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Abstract
Mobility poses peculiar challenges that must be addressed by novel programming constructs. LIME (Linda in

a Mobile Environment) tackles the problem by adopting a coordination perspective inspired by work on the Linda
model. The context for computation, represented in Linda by a single, globally accessible, persistent tuple space,
is reinterpreted in LIME as the transient sharing of the tuple spaces carried by individual mobile units. Additional
constructs provide increased expressiveness, by enabling programs to deal with the location of tuples and to react
to specified states. The resulting model provides a minimalist set of abstractions that promise to facilitate rapid and
dependable development of mobile applications. In this paper, we illustrate the model underlying LIME , present the
programming interface of the companion middleware, and discuss how applications and higher-level middleware
services can be built using it.

1 Introduction

Distributed computing has been traditionally associated with a rather static environment, where the topology of the
system is largely stable, and so is the configuration of the deployed application components. Today, this vision is
being challenged by various forms of mobility, which are effectively reshaping the landscape of modern distributed
computing. On one hand, the emergence of wireless communication and portable computing devices is fostering
scenarios where the physical topology of the system is continuously modified by the free movement of the mobile
hosts, whose wireless communication devices enable them to dynamically create and sever links based on proximity.
In its most radical incarnation, represented by mobile ad hoc networks (MANET), the system is entirely constituted
by mobile nodes, and the fixed network infrastructure is totally absent. Together with this physical mobility of hosts,
another form of mobility has emerged, where the units of mobility are program fragments belonging to a distributed
application, and are relocated from one host to another. This logical mobility of code brings unprecedented levels of
flexibility in the deployment of application components, and in some domains enables significant improvements in
the use of communication resources.

Mobility undermines several common assumptions. Disconnection is no longer an infrequent accident: in appli-
cation involving physical mobility it is often triggered by the user in order to save battery power, and hence becomes
a defining characteristic of the environment. The fluidity of the physical and logical configuration of the system
renders impractical—and often impossible—to make assumptions about the availability of a specific user, host, or
service. In general, the computational context is no longer fixed and predetermined, rather it becomes continuously
changing in largely unpredictable ways. As a consequence, a large fraction of the body of theories, algorithms, and
technology must be recast in the mobile scenario. Application development requires appropriate constructs and
mechanisms to accommodate the required level of dynamicity and decoupling required to cope with mobility. Nev-
ertheless, thus far the problem has been tackled only in a limited context. Pioneering work in mobile computing
aimed at supporting mobility at the operating system level (e.g., the work on Coda [13]) or for specific application
domains (e.g., repository-based in Bayou [28]). On the other hand, many commercial applications mask mobility
by relying on a proxy architecture, but assume the existence of a fixed infrastructure. Clearly, these approaches are
limited in that they solve issues that are specific for a given application domain, or do not address unconstrained
mobile settings.

LIME (Linda in a Mobile Environment) [21, 16] is a model and a middleware expressly designed for supporting the
development of mobile applications. In contrast with many of the existing proposals, LIME provides the application
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programmer with a set of general-purpose programming constructs and, by adopting a peer-to-peer architecture
that does not rely on any fixed infrastructure, it addresses the needs of the most radical forms of mobility, including
MANETs.

The design of LIME is inspired by a coordination perspective. Coordination is defined as a style of computing that
emphasizes a high degree of decoupling among the computing components of an application. As initially proposed
in Linda [9], this can be achieved by allowing independently developed components to share information stored
in a globally accessible, persistent, content-addressable data structure, typically implemented as a centralized tuple
space. A small set of operations enabling the insertion, removal, and copying of tuples provides a simple and uniform
interface to the tuple space. Temporal decoupling is achieved by dropping the requirement that the communicating
parties be present at the time the communication takes place and spatial decoupling is achieved by eliminating the
need for components to be aware of each other’s identity in order to communicate. A clean computational model, a
high degree of decoupling, an abstract approach to communication, and a simple interface are the defining features
of coordination technology.

LIME reinterprets Linda within the mobile scenario in an original way. Each mobile unit is permanently associated
with a local tuple space, whose content is transiently shared with the content of similar tuple spaces attached to the
other units in range. Hence, the tuple space used for coordination is no longer unique, global, and persistent—
assumptions that macroscopically conflict with mobility. Instead, it is dynamically built out of the spaces contributed
by the mobile units in range, and reflects the current configuration of the system. Transiently shared tuple spaces
are the key to shielding the programmer from the complexity of the system configuration, while still being able to
handle effectively communication among application components. In addition, LIME defines constructs providing
increased expressiveness, by introducing the ability to react asynchronously to the presence of a tuple, and to control
the placement of a tuple and its access within the global tuple space. Finally, since no assumption is made about
the nature of the mobile units, the computational model naturally encompasses both physical mobility of hosts and
logical mobility of agents. The computational model is embodied in a Java-based middleware made available as
open source [27], that has been successfully employed for developing mobile applications.

In this contribution, we present LIME by focusing on the model concepts and the programming and design tech-
niques useful to the developer of mobile applications. Other available papers describe the design of the middle-
ware [16], and the formal semantics of the model [17].1 The chapter is organized as follows. Section 2 contains an
overview of the LIME model. Section 3 walks through a case study application, and shows how its requirements are
satisfied by relying on a design exploiting LIME . Section 4 presents instead some higher-level middleware extensions
to LIME that we built entirely as an application layer on top of the original middleware. Section 5 places LIME in the
context of related work. Finally, Section 6 ends the chapter with some brief concluding remarks.

2 LIME : Linda in a Mobile Environment

The LIME model [21] aims at identifying a coordination layer that can be exploited successfully for designing appli-
cations that exhibit logical mobility, physical mobility, or both. The design criteria underlying LIME come from the
realization that the problem of designing applications involving mobility can be regarded as a coordination prob-
lem [24], and that a fundamental issue to be tackled is the provision of good abstractions for dealing with, and
exploiting, a dynamically changing context. To achieve its goal, LIME borrows and adapts the communication model
made popular by Linda [9]. After presenting a concise Linda primer, the remainder of this section discusses how
the core concepts of Linda are reshaped in the LIME model and embodied in the programming interface of the corre-
sponding middleware implementation.

2.1 Linda in a Nutshell

In Linda, processes communicate through a shared tuple space that acts as a repository of elementary data structures,
or tuples. A tuple space is a multiset of tuples that can be accessed concurrently by several processes. Each tuple is a
sequence of typed fields, such as

�
“foo”, 9, 27.5 � , and contains the information being communicated.

