabilistic explo-
ration strategies: for any route r there is a probability pr to be chosen at any
step st. If the probabilities of all routes is pr > 0 over time, convergence is
guaranteed. Nevertheless, complexity is difficult to compute because of the
non-deterministic nature of the algorithm. Therefore we offer experimental
evaluation in the next sections.

Realistic communication. The previous analysis assumes perfect
communication. To work in the real world, however, we must consider the
effect of packet losses. Fortunately, to maintain eventual convergence, it is
enough to assume a non-zero probability of delivering a message between
two nodes. While convergence will take longer, eventually messages will be
delivered and the Q-Values will be updated.

Scenarios with asymmetric links, in which the delivery probability is
lower in one direction, actually reduce to the above scenario. As long as
the probability is non-zero, the convergence criteria holds. This covers most
practical scenarios [43] and in the rare case that the delivery probability in
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one direction is zero, the neighbor is deleted. We discuss the practical and
implementation challenges of asymmetric links further in Section 6.7.

Multiple sources. In the preceding paragraphs we assumed a single
data source learning the optimal routes to all sinks. However, our goal is to
consider multiple sources. Such a situation, in fact, speeds up the conver-
gence process in terms of the number of messages each sink must generate to
reach convergence. Consider a network with 2 sources sending data at the
same rate to 3 sinks. In this case, nodes on the routes between both sources
and the sinks receive double feedback from forwarding data packets from
both sources. This is because we deliver feedback using broadcast, thus it
is received by all neighboring nodes.

5.2. Correctness of Froms

The correctness of Froms derives from the definition of the adapted
Q-Learning model in Section 4. The goal is to show that after convergence,
the Q-Values of the full actions at any node accurately reflect the hop-
based costs. We use simple induction to sketch the proof, first showing the
correctness of Froms for one sink, then expanding to multiple sinks.

Assumptions. We assume perfect communication, a static network,
and the Q-Value calculation and update equations from Section 4.

Initial step. The induction starts at the sinks where we define the cost
of the sinks to route to themselves to be 0, since no forwarding is required.
Thus, the reward of the sinks for routing to themselves is, from Equation 5,
r = 0 + ca where ca = 1. For γ = 1, neighbors update the Q-Value for the
corresponding sub-action to Q = r = 1, which we know is the correct cost
of the sub-action since the sink is exactly one hop away.

Induction step. Assume that a node N (a sink or any other node)
has a correct estimation of the cost to the sink QN . Its reward is always
computed as r = minaQ(a) + ca, where minaQ(a) is necessarily the above
QN and ca = 1. When node N sends its reward to its direct neighbors, they
will update their corresponding Q-Values for this node to QN + 1, which is
the correct estimation of the cost through node N , since they are exactly
one hop further away from the sink than node N . Thus, for any node N
with correct estimations of the cost, its direct neighbors also receive correct
cost estimations when a reward is sent.

With this, we have shown that Froms converges to the correct hop-based
costs for one sink in the network. In fact we know that Froms is correct
for one sink also because of the sink announcement propagation. During
this network-wide broadcast, every node easily learns about the best routes
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in terms of hop count to a single sink. Thus, we have both a practical and
a theoretical proof that Froms converges to the correct costs for one sink.
This is the beginning of the sketch of the second induction proof, which
shows that Froms converges to the correct hop-based costs also for more
than one sink.

Assume a network with 2 sinks where the Q-Values to reach each sink
individually have converged at all nodes (according to the above discussion).
For simplicity we label the sinks A and B. The costs of B to reach itself is
0 and to reach sink A is a constant v = minaQB(a), which is the minimum
Q-Value for A at node B. Thus, the cost of reaching both A and B at B
is 0 + v and the reward of B is rB = (0 + v) + ca = v + 1. The direct
neighbors of B will update their own Q-Values to this reward value, which
is the correct cost: they need one hop to reach sink B and further v costs
to reach sink A. This trivially extends to the next hops, as done above. It
also intuitively extends to more than 2 sinks.

Optimality. Combining the results for convergence of Section 5.1 with
the correctness above shows that Froms converges to the correct hop-based
costs of the routes after a finite number of steps and thus finds the optimal
route(s).

5.3. Memory and processing requirements

Two final aspects to consider are the memory and processing require-
ments at each network node.

Specifically, each node must store all locally available routes. Following
Equation 6, the expected storage isO(Y D). The required processing includes
selecting a route and updating a Q-Value. The first function requires, in the
worst case, to loop through all available routes to compare them in terms of
their costs and is thus bounded by O(Y D). Updating a Q-Value is itself an
atomic action: given the old Q-Value and the reward, it calculates the new
one. Assuming a data structure, organized by neighbor, this yields a worst
case for searching O(Y +D).

Note again that the memory requirements for each node do not depend
on the network size, but on the number of neighbors. For networks with
reasonable densities, the needed memory requirements are moderate, and
for high density scenarios we have developed special pruning techniques,
described in Section 6.4.
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6. Protocol implementation details

The implementation outlined in this section is based on the reinforce-
ment learning model of Section 4 and introduces practical elements such as
event-based processing and data structures tuned to the resource restricted
environment of WSNs.

Pseudo-code of the Froms protocol is given in Figure 4 and can be con-
sidered as three interleaved processes: sink announcement and initialization
of routes (lines 1-4), selection of routes (lines 9-11), and learning and feed-
back (lines 8, 13 and 18). Concrete explanations and implementation details
of all sub-processes of Froms are provided in the following sections.

1: on receive(DATA REQ req):

2: new = add nexthop(req.sinkID,req.neiID,req.costs);

3: if (new)

4: broadcast(req);

5: on receive(DATA d):

6: // snoop on all incoming packets

7: sinkControl.update(d.sinkStamps,d.neiID);

8: add feedback(d.feedback, d.neiID);

9: if (d.nexthops.includes(self))

10: // route packet to next hop(s)

11: routes = get possible routes(d.my sinks);

12: d.routing = strategy.select route(routes);

13: d.feedback = best route cost(routes);

14: broadcast(d);

15: else

16: // reward neighbors, even if not routing

17: d.routing = null;

18: d.feedback = 1;

19: broadcast(d.header);

20: end if

Figure 4: Froms pseudocode.

6.1. Sink announcement

As mentioned in the application scenario of Section 2.1, we assume each
sink announces itself via a controlled flooding of a DATA REQ message.
Each node broadcasts this message exactly once, ensuring it reaches all
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nodes and avoiding a broadcast storm. During this dissemination process,
initial routing information such as the number of hops to the sink is gathered
(lines 1-4 in Figure 4). Other information including position, battery status,
etc, can also be collected.

6.2. Feedback implementation

A key element of Froms is the exchange of feedback (rewards) among
nodes. This enables Froms to learn the global route costs and to use the
globally optimal ones. The feedback information, usually a few bytes in
length, is piggybacked on normal DATA packets (lines 13 and 18 in Figure 4),
a choice that offers multiple advantages: feedback is sent only on-demand
and only to local neighbors; and overhead is minimal because no additional
control packets are created. Note that feedback is accepted and route costs
are updated even if the feedback is negative indicating that the previously
known costs were better. This choice allows Froms to automatically handle
mobility and recovery. As feedback is received by all overhearing neighbors,
the learning process is faster than a unicast feedback sent only to the node
that originally transmitted the data packet.

