
Author Affiliations:

Contact Author:
Amy L. Murphy
University of Rochester
Rochester, NY, USA
Contact info for June 2003 to May 2004
email: murphy@cs.rochester.edu
phone: 39-02-2399-3698
fax: 39-02-2399-3411

Gruia-Catalin Roman
Department of Computer Science and Engineering
Washington University
St. Louis, MO, USA

George Varghese
Department of Computer Science and Engineering
University of California, San Diego
San Diego, CA, USA

1

Dependable Message Delivery to Mobile Units

A.L. Murphy, G.-C. Roman, G. Varghese

August 8, 2003

Abstract

Mobile computing is emerging as a novel paradigm with its own characteristic problems,
models, and algorithms. Much effort is being directed to integrate mobile units with fixed
networks, providing bridges to connect wireless to wired. The result is a fixed core of wire-
connected static nodes and a fluid fringe of wireless mobile units, a computing system similar
to the cellular telephone network. The model we put forward uses the graph of fixed nodes as
a foundation and models the mobile units themselves as persistent messages moving through
this network graph. Such a model allows algorithms from traditional distributed computing
to be directly implemented in the mobile environment, however, it has been shown that the
unique properties of mobility, such as limited bandwidth and disconnection, make such direct
translation impractical. This paper presents a fundamentally different idea. Instead of recreat-
ing the functionality of distributed algorithms in the mobile domain, we show how distributed
algorithms can be adapted to solve problems unique to the mobile environment. Specifically
we focus on the problem of dependably delivering a message to a moving unit. We demon-
strate this technique with two new algorithms, the first based on distributed snapshots and the
second on diffusing computations.

Keywords: Mobile computing, communication, distributed snapshot, termination detection.

2

1 Introduction

Mobile computing reflects a prevailing societal and technological trend towards ubiquitous access
to computational and communication resources. Wireless technology and the decreasing size of
computer components allow users to travel within the office building, from office to home, and
around the world with the computer at their side. As this new world of computing is taking form,
many fundamental assumptions about the structure and the behavior of computer networks are
being challenged and redefined. This results in at least two kinds of research questions. First,
what is the precise relationship between mobile computing and traditional distributed computing.
Second, how are particular tasks (e.g., maintaining file consistency, point to point communication,
etc.) solved in a mobile setting.

This paper attempts to make contributions to both kinds of questions. On the modeling side,
we describe a simple approach to modeling mobile units that has considerable similarity to the
standard distributed computing model. This model in turn allows us to transfer results from
classical distributed computing to the new mobile setting, leveraging off a large body of existing
research in an emerging research area. On the computing side, we describe new algorithms for
sending messages to mobile units.

Distributed versus Mobile Computing. A common model of a distributed computing system
is a graph where the nodes represent computing components and the edges represent communi-
cation. With the exception of faults that can render parts of the network temporarily inoperational,
the system is generally static. A mobile computing environment analogous to a cellular telephone
system can be similarly modeled with two components. The first is a graph where the nodes
represent base stations and the edges wired communication. The second part models the move-
ment of mobile units among base stations as temporary, wireless connections to base stations. The
resulting model is a fixed core of static components and a fluid fringe of mobile units. The similar-
ities between the mobile computing model and the distributed computing model, as well as the
ease of integrating this model with wired networks, have helped it become dominant in mobile
computing research [2, 12].

Yet another model of mobility emerges from the study of code and data moving through a
network of hosts [9, 20, 8]. In this case, the mobile components, commonly referred to as mobile
agents, move entirely within the network, migrating by explicit message passing between hosts.
We suggest a slight modification of this model in order to encompass both physical and logical
mobility, thus moving the mobility model closer to the traditional distributed computing model.
The basic idea is to treat mobile units as roving messages that preserve their identity as they travel
across the network. For a cellular mobile system, this means that while a mobile unit is within
a cell, it is modeled as a message residing at a node. When moving to a new cell, the handover
protocol is modeled as the traversal of a channel between two nodes.

Algorithm Development. Our interest in this model rests with its ability to facilitate the develop-

3

ment of algorithms in mobile computing based on established algorithms of traditional distributed comput-
ing. To illustrate this point, this paper shows how snapshot algorithms can be adapted for unicast
and multicast message delivery and how the idea of diffusing computations can be adapted to
track and deliver messages to mobile units.

In the presentation, we bring together the two concerns of the paper: applying techniques from
distributed algorithms to mobile computing, and the problem of message delivery. Section 2 de-
fines the problem we intend to solve, namely message delivery in a mobile setting and describes
prior work in the area. In Section 3 we explore the use of snapshot algorithms as a search mecha-
nism for message delivery, present the motivation, algorithm properties, and possible extensions.
Section 4 outlines the diffusing computation approach to tracking mobile units. Section 5 outlines
adaptations that make the approach viable in a model similar to the cellular telephone system.
Finally, Section 6 concludes the paper.

2 Message Delivery

While disconnected operation or working in isolation is a practical use of mobile units [13], many
applications require units to communicate with one another while on the move, exchanging voice
and/or data. Thus a fundamental problem in mobile computing is the delivery of a message from
a source to a mobile unit. In this section we discuss previous work on message passing in mobile
environments, define our model of the mobile environment, and formally define the problem of
message delivery.

2.1 Related Work

Standard solutions to message delivery to mobile units fall into two categories: tracking and
search. Fundamentally the first involves knowing the current location of the mobile unit in either
a centralized or distributed manner while the second maintains no such information and instead
searches for the mobile unit in order to deliver a message. Both styles are applicable depending on
the mobility scenario. For example, tracking mechanisms are most effective in systems with low
or slow mobility and high traffic levels, while systems with high or fast mobility and moderate
traffic are more amenable to search solutions. This paper considers solutions to both.

Most standard forms of message delivery rely on tracking. For example, in cellular systems,
as a phone involved in an active session moves into an adjacent cell and detects a stronger signal
from the new cellular tower, a handover is requested [10, 23]. The cellular system constantly
keeps track of the association between phones and towers to forward voice packets to users. In
Mobile IP [19], packet delivery is accomplished by the mobile unit registering its new location
with its home agent, and having the home agent forward any packets for that mobile unit to the
registered location. Other approaches propose changing the routers to adapt to the movement of

4

the mobile units, e.g., intercepting packets en route to the home agent and directing them toward
the mobile unit itself [18]. Such approaches involve fundamental changes to the routers and are
less well accepted than Mobile IP.