Tuples are added to a tuple space by performing an �����
	��� operation, and can be removed by executing ����	��� .
Tuples are anonymous, thus their selection takes place through pattern matching on the tuple content. The argument
� is often called a template or pattern, and its fields contain either actuals or formals. Actuals are values; the fields of

1GP: Need the TR number
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the previous tuple are all actuals, while the last two fields of
�
“foo”, ?integer, ?float � are formals. Formals act like

“wild cards”, and are matched against actuals when selecting a tuple from the tuple space. For instance, the template
above matches the tuple defined earlier. If multiple tuples match a template, the one returned by ��� is selected non-
deterministically. Tuples can also be read from the tuple space using the non-destructive ����	��� operation. Both ���
and ��� are blocking, i.e., if no matching tuple is available in the tuple space the process performing the operation is
suspended until a matching tuple becomes available. A typical extension to this synchronous model is the provision
of a pair of asynchronous primitives ����� and ����� , called probes, that allow non-blocking access to the tuple space2.
Moreover, some variants of Linda (e.g., [26]) provide also bulk operations, which can be used to retrieve all matching
tuples in one step. In LIME we provide a similar functionality through the ����� and ��� � operations, whose execution
is asynchronous like in the case of probes3.

2.2 The LIME Model

Linda characteristics resonate with the mobile setting. In particular, communication in Linda is decoupled in time and
space, i.e., senders and receivers do not need to be available at the same time, and mutual knowledge of their identity
or location is not necessary for data exchange. This form of decoupling is of paramount importance in a mobile
setting, where the parties involved in communication change dynamically due to their migration or connectivity
patterns. Moreover, the notion of tuple space provides a straightforward and intuitive abstraction for representing the
computational context perceived by the communicating processes. On the other hand, decoupling is achieved thanks
to the properties of the Linda tuple space, namely its global accessibility to all the processes, and its persistence—
properties that are clearly hard if not impossible to maintain in a mobile environment.

2.2.1 The Core Idea: Transparent Context Maintenance

In Linda, the data accessible through the tuple space represents the data context available during process interaction.
In the model underlying LIME , the shift from a fixed context to a dynamically changing one is accomplished by
breaking up the Linda tuple space into many tuple spaces, each permanently associated to a mobile unit, and by
introducing rules for transient sharing of these individual tuple spaces based on connectivity.

The individual tuple space permanently and exclusively attached to a mobile unit is referred to as the interface
tuple space (ITS ) because it provides the only access to the data context for that mobile unit. Each ITS contains the
tuples the mobile unit is willing to make available to other units, and access to this data structure uses standard
Linda operations, whose semantics remain basically unaffected. These tuples represent the only context accessible to
a mobile unit when it is alone.

When multiple mobile units are able to communicate, either directly or transitively, we say these units form a
LIME group. We can restrict the notion of group membership beyond simple communication, but for the purposes of
this paper, we consider only connectivity. Conceptually, the contents of the ITSs of all group members are merged, or
transiently shared, to form a single, large context which is accessed by each unit through its own ITS . The sharing
itself is transparent to each mobile unit, however as the members of the group change, the content of the tuple space
each member perceives through operations on the ITS changes in a transparent way.

The joining of a group by a mobile unit, and the subsequent merging of its local context with the group context is
referred to as engagement, and is performed as a single, atomic operation. A mobile unit leaving a group triggers dis-
engagement, that is, the atomic removal of the tuples representing its local context from the remaining group context.
In general, whole groups can merge, and a group can split into several groups due to changes in connectivity.

In LIME , agents may have multiple ITSs distinguished by a name since this is recognized [6] as a useful abstraction
to separate related application data. The sharing rule in the case of multiple tuple spaces relies on tuple space names:
only identically-named tuple spaces are transiently shared among the members of a group. Thus, for instance, when
an agent ! owning a single tuple space named " joins a group constituted by an agent # that owns two tuple spaces
named " and $ , only " becomes shared between the two agents. Tuple space $ remains accessible only to # , and
potentially to other agents owning $ that may join the group later on.

Transient sharing of the ITS constitutes a very powerful abstraction, as it provides a mobile unit with the illusion
of a local tuple space that contains all the tuples coming from all the units belonging to the group, without any need to

2Additionally, Linda implementations often include also an %'&'(*) operation which provides dynamic process creation and enables deferred
evaluation of tuple fields. For the purposes of this work, however, we do not consider this operation further.

3Hereafter we often do not mention this pair of operations, since they are useful in practice but do not add significant complexity either to the
model or to the implementation.
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Figure 1: Transiently shared tuple spaces encompass physical and logical mobility.

know the members explicitly. The notion of transiently shared tuple space is a natural adaptation of the Linda tuple
space to a mobile environment. When physical mobility is involved, and especially in the radical setting defined by
mobile ad hoc networking, there is no stable place to store a persistent tuple space. Connections among machines
come and go and the tuple space must be partitioned in some way. Analogously, in the scenario of logical mobility,
maintaining locality of tuples with respect to the agent they belong to may be complicated. LIME enforces an a priori
partitioning of the tuple space in subspaces that get transiently shared according to precise rules, providing a tuple
space abstraction that depends on connectivity.

2.2.2 Encompassing Physical and Logical Mobility

In LIME , mobile hosts are connected when a communication link is available. Availability may depend on a variety
of factors, including quality of service, security considerations, or connection cost; all of which can be represented
in LIME , although in this paper we limit ourselves to availability determined by the presence of a functioning link.
Mobile agents are connected when they are co-located on the same host, or they reside on hosts that are connected.
Changes in connectivity among hosts depend only on changes in the physical communication links. Connectivity
among mobile agents may depend also on arrival and departure of agents, with creation and termination of mobile
agents being regarded as a special case of connection and disconnection, respectively. Figure 1 depicts the model
adopted by LIME . Mobile agents are the only active components; mobile hosts are mainly roaming containers which
provide connectivity and execution support for agents. In other words, mobile agents are the only components that
carry a “concrete” tuple space with them.

The transiently shared ITSs belonging to multiple agents co-located on a host define a host-level tuple space. The
concept of transient sharing can also be applied to the host-level tuple spaces of connected hosts, forming a federated
tuple space. When a federated tuple space is established, a query on the ITS of an agent returns a tuple that may belong
to the tuple space carried by that agent, to a tuple space belonging to a co-located agent, or to a tuple space associated
with an agent residing on some remote, connected host.

In this model, physical and logical mobility are separated in two different tiers of abstraction. Nevertheless, many
applications do not need both forms of mobility, and straightforward adaptations of the model are possible. For
instance, applications that do not exploit mobile agents but run on a mobile host can employ one or more stationary
agents, i.e., programs that do not contain migration operations. In this case, the design of the application can be
modeled in terms of mobile hosts whose ITS is a fixed host-level tuple space. Applications that do not exploit physical
mobility—and do not need a federated tuple space spanning different hosts—can exploit only the host-level tuple
space as a local communication mechanism among co-located agents.