Our feedback mechanism is in some ways similar to CTP’s [22] neighbor
exchange of ETX information, but with two differences that significantly
affect the behavior of the routing protocol. First, Froms feedback is pig-
gybacked in the headers of regular data packets and is overheard by all
neighbors, avoiding control packets or beacons even in unstable scenarios.
While CTP also exploits this process and uses data packets to relay rout-
ing information, it uses also beacons throughout its lifetime, even when the
network is stable. The frequency of sending beacons is lower, but never
zero, but increases the energy expenditure significantly. Second, precisely
because we piggyback feedback on data packets, feedback is exchanged only
in the areas of the network with routing activities. Uninvolved network
sectors remain silent, expending no energy. In contrast CTP’s feedback is
exchanged to both update the routing cost and to verify route correctness.
Any deviation of the CTP feedback costs from the currently known ones is
interpreted as arising from network failures or other significant changes and
triggers beacons throughout the subtree. Consequently, directly extending
CTP’s beacon-based recovery mechanism to multiple and/or mobile sinks
will likely trigger beacon storms in the updated areas, increasing conges-
tion. Further, costs will be updated at all nodes in the network. While this
is reasonable for convergecast scenarios, the overhead is not acceptable for
either unicast or multicast.
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6.3. Data structure API

One implementation challenge in Froms is to design an efficient data
structure to support multi-destination routing. This data structure is dif-
ferent from a typical routing table, such as the one in Figure 1, since it
not only holds next hop and cost information for individual sinks, but also
tracks the costs of shared paths to multiple sinks. In other words, we need
a data structure to hold the sub-actions described in Section 4.

The multi-destination routing data structure used by Froms must effi-
ciently and reliably implement the following interface:

add nexthop(sinkID, nexthop, cost)

This function is called when a DATA REQ arrives, or when feedback for an
unknown sub-action arrives. The second case occurs if sink announcements
are lost and a potential subsequent hop is unknown at the node. The first
time the unknown neighbor broadcasts a data packet the node will repair
its routing information.

add feedback(feedback, previous hop)

This is called every time the node overhears a data packet and updates the
stored cost for a known sub-action. If the sub-action cannot be found, it
should be recovered using add nexthop. As previously mentioned, costs are
always updated, even if the new value is worse than the stored cost, as is
expected when a node fails or a sink moves.

get possible routes(sinks)

This is called by the exploration strategy and returns all possible routes.
The routing strategy must then select one.

The initial version of Froms [15], implemented only in simulation, used
a data structure called the PSTree, Path Sharing Tree, as detailed in [44].
The main idea was to organize the sub-actions into full actions using a tree-
like structure. While this was intuitive and easy to describe, the PSTree
requires dynamic memory management. As this was not available on our
real sensor hardware (see Section 7.2 and [45]), we moved to the static,
table data structure as it is both simple and efficient to implement. The
most recent implementation of Froms, as presented here, leverages the so
called Path Sharing Table or PSTable. Additional implementation details
are available in [46].
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6.4. Route storage reducing heuristics

As noted in Section 5, storage for routes grow exponentially with the
number of sinks and polynomially with the number of neighbors. In practice
this means that for large numbers of sinks and neighbors we simply cannot
store all routes. The consequence is that we can no longer guarantee the
optimality of learned routes. However, near-optimality can be preserved by
wisely managing which routes to store and which to drop. In our previous
work we developed two pruning heuristics for the PSTree [15] and showed
that the optimality of Froms is only slightly affected, while the memory
requirements are reduced significantly. Interestingly, for the scenarios we
evaluate in Section 9, we did not need to apply any pruning heuristics, as
the full data structure fit comfortably in memory. Nevertheless, for scenarios
with higher densities, the pruning heuristics are a valuable tool for reducing
memory consumption.

6.5. Loop management

Because Froms explores non-optimal routes to find the globally best
route, it may choose a route with a potentially unlimited length. In other
words, it may be that a packet travels in a loop. We manage this problem
by adding a simple TTL (time-to-live) to all data packets. Implementation
details are available in [46].

6.6. Node failure and mobility management

Our Q-Learning based protocol has the innate ability to manage chang-
ing network conditions. They simply appear as feedback and Q-Values are
updated during the usual learning process. However, practical challenges
arise from the fact that increasing the costs of some route could either mean
a mobile sink is moving away or a sink is disconnecting. The first case is to
be expected, however the second will cause packets to loop as they travel
forever searching for non-existent sinks.

Properly managing mobility can be described in two steps: identification
of node failures and maintaining sink freshness. The first is used also for
general neighbor failure recognition and is accomplished by simply keeping a
timestamp at each node of when it last overheard a packet from each neigh-
bor. If the timestamp becomes too old (a parameter), then the neighbor is
considered dead. A special case arises when the failing neighbor was a sink.
In this case, the direct connection to the sink might have been lost, but the
sink could be still alive and moving away. To identify this situation we also
keep a timestamp for each sink. Direct neighbors of the sink propagate the
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last time they overheard a packet from a sink to inform other nodes that
the sink is still alive. Recall from Figure 4, lines 18-19, that sinks implicitly
acknowledge the receipt of data packets when sending feedback.

With these two interleaved mechanisms, neighbor failure detection and
sink freshness tracking, each node assesses its neighborhood and can choose
to use alternative routes, to re-learn optimal routes or to stop data delivery
to some sinks. For example, when a node, A, deletes a neighbor, D, because
of D’s freshness value, A also deletes all routes that include D. However,
alternate routes remain with up-to-date Q-Values that can be selected by A
immediately to route messages. Recall that each forwarded packet contains
the reward, equal to the current, best available Q-Value. If the new, best Q-
Value at A is the same as before D’s deletion, A’s neighbors will not change
their Q-Values, even though the actual route has changed. If the reward is
worse (higher), A’s neighbors will update their costs and the updated values
will propagate on future packets until all nodes involved in routing update
their costs. Recall that only routing neighbors send feedback, thus limiting
the scope of the updates to those on the path as well as their neighbors that
overhear the feedback.

It is worth noting that our failure recognition mechanism is not part of
the Q-Learning protocol. It is simply a supporting module that sits beside
the routing protocol.

6.7. Low quality and asymmetric links

Another major challenge for any routing protocol is to handle low quality
and asymmetric links. A recent study has shown that a relatively high
percentage of links in real networks can be considered asymmetric or even
unidirectional [43]. Various link quality management protocols have been
developed either as stand-alone solutions (e.g. Arbutus [47]) or as part of
other routing protocols (e.g. CTP [22]). Their main goal is to evaluate
the link quality in both directions and provide this data to the higher layer
protocols, allowing them to avoid poor links.

Previous applications of RL to routing in WSNs (see Section 2.4) do not
exploit such protocols, but instead have assumed perfect links while simul-
taneously arguing that perfect links are not a requirement to find optimal
paths. Nevertheless, the behavior of RL protocols in the face of unreliable
links has never been demonstrated. Therefore, for our evaluation of Froms
we show that with realistic, unreliable links and without a link management
protocol, Froms does perform properly, learning the best routes.
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Despite our choice for this paper, a link quality protocol could efficiently
be integrated with Froms, as our protocol operates above the link layer and
can utilize its information. This is discussed in depth in Section 10.