One disadvantage to tracking arises if the mobile unit moves quickly from one base station to
another. Each time the unit changes its point of attachment to the network, a tracking system must
send update messages, even if the mobile unit is not actively receiving any messages. In fact, the
transmission overhead of tracking information scales poorly with the speed of movement.

In search solutions, because the location of the mobile unit is not kept anywhere in the system,
in order to deliver a message, the sender must either broadcast a search request to locate the mo-
bile unit then forward the message to the resulting location, or the sender can simply broadcast
a copy of the message. The first mechanism has been suggested for mobile ad hoc environments
where there is no infrastructure along which to route packets [4]. This approach takes advantage
of the natural broadcasting nature of wireless radio communication to send a message to all neigh-
boring mobile units within range. This same style of route discovery is also useful in base station
environments with moderate movement of mobile units where a route to a mobile unit is viable
long enough for both route discovery and message delivery. Clearly, searching the entire Internet
for a mobile unit appears ludicrous, however, a search strategy can take advantage of the inherent
organization of the Internet into domains and subnets to reduce the scope of the search.

While the unicast problem of delivering a message to a single recipient is important, multicast
has also received attention. For example, multicast support through the MBONE has become a
standard part of the Internet [7] and is finding use for audio and video conferencing [14, 11]) and
video distribution. Additionally, the Mobile IP specification addresses the issues of enabling a
mobile unit to function as either a sender or a receiver for multicast messages [19]. In this paper,
we show how our algorithms can be adapted from unicast to multicast delivery with minimal
effort.

2.2 Mobile Environment

We address the delivery of announcements within a network of fixed mobile support centers
(MSCs) and radio base stations (RBSs). For simplicity, we assume each MSC controls only one
RBS, and all neighboring MSCs have a fixed communication channel between them. This channel
is used by both messages and mobile units.

In Figure 1 each cell represents an (MSC, RBS) pair, and the MSCs of all neighboring cells are
connected by a fixed network link. A mobile unit can send and receive messages from only one
RBS at a time, and only when it is in the cell associated with that RBS. The simplifying assumption
that all neighboring base stations be physically connected can be easily removed by adding virtual
channels between the physically adjacent cells. For simplicity, we also ignore the MSC/RBS desti-
nation. We return to both of these in Section 5, providing details of implementing virtual channels

5

2

1
m

Figure 1: Cell based broadcast based on spanning tree. Each cell is a base station and adjacent cells
can communicate on a wired channel.

and allowing multiple RBSs per MSC.

2.3 Model and Problem Definitions

As described in the introduction, the model we consider is one where the infrastructure of the
mobile environment is viewed as a graph of nodes and channels, and both the mobile units and
the data messages are represented as messages that travel through the network. More specifically,
mobile units are viewed as persistent messages while data messages disappear from the system
after delivery. For all temporary messages, in order to avoid confusion in terminology between
control and data traffic, from this point forward, we use the term announcement to refer specifically
to data messages while a message can be either data or control. A mobile unit can send and receive
messages and announcements only when it is present at some node in the fixed network, a situa-
tion that models the existence of an established connection between a mobile unit and a support
center. When a mobile unit is on a channel, it is viewed as being temporarily disconnected from
the network and unable to communicate.

Since we no longer differentiate between communication lines and physical movement, it is
reasonable to question what happens when messages (both announcements and control messages)
and mobile units are found on the same channel. We make the assumption that all channels
preserve message ordering, i.e., they are FIFO. This appears to require that mobile units travel
through space and reconnect to the next support center as fast as messages can be transmitted
across a network channel. The FIFO behavior, however, can be realized by integrating the han-
dover protocol with message passing. Essentially, in the cellular model, a mobile unit moves
directly between cells; however, in the graph representation, the mobile must move onto a chan-
nel before arriving at the new cell. This is a natural assumption when the details of the handover
are considered, the details of which are expanded in Section 5. Two other assumptions we make
are that a node can deliver any announcements before the mobile unit moves to a new base station
and that the network is connected (i.e., there is always some path to deliver the announcement to
its destination mobile unit no matter which node it is located at). Finally, we assume bidirectional
channels.

6

The announcement delivery problem can now be formulated as follows: Given a connected
network with FIFO channels and guaranteed message delivery, an announcement located at one node, and a
mobile unit to which the announcement is destined, develop a distributed algorithm that guarantees single
delivery of the announcement, and leaves no trace of the announcement, at either a node or a mobile unit,
within a bounded time after delivery. Minimizing storage requirements across the network should also be
considered.

Because mobile units do not communicate directly with one another, the network must provide
the mechanism to transmit the announcement. The original announcement is assumed to be in
the local memory of some processing node, presumably left there by the mobile unit that is the
source of the announcement. Since a mobile unit is not required to visit all nodes to gather its
announcements, the announcement cannot remain isolated at the node on which it is dropped off,
but instead must be distributed through the network. The specifics of this distribution mechanism
are left to the algorithm and are the focus of the remainder of this paper.

3 Broadcast Search

Our first approach to announcement delivery takes a broadcast search approach, meaning that a
message is broadcast throughout the network in search of the mobile unit. Although this seems
like a simple method, applying it directly is not trivial due to the movement of the mobile unit
during the broadcast. For example, it is possible for the mobile unit to move one step ahead of
the broadcast and eventually pass the announcement in the opposite direction. This problem can
be solved by storing the announcement at all nodes for an indefinite period, however Internet
routers have neither the storage capability nor the intention to store application announcements.
Therefore, announcements must be garbage collected quickly if the scheme is to have any chance
of being practical. Our solution has the attractive property of guaranteeing delivery exactly once
while allowing rapid garbage collection in time proportional to one round trip delay on a single
link.

3.1 Motivation

A straightforward broadcasting scheme designed for our model of mobility is to construct a span-
ning tree over the MSCs and send the announcement along this tree. In Figure 1, such a spanning
tree is indicated by the solid lines. A disadvantage of this scheme is that a mobile unit may move
and not receive the announcement. For example, consider a mobile unit located at cell

�
, near

the border of cell � . Suppose the broadcast of an announcement begins at the center-most cell.
Following the proposed spanning tree broadcast scheme, the MSC in the initiating cell broad-
casts the announcement locally, next the announcement is forwarded on the outgoing links of the
spanning tree. After successfully sending the announcement, the initiator deletes its copy of the

7

announcement, minimizing the storage time. The MSCs downstream behave in a similar manner,
broadcasting locally, forwarding the announcement to their children, and finally deleting their
copy of the announcement.