Nevertheless, it is interesting to note how mobility is not dealt with directly in LIME , i.e., there are no constructs
for triggering the mobility of agents or hosts. Instead, the effect of migration is made indirectly manifest to the model
and middleware only through the changes observed in the connectivity among components. This choice, that sets the
nature of mobility aside, keeps our model as general as possible and, at the same time, enables different instantiations
of the model based on different notions of connectivity.

2.2.3 Controlling Context Awareness

Thus far, LIME appears to foster a style of coordination that reduces the details of distribution and mobility to con-
tent changes in what is perceived as a local tuple space. This view is very powerful, and has the potential for greatly
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Current location Destination location Defined projection
unspecified unspecified Entire federated tuple space
unspecified + Tuples in the federated tuple space and destined to +, unspecified Tuples in , ’s tuple space-

unspecified Tuples in
-

’s host-level tuple space, i.e., belonging to any agent at
-

, + Tuples in , ’s tuple space and destined to +- + Tuples in
-

’s host-level tuple space and destined to +
Table 1: Accessing different portions of the federated tuple space by using location parameters. In the table, . and /
are agent identifiers, while 0 is a host identifier.

simplifying application design in many scenarios by relieving the designer from the chore of maintaining explicitly
a view of the context consistent with changes in the configuration of the system. On the other hand, this view may
hide too much in domains where the designer needs more fine-grained control over the portion of the context that
needs to be accessed. For instance, the application may require control over the agent responsible for holding a given
tuple, something that cannot be specified only in terms of the global context. Also, performance and efficiency con-
siderations may come into play, as in the case where application information would enable access aimed at a specific
host-level tuple space, thus avoiding the greater overhead of a query spanning the whole federated tuple space. Such
fine-grained control over the context perceived by the mobile unit is provided in LIME by extending the Linda oper-
ations with tuple location parameters that operate on user-defined projections of the transiently shared tuple space.
Further, all tuples are implicitly augmented with two fields, representing the tuple’s current and destination location.
The current location identifies the single agent responsible for holding the tuple when all agents are disconnected,
and the destination location indicates the agent with whom the tuple should eventually reside.

The �����21 /43 operation extends ����� with a location parameter representing the identifier of the agent responsible
for holding the tuple. The semantics of �5���21 /436	��� involve two steps. The first step is equivalent to a conventional
�����
	��� , the tuple � is inserted in the ITS of the agent calling the operation, say . . At this point the tuple � has a current
location . , and a destination location / . If the agent / is currently connected, the tuple � is moved to the destination
location in the same atomic step. On the other hand, if / is currently disconnected the tuple remains at the current
location, the tuple space of . . This “misplaced” tuple, if not withdrawn4, will remain misplaced unless / becomes
connected. In the latter case, the tuple will migrate to the tuple space associated with / as part of the engagement.
By using �5���21 /73 , the caller can specify that the tuple is supposed to be placed within the ITS of agent / . This way, the
default policy of keeping the tuple in the caller’s context until it is withdrawn can be overridden, and more elaborate
schemes for transient communication can be developed.

Variants of the ��� and ��� operations that allow location parameters are allowed as well. These operations, of the
form ����1 .98:/73;	��� and ����1 .98</436	��� , enable the programmer to refer to a projection of the current context defined by the
value of the location parameters, as illustrated in Table 1. The current location parameter enables the restriction of
scope from the entire federated tuple space (no value specified) to the tuple space associated to a given host or even
a given agent. The destination location is used to identify misplaced tuples.

2.2.4 Reacting to Changes in Context

In the fluid scenario we target, the set of available data, hosts, and agents change rapidly according to the reconfigu-
ration induced by mobility. Reacting to changes constitutes a significant fraction of an application’s activities. At first
glance, the Linda model would seem sufficient to provide some degree of reactivity by representing relevant events
as tuples, and by using the ��� operation to execute the corresponding reaction as soon as the event tuple appears
in the tuple space. Nevertheless, in practice this solution has a number of drawbacks. For instance, programming
becomes cumbersome, since the burden of implementing a reactive behavior is placed on the programmer rather
than the system. Moreover, enabling an asynchronous reaction would require the execution of ��� in a separate thread
of control, hence degrading performance. Therefore, LIME explicitly extends the basic Linda tuple space with the
notion of reaction. A reaction =>	�?28��� is defined by a code fragment ? that specifies the actions to be executed when a
tuple matching the pattern � is found in the tuple space. The semantics of reactions are based on the Mobile UNITY

4Note how specifying a destination location @ implies neither guaranteed delivery nor ownership of the tuple A to @ . Linda rules for non-
deterministic selection of tuples are still in place; thus, it might be the case that some other agent may withdraw A from the tuple space before @ ,
even after A reached @ ’s ITS .
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reactive statements [15], described formally in a later section. Informally, a reaction can fire if a tuple matching pat-
tern � exists in the tuple space. After every regular tuple space operation, a reaction is selected non-deterministically
and, if it is enabled, the statements in ? are executed in a single, atomic step. This selection and execution continues
until no reactions are enabled, at which point normal processing resumes. Blocking operations are not allowed in ? ,
as they may prevent the execution of ? from terminating.

LIME reactions can be explicitly registered and deregistered on a tuple space, and hence do not necessarily exist
throughout the life of the system. Moreover, a notion of mode is provided to control the extent to which a reaction
is allowed to execute. A reaction registered with mode ONCE is allowed to fire only one time, i.e., after its execution
it becomes automatically deregistered, and hence removed from the reactive program. Instead, a reaction registered
with mode ONCEPERTUPLE is allowed to fire an arbitrary number of times, but never twice for the same tuple. Finally,
reactions can be annotated with location parameters, with the same meaning discussed earlier for ��� and ��� . Hence,
the full form of a LIME reaction is =>1 .98:/736	�?28���8�BC , where B is the mode.

Reactions provide the programmer with very powerful constructs. They enable the specification of the appro-
priate actions that need to take place in response to a state change and allow their execution in a single atomic step.
In particular, it is worth noting how this model is much more powerful than many event-based ones [25], including
those exploited by tuple space middleware such as TSpaces [11] and JavaSpaces [12], that are typically stateless and
provide no guarantee about the atomicity of event reactions.