6.8. Exploration strategies

The exploration strategy controls how Froms chooses between the avail-
able routes. It also controls the exploration/exploitation ratio, which is re-
sponsible for both finding the optimal route and minimizing routing costs.
In this section, we concentrate on how the exploration strategy fits into the
Froms implementation rather than what kind of exploration strategies are
possible. Section 7.4.2 discusses multiple strategies and evaluates them in
the context of the application scenario.

The exploration strategy is used at exactly one place in the Froms al-
gorithm: when selecting a route. After line 11 returns all possible routes
that meet the requirements such as decreasing the total hop count to the
sinks, the exploration strategy selects one route to use in line 12. For ex-
ample, a randomized strategy could decide with some probability to select
the optimal (lowest cost) route or to randomly select among all available
routes. Another exploration strategy might decide to use the optimal route
with some probability or to round-robin among all available routes, etc.

6.9. Cost functions

Similarly to the exploration strategies described above, the cost function
is a crucial part of Froms and here we explain how to implement it instead
of what kind of cost functions are appropriate, which instead is discussed in
Sections 7.4.2 and 10.

The cost function appears in the implementation in line 2 and is used
in lines 11 and 13. Line 2 registers next hops and their costs to the sink.
The cost can involve metrics such as battery level of the next hop, ETX or
hops to sink. Note that the storage of the cost components can be separate
to enable metric-specific requirements (e.g., never use a node with a battery
level lower than 10%, irrespective of all other metrics). However, to compare
routes based on costs, all metrics need to be combined in a single numerical
value, which is either stored separately or computed on the fly.

Line 11 uses the above cost components or total cost to select possible
routes to the sinks. Line 13 selects the best among all available routes to
reward the nodes’ neighbors and to enable learning. These three methods
are implemented in a modular way to enable easy substitution of the cost
functions.
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6.10. Summary

This section presented implementation details of Froms. The main pa-
rameters which need to be specified before deploying Froms are its cost
function and exploration strategies. We explore examples in Section 7.4.
Additionally, node failure management is required in nearly any WSN. How-
ever, all other presented modules represent special features, such as sink mo-
bility support or route pruning heuristics for extremely memory-restricted
hardware systems, and need to be deployed only when necessary. In the
following sections we present an extensive evaluation of Froms and all of
its components and features both under simulation and on real hardware.

7. Evaluation methodology and environment

In addition to the theoretical analysis of Section 5, we offer evaluation
through simulation and on real hardware to show the properties of Froms.
We show a wide range of metrics for many different network scenarios and
protocol parameters.

7.1. Simulation environment.

We use the OMNeT++ network discrete event simulator, together with
its Mobility Framework and probabilistic radio propagation model exten-
sion [48]. Unfortunately, this combination lacks a true energy expenditure
model and realistic MAC protocols, thus we implemented the following ad-
ditional simulation models:

• Linear battery model. A linear battery model that accounts for
different energy expenditures for radio sleeping, receiving and sending,
is sufficient for the evaluation of a routing protocol. We use the energy
expenditure model of Mica2 nodes, see Table 2.

• MAC protocols. We implemented BMAC [49] and LMAC [50] as
representatives of low power listening MAC protocols and TDMA
based protocols. Frame and slot durations were chosen experimen-
tally so that all traffic models are accommodated without MAC buffer
overflow. In LMAC we reserved 5 node IDs for mobile nodes to avoid
continuous slot changing.
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Layer Protocol/model Parameters

Application regular data report
data rate: every 10 sec

sink announcement: every 100 sec

Routing

Froms

see text
unicastDD

multicastDD

MSTEAM

Medium access

LMAC slots: 32

slot length: 60 ms

preamble length: 12 bytes

BMAC slot length: 50 ms

preamble length: 120 bytes

Energy Linear battery SLEEP: 36 mW

expenditure (Mica-2) RX, TX: 117 mW

Radio 1-Nakagami Carrier frequency: 868 MHz

propagation Signal attenuation threshold:

-110 dBm

Path loss coefficient alpha: 3

Max transmission power: 1 mW

Maximum transmission range:
300 m (calculated from above)

General Rectangular field Size: 2000 x 2000 m

Network Nodes: 50 – 200

Sources: 1 – 5

Sinks: 1 – 5

Table 2: Summary of simulation environment model for our experiments.

7.1.1. Simulation settings

Froms targets routing from one or few sources to multiple mobile sinks
in large networks. To show its performance in these application scenarios,
we defined the parameter settings of the simulation environment as shown
in Table 2. We place the nodes in a square field of 2000 x 2000 m and
set the radio transmission parameters to obtain a maximum transmission
range of approximately 300 m, thus obtaining networks with 5 to 7 hops in
diameter. Note that the real transmission range varies significantly, as the
radio propagation model is probabilistic-based.

We vary the number of nodes from 50 to 200, thus covering medium to
large networks. We vary the number of sources from 1 to 5 or approximately
2 – 10 % of the network nodes, which is reasonable for multicast scenarios.
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We vary the number of sinks from 1 to 5. With these settings, we cover a
large parameter space and the obtained results present sufficient information
to be able to predict the behavior of the protocol on even larger scales.

In terms of data rate, we fix it to 1 packet every 10 seconds, which is
reasonable for our low rate application scenarios. MAC protocol settings
are chosen such that no congestion ever occurs. We do not vary the data
rate, as the maximum supported throughout of the network depends more
on the MAC protocol than the routing protocol. Nevertheless, we evaluate
the processing time of Froms in a testbed in Section 7.2. How data rate
affects the mobility scenarios is discussed in Section 8.3.

7.1.2. Evaluation metrics in simulation

We selected five evaluation metrics to discuss the protocol behavior.
These metrics are gathered over the full network lifetime, including sink
announcements and learning, and are presented as the mean, normalized
values over at least 50 connected topologies and 30 random runs on each
topology.

• First node death is measured in seconds and represents the death of
the first node in the network. This is a standard metric that provides
a good measure of how long the network is guaranteed to perform, as
after the first node death the network behavior may be unpredictable
due to disconnection.

• Routing overhead is measured as the number of packet transmis-
sions for all nodes in the network. Again, this is widely used to evaluate
the length of the routing paths in the networks. Note that when using
a MAC protocol without retransmissions the routing overhead metric
is the same as the expected number of transmissions.

• Total energy spent for all nodes is measured in mW and gives a
broader picture of the routing costs than the routing overhead as it
also considers receiving and overhearing packets and node sleeping
times.

• Standard deviation of energy at first node death is used to
evaluate the ability of the routing protocols to spread the routing task
among all nodes in the network. High deviation implies poor spreading
with only few nodes carrying out the routing task, while low deviation
implies good spreading among all nodes.
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MSB430

Provider ScatterWeb, Berlin, Germany

Processor MSP430

Frequency 8MHz

Memory 5 KB RAM + 55 KB Flash

Radio ChipCon 1020

OS ScatterWeb2, TinyOS, Contiki, etc.