If the mobile unit does not move away from cell
�
, it will receive a copy of the announcement

when it is broadcast by MSC � . However, when the mobile unit is on the border between cell
�

and cell � , it is possible for a handover to be initiated and for the mobile unit to lose contact with
MSC � and pick up communication with MSC � . If this handover occurs after MSC � deletes its copy
of the announcement and before MSC � broadcasts its copy of the announcement, the mobile unit
will not receive the announcement even though it was connected to the network during the entire
broadcast lifetime of the announcement. Although in reality messages travel through the network
much faster than a mobile unit can travel through space, because a handover requires very little
time to complete, and the length of the path along the spanning tree could take longer to traverse
than for the handover to complete, it is reasonable for a simple broadcast mechanism such as this
to fail.

3.2 From Distributed Snapshot Algorithms to Announcement Delivery

To guarantee delivery in any circumstance, we propose an alternative broadcast algorithm that
is based on the classical notion of distributed snapshots. Before addressing announcement de-
livery, we first note the general properties of snapshot algorithms especially those important in
announcement delivery.

The goal of a snapshot algorithm is to provide a consistent view of the state of a network of
nodes and channels. The state consists of the process variables, and any messages in transit among
the nodes. A simple snapshot algorithm would freeze the computation until all messages are out
of the channels, record the state of the processors (including outgoing message queues), then
restart the computation. Although this is an impractical solution in most distributed settings, it
provides the intuition behind a snapshot algorithm, in particular that the consistent global state is
constructed by combining the local snapshots from the various processors. In general, a snapshot
is started by a single processor and control messages are passed to neighboring nodes inform-
ing them that a snapshot is in progress thereby initiating local snapshots. The main property of
snapshots that we exploit is that every message appears exactly once in the recorded snapshot
state.

Although snapshot algorithms were developed to detect stable properties such as termina-
tion or deadlock by creating and analyzing a consistent view of the distributed state, minor ad-
justments described here adapt them to perform announcement delivery in the dynamic, mobile
environment. To move from the network of nodes and channels into the mobile computing en-
vironment, we return to the mobility model for the cellular structure of mobile support centers
and radio base stations. As described earlier, these components and the wires connecting them

8

Global Snapshot Mobile Delivery

(a) processor state to be (c) mobile unit to be
recorded delivered to while stationary

(b) message to be recorded (d) mobile to be delivered to

on channel upon arrival
has no announcement
not involved in snapshot/

next action

marker/announcement

message

mobile unit

received announcement
started snapshot/

Figure 2: Translation of concepts from global snapshots into mobile delivery. The curved arrow
shows the processing of an element from a channel while the text describes the action triggered
by such movement.

map directly to the network graph of standard distributed computing. The mobile units are sim-
ply represented as persistent messages in the distributed environment, meaning they are always
somewhere in the system, either at a node (when in communication with a base station) or on a
channel (during a handover).

At this point, we have a structure on which to run the snapshot. We note that because the
mobile unit is a message and the snapshot records the location of messages, the global snapshot
of the mobile system will show the location of the mobile unit. Therefore, one option is to simply
deliver the announcement directly to this location; however, it is possible (and likely in systems
with rapid movement) that the mobile unit will move between the time its position is recorded
and when the announcement arrives at the recorded position. Therefore, we alter the snapshot
recording to deliver the announcement by augmenting the control messages with a copy of the
announcement itself and changing the recording of messages into the delivering of announce-
ments. We further note that the global state of the system is no longer important for delivery, so
no system state information is collected.

3.3 Snapshot Delivery Algorithm

Throughout this section, we use the Chandy-Lamport snapshot algorithm [5] and show its adapta-
tion to announcement delivery. In making the transition to the mobile environment, we carry the
restrictions of the original distributed algorithm, and clarify certain characteristics of the mobile
model moving from the cell structure to the graph setting.

In the Chandy-Lamport algorithm, it is possible for the snapshot to be initiated at more than
one location in the graph, however, we assume that the announcement will be located initially at
one point in the network, therefore the snapshot will originate from a single MSC. The Chandy-

9

Lamport algorithm consists of two main localized actions to collect the local snapshot: the pro-
cessing of the control messages (markers) and the arrival of the messages to be recorded.

� The marker arrival rule states that when a marker arrives at a node not involved in a snapshot,
the node begins its local snapshot by recording the processor state, then sends the marker
on all outgoing channels (Figure 2a). In the mobile environment, this is analogous to the
announcement arriving at a node. If the mobile unit is present, it will receive the announce-
ment, otherwise the node will remain in the local snapshot state and will store the copy of
the announcement until the local snapshot is complete. The local snapshot is complete when
the marker/announcement has arrived from all incoming channels.

� The message arrival rule states that if the message arrives at a node from channel � before
the marker arrives on channel � , and the node is in the middle of the local snapshot, the
message is to be recorded as on the channel during the snapshot (Figure 2b). In the mobile
setting, this condition is the arrival of the mobile unit at an MSC that is storing a copy of
the announcement. Therefore, the arrival of the mobile unit triggers the transmission of the
announcement to the mobile.

We capture these actions in I/O Automata-like pseudo code shown in Figure 3. In addition
to the announcement arrival and mobile arrival, we also include statements to terminate the lo-
cal snapshot (cleaning up the state) and to allow the mobile unit to move within the network.
Channels are assumed to be FIFO, and hold both mobile units and all messages.

We assume the system is initialized with the location of the mobile unit (MobileAt) and a single
announcement copy at some node (AnnAt). Channels are assumed to be empty. We introduce
one state variable quantified over the channels (flushed) that is used in identifying when the local
snapshot is complete. Basically, a flushed channel has received a marker and when all incoming
channels have received a marker, the local snapshot is complete.

The actions of Figure 3 describe the local node state transitions that are sufficient for message
delivery. No global information is maintained. A node will be in one of three states: not yet aware
of the snapshot (unnotified), taking a local snapshot (notified), and finished with the local snap-
shot (finished). In Figure 4, these states are represented by white, grey, and black respectively. All
nodes (except the node where the announcement originates) are initially unnotified. An unnoti-
fied node such as � will eventually receive an announcement along one of its incoming channels
(ANNARRIVES) (such as �	��
���
). This action causes it to transition to the notified state, deliver-
ing the announcement if possible, storing a copy of the announcement, marking the channel the
announcement arrived on as flushed, and sending announcement copies on all outgoing channels.