Nevertheless, this expressive power comes at a price. In particular, when multiple hosts are present, the content
of the federated tuple space depends on the content of the tuple spaces belonging to physically distributed, remote
agents. Thus, maintaining the requirements of atomicity and serialization imposed by reactive statements requires
a distributed transaction encompassing several hosts for every tuple space operation on any ITS —very often, an
impractical solution. For specific applications and scenarios, e.g., those involving a very limited number of nodes,
these kind of reactions, referred to as strong reactions, would still be reasonable and therefore they remain part of the
model. For practical performance reasons, however, our implementation currently limits the use of strong reactions
by restricting the current location field to be a host or agent, and by enabling a reaction to fire only when the matching
tuple appears on the same host as the agent that registered the reaction. As a consequence, a mobile agent can
register a reaction for a host different from the one where it is residing, but such a reaction remains disabled until
the agent migrates to the specified host. These constraints effectively force the detection of a tuple matching � and the
corresponding execution of the code fragment ? to take place (atomically) on a single host, and hence does not require
a distributed transaction.

To strike a compromise between the expressive power of reactions and the practical implementation concerns, we
introduce a new reactive construct that allows some form of reactivity spanning the whole federated tuple space but
with weaker semantics. The processing of a weak reaction proceeds as in the case of a strong reaction, but detection and
execution do not happen atomically: instead, execution is guaranteed to take place only eventually, after a matching
tuple is detected. The execution of ? takes place on the host of the agent that registered the reaction.

2.2.5 Exposing System Configuration

It is interesting to note that the extension of Linda operations with location parameters, as well as the other operations
discussed thus far, foster a model that hides completely the details of the system (re)configuration that generated
those changes. For instance, if the probe ������1 .98:/73;	��� fails, this simply means that no tuple matching � is available
in the projection of the federated tuple space defined by the location parameters 1 .98:/73 . It cannot be directly inferred
whether the failure is due to the fact that agent . does not have a matching tuple, or simply agent . is currently not
part of the group.

Without awareness of the system configuration, only a partial context awareness can be accomplished, where
applications are aware of changes in the portion of context concerned with application data. Although this perspec-
tive is often enough for many mobile applications, in many others the portion of context more closely related to the
system configuration plays a key role. For instance, a typical problem is to react to departure of a mobile unit, or to
determine the set of units currently belonging to a LIME group. Interestingly, LIME provides this form of awareness
of the system configuration by using the same abstractions discussed thus far: through a transiently shared tuple
space conventionally named LimeSystem to which all agents are permanently bound. The tuples in this tuple space
contain information about the mobile units present in the group and their relationship, e.g., which tuple spaces they
are sharing or, for mobile agents, which host they reside on. Insertion and withdrawal of tuples in LimeSystem is a
prerogative of the run-time support. Nevertheless, applications can read tuples and register reactions to respond to
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public class LimeTupleSpace {
public LimeTupleSpace(String name);
public String getName();
public boolean isOwner();
public boolean isShared();
public boolean setShared(boolean isShared);
public static boolean setShared(LimeTupleSpace[] lts, boolean isShared);
public void out(ITuple tuple);
public ITuple in(ITuple template);
public ITuple rd(ITuple template);
public void out(AgentLocation destination, ITuple tuple);
public ITuple in(Location current, AgentLocation destination, ITuple template);
public ITuple inp(Location current, AgentLocation destination, ITuple template);
public ITuple[] ing(Location current, AgentLocation destination, ITuple template);
public ITuple rd(Location current, AgentLocation destination, ITuple template);
public ITuple rdp(Location current, AgentLocation destination, ITuple template);
public ITuple[] rdg(Location current, AgentLocation destination, ITuple template);
public RegisteredReaction[] addStrongReaction(LocalizedReaction[] reactions);
public RegisteredReaction[] addWeakReaction(Reaction[] reactions);
public void removeReaction(RegisteredReaction[] reactions);
public boolean isRegisteredReaction(RegisteredReaction reaction);
public RegisteredReaction[] getRegisteredReactions();

}

Figure 2: The class LimeTupleSpace , representing a transiently shared tuple space.

changes in the configuration of the system.
Together, the LimeSystem tuple space and the other application-defined transiently shared tuple spaces enable the

definition of a fully context aware style of computing.

2.3 Programming with LIME

We complete the presentation of the LIME model by concisely illustrating the application programming interface
provided in the current implementation5 of LIME .

The class LimeTupleSpace , whose public interface is shown6 in Figure 2, embodies the concept of a transiently
shared tuple space. In the current implementation, agents are single-threaded and only the thread of the agent which
creates the tuple space is allowed to perform operations on the LimeTupleSpace object; accesses by other threads
fail by returning an exception. This represents the constraint that the ITS must be permanently and exclusively
attached to the corresponding mobile agent. The name of the tuple space is specified as a parameter of the constructor.

Agents may also have private tuple spaces, i.e., not subject to sharing and not appearing in the LimeSystem tuple
space. A private LimeTupleSpace can be used as a stepping stone to a shared data space, allowing the agent to pop-
ulate it with data prior to making it publicly accessible, or it can be useful as a primitive data structure for local data
storage. All tuple spaces are initially created private, and sharing must be explicitly enabled by calling the instance
method setShared. The method accepts a boolean parameter specifying whether the transition is from private to
shared (true) or vice versa (false). Calling this method effectively triggers engagement or disengagement of the
corresponding tuple space. The sharing properties can also be changed in a single atomic step for multiple tuple
spaces owned by the same agent by using the static version of setShared (see Figure 2). Engagement or disen-
gagement of an entire host, instead, can be triggered explicitly by the programmer by using the methods engage
and disengage, provided by the LimeServer class, not shown here. Otherwise, they are implicitly called by the
run-time support according to connectivity. The LimeServer class is essentially an interface towards the run-time
support, and exports additional system-related features, e.g., loading of an agent into a local or remote run-time sup-
port, setting of properties, and so on. In particular, it also allows the programmer to define whether transient sharing
is constrained to a host-level tuple space, or whether it spans the whole federated tuple space.