Other SD-card slot

Figure 5: Characteristics of the MSB430 sensor nodes

• Delivery rate is used to evaluate the performance of the protocols
in case of node failures and sink mobility. Higher delivery rates im-
ply up-to-date routing information at the nodes and faster recovery
(availability of backup routes).

We do not measure latency or throughput as these metrics are either
unreliable under simulation (latency is usually underestimated under simu-
lation) or are irrelevant for our application scenario (throughput).

7.2. Hardware testbed.

We implemented and tested Froms on a real hardware testbed consist-
ing of 10-15 MSB430 ScatterWeb [51] nodes. Their main characteristics are
summarized in Figure 5. We used the OS-like ScatterWeb2 library, which
provides interfaces for sending/receiving messages, setting timers, reading
sensory data, etc. We use the provided non-persistent idle CSMA MAC
protocol without acknowledgments. Further implementation details are pro-
vided in [45].

7.2.1. Hardware testbed settings

Our evaluation requires meaningful topologies, where multiple, non-
overlapping routes to individual sinks exit and their union is longer than
the optimal shared route. While such a scenario can be easily found in real,
large scale, sparse topologies, it is difficult to find in a testbed environment.
For example, in typical testbeds such as Harvard’s MoteLab [52], networks
have only 3-4 hop diameters with sporadic 5 hop links. Even in the later
case, individual routes often overlap.

A general solution is to use a link layer protocol to eliminate unreliable
links and at the same time increase the diameter of the network. However,
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Figure 6: Testbed topologies 1 (left) and 2 (right). Sinks are shaded. Source is node 6.
Mean RSSI values in dBm of links (in both directions) are provided for a sample run of
topology 1.

as discussed in Sections 2.3 and 6.7, one of the goals of this work is to show
that reinforcement learning based protocols such as Froms can, themselves,
efficiently cope with WSN-specific challenges such as packet loss and unreli-
able or asymmetric links. To preserve this requirement also in the hardware
testbed and at the same time achieve the required multihop topologies, we
turned to another solution. In the hardware testbed, we explicitly ignore
some of the available links. However, rather than eliminate only poor-quality
links, we randomly select links to ignore, resulting in topologies with varying
link qualities. To concretely illustrate this, the left of Figure 6 shows the
mean RSSI values obtained from a sample run of topology 1. It can be seen
that the quality varies significantly among links, and even some asymmetric
links are created.

Although our network topology and its link properties can be considered
typical for WSNs, there are scenarios in which transient links exist. While
Froms can generally handle such links, the overall performance of the sys-
tem will be increased with the usage of a link layer protocol or other means
of recognizing these links. This is discussed in detail in Section 10.2.

7.2.2. Evaluation metrics in hardware testbed

On the hardware testbed we re-use some of the evaluation metrics of
the simulation environment to allow for comparison between simulation and
hardware results. We also add metrics that are unreliable in simulation, yet
important for hardware experiments. Note that these metrics are gathered
for the full network lifetime, including sink announcements and learning.
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• Routing cost is measured as the mean number of hops per packet. We
differentiate between routing cost per generated packet and routing cost
per received packet to evaluate the protocol both in terms of the length
of the selected routes and delivery rate. We also give the theoretical
shortest route costs (the Steiner tree cost) as a point of comparison.

• Delivery rate is measured as the ratio between generated and re-
ceived (at the sinks) packets.

• Memory usage is measured in bytes of RAM and ROM. Our data is
obtained from the compilation process and includes all run-time data
structures, as they are all statically allocated.

• Processing time is measured as the time in milliseconds needed to
select a route to the sinks at the source node.

7.3. Comparative protocols.

To conduct a comparative analysis of Froms, we have implemented
three well known state-of-the-art routing protocols with similar goals and
application scenarios:

• Msteam [13] is a geographic multicast routing protocol. We consider
two versions. The original Msteam selects the next hop based on
two components: geographic progress to the sinks and the cost of the
link. The cost is calculated based on geographic distance between the
two nodes. However, since transmission cost is often constant in a
network (constant transmission power for all nodes), we implemented
also a simplified version Msteam-const, where the cost of any link
is considered 1 and the next hops are consequently selected only in
terms of their progress to the sinks.

• Unicast Directed Diffusion (uDD) [14] is a well-known, simple
and efficient routing paradigm in which each node builds gradients to-
wards the sinks. We label this version of Directed Diffusion ”unicast”
(or uDD for short), since we consider the original one-phase pull ver-
sion of the protocol, which was designed primarily to handle a single
sink. We also consider multicast Directed Diffusion (or mDD),
as explained next.

• Multicast Directed Diffusion (mDD) is a multicast-optimized
variation of uDD of our own design [53]. Instead of keeping only a
single best gradient for each sink (as in uDD), mDD keeps all best
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cost gradients and searches locally at the nodes for shared paths for
multiple sinks.

We compare the performance of all protocols under simulation, however
on the hardware testbed we have implemented only Froms and mDD. We
decided against the original Directed Diffusion primarily because it is de-
signed to support unicast. For Msteam, instead, the implementation is
processing and memory intensive and did not fit on the selected hardware.

When evaluating the protocols, we used the same application layer imple-
mentation. Additionally, each protocol populates its routing data structure
as sink announcements propagate, ensuring that all protocols are initialized
the same way and that none use other a-priori routing information, as it is
usual for geographic protocols.

7.4. Parameter settings for Froms

As discussed in Section 6, there are two important parameters of Froms
that need to be defined a-priori and can significantly change the behavior
of the protocol. Unlike traditional scalar parameters (such as link costs
in Msteam, see above), the exploration strategy and the cost function of
Froms allow the protocol to meet completely different optimization goals in
varying application scenarios and to perform cross-layer optimization with
other communication stack layers (see Section 10).

7.4.1. Cost function for mobile multicast

Recall from Section 2.1 that our core scenarios require multicast routing
towards multiple, mobile sinks. We assume a retransmission-free MAC pro-
tocol and no neighborhood management protocol. Thus, the best cost func-
tion to represent shortest paths is hop count. Note that with a retransmission-
free MAC protocol there is exactly one transmission per hop and therefore
the number of hops is equal to the number of expected transmissions (ETX).
Thus, we use the hop-based cost functions presented in Section 4.

7.4.2. Exploration strategy for mobile multicast

The exploration strategy must balance the potentially large cost to ex-
plore routes against the exploitation of the best ones. Many different ex-
ploration strategies are available in the reinforcement learning community,
each suitable to different settings. Unlike cost functions, which can be intu-
itively selected to meet some optimization goals (see the previous section),
exploration strategies require deeper evaluation, supported by experimen-
tation. We use both sample runs and a large parameter space evaluation

32



!" #" $" %" &" '"
"

&

!"

!&
()*+,-./01234!56..78-91:;-:.</.6=:>6.

?0.@0A

?.
/
01
23
4
-B
-:
.
<
/
-B
-C
D
E
A

-

-

temperature taken routes

best available routes

10 20 30 40 50 60
0

5

10

15
FROMS epsilon greedy 0.3

[secs]

[e
p
si

lo
n
 |
 t
e
m

p
 |
E

T
X

]

 

 

epsilon

taken routes

best available routes

FROMS epsilon greedy FROMS epsilon greedy 
with temperature

packets packets

ro
ut

in
g 

co
st

s 
[E

TX
]

ep
si

lo
n 

va
lu

e

ro
ut

in
g 

co
st

s 
[E

TX
]

te
m

pe
ra

tu
re

 [E
TX

]

worst case convergence:
~25000 packets

Figure 7: The route selection behavior at the source with different exploration strategies
in a sample 50 node topology with 3 sinks and 1 source.

to compare several exploration strategies in the mobile multicast scenario.
These evaluations help to select the best suited strategies for this specific
scenario, and provide us with intuition for alternate application scenarios.