Once a channel is flushed, if the mobile unit arrives on that node, it is guaranteed to have
seen the announcement at some other node (to have been recorded in some other local snap-
shot). Therefore, to avoid multiple delivery, if the mobile arrives on a flushed channel, delivery
is not repeated (MOBILEARRIVES). If the announcement arrives at a notified node such as �

10

State
flushed ��� � boolean, true if announcement traversed the link from A to B; initially

false everywhere
AnnAt � boolean, true if announcement stored at A; initially true only where

announcement starts
MobileAt � boolean, true if mobile unit at A; initially true only where mobile located

Actions
ANNARRIVES � (B) ;arrival at A from B

Effect:
flushed ��� � :=TRUE

if � AnnAt �
send ann. on all outgoing channels
AnnAt � :=TRUE ;save ann.
if MobileAt �

deliver announcement
endif

endif

MOBILELEAVES � (B) ;leaves from A to B
Preconditions:

MobileAt � and channel (A,B) exists
Effect:

MobileAt � :=FALSE

mobile unit moves onto (A,B)

MOBILEARRIVES � (B) ;arrival at A from B
Effect:

MobileAt � :=TRUE

if � flushed ��� � and AnnAt �
deliver announcement

endif

CLEANUP � ;A finishes local snapshot
Preconditions:

Forall neighbors ��� flushed � � � =TRUE

Effect:
AnnAt � :=FALSE ;delete ann.
Forall neighbors ��� flushed � � ��� � FALSE

Figure 3: Snapshot Delivery Code

(ANNARRIVES), the channel it arrives on will be marked as flushed, but since the announcement
is already stored, no additional copy is made. When all incoming channels have been flushed (as
in �), the node’s local snapshot is complete and the local state (including the flushed status of the
channels and the stored announcement) are deleted (CLEANUP).

The final action, MOBILELEAVES , models the movement of a mobile away from a node. The
mobile is simply placed on the channel and the state variables updated to reflect this change. This
models random mobile unit movement. If a particular movement pattern is desired, it can be
added to this action.

3.4 Properties

Because our announcement delivery algorithm is based on a well understood algorithm from dis-
tributed computing, we can adapt the proven properties from the distributed computing environ-
ment into the mobile environment. The three primary properties proven for the Chandy-Lamport
distributed snapshot are: (1) there is no residual storage in the system at some point after the
algorithm begins execution, (2) every message is recorded once, and (3) no message is recorded

11

A

B

D

E

F

G

H

C

finished

in local snapshot

not yet started

announcement

finished

flushed

not−flushed

Figure 4: Phases of the nodes and channels during an execution of the snapshot delivery algo-
rithm. Each triangle represents a base station. The mobile unit could be anywhere in the network.

more than once. We translate these properties directly into the mobile environment stating that
(1) eventually there is no residual storage in the system at some point after the delivery process
begins, (2) the announcement is delivered to the intended recipient, and (3) the announcement is
delivered only once. In this section, we present a reduction style proof outline moving from the
distributed snapshot properties to the mobile announcement delivery properties stated above.

To more explicitly show the relationship between the snapshot algorithm and announcement
delivery, we provide the outline of a reduction proof from the Chandy-Lamport distributed al-
gorithm to the adapted snapshot delivery algorithm, showing the mapping between the actions
(such as marker arrival and announcement arrival) and the system variables (such as the marker
and announcement).

In the Chandy-Lamport algorithm, a processor begins its local snapshot when it receives the
first marker. When this occurs, the marker is sent on all outgoing channels and the state of the
processor is recorded. If there are any messages at the node, they are recorded as part of the
processor state (Figure 2a). If the node has already started its local snapshot when a message
arrives along a channel (that the node has not seen the marker on), the message is recorded as
being on the channel (Figure 2b). Recording continues until a marker is received on all incoming
links.

We translate these actions directly to the mobile environment. The announcement corresponds
to the marker, and the mobile unit corresponds to a message in the Chandy-Lamport algorithm.
When an MSC receives the announcement for the first time, it sends copies on all outgoing chan-
nels and attempts delivery to any mobile unit present. If the mobile unit is at the MSC, it will

12

receive the announcement (Figure 2c).

Just as a node continues recording until it has received the marker on all links in order to record
messages on channels, the delivery algorithm will keep a copy of the announcement until it receives a
copy of the announcement from all neighbors in order to deliver to a mobile unit in transit between
base stations. Intuitively, this prevents the mobile unit from hopping from node to node eluding
the announcement. Thus if the mobile unit arrives prior to the announcement on a channel, the
MSC delivers the data as soon as the handover is complete (Figure 2d). This is possible because
the MSC stores a local copy that arrived on another channel.

3.5 Extensions

One of the strengths of our approach to algorithm development is that it rapidly produces an
algorithm in the mobile environment that can be easily extended. In this section we discuss several
possible extensions including delivering multiple announcements simultaneously, delivering to
rapidly moving mobile units, performing route discovery, multicasting an announcement, and
working within the mobile agent environment.

Multiple announcement deliveries. To deliver multiple announcements simultaneously us-
ing snapshots, we can run several copies of the algorithm in parallel. This is analogous to hav-
ing each MSC both index and store the incoming announcements and maintain separate channel
status for each announcement in the system. This information is kept until the MSC locally de-
termines it can be cleared. In the worst case, every node must have storage available for every
potential announcement in the system, as well as maintain channel status with respect to each
announcement. Although this appears excessive, we maintain that the nature of the snapshot al-
gorithm in a real setting will not require maximum capacity. In other words, because the MSCs
are able to locally determine when to delete the announcements, the nature of the network will
determine how long an announcement is stored at the MSC.

Rapidly moving mobile units. Another advantage of this algorithm is the ability to operate
in rapidly changing environments with the same delivery guarantees. In Mobile IP, mobile units
must remain in one place long enough to send a message with their new location to their home
agent for forwarding purposes, and remain at that foreign agent long enough for the forwarded
messages to arrive. With forwarding enhancements added to the foreign agents in Mobile IP,
the issue is minimized because the former location of a mobile unit becomes a kind of packet
forwarder. However, even with forwarding, if the agent moves too rapidly and the system is
unable to stabilize, forwarded packets will chase the mobile unit around the system without ever
being delivered. Because snapshots do not maintain a notion of home or route, movements are
immediately accounted for by the delivery scheme.

Route discovery. In more moderately changing environments, the overhead of sending the
announcement to every node may be excessive. In these situations, the snapshot delivery algo-

13

rithm can be modified to perform route discovery. When a source mobile unit � located at MSC �
wishes to communicate with a destination mobile unit � located at MSC , � sends a discovery
message using snapshot delivery. When this message is received by � , a discoveryReply is sent
back to MSC � , identifying � ’s location. Subsequent messages from � to � are sent directly to
MSC . When a message fails to be delivered, the discovery process is repeated using snapshot
delivery for the query.