LimeTupleSpace contains the Linda operations needed to access the tuple space, as well as the operation
variants annotated with location parameters. The only requirement for tuple objects is to implement the interface
ITuple, which is defined in a separate package providing access to a lightweight tuple space implementation. As for
location parameters, LIME provides two classes, AgentLocation and HostLocation , which extend the common
superclass Location, enabling the definition of globally unique location identifiers for hosts and agents. Objects
of these classes are used to specify different scopes for LIME operations, as described earlier. For instance, a probe
inp(cur,dest,t)may be restricted to the tuple space of a single agent if cur is of type AgentLocation , or it may

5The LIME Web site [27] contains extensive documentation and programming examples.
6Exceptions are not shown for the sake of readability.
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public abstract class Reaction {
public final static short ONCE;
public final static short ONCEPERTUPLE;
public ITuple getTemplate();
public ReactionListener getListener();
public short getMode();
public Location getCurrentLocation();
public AgentLocation getDestinationLocation();

}
public class UbiquitousReaction extends Reaction {

public UbiquitousReaction(ITuple template, ReactionListener listener, short mode);
}
public class LocalizedReaction extends Reaction {

public LocalizedReaction(Location current, AgentLocation destination,
ITuple template,ReactionListener listener, short mode);

}
public class RegisteredReaction extends Reaction {

public String getTupleSpaceName();
public AgentID getSubscriber();
public boolean isWeakReaction();

}
public class ReactionEvent extends java.util.EventObject {

public ITuple getEventTuple();
public RegisteredReaction getReaction();
public AgentID getSourceAgent();

}
public interface ReactionListener extends java.util.EventListener {

public void reactsTo(ReactionEvent e);
}

Figure 3: The classes Reaction , RegisteredReaction , ReactionEvent , and the interface ReactionListener , required
for the definition of reactions on the tuple space.

refer the whole host-level tuple space, if cur is of type HostLocation . The constant Location.UNSPECIFIED is
used to allow any location parameter to match. Thus, for instance, in(cur,Location.UNSPECIFIED,t) returns
a tuple contained in the tuple space of cur, regardless of its final destination, including also misplaced tuples. Note
how typing rules allow the proper constraint of the current and destination location according to the rules of the
LIME model. For instance, the destination parameter is always an AgentLocation object, as agents are the only
carriers of “concrete” tuple spaces in LIME . In the current implementation of LIME , probes are always restricted to a
local subset of the federated tuple space, as defined by the location parameters. An unconstrained definition, as the
one provided for in and rd, would involve a distributed transaction in order to preserve the semantics of the probe
across the federated tuple space.

All the operations retain the same semantics on a private tuple space as on a shared tuple space, except for
blocking operations. Since the private tuple space is exclusively associated to one agent, the execution of a blocking
operation when no matching tuple is present would suspend the agent forever, effectively waiting for a tuple that no
other agent can possibly insert. Hence, blocking operations always generate a run-time exception when invoked on
a private tuple space.

The remainder of the interface of LimeTupleSpace is devoted to managing reactions; other relevant classes for
this task are shown in Figure 3. Reactions can either be of type LocalizedReaction , where the current and des-
tination location restrict the scope of the operation, or UbiquitousReaction , that specifies the whole federated
tuple space as a target for matching. The type of a reaction is used to enforce the proper constraints on the registration
through type checking. These two classes share the abstract class Reaction as a common ancestor, which defines a
number of accessors for the properties established for the reaction at creation time. Creation of a reaction is performed
by specifying the template that needs to be matched in the tuple space, a ReactionListener object that specifies
the actions taken when the reaction fires, and a mode. The ReactionListener interface requires the implemen-
tation of a single method reactsTo that is invoked by the run-time support when the reaction actually fires. This
method has access to the information about the reaction carried by the ReactionEvent object passed as a parame-
ter to the method. The reaction mode can be either of the constants ONCE or ONCEPERTUPLE, defined in Reaction
. Reactions are added to the ITS by calling either addStrongReaction or addWeakReaction, depending on the
desired semantics. As we discussed earlier, in the current implementation strong reactions are confined to a single
host, and hence only a LocalizedReaction can be passed to the first method. Registration of a reaction returns an
object RegisteredReaction , that can be used to deregister a reaction with the method removeReaction, and
provides additional information about the registration process. The decoupling between the reaction used for the
registration and the RegisteredReaction object returned allows for registration of the same reaction on different
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ITSs and for the same reaction to be registered with strong and, subsequently, with weak semantics.

3 Application Example

LIME has been successfully applied in the development of several applications in the mobile environment. In
this section we present a single application, a jigsaw assembly game, throughout the development process from
requirements to implementation, showing the thought process applied when designing mobile applications over
LIME .

3.1 Requirements

The goal is to design a jigsaw assembly game for multiple players in the ad hoc mobile environment. The game
should reasonably emulate the physical world process of assembling a jigsaw puzzle where an individual player
starts a puzzle by dumping the pieces out of the box into a common area. Other players join, and the puzzle is
assembled through the joint effort of the individual players.

When considering this process in a mobile environment where each player is equipped with a palm- or lap-top
computer, the following requirements must be met. First, players who are currently connected should be able to see
the piece assemblies of one another as soon as possible. In other words, if one player, ��D assembles two puzzle pieces
on her laptop and another player, ��E , is connected, ��E ’s display should be quickly updated to show that the pieces
have been assembled.

Second, as this is a mobile game and the players are not expected to remain connected for the duration of the
puzzle assembly, it should be possible for player to make assemblies of pieces while disconnected. This leads to
the next requirement, namely that when two previously disconnected players reconnect, their displays should be
updated to show the changes made by one another.

Finally, the game should be able to support multiple, concurrent puzzles. Additionally, a single player should be
able to participate in more than one puzzle at a time.

3.2 Design

The requirements sketched above are intentionally vague, leaving many options open to the designer. Here we
sketch the design developed by an undergraduate student as a course project. The design takes into consideration
the programming style encouraged by LIME as well as the constraints of the wireless, mobile environment.

One of the first choices for all LIME applications is the use of the federated tuple space(s) and the format of the
tuples. In order to support multiple concurrent tuple spaces, an obvious choice is to use a separate tuple space for
each concurrent puzzle. This effectively separates the actions involving the distinct puzzles, and easily allows a
player to participate in as many puzzles as they would like. In order to find active puzzles, a player need only look
into the LimeSystem to find the tuple spaces names. By creating a tuple space with one of these names, the player
joins the game.

Each tuple space is used as the repository for the current status information about a single puzzle, including
the pieces as well as how they are assembled. A critical choice is how to use tuples to represent this information.
We represent the puzzle with tuples with two distinct patterns: bitmap and assembly. Bitmap tuples represent the
individual puzzle pieces and contain two fields: the puzzle piece identifier and the bitmap of the piece. The second
tuple pattern, the assembly, represents a group of connected puzzle pieces. The tuple itself contains a single field with
the list of the identifiers of the connected pieces. When a new game starts, two tuples are inserted for each puzzle
piece, one containing the bitmap and one containing a list with a single entry, the piece identifier. When two pieces
are joined, the two assembly tuples of the original pieces are replaced by a single tuple representing the change.