In our preliminary studies [15], we applied two different techniques for
exploration: greedy and stochastic. The greedy strategy simply ignores
exploration and always chooses between the best available routes. Stochastic
exploration strategies on the other hand assign a probability to each of the
routes, depending or not on their current or initial Q-Values, and choose the
routes accordingly. These exploration strategies showed good results, but
are complicated to implement since they require updating the probabilities
after each reward.

Here, we turn to a new set of exploration strategies, motivated by the
need to make them more intuitive and efficient to implement.

ε - greedy. This strategy is the original Q-Learning strategy and is
simple to apply and implement: with probability ε select any of the available
routes; with probability 1− ε, select one of the best routes. Note that when
ε = 0 this becomes the greedy strategy from [15].

decreasing ε - greedy. This strategy is the same as the above, but
in addition, ε decreases over time. This is motivated by the observation
that typically, at the beginning of the execution, the Q-Values change a lot,
but with time these updates become more rare and eventually stop. After
convergence it is more appropriate for Froms to be greedy, since no changes
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are expected and the routing costs should be as low as possible. ε increases
again in case of failures or mobility. This strategy corresponds to a widely
used strategy in the RL community, where the learning constant decreases
with time.

ε - greedy with temperature. This strategy is again a variation of ε-
greedy, but instead of decreasing ε itself, it limits the set of routes presented
to the strategy. At the beginning, with high temperature T , all routes are
available, independent from their current Q-Values. With decreasing T ,
however, only routes with better Q-Values are presented and with T = 0
only the best routes are presented. ε remains constant and the temperature
is increased in case of failures or mobility.

uniform stochastic with stopping strategy. This strategy is the
best of our previously evaluated strategies [15] and is used for comparison.
It assigns the same probability to each sub-action and updates it every time
a reward arrives for it, decreasing it with neutral rewards, increasing it with
negative rewards, and leaving it the same with positive rewards. It stops
exploration completely after some number of continuous neutral rewards to
the node and starts it again with negative/positive rewards.

Figure 7 presents sample runs for ε-greedy and ε-greedy with tempera-
ture to further explain their behavior. It can be seen for both strategies, that
the best routes are found very quickly, specifically after only 2 packets with
ε-greedy and 8 packets when temperature is included. This should be com-
pared to the theoretical worst case described in Section 5, which is around
25,000 packets for the examined network. This large difference is due to
the initialization of the Q-Values in our protocol, which estimates the initial
Q-Values with the individual costs to the sinks. This speeds up learning
significantly as the real route costs are very close to the initial estimates.

Figure 8 shows an evaluation of all strategies in a simulation environ-
ment, normalized by decreasing ε-greedy. The deviation of the first node
death time is insignificant, never exceeding 1%. First we observe that the
differences between the exploration strategies are small: only a few percent-
age points for network lifetime (shown as time to first node death in the left
plots) and 10% for routing overhead (shown in the right plots). From this,
we conclude that a simple to implement and tune exploration strategy such
as ε-greedy or decreasing ε-greedy is a reasonable choice. This choice is also
supported by the absolute performance of these two strategies as in most
cases they show the lowest routing costs and the longest network lifetimes.
This is particularly clear in the cases of increasing network sizes and num-
ber of sources in the network. Only as the number of sinks increases does
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Figure 8: Evaluation of exploration strategies. The network consists of (top) 50 nodes, 1
source and 1-5 sinks; (middle) 50 nodes, 1-5 sources and 2 sinks; (bottom) 50-200 nodes,
1 source and 2 sinks.
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ε-greedy seem to perform not as well, nevertheless, it remains similar to the
other more sophisticated strategies.

Our experience in carrying out these simulations and the results support
our hypothesis that reinforcement learning and machine learning in general
can be easily and efficiently implemented on memory and processing re-
stricted sensor nodes. In the rest of the our evaluations we use only ε-greedy
and decreasing ε-greedy.

8. Evaluation of FROMS via simulation

Next we turn to the performance comparison of Froms against three
state-of-the-art routing protocols: multicast Directed Diffusion (mDD), uni-
cast Directed Diffusion (uDD) and Msteam, whose details are provided in
Section 7.3. We fist show scalability in terms of the number of sinks, sources
and network nodes. Then we turn to specialized scenarios such as node fail-
ure and mobile sinks.

8.1. Scalability analysis

First we evaluate the scalability of Froms in terms of the number of
sinks, sources and network nodes. Results in Figure 9 are normalized by
the first point of Froms decreasing ε-greedy (specifically for one sink, one
source, and 50 nodes). Such normalization allows us to simultaneously of-
fer scalability and comparative analysis. Results for Froms ε-greedy are
omitted since they overlap with those from Figure 8.

Overall, our simulations show that Froms spends the least amount of
energy across all networks for all parameter settings. These benefits arise
from two factors: first, its ability to find optimal multicast routes and second,
its limited use of broadcast sink announcements.

In comparison, the high energy consumption by Msteam arises from
face-routing to avoid void areas, which tends to create long routes. As all
packets follow the same face-routed path, these long routes incur excessive
overhead, while instead the reinforcement learning techniques in Froms
avoid cases where the packet would be sent to the void nodes and back.
Notably, Msteam-const which assumes a constant cost for communication
between any two nodes performs better than the original Msteam. This is
because the original Msteam uses a special cost function that increases the
cost when sending a packet longer distances, forcing the protocol to take
many, short hops. Instead, in deployments where the radio transmission
power is often fixed, longer hops lead to overall energy savings, even when
considering retransmissions.
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Figure 9: Evaluation of total spent energy and standard deviation of remaining energy
after the first 2000 seconds. The network consists of (top) 50 nodes, 1 source and 1-5
sinks; (middle) 50 nodes, 1-5 sources and 3 sinks; (bottom) 50-200 nodes, 1 source and 2
sinks.
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In terms of the overall scalability, we note that all protocols scale well
with all network parameters. This is due to their localized nature, which
makes them independent with respect to the size of the network or the
number of sinks and sources.

In summary, Froms achieves between 10 and 22% longer network life-
times in terms of first node death, incurs around two times less routing
overhead, spends between 5 and 15% less energy, and shows 2 to 3 times
lower standard deviation among the remaining node energies. Plots for life-
time and routing support the observations made here but are not shown
due to space reasons. We also compared the performance with LMAC and
BMAC, achieving similar results.

8.2. Recovery after failure

A challenging situation arises when one or more nodes fail. Routes from
sources to the sinks need to be repaired as quickly as possible to prevent data
loss. To study the behavior of the analyzed routing protocols in this situation
we conducted simulations in which we assign lower initial battery levels to
a random subset of nodes, causing them to fail prematurely. We consider
this scenario more realistic compared to a controlled killing of nodes at some
predefined time, since in real deployments nodes do not die simultaneously.