Multicast. Another area of research in the mobility community is multicast, including some
work on reliable multicast [1] but only under the assumption that the set of recipients is known.
Our algorithm can trivially be extended to perform multicast to all mobile units in the system
during the execution of the snapshot without knowing the list of recipients. Without changing
the processing of the snapshot algorithm and by only changing the destination address from a
unicast mobile unit identifier to a multicast address, it can be shown that every host accepting
announcements on that address will receive the announcement. The reason for this can be found
by looking back at the traditional distributed snapshots. In a snapshot, every message in the
system is recorded in exactly one local snapshot. In our modified algorithm, delivery replaces
recording and mobile units replace messages. Therefore, every mobile unit will be delivered to
exactly one time. Although this description is concise, the importance of it should not be lost in
its simplicity.

Mobile agents. Thus far we have only considered physical movement of mobile units, but an-
other possible application that is characterized by rapid mobile movement is mobile agents where
it is not a physical component that moves, but rather program code and data moving through the
fixed network. Rather than connecting to a base station through a wireless mechanism, these mo-
bile agents actually execute at a foreign host. They have the ability to move rapidly from one host
to another and may not register each new location with a home. Therefore, delivering a message
to a mobile code agent becomes an interesting application area in which rapid movement is not
only feasible, but is the common case. The interested reader can find more details on applying
snapshots in logical mobile environments in [16].

4 Tracking for Delivery

Now we turn our focus toward an approach to message delivery based on tracking the location
of the mobile unit as it moves through the network. Unlike Mobile IP tracking, our approach
does not require location updates to be sent to the home node each time. This section describes a
tracking and delivery approach that comes from applying our algorithm development technique
to the Dijkstra-Scholten diffusing computation/termination detection algorithm. After outlining
this algorithm, we present another algorithm that is not directly based on diffusing computations,
but was inspired by our previous investigation. The details of this work are available in [17].

14

signal

root

message
signal

CB

A

E

D

root

mobile

(a) Distributed environment (b) Mobile environment

Figure 5: Dijkstra-Scholten trees of diffusing computations. Shaded nodes are idle, white nodes
are active. (a) Applied to a standard distributed environment. (b) Applied to a mobile environ-
ment, tracking a single mobile unit. Note there is only one active node, and it is the node the
mobile unit just left. A possible path of the mobile unit to build this tree would be: root, A, B, A,
C, A, root, D, E.

4.1 From Diffusing Computations to Mobile Unit Tracking

Diffusing computations have the property that the computation initiates at a single root node
while all other nodes are idle. The computation spreads to other nodes as messages are sent from
active nodes. Dijkstra and Scholten [6] describe an algorithm for detecting termination of such
computations in which the basic idea is to maintain a spanning tree that includes all active nodes,
as shown in Figure 5a. A message sent from an active node to an idle node (message in Figure 5a)
adds the latter to the tree as a child of the former. Messages sent among tree nodes have no effect
on the structure but may activate idle nodes still in the tree. An idle leaf node can leave the tree at
any time by notifying its parent (signal in Figure 5a). Termination is detected when an idle root is
all that remains in the tree.

By applying our algorithm development technique, we adapt this tree maintenance algorithm
to track the movement of a mobile unit as it travels among base stations. We define a node to be
active when the mobile unit is present (or has started the handover process and is modeled on the
channel), and therefore when the mobile unit arrives at a node, if that node is not already part of
the tree, it is added. In Figure 5b, this corresponds to adding � as an active node when the mobile
unit arrives and changing the status of node � to idle. Because all active nodes are in the tree of
the diffusing computation, the Dijkstra-Scholten algorithm guarantees that the mobile unit will
always be at a node in the tree (or on a channel leaving from a node in the tree). In other words,
the tree of the diffusing computation defines a sub-region of the network where the mobile unit
has recently traveled. As the mobile unit doubles back on its path, the node it arrives at transitions
back to active and the node it departed becomes a leaf node that is cleaned up in the same way idle
leaf nodes are removed in the original Dijkstra-Scholten algorithm (sending a signal message).

15

This tracking of a mobile unit by identification of a region containing the mobile unit is only
part of our goal. Reliable message, or announcement, delivery is the other component that we
achieve by designing an algorithm delivery algorithm that works on top of the diffusing com-
putation tree. Our algorithm works by placing the announcement at the root of the tree and
spreading it down the tree until the mobile unit (or a leaf node) is reached. To guarantee delivery
to a mobile unit that is moving during the announcement propagation, we temporarily store the
announcement at the intermediate nodes, and run a cleanup phase after the message is delivered
to remove the extra copies.

By superimposing the delivery actions on top of the graph maintenance, the result is an algo-
rithm that guarantees at least once delivery of an announcement while actively maintaining graph
of nodes recently visited by the mobile unit.

It is not necessary for the spanning tree to be pruned as soon as a node becomes an idle leaf.
Instead this processing can be delayed until a period of low bandwidth utilization. An application
may benefit by allowing the construction of a wide spanning tree within which the mobile units
travels, similar to the graph shown in Figure 5b. Tradeoffs include shorter paths from the root
to the mobile unit versus an increase in the number of nodes involved in each announcement
delivery.

By constructing the graph based on the movement of the mobile unit, the path from the root
to the mobile unit may not be optimal. Therefore, a possible extension is to run an optimization
protocol to reduce the length of this path. Such an optimization must take into consideration
the continued movement of the mobile unit as well as any announcement deliveries in progress.
The tradeoff with this approach is between the benefit of a shorter route from the root to the
mobile unit and the additional bandwidth and complexity required to run the optimization and
simultaneously guarantee the delivery of announcements en route to the mobile unit.

Although in our algorithm only one mobile unit is tracked, the graph maintenance algorithm
requires no extensions to track a group of mobile units. The resulting spanning tree can be used
for unicast announcement delivery without any modifications and for multicast announcement
delivery by changing only the announcement clean up mechanism.

4.2 Extension: Backbone-based Message Delivery

We now introduce a new tracking and delivery algorithm inspired by the previous investigation
with diffusing computations. Our goal is to reduce the number of nodes to which the announce-
ment propagates. To accomplish this we note that only the path between the root and mobile unit
is necessary for delivery. In the previous approach, although the parts of the tree not on the path
from the root to the mobile unit can be eliminated, announcements still propagate unnecessarily
down these subtrees before node deletion occurs.