Two observations can be made about our choice of representing the puzzle in this manner. First, when puzzle
pieces are assembled, the bitmap tuples do not change. Because these tuples contain image information they are
likely to be large in comparison to the assembly tuples. By requiring only the assembly tuples to change, we save
computation time to remove and reinsert the large image information each time an assembly is made. Similarly, we
save in bandwidth usage as the bitmap images are not as frequently transmitted over the wireless link. This will
become more apparent when we discuss the reactions.
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The next decision is where the tuples should reside throughout the federated tuple space. It is clear that when
all players are connected, all the tuples representing the puzzle are present. However, when the players are dis-
connected, the puzzle pieces are dividend among the tuple spaces of the players, and therefore are not accessible to
everyone. We leave the choice of which tuples go with which players up to the players themselves. Specifically, when
play begins, the player that initiated the game is the “owner” of all of the pieces, both bitmaps and assemblies. The
puzzle game contains a selection mechanism that allows a player to choose a piece out of the federated tuple space
and change the LIME “current” location to match itself. This means that when the player disconnects, the pieces it has
selected remain accessible. This notion of ownership is on the assembly level, but must also be applied to bitmaps.
In other words, when a player takes ownership of an assembly, it must also take ownership of the bitmaps associated
with the pieces of the assembly.

This choice to have pieces migrate with players easily allows a player to assemble pieces while disconnected.
However, it also implies that a player should only be allowed to assemble pieces that they own. It also prevents two
disconnected players from using the same place in two different assemblies. This maintains the consistency of the
puzzle, despite disconnections. One can argue that because the puzzle can only be assembled in one manner, the use
of a piece in more than one assembly can easily be resolved, thus our choice is overly restrictive. However, for the
sake of the example, we have chosen to model an environment where such concurrent changes are not permitted.

3.3 Implementation

The implementation of the puzzle is remarkably simple considering the complexity of the resulting application.
In fact, the code is disproportionally devoted to the graphics, with very little needed for LIME . The application
is essentially event driven, responding to interface requests by the user and remote operations observed through
registered reactions.

The main display for each player is one puzzle tray for each puzzle they are participating in. For simplicity, we
consider only a single puzzle. Initially, the tray is empty, but it is populated when the player starts the puzzle. This
corresponds to the population of the tuple space with the bitmap and assembly tuples. In LIME , this is accomplished
with a sequence of �5��� operations.

The updating of the puzzle tray is actually accomplished by a ONCEPERTUPLE LIME weak reaction on the feder-
ated tuple space registered for assembly tuples. When this reaction fires, if the player has not already displayed the
bitmap of the puzzle pieces identified in the assembly tuple’s list, the reaction issues an ����� operation to retrieve the
bitmap tuple. Subsequently, the puzzle tray is updated with the new puzzle piece. One detail worth mentioning is
that the ����� operation must specify the current location tuple space from which to retrieve the bitmap tuple. Since
the assembly tuple and the bitmap tuple reside in the same space, and the ReactionEvent contains the source of
the assembly tuple, we use the same information to retrieve the bitmap.7

When a piece is selected for ownership by a player, the result is the movement of the tuples representing the piece
from the old player to the new player. 8 In LIME , this is accomplished by performing two ����� operations to retrieve
both the bitmap and assembly tuples, followed by two �5��� operations to reinsert the tuples into the tuple space.
Because we do not specify a destination location for the �5��� operations, the default is that the tuples remain with the
current field set to the new player. Again, the ����� operation must specify the current location tuple space from which
to retrieve the tuples, but this information is easily kept with the assembly tuple once it has been retrieved through
the reaction. To make it apparent to the player which pieces have been selected by which players, we associate a
color with each player, and outline the selected pieces with this color. This can be seen in Figure 4.

Interestingly, when a player selects a piece, the ����� operation that reinserts the assembly tuple causes the earlier
described reaction to fire. This time, because the graphic for the tuple has already been displayed, the bitmap tuple
is not retrieved, but the screen is updated to reflect the change in the outline color of the puzzle piece.

Assembly of two pieces is quite similar to selection. First, the two assembly tuples representing the pieces are
removed from the player’s tuple space with ����� operations, then the new assembly tuple is written with an �5���
operation. As before, the reaction fires and the puzzle trays of all connected players are updated. There is one subtle
point worth mentioning:9 what happens if one of the ����� operations returns null? For example, if player � D is trying
to assemble pieces � D and � E , and at the same time, player � E is trying to select piece � E from � D ’s tuple space. It may

7GCR: I found this paragraph very confusing. The use of the term current location to explain things is confusing even for me. Refer to
agents and their tuple spaces and introduce the ”location” as a detailed technical explanation after the ideas are made clear.

8GCR: If the operations are always in order, the possibliity of deadlock is removed.
9GCR: You are using this too much in teh entire section. Rephrase.

10



Figure 4: ROAMINGJIGSAW . The left two images show the puzzle trays of the black and white players while they are disconnected
and able to assemble only their selected pieces. The right two images show the black and white puzzle trays after the players re-
engage and see the assemblies that occurred during disconnection.

happen that � D successfully issues the first ����� , removing � D . Second, � E ’s ����� to remove � E successfully executes,
and � E becomes the owner of the tuple. Finally, � D ’s second ����� issues, but returns null. In this case, � D does not
have sufficient data to complete the assembly, and must reinsert � D into the tuple space. To the user, we indicate this
failure with an audible beep.

When a player disconnects, there is no immediate change in the puzzle tray to indicate the disconnection. There-
fore, it is possible for a player to try to select for ownership a piece visible in the tray. In this case, the ����� will return
null, and we report the failure as before.

When two players reconnect after a disconnection, the requirements outlined previously state that the puzzle
trays of the players must be updated to reflect the changes made during the disconnection. Because these changes
are represented by assembly tuples, the reaction described earlier will fire on these tuples, and the display will
be updated. Figure 4 shows the appearance of the puzzle tray during disconnection and after reconnection. No
additional mechanisms are needed to explicitly handle reconnection.

It is worth emphasizing10 that the entire operation of the puzzle relies on this single reaction to assembly tuples
and exploits only three LIME operations ( ����� , ����� , and �5��� ).

3.4 Beyond the Puzzle

From the description, it is evident that ROAMINGJIGSAW embodies a pattern of interaction where the shared workspace
displayed by the user interface of each player provides an accurate image of the state of all connected players, but
only a weakly consistent image of the global state of the system. For instance, a user’s display contains only the
last known information about each puzzle piece in the tray. If two pieces have been assembled by a disconnected
player, this change is not visible to others. However, this still allows the players to work towards achieving the
global goal, i.e., the solution of the puzzle, through incremental updates of their local state. and to tolerate temporary
disconnections.

ROAMINGJIGSAW is a simple game that nonetheless exhibits the characteristics of a general class of applications
in which data sharing is the key element. Hence, the design strategy we exploited in ROAMINGJIGSAW may be
adapted easily to handle updates in the data being shared by real applications. One example could be provided by
collaborative work applications involving mobile users, where our mechanism could be used to deal with changes
in sections of a document, or with paper submissions and reviews to be evaluated by a program committee.