Figure 10 shows the total energy spent and the delivery rate for all
protocols, with each point averaging 50 topologies with 30 different random
sets of failed nodes. We note that we ignore the results where the failures
resulted in disconnected topologies, as in such scenarios the data cannot be
delivered. The standard deviation is 2-3.3%.

For both metrics, Froms achieves the best performance. This is due to
its ability to recover quickly after node failures. As explained in Section 6.6,
it tracks which neighboring nodes are responding. In case some neighbor
is no longer reachable, Froms switches to the next best route. The new
costs are propagated as feedback through the network and the new, best
routes are learned at all affected nodes. This flexibility and innate ability
to handle topology changes are two of the main advantages of the Froms
learning mechanism.

In terms of energy expenditure, Froms ε-greedy performs best because
of its continuous exploration. Instead of exploring only on demand, ε-greedy
tracks all possible routes and proactively updates their costs. Thus, when a
failure is detected, not only an alternative route is available, but its quality is
up-to-date and the best possible route can be taken. Additional exploration
and taking non-optimal routes is avoided, delivery rate is increased because
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Figure 10: Comparison of delivery rate and spent energy for different routing protocols
with varying number of failed nodes in the network. The network consists of 50 nodes, 1
source and 3 sinks

of shorter routes (Figure 10 right), and spent energy is minimized (Figure 10
left).

Similarly, mDD also monitors the neighborhood and maintains alterna-
tive routes. Its delivery rate is 2-5% less than that of Froms due to the
learning behavior of Froms. On the other side, Msteam-const uses longer
routes that incur more packet loss. Additionally, the neighborhood failure
detection is less efficient as Msteam uses the same route over and over.
Thus, in the case of failures of some nodes on a route, the route will still be
used until the failure detection module deletes the neighbor. Only then will
an alternative be used, which might again have failed. In contrast, mDD
and Froms use same-cost alternative routes in a round-robin manner and
thus spread the risk of taking a failed route. For uDD the scenario becomes
even worse, since it relies on a single route which needs to be updated by
sink announcements.

In summary, keeping alternative routes, using shortest possible routes,
and keeping track of the real length of all available routes (not only of the
shortest ones), are good strategies to quickly recover after failures.

8.3. Sink mobility

Another challenging situation arises with mobile sinks whose mobility
models are unknown, e.g., rescue workers in a disaster recovery scenario.
The routing protocol needs to detect this situation, to differentiate it from
node failures and to maintain the routes to ensure continuous data delivery.

To evaluate the behavior of the routing protocols in such a scenario,
we designed two different experiments: one with different numbers of mo-
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Figure 11: Evaluation of all routing protocols with various number of mobile sinks with
constant velocity of 1m/sec (top) and with various velocities of the mobile sink (bottom).
The network consists of 50 nodes, 1 source and 3 sinks (of which 1 to 3 are mobile).

bile sinks, and a second with different sink velocities. In both cases, the
sinks move according to the random waypoint model. The experiments
were conducted over 50 random topologies, with 10 random runs on each
and achieved a standard deviation of 1.6− 1.9%.

The results from the first experiment with a single source are presented
in Figure 11 (top). The total number of sinks is fixed at 3, and we vary the
number of mobile sinks from 1 to 3, leaving the rest static. Sink velocity is
constant at 1m/s. The frequency of sink announcements is one of the factors
influencing the ability of mDD, uDD, and Msteam-const to maintain
correct, short routes to mobile sinks. Therefore, we experimented with two
different frequencies, sending a sink announcement every 50 or 100 seconds.
With the higher frequency, the delivery rate increased as expected (top
right), but correspondingly the energy consumed also increased (top left).
However, energy expenditure increases non-proportionally to the achieved
gain in delivery rate, thus it is not worthwhile.
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In terms of energy expenditure (Figure 11 top left), all protocols scale
well with an increasing number of mobile sinks. The reason for this is simple:
the mobility of the sinks does not invoke any additional mechanisms, such as
re-transmissions, which might influence the energy expenditure. However,
it can be clearly seen that for all protocols the delivery rate drops with
multiple mobile sinks (top right). This is because the mobility affects the
quality of the selected links and some links disappear.

Among the selected protocols, Froms has the lowest energy expenditure
and still achieves the best delivery rates. This is due to several factors: there
are no regular retransmissions of sink announcements, data traffic is routed
along shorter paths, and the learning mechanism keeps the routes up to
date. As in our previous experiments, mDD and Msteam-const perform
similarly better, while uDD spends the most energy and achieves the lowest
delivery rate.

In our second experiment presented in Figure 11 (bottom) we vary the
velocity of a single mobile sink from 0.5m/s to 5m/s, corresponding to slow
human walking (2km/h) and slow vehicle movement (20km/h). In terms of
energy expenditure (Figure 11 bottom), the behavior of the routing protocols
is the same as in the previous experiment. Froms has a significantly lower
energy expenditure, followed by mDD, Msteam-const, and finally uDD.
The reasons are the same as before.

The delivery rate trend in the case of higher velocities is also as expected,
dropping with higher velocities. This is due to the fact, that nodes route
data to the sink when it is already away from their transmission radius.
Froms performs slightly better due to its learning mechanism, which not
only substitutes the sink announcement re-broadcasts, but enables faster
recovery of routes. Notably, with very high velocity of the sinks the data
delivery will break completely and other, proactive mechanism from the side
of the sink will be needed for all protocols.

In summary, these experiments show clearly the innate ability of Froms
and its learning algorithm to quickly identify routes to mobile sinks, even
for the moderate velocity of 20km/h. Compared to the other routing proto-
cols, it spends significantly less energy, incurs less data traffic, and achieves
considerably higher delivery rates.

9. Evaluation of FROMS on the hardware testbed

To demonstrate concretely the feasibility of applying reinforcement learn-
ing on real WSN nodes with concrete restrictions on processing, memory,
and communication, we turn to testbed evaluation of Froms. The results
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Figure 12: Routing costs and delivery rates for Froms and mDD in various network
scenarios.

presented in this section conform to our simulation study and thus we do not
explore scalability issues here in terms of very large topologies or high num-
ber of sources. Instead, we concentrate on implementation and behavior.
The tested topologies have only one source node, as increasing the number
of sources will not affect the implementation complexity and will not add
significant value to the main objectives of this study.

We have implemented Froms with the ε-greedy exploration strategy and
our multicast version of Directed Diffusion [53]. We chose not to implement
uDD because it is fundamentally a unicast protocol. Further, our initial
implementation of Msteam failed due to its complexity (it simply did not
fit on our hardware platform).

9.1. Comparative analysis

First, we compare the routing performance of Froms and mDD on real
hardware in terms of delivery rate and routing costs, summarizing the results
in comparison also to an optimal Steiner tree in Figure 12. As expected
based on our simulation experiments and theoretical analysis, Froms incurs
lower routing costs. This is attributed to the learning algorithm that actively
explores the network for optimal routes.