To avoid this, the algorithm presented in this section maintains a graph with only one path

16

home

A

B

C

D

A

B

C

D

home

del

home

A

B

C

D

home

A

B

C

D

(a) Backbone (b) Backbone (c) Tail node (d) After movement
extended shortened added completes

Figure 6: The parent pointers of the backbone change as the mobile moves to (a) a node not in
the backbone, (b) a node higher in the backbone, and (c) a tail node. (d) shows the state after all
channels have been cleared.

leading away from the root and terminating at the mobile unit. This path is referred to as the
backbone. Nodes that were once part of the backbone but are no longer on this path between the
root and the mobile unit form structures referred to as tails. Tails are actively removed from the
graph, rather than relying on idle leaf nodes to remove themselves. Maintenance of the backbone
requires additional information to be carried by the mobile unit regarding the nodes currently on
the backbone, as well as the introduction of a delete message to remove tail nodes. The announce-
ment delivery mechanism remains essentially the same as before, but the simpler graph reduces
the number of announcement copies stored during delivery.

Intuitively the backbone nodes are the core of the algorithm because they represent the path
between the root and the mobile unit that is necessary for announcement delivery. The tail nodes
are leftover pieces that were formerly part of the backbone, but the doubling back of the mobile
unit to backbone nodes makes these nodes unnecessary for message delivery. If we were not
concerned with leaving unnecessary state lying around in the network, we could simply ignore
these tail nodes, however for completeness, we include an active mechanism to shrink tails until
they disappear. The complexities of the approach lie in properly maintaining the backbone and in
cleaning up only tail nodes. Because nodes only have local knowledge, all decisions about dealing
with arriving messages and announcements must be based on the information held at the node
and carried by the message.

To understand how the backbone is kept independent of the tails, we examine how the graph
changes as the mobile unit moves. It is important to note that by the definition of the backbone,
the mobile unit is always either at the last node of the backbone, or on a channel leading away
from it. Figure 6 shows how the backbone is affected as the mobile unit moves to each of the tree
distinct types of nodes: (a) a node that is neither a backbone nor a tail node, (b) a backbone node
and (c) a tail node.

17

root

del

tail

del

tail
backbone

home covered backbone
(a) Sample diffusing (b) Modified graph showing

computation new structure

Figure 7: By adapting diffusing computations to mobility, we construct a graph reflecting the
movement of the mobile. In order to deliver an announcement, the only part of the graph we
need is the path from the root to the mobile, the backbone. Therefore we adapt the Dijkstra-Scholten
algorithm to maintain only this graph segment and delete all the others.

In Figure 6a, the backbone is composed of nodes ! , " , and # and the dashed arrow shows the
movement of the mobile unit from node # to $ where $ is not part of the graph. This is the most
straightforward case in which the backbone is extended to include $ by adding both the child
pointer from # to $ (not shown) and the parent pointer in the reverse direction (solid arrow in
Figure 6b).

In Figure 6b, the mobile moves to a node " , a node already in the backbone and with a non-null
parent pointer. It is clear from the figure that the backbone should be shortened to only include !
and " without changing any parent pointers, and that # and $ should be deleted. To explicitly
remove the tail created by # and $, a delete message is sent to the child of " . When # receives
the delete from its parent, it will nullify its parent pointer, propagate the delete to its child, and
nullify its child pointer.

If at this point the mobile moves from " onto $ before the arrival of the delete (See Figure 6c),
$ still has a parent pointer (#) and we cannot distinguish this case from the previous case (where
" also had a non null parent pointer). In the previous case the parent of the node the mobile
unit arrived at did not change, but in this case, we wish to have $ ’s parent set to " (the node the
mobile unit is arriving from) so that the backbone is correct. To distinguish these two cases, we
require the mobile unit to carry a sequence containing the identities of the nodes in the backbone.
In the first case where the mobile unit arrives at " , " is in the list of backbone nodes maintained
by the mobile unit, therefore " keeps its parent pointer unchanged, but prunes the backbone list
to remove # and $. However, when the mobile arrives at $, only ! and " are in the backbone
list, therefore the parent pointer of $ is changed to point to " . But, what happens to the delete
message moving from # to $? Because # is no longer $ ’s parent when the delete arrives, it is
simply dropped and the backbone is not affected.

18

The delivery algorithm is then superimposed on top of the generated graph. In the previous
section, the announcement propagated from the root down all edges of the tree. In the algorithm
of this section, the announcement only propagates down the edges that are part of the backbone.
It is still necessary to keep a copy of the message at every node until delivery occurs. Consider a
case where the announcement is not stored, and instead simply propagates down the backbone.
In Figure 6b, if the announcement were at node � when the mobile unit moved from node � to
� , delivery would not occur because the mobile unit moved from a region below propagation to
a region above propagation. Therefore, to guarantee delivery, as the announcement propagates
down the backbone, a copy is stored at each node until delivery is complete. We refer to the
portion of the backbone with an announcement as the covered backbone, see Figure 7b.

Delivery can occur either by the mobile unit moving to a location in the covered backbone, or
the announcement catching up with the mobile unit at a node. In either case, an acknowledgment
is generated and sent via the parent pointers toward the root to clean up the extra announcement
copies. If the announcement is delivered when the mobile unit moves on to the covered backbone,
a delete is generated toward the child and an acknowledgment is generated toward the parent. While
the acknowledgment removes the copies of the announcement on the backbone, the delete removes
the copies from the tails at the same time the tail nodes are removed from the graph.

Keeping the backbone sequence is a similar methodology to routing protocols passing com-
plete paths to the destination as in BGP [21] to avoid loops. It has been argued that keeping such
information in the packet greatly increases its size. However, in our case, the information is being
kept by the mobile unit and we assume there is sufficient storage on such a device for this addi-
tional information. In a mobile agent system, the path can be trivially shortened by forcing the
agent to return to its home node periodically. This is not as reasonable for a physically mobile sys-
tem, and in the case where the backbone sequence grows beyond a reasonable limit, a secondary,
optimization algorithm can be executed to shorten its length.

A simple extension of this algorithm is to allow for multiple concurrent announcement deliv-
eries as in sliding window protocols. The announcements and all associated acknowledgments
would have to be marked by sequence numbers so that they do not interfere, but the delivery
mechanism uses the same graph. Therefore the rules governing the expansion and shrinking of
the graph are not affected but the proofs of garbage collection and acknowledgment delivery are
more delicate.