4 Building Middleware Functionality on Top of LIME

In designing LIME we strived for minimality, in an attempt to identify a core of concepts and constructs general
enough to be used as building blocks for higher-level services, and yet powerful enough to satisfy the basic needs
of most mobile applications. Application development with LIME , as described in the previous section, gave us the
opportunity to evaluate the expressive power of LIME constructs in building mobile applications. In this section,
instead, we present a couple of experiences that show how LIME can be used effectively also to build high-level
middleware services that, nonetheless, do not require modifications to the original middleware.

10GCR: Sounds repetitious.
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4.1 Transiently Shared Code Bases

In our description of LIME , we always implicitly assumed that a LIME tuple space contains data. Instead, in the work
described in [20] we explored the opportunities opened by storing code in a LIME tuple space, while still exploiting
its transient sharing and reactive features. While the idea is very simple, its implications are far reaching, and hold
the potentially for fundamentally changing the mechanisms usually exploited for supporting mobility of code.

Currently available support for mobile code is mostly limited to variations of a code on demand [8] approach
where the code is dynamically downloaded from a well-known site at name resolution time. Examples are Java ap-
plets in Web browsers and dynamic downloading of stubs in Java/RMI and Jini. Unfortunately, in its most common
incarnations this approach has at least two relevant drawbacks. First of all, the local code base, i.e., the set of classes
locally available, is usually accessible only to the run-time support, and hence it remains hidden from the applica-
tions. This prevents the development of code caching schemes with application-level policies, e.g., to intelligently
cache or discard code on resource-constrained devices. Moreover, remote dynamic linking usually relies on a well-
known centralized code base. This scheme evidently breaks when applied in a fluid scenario like the one defined by
MANETs, but has drawbacks also in a fixed scenario, since it does not exploit the potential presence of suitable code
on nearby nodes.

Using LIME tuple spaces to store code changes the situation dramatically. An agent can now manipulate its own
code base using LIME primitives. Moreover, since each tuple space is permanently and exclusively associated with
its agent, when the latter moves its code base migrates along with it. Finally, transient sharing effectively stretches
the boundaries of an agent code base to an extent possibly covering the whole system at hand. These characteristics
provide an elegant solution to the problem we mentioned earlier. A proper redefinition of the class loader, like the one
described in [20], can operate on the LIME tuple space associated to the agent for which the class needs to be resolved,
and query it using the operations provided by LIME . Thus, the class loading mechanism can now resolve class names
by leveraging off of the federated code base to retrieve and dynamically link classes in a location transparent fashion,
e.g., through a ��� , or use location parameters to narrow the scope of searches, e.g, down to a given host or agent.

Nevertheless, the use of transiently shared tuple spaces needs not be confined to the innards of the class loading
mechanism, rather agents can be empowered with the ability to manipulate directly the federated code base. Hence,
not only can an agent proactively query up to the whole system for a given class, but it can also insert a class
tuple into the code base of another agent by using the �����
1 /73 operation, with the semantics of engagement and
misplaced tuples even taking care of disconnection and subsequent reconciliation of the federated code base. This
new class can then be used by the receiving agent to execute tasks in previously unknown ways, or even to behave
according to a new coordination protocol. Blocking operations acquire new uses, allowing agents to synchronize not
only on the presence of data needed by the computation, but also on the presence of code needed to perform, or
augment, the computation itself. LIME reactive operations add even more degrees of freedom, by allowing agents to
monitor the federated code base and react to changes with different atomicity guarantees. Reactions can be exploited
straightforwardly to monitor the federated code base for new versions of relevant classes. Replication schemes can
be implemented where a new class in an agent’s code base is immediately replicated into the code base of all the
other agents. The content of an agent’s code base can be monitored to be aware of the current “skills” of the agent.
The possibilities become endless.

Essentially, by exploiting the notion of transiently shared tuple space for code mobility we defined an enhanced
coordination approach that, besides accommodating reconfiguration due to mobility and providing various degrees
of location transparency, enables a new form of coordination no longer limited to data exchange, but encompassing
also the exchange of fragments of behavior.

4.2 Service Provision

LIME ’s flexible support for application development over ad hoc networks received renewed validation as we con-
sidered the issue of service provision, an area in which the client-server model continues to dominate. Central to
supporting service provision is the notion of discovering services at run time by relying on the service registration
and discovery mechanisms. LIME made it possible to offer a solution that entails a new kind of service model built
as a simple adaptation layer. The resulting veneer [10] uses LIME tuple spaces to store service advertisements and
pattern matching to find services of interest and exploits the transient tuple space sharing feature of LIME to provide
consistent views of the available services. The resulting system completely eliminates network awareness from the
process of service discovery and utilization. The client only has to ask for the service it needs and does not have
to know how the service will be reached. Furthermore, the model provides a distributed service registry that is
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guaranteed to reflect the real availability of services at every moment in a mobile ad hoc environment. Consistent
representation of service availability is obtained by atomically updating the view of the service repository as new
connections are established or existing ones break down.

At the implementation level, a Jini-like interface provides primitives for service advertisement and lookup. Every
agent employs a tuple space to hold its own service registry where it advertises the services it provides. Adver-
tisements may includes proxies offering a service interface and encapsulating the communication mechanisms; the
latter can be done in a manner that accommodates the mobility of both service providers and clients. As agents and
hosts move, the registries of co-located agents are automatically shared. Thus, an agent requesting a service that is
provided by a co-located agent can always access the service. If two hosts are within communication range they
form a community and their service registries engage, forming a federated service registry. Upon engagement, the
primitives operating on the local service registry are extended automatically to the entire set of service registries
present in the ad hoc network. The sharing of the service registries is completely transparent to agents as agents in
the community access the federated registry via their own local registries. The reliance on LIME concepts allowed
for the fast deployment of the new service infrastructure specialized for ad hoc settings with minimal programming
effort. Later efforts built upon this results to add secure service provision to the system by protecting tuple spaces
with passwords and by using the same passwords to generate keys used to encrypt wireless traffic involving and
tuple spaces in general and federated registries in particular.

5 Related Work

The last several years have seen a revitalization of Linda for distributed computing applications, including mobile
environments. From the industrial perspective, both Sun and IBM have developed tuple space implementations for
client-server coordination, i.e., JavaSpaces [12] and TSpaces [11], respectively. These systems present a centralized
tuple space, accessible through remote operations by multiple processes. Their client-server approach is significantly
different from that of LIME , as we target mobile ad hoc applications with implicit access to the remote data of other
hosts, and support mobile agents.