In simulation we are unable to accurately measure delivery rates since
transmission failures cannot be reliably simulated. Here, instead, we confirm
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Figure 13: (left) Memory usage at compile time. (right) Processing time (milliseconds)
and min/max intervals to find a route in mDD and Froms.

our theoretical expectation that Froms is able to achieve a higher delivery
rate in any network scenario. Data is lost in mDD mainly due to the higher
network communication caused by the periodic sink announcements and the
longer routes to the sinks. These increase the traffic and collision probability,
leading to packet losses. Figure 12 supports these observations, showing that
the delivery rate of both protocols clearly drops in networks with larger
numbers of nodes and sinks.

9.2. Memory and processing requirements

Two of the main difficulties when implementing RL or in general ma-
chine learning based algorithms on sensor networks are algorithm efficiency
and complexity. To assess this complexity, we measured the memory require-
ments and needed processing time for both protocols, as shown in Figure 13.
The left shows the memory needs in terms of ROM and RAM memory. The
memory requirements of Scatterweb2, the operating system of the sensor
nodes, and of the implementation of acknowledgments are given for com-
parison. The right shows the measurements of the processing time to find a
route at the data source for 2 and 3 sinks respectively.

It is interesting to observe that the memory requirements for Froms are
not significantly larger than for mDD. Recall that both implementations of
Froms and mDD use static data structures because there is no dynamic
memory management implementation for the MSB430 platform. No route
storage heuristics are used for Froms, and all possible routes are kept at
all times. Therefore the data structures are already included in the memory
footprints of Figure 13. Although Froms’s data structures are more complex
and larger than the routing table of mDD, its memory requirements are not
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significantly larger. mDD has a small data structure, but the space required
for the implementation is non-negligible. When analyzing this difference we
realized that the complexity of the protocols comes not from the routing data
structures, but from trivial functionality such as constructing and analyzing
packets, constructing routes, passing packets to the application and to the
MAC layer, etc.

Additionally, we wanted to know how long it takes for both protocols
to find a route for a packet. We suspected that Froms would need more
time because of the higher complexity of its data structure and the need to
iterate through all possible routes. However, as Figure 13 right shows, this
difference is less than 10% for 2 and for 3 sinks.

These results are an important demonstration of the applicability of
Froms and in general of reinforcement learning based communication pro-
tocols on real hardware. They show that Froms is easily implementable
and that its memory and processing requirements are negligibly higher than
those of a very simple routing protocol such as mDD.

10. Adjustments and Further Applications of FROMS

As pointed out in previous sections, Froms is more than a single, specific
routing protocol – it is routing paradigm. It can be applied to a multitude
of application scenarios, reach various optimization goals and integrate with
different communication stacks. In this section we discuss some of these
options and outline which changes or adjustments are required for Froms
to be successfully applied.

10.1. Application requirements

Froms has been designed in a modular way with a variety of components
that can be tuned, modified or replaced to meet application needs. The
cost function can be defined to incorporate a critical application resource,
such as remaining battery power. Similarly, the routing overhead can be
tuned by changing or tuning the exploration strategy. This section discusses
how to select appropriate cost functions and exploration strategies to match
application requirements, first addressing changes in the application scenario
such as the number of sources or sinks.

10.1.1. Application scenarios

While the version of Froms presented here targets multicast applica-
tions, other scenarios are also possible. Unicast can be seen as a special
case of multicast with a single sink and is thus trivially supported. Notably,
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the implementation will be memory and processing efficient, as the stored
routing information regards only a single sink. Some cost functions (e.g.
hops) will perform similarly to non-RL-based protocols, such as uDD with
the additional advantage that such a unicast-Froms will handle mobility
and failure recovery.

Convergecast is also a special case of the multiple source scenario eval-
uated in the previous sections, and requires no changes to Froms. Note,
however, that a convergecast towards multiple sinks can be solved in a more
efficient way than routing to all sinks simultaneously. In this situation, it
is nearly always more efficient to route data to a single, master sink, which
then disseminates the data to all other sinks.

10.1.2. Cost functions

Recall from Figure 4 that the cost function is exploited by lines 2, 11
and 13 for respectively setting route costs, identifying viable routes, and
choosing a single route.

Table 3 offers alternate cost metrics, together with the optimization goals
they meet and their properties. Some functions are static while others are
dynamic, referring to whether or not, in a static network, the function varies
over time. For example, geographic distance between nodes does not change
in a static network, thus this function is identified as non-dynamic. Latency,
however, can change over time.

The choice of a cost metric is very important for the final behavior of
Froms. While throughout this paper we have concentrated on hops for
comparative and readability reasons, some of the cost functions in Table 3
might be better suited for some real world deployments. Fro example, the
existence of bursty, long range sporadic links, which temporarily provide
shorter paths in the network, are of particular interest. On one hand, these
shorter paths can be successfully exploited for minimizing the While most
of the cost functions in Table 3 involve only a single metric, some combine
several metrics. Here we concentrate on one example that incorporates
both remaining battery levels and hop counts to find the shortest routes
with high remaining energy levels on the forwarding nodes. This example
demonstrates how a complex cost metric can be naturally used with Froms.

Fundamentally, the cost function is used to calculate Q-Values, and in
this case, we define a function, f , to combine hop count and battery infor-
mation into a single Q-value:

Qcomb(route) = f(Ehops , Ebattery) (10)
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Cost function Calculation
of initial
values

Optimization goal Dyna-
mic

Best
Q-
Values

simple functions

Hops
∑

hops shortest shared path (Steiner
tree)

no lowest

ETX
∑

ETX lowest number of expected
transmissions (reliable short-
est paths)

yes lowest

Latency
∑

latency least latency path yes lowest

Transmission en-
ergy

∑
energies least energy path no lowest

Geographic dis-
tance

∑
dist shortest shared path no lowest

Aggr. rate
∑

rates maximum compression path no highest

... ... ... ... ...

combined functions

Hops & rem.
battery of nodes

∑
hops ·

hcm(bathops)
shortest shared path through
nodes with high battery

yes lowest

... ... ... ... ...

Table 3: Different possible cost metrics for Froms and their main properties.

where Ehops is the estimated hop cost of the route, calculated as in our
previously defined Equations 1 and 2, and Ebattery is the estimated battery
cost of this route, which we define as the minimum remaining battery among
all nodes along the route.

The function f based on a simple function:

f(Ehops , Ebattery) = hcm(Ebattery) · Ehops (11)

where hcm is the hop-count-multiplier, a function that weights the hop
count estimate according to the remaining battery. For simplicity we drop
the “estimation” and denote the Q-Value components as hops and battery .

Figure 14 shows four different hcm functions. If the battery level is
completely irrelevant, then hcm(battery) is a constant and f(hops, battery)
is reduced to a hop-based function only. Instead, if the desired behavior is
to linearly increase f as the battery levels decrease, a linear hcm function
should be considered. Figure 14 shows two linear functions. The first (la-
beled linear), has minimal effect on the routing behavior. For example, a
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Figure 14: Hop count multiplier (hcm) functions achieving different optimization goals.

greedy protocol that always uses the best (lowest) Q-Values available, when
faced with two routes with f(1, 10%) = 1.9 and f(2, 100%) = 2, will se-
lect the shorter route even though the battery is nearly exhausted. Even
when faced with longer routes of length 2 and 3 respectively, it will use
the shorter route until its battery drops to 40%. Only when their values
become f(2, 40%) = 3.2 and f(3, 100%) = 3, the protocol will switch to
the longer route. Thus, this trade-off of weighing the hop count of routes
(their length) versus the remaining batteries must be taken into account
when defining hcm.