5 Reality Check

When moving from the distributed computing environment to the mobile environment, we made
several assumptions about the nature of the network and the behavior of the components in the
network. In this section, we reexamine these assumptions, showing why they are reasonable, or
how the algorithm can be adapted to make them more reasonable. Specifically, we look at the

19

complete complete complete
handover handover handover

Protocol
Handover

Message
Mobile overtakes

Mobile
Message overtakes

switch(f) switch(f)switch(f)
msg

msg

freq(f)

hello hello

A B mmBA A B m

freq(f)

msg
hello

(c)(b)(a)

msg

freq(f)

requestrequest
frequencyfrequency frequency

request

Figure 8: AMPS handover protocol (a) for mobile unit % moving from cell ! to cell & . If messages
are processed (i.e., broadcast to the mobile) immediately upon receipt, it is possible (b) for the
mobile to move faster than the message along the channel, or (c) for the message to move faster
than the mobile, thus breaking the FIFO channel property.

issues of non-FIFO channels, multiple RBSs per MSC, base station connectivity, reliable delivery
on links, the involvement level of MSCs, and storage requirements.

FIFO Channels. One major issue when using the Chandy-Lamport algorithm is its reliance
on FIFO channels. More specifically, in Section 3.2 we modeled both the mobile units and the
messages as traveling on the same channel. This seems to be an unreasonable assumption given
that mobile units move much more slowly through space than messages move through a fixed
network. By looking in more detail at the handover protocol used when a mobile unit changes
cells, we show how the FIFO assumption can be broken, and propose a simple mechanism to
restore it.

One of the U.S. standards for analog cellular communication is AMPS [22], in which cellular
telephones tune to only one frequency at a time. When the signal between the MSC and a mobile
unit begins to degrade, the MSC searches for a neighboring MSC with a stronger communication
signal indicating the mobile unit is moving into that particular cell. When a frequency is requested,
a handover begins. Figure 8a shows the control messages exchanged as a mobile unit, % , moves
from cell ! to cell " . First the frequency request is exchanged between the MSCs. At this point the
mobile unit is made aware of the handover by receiving a new frequency from its current MSC,
! . After switching to the new frequency, the mobile sends a hello on the new frequency, alerting
" that the mobile is now listening on the new frequency. Finally, " sends a handover complete to ! ,
which releases the old frequency.

20

By using the AMPS approach, we know when a mobile unit is moving between cells and which
cells it is moving between. We also note that the mobile unit is not involved in the handover until
the moment it changes the frequency it is tuned to.

Our primary concern is making the channels FIFO with respect to mobile units and messages
(both control messages and announcements). Even if we assume that channels between MSCs are
FIFO, reordering is possible because part of the handover takes place over wireless channels that
are not synchronized with the wired channels. Specifically we address the two cases of non-FIFO
behavior where (1) the mobile overtakes a message and (2) the message overtakes the mobile.

It is important to define the point at which the mobile logically moves onto the channel. We
define this to be when communication with � is terminated by the transmission of the switch
message. Similarly, the mobile moves off of the channel when the wireless transmission of the
hello message is accepted at the destination cell, � in our example. As can be seen in Figure 8b,
it is possible for a message sent on the wired channel before the switch message to arrive at the
destination after the arrival of the mobile unit, breaking the FIFO ordering. Similarly, a message
sent after the switch message can move quickly through the channel and arrive at the destination
before the mobile (Figure 8c).

We propose a minor change in the protocol in order to involve both the wired and wireless
channels in the handover. The only change to the source side (� in this case) is the wire transmis-
sion of a special message atomically with the wireless switch transmission. We call this message
the virtual mobile unit (VMU) because it identifies the point on the wired channel at which the
mobile leaves the source. All messages sent on the wired channel before the VMU were sent be-
fore the mobile unit left, and all messages after the VMU were sent after the mobile unit left. We
correspondingly change the behavior of the destination (� in this case) to achieve this desired
behavior, in other words to have the virtual mobile unit and the physical mobile unit arrive at the
destination at the same time. Therefore, if the hello arrives before the VMU , all incoming messages
on the wired channel are treated as if the mobile is not present even though communication is
possible. Conversely, if the VMU arrives before the hello, all messages sent on the wired channel
are buffered until the hello arrives. When both messages have arrived and have been processed, �
continues processing all messages in the order in which they are received. By forcing the receiver
to wait for both messages, the wired and wireless channels are synchronized, effectively yielding
a single FIFO channel containing both mobile units and messages.

Multiple RBSs per MSC. Until this point we have only allowed one radio base station for
each support center, however, in current cellular telephone systems, MSCs manage sets of RBSs.
Because the algorithm we presented is intended to be run over the fixed network formed by the
MSCs, the handover mechanisms apply only to the movement of a mobile unit from a RBS sup-
ported by one MSC to another RBS supported by a different MSC. The question remains about
how to broadcast the announcement within the cells supported by a single MSC and maintain the
constraints of guaranteed, single delivery. Because the MSC acts as a coordinator of the mobile

21

units present at each of the RBSs, it is feasible to run the snapshot delivery algorithm among the
RBSs, allowing it to terminate before any handovers to other MSCs are permitted. This simple
solution shows how our snapshot algorithm can be used as a support layer for other algorithms.

Base station connectivity. Another possible concern with the model we presented is the ne-
cessity for physical connections between all MSCs whose cells border one another. Because of the
high cost for such connectivity, it is possible that these physical wires may not exist. To allow our
algorithms to function in such a setting, we propose adding virtual channels between adjacent
cells and treating such channels the same as the real channels. In the implementation, however,
we must be careful to ensure the FIFO nature of this virtual channel.

The same technique can be applied to support a limited form of disconnection. Suppose a
mobile unit was likely to disconnect from cell � and at some time later connect to cell � . By adding
a virtual channel between � and � and managing the disconnection as a long-lived handover, we
can guarantee delivery even if the mobile unit disconnects during the delivery. While this requires
additional memory support at the base stations to store the announcements for the duration of this
disconnection, such storage is not required at all base stations, making this a reasonable approach
for guarantees in the presence of disconnection.

Reliable delivery on links. Our delivery algorithms assume that message delivery across
a link is reliable. Most of the Internet uses unreliable links such as Ethernets, frame relay, and
ATM. The probability of error on such links may be small but packets are indeed dropped. A
possible solution is to add acknowledgments for multicast messages as is done, for example, in
the intelligent flooding algorithm used in Links State Routing in OSI [24] and OSPF [15]. Another
solution is to only provide best-effort service. Since lost messages can lead to deadlock we need
to delete an announcement after a timeout even if it is still expected along a channel.