Distributed Linda implementations have been studied extensively for fault tolerance [30, 1] and data availabil-
ity [23]. The main disadvantage with these approaches is their need for high degrees of connectivity among the hosts
of the distributed portions of the tuple spaces, a property inherently not present in the mobile environment.

One of the first applications of Linda to mobility came in the Limbo platform [2, 29], a system that builds the
notion of quality of service aware tuple spaces that reside on mobile hosts. The quality of service information itself
is stored in the tuple spaces and can be made accessible to agents on remote hosts. While Limbo has a notion of
distributed tuple spaces that span multiple hosts, there are no mobile agents carrying tuple spaces when the migrate,
no concept of reaction, and the mechanism for relocation of tuples is unclear. Interestingly, the Limbo universal tuple
spaces, which serves as a registry for all tuple spaces is similar to the LimeSystem tuple space of LIME . However,
instead of describing the current system context, the universal tuple space remembers all tuple spaces the host has
ever encountered without regard for current reachability.

Two other models, TuCSoN [19] and MARS [4], exploit tuple space coordination for mobile agents, creating pro-
grammable tuple spaces. When an agent poses a query to the tuple space, the registered reaction that matches the
operation fires, and an action is atomically performed. While in LIME reactions form a core concept for the applica-
tion programmer, MARS and TuCSoN reactions are designed to be implemented by the system support designer to
provide an intermediate access between the form of the query (which can vary among agents) and the data (which
remains constant within a host, but is adapted when a query arrives). Another feature of MARS and TuCSoN is the
option to fully qualify a tuple space name, identifying the specific host where the tuple space resides. This enables
remote operation on tuple spaces, but connectivity must be available and the agent must be explicit about interaction,
as opposed to the LIME model that operates over the current context transparently. Further, in MARS and TuCSoN,
mobile agents only have access to the tuple spaces fixed at the hosts, they do not carry tuples as they migrate, and
there is no coordination or data exchange among tuple spaces.

The KLAIM [18] model supports a programming paradigm where code migrates during execution, using tuple
spaces to provide the medium for interaction among processes. Tuple spaces have locality, but unlike in LIME ,
these tuple spaces are not permanently associated to a process. Instead, KLAIM processes located at a given locality
implicitly interact through the co-located tuple space. There is no transient sharing among tuple spaces, but a process
can explicitly interact with any tuple space by identifying its locality, and a process can migrate to a new locality to
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interact locally. While LIME leaves the details of process migration outside the model, KLAIM includes in the formal
specification the details of process migration, making it an integral part of the model.

As alluded to in the informal description of LIME provided in Section 2, the notion of reaction put forth in LIME
is profoundly different from similar event notification mechanisms such as those provided by TuCSoN, TSpaces, and
Javaspaces. In these systems, the events respond to operations issued by processes on the tuple spaces (e.g., ����� ,
��� , ��� , etc.). In LIME , however, reactions fire based on the state of the tuple space itself. Further, LIME reactions
execute as a single atomic step, and cannot be interrupted by other operations. This makes it straightforward for a
single LIME reaction to probe for a tuple, react if it is found, and register a reaction if it is not. This same operation
in the other systems requires a transaction. Finally, the atomicity of strong reactions increases the power of LIME
reactions. For example, with a strong, local reaction, the execution of the listener is guaranteed to fire in the same
state in which the matching tuple was found. No such guarantee can be given with an event model where the events
are asynchronously delivered, nonetheless, we support this second approach through weak reactions. 11

The work on LIME has also been used as a basis for alternative models. At Purdue University, a group extracted
the features of LIME necessary for mobile agents by removing host-level sharing, and created a model referred to as
CoreLIME [5]. On top of this restricted model, they proposed some initial ideas for tuple space security. A group at
the University of Bologna proposed a calculus-based specification [3] of a model that embeds choices different from
the original LIME , including reacting to tuple space operations instead of tuple space contents and blocking agents
that generate tuples destined for disconnected agents rather than creating misplaced tuples.

As we conclude this section, it should be noted that the effort that went into developing LIME also contributed
to the emergence of a more abstract and general coordination concept and methodology called Global Virtual Data
Structures (GVDS ) [22]. It is centered on the notion of constructing individual programs in terms of local actions
whose effects can be interpreted at a global level. A LIME group, for instance, can be viewed as consisting of a global
set of tuples and a set of agents that act on it in some constrained manner. The set has a structure that changes
in accordance with a predefined set of policies and it is this very structure that governs the specific set of tuples
accessible to an individual agent through its local interface at any given point in time. The analogy to the concepts
of virtual memory and distributed shared memory are very strong and several other research projects have picked
up the GVDS theme and instantiated it in their own unique ways. The XMIDDLE [14] system developed at University
College of London, for instance, presents the user with a tree data structure based on XML data. When connectivity
becomes available, trees belonging to different users can be composed, based on the node tags. Upon disconnection,
operations on replicated data are still allowed, and their effect is reconciled when connectivity is restored. Also
PEERWARE [7], a project at Politecnico di Milano, exploits a tree data structure, albeit in a rather different way. In
PEERWARE , each host is associated with a tree of document containers. When connectivity is available, the trees are
shared among hosts, meaning that the document pool available for searching under a given tree node includes the
union of the documents at that node on all connected hosts. 12

6 Conclusions

LIME is a middleware specifically designed to support logical mobility of agents and physical mobility of hosts in
both wired and wireless settings. Within this general context, its distinctive feature is the reliance on coordination
to simplify the development of mobile applications. While building on the decoupling advantages of the original
Linda model, LIME breaks new ground by extending coordination technology to mobile systems, including the ad
hoc wireless setting. Transparent management of tuple space sharing, contingent of connectivity, offers an effective
context awareness mechanism while reactions provide an effective and uniform vehicle for responding to context
changes regardless of their nature or trigger. The net result is a simple model with precise semantics and applicability
in a wide range of settings, from mobile agent systems operating over wired networks, at one extreme, to ad hoc
networks lacking any infrastructure support, at the other. While a full formal validation of LIME ’s impact on software
development productivity is still to be performed, our experience to date with the development of a reasonable set of
applications in wireless settings appears to validate LIME ’s potential for rapid development of mobile applications.
Finally, it should be noted that LIME , in addition to demonstrating the practical use of coordination technology in
mobile computing, opens a new area of research involving the application of state-based coordination models and
middleware to context-aware computing.

11GP: Up to here is the content of Section 5.3 of the formal Lime paper, unchanged...
12GP: This is section 5.2 with minor modifications.
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Availability. LIME continues to be developed as an open source project, available under GNU’s LGPL license.
Source code and development notes are available at lime.sourceforge.net.
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