The main drawback of linear hcm functions is that they do not dif-
ferentiate between battery levels in the low and high power domain. For
example, a difference of 10% battery looks the same for 20 − 30% and for
80−90%. Thus, to meet our goal of spreading the energy expenditure among
the nodes, we require an exponential function that starts by slowly increas-
ing the value of hcm with decreasing battery, initially giving preference to
shorter routes. However, as batteries start to deplete, it should more quickly
increase hcm in order to use other available routes, even if they are much
longer, thus maximizing the lifetime of individual nodes. Of course, such a
function gives preference to longer energy-rich routes, and will increase the
per packet costs in the network.

We further explored the behavior of our battery-hop function experimen-
tally to confirm that it meets its optimization goal. The results are presented
in Figure 15. In the left graph, by comparing the same exploration strategy
with and without the battery component, it can be seen that the inclusion
of battery information reduces the mean energy level by up to 10% at first
node death, meeting the intended goal. This comes at the price of slightly
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Figure 15: Comparison of two cost functions: hop-based cost and hop-battery based cost.
The network consists of 50 nodes, 1 source and 3 sinks. All experiments use LMAC
(BMAC experiments yielded similar results)

longer routes, as can be seen in the right plot. It is worth noting that we
selected the hcm function to switch to longer routes only if the difference
in the remaining batteries is large. Depending on the given optimization
goal a more aggressive hcm can be chosen, further spreading the spent en-
ergy among the nodes and likely increasing more significantly the routing
overhead.

10.1.3. Exploration strategies

Recall from Section 6.8 that the task of the exploration strategy is to
choose between the available routes. It also controls the exploration/ ex-
ploitation ratio, which is responsible for both finding the optimal route and
minimizing routing costs. Section 7.4.2 presented an evaluation of four dif-
ferent exploration strategies and provided intuition on their properties. The
main insight from this evaluation was that the exploration rate of ε-greedy
is the most important parameter to tune. Generally speaking, if the ap-
plication scenario is very dynamic and the network topology changes often
(e.g., in case of mobility), ε must be high in order to react more quickly. In
an opposite scenario, when the network is static most of the time and only
node failures generate dynamicity, a low ε is appropriate. If the dynamic
nature of the network is expected to be sporadic, ε-greedy with temperature
or decreasing is the best option.

The selected exploration strategy also depends on the chosen cost func-
tion. Dynamic cost functions imply dynamic networks and the above sug-
gestions need to be considered.
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10.2. Cross-layer optimization

To make the Froms design as general as possible, we place very loose
requirements on the remainder of the communication stack, such as MAC
protocols or link layer management (see Section 2.3). However, sophisticated
protocols at these layers would increase the performance and reliability of
the complete system, for example in the presence of transient links in the
network. Here we discuss the MAC and link layer.

Medium Access Protocols (MAC). The MAC protocol controls ac-
cess to the medium and generally decides when to send/receive messages
or to put the radio to sleep. Various protocols have been developed for
WSNs [19]. Froms is independent of the implementation details of the
MAC protocol and generally can be used with any of them. However, there
is space for cross-layer optimizations at both sides. Relevant features are
automatic re-transmissions, acknowledgments and schedules.

If re-transmissions are implemented at the MAC layer the Froms cost
function should be adapted. For example, instead of counting the number
of hops to the sinks, ETX becomes a more meaningful metric. On the other
side, a re-transmission based MAC protocol can be optimized in terms of its
acknowledgment mechanism. Froms always sends rewards to its neighbors,
thus, rewards can be used by the MAC protocol instead of an additional
specialized ACK packet.

TDMA based MAC protocols employ schedules to send/receive mes-
sages, e.g., LMAC. In this scenario, latency becomes a meaningful metric,
since a route may be short in terms of hops or ETX, but the latency may
be large due to scheduling at the MAC layer.

Unicast-focused MAC protocols pose challenges to Froms, as it exploits
broadcast to allow neighbors to overhear at least the header of every packet.
One option is to use the broadcast modes provided by these protocols, how-
ever this will likely incur a higher energy cost. Another possibility is to send
Froms rewards only to the previous hop (unicast), thus inhibiting learning
at overhearing nodes. The tradeoff between fast learning and energy savings
with unicast messages must be carefully evaluated.

Neighborhood (link) management. Section 2.3 assumed no link
layer protocol is used in combination with Froms. This allowed us to
present a clean design and evaluation for Froms without cross-layer issues.
However, such a protocol will further optimize the performance of the sys-
tem by providing link quality information. Froms can easily accommodate
such a protocol by using all relevant neighbor data provided by the link
management.
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For example, a link layer protocol can efficiently recognize and handle
transient links in the network. Transient links pose difficult challenges to
any routing protocol, as they confuse the routing metric with the presence of
short-lived, highly efficient or short routes. Many routing protocols immedi-
ately switch to these routes, eliminating all others. When the transient links
disappear, such protocols fail quickly. Froms is inherently better suited to
handle transient links, as it keeps secondary routes and quickly accommo-
dates both new and lost links. Nevertheless, even the performance of Froms
will be improved if extremely transient links are recognized and eliminated
at a lower level. This can be done by using various metrics at the link layer
level, such as RSSI, LQI, packet delivery rate, etc.

On the other side, link layer protocols typically exploit beacons to main-
tain the freshness of the link information, e.g., the adaptive beaconing of
CTP offers a tradeoff between freshness and additional cost. We can consider
further optimizing adaptive beaconing by utilizing the rewards of Froms
and minimize the number of injected beacons.

11. Future directions and open issues

Current routing protocols, including Froms, consider route character-
istics based on the properties of the nodes involved in routing, such as the
number of hops, remaining battery levels, etc. However, during our work
on Froms we observed that the properties of the neighboring nodes are
equally important: e.g., a node that is a neighbor of two independent routes
drains its battery twice as quickly as the forwarding nodes due to message
overhearing from both routes. In the future we plan to incorporate this
observation into our model and spread the battery expenditure among all
nodes, whether they are involved in routing or not.

In this paper we were able to evaluate the performance of Froms only
in one application scenario, namely mobile multicast. While we discuss how
to use Froms in other environments, the implementation and evaluation
work remains to be done. We plan, for example, to adapt Froms to the
convergecast static scenario and compare it against state of the art routing
protocols such as CTP.

This paper presented two important contributions. First, it introduced
and evaluated Froms, a highly flexible and robust multicast routing proto-
col. The results achieved under various environments and network scenarios
clearly demonstrate its outstanding performance compared to three state
of the art routing protocols. However, even more importantly, this paper
demonstrated the applicability and the potential of machine learning for
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solving hard problems in WSNs. We showed that learning can be efficiently
implemented on real WSN hardware, that it is fully distributed and that it
achieves better results in uncertain and unreliable environments compared
to any traditional routing protocols. Encouraged by these results and the
experience gathered with Froms, we plan to apply reinforcement learning
and other machine learning techniques to other WSN problems. Among the
possibilities, we intend to explore their potential for clustering, neighbor-
hood management, medium access and data modeling.
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