Involvement level of MSCs. For the snapshot algorithm to function, every MSC must be in-
volved to guarantee delivery and termination. In a paper on running distributed computations in
a mobile setting [3], the authors warn against requiring involvement of all mobile units in a com-
putation, especially due to the voluntary disconnection often associated with mobile computing.
Such disconnection is often done to conserve power, or in some cases, to allow disconnected oper-
ation. In either case, the mobile unit is not available for participation in the distributed algorithm.
These arguments are important when designing distributed algorithms for execution over mobile
units, however our goal is not to create a global snapshot containing information about the mobile
units, but instead to employ the snapshot technique to a different end, namely announcement de-
livery. Additionally, the control messages of the snapshot are not processed by the mobile units,
but rather by the fixed mobile support centers, and no resources of the mobile unit are expended,
except to receive a message.

It is true that in order to guarantee delivery the mobile unit must be present in the system,
however, this is a reasonable assumption because by definition there are no means to reach a
disconnected mobile unit. It is worth nothing that if the mobile unit is not present in the sys-

22

tem during a delivery attempt, the algorithm will terminate normally, removing all trace of the
announcement from the system, but without delivery.

Storage requirements. In snapshot delivery, we assume that the MSCs hold a copy of the an-
nouncement for delivery to the mobile units for a bounded period of time limited to the duration
of the local snapshot. This is more efficient than another proposal [1] in which the announcement
is broadcast to all nodes, each of which stores the announcement until notified that delivery has
occurred. In our approach, the time for storage is bounded by the speed of network propagation
and connectivity of the network. In a system with bi-directional channels, because the local snap-
shot terminates when the announcement arrives on all incoming channels, the duration of a local
snapshot can be as short as one round trip delay between the MSCs. One can argue that it is not
the place of the MSCs to be maintaining copies of announcements when their primary purpose
is routing. However, in this case, because no routing information is being kept about the mobile
units, the system will be required to keep additional state in order to provide delivery guarantees.
Therefore, keeping a copy for a short duration is a reasonable assumption.

6 Conclusions

This paper makes two important contributions. First, it explores a model of mobility in which
handovers are abstracted as the traversal of links among the base stations and mobile units, both
physical and logical, are treated as persistent messages. The result is a model that unifies wired
and cellular, wireless networking and facilitates the transfer of algorithmic knowledge between
the two settings. Second, we offer a general methodology for reusing results from distributed
computing in the area of mobile computing. Our main contribution is that we suggest not a direct
usage of the existing algorithms, a strategy shown to have limited applicability, but a way to cap-
italize on the intellectual investments made in the field of distributed computing. The examples
presented adapt a snapshot algorithm to search for a mobile unit and deliver a message, and use
diffusing computations to track the movement of a mobile unit. The ease with which we built
these new algorithms provides strong evidence of the efficacy of the general strategy advocated
in this paper.

References

[1] A. Acharya and B.R. Badrinath. A framework for delivering multicast messages in networks
with mobile hosts. Journal of Special Topics in Mobile Networks and Applications (MONET),
1(2):199–219, October 1996.

[2] B.R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed algorithms for mobile
hosts. In Proceedings of the Fourteenth International Conference on Distributed Computing Systems,

23

pages 21–28, Poznan, Poland, 1994.

[3] B.R. Badrinath, A. Acharya, and T. Imielinski. Designing distributed algorithms for mobile
computing networks. Computer Communications, 19(4):309–320, April 1996.

[4] J. Broch, D.B. Johnson, and D.A. Maltz. The dynamic source routing protocol for mobile ad
hoc networks. Internet Draft, March 1998. IETF Mobile Ad Hoc Networking Working Group.

[5] K.M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States of Dis-
tributed Systems. ACM Transactions on Computer Systems, 3(1):63–75, February 1985.

[6] E.W. Dijkstra and C. Scholten. Termination detection for diffusing computations. Information
Processing Letters, 11(1), 1980.

[7] H. Eriksson. Mbone: The multicast backbone. Communications of the ACM, 37(8):54–60, 1994.

[8] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE Transactions on
Software Engineering, 24(5):342–361, May 1998.

[9] R. Gray, D. Kotz, S. Nog, D. Rus, and G. George. Mobile agents for mobile computing. Tech-
nical Report PCS0TR96-285, Dartmouth College, May 1996.

[10] J. Ioannidis and Jr. G.Q. Maguire. The design and implementation of a mobile internetwork-
ing architecture. In 1992 Winter Usenix, 1993.

[11] V. Jacobson and S. McCanne. Visual audio tool.

[12] D.B. Johnson. Scalable support for transparent mobile host internetworking. In H. Korth and
T. Imielinski, editors, Mobile Computing, pages 103–128. Kluwer Academic Publishers, 1996.

[13] J.J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system. ACM
Transactions on Computer Systems, 10(1):3–25, 1992.

[14] S. McCanne and V. Jacobson. vic: A flexible framework for packet video. In ACM Multimedia
’95, pages 511–522, San Francisco, CA, USA, 1995.

[15] J. Moy. OSPF version 2. Internet draft, Internet Engineering Task Force, March 1994 1994.

[16] A.L. Murphy and G.P. Picco. Reliable communication for highly mobile agents. Journal of
Autonomous Agents and Multi-Agent Systems, Special issue on Mobile Agents, 5(1):81–100, March
2002.

[17] A.L. Murphy, G.-C. Roman, and G. Varghese. Tracking mobile units for dependable message
delivery. IEEE Transactions on Software Engineering, May 2002.

[18] A. Myles and D. Skellern. Comparing four IP based mobile host protocols. Computer Networks
and ISDN Systems, 26(3):349–355, 1993.

24

[19] C.E. Perkins. IP mobility support. Technical Report RFC 2002, IETF Network Working Group,
October 1996.

[20] M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz. Network-aware mobile programs.
Technical Report CS-TR-3659, University of Maryland, College Park, 1997.

[21] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, March 1995.

[22] M. Steenstrup. Routing in Communication Networks, chapter 10. Prentice-Hall, 1995.

[23] F. Teraoka, Y. Yokore, and M. Tokoro. A network architecture providing host migration trans-
parency. ACM SIGCOMM Computer Communication Review (SIGCOMM’91), 21(4):209–220,
September 1991.

[24] H. Zimmerman. OSI reference model – The ISO model of architecture for open systems
interconnection. IEEE Transactions on Communication, 28:425–432, 1980.

25

