
Efficient Content-Based Event Dispatching
in Presence of Topological Reconfiguration

Gian Pietro Picco
Politecnico di Milano, Italy

picco@elet.polimi.it

Gianpaolo Cugola
Politecnico di Milano, Italy

cugola@elet.polimi.it

Amy L. Murphy
Univ. of Rochester, NY, USA

murphy@cs.rochester.edu

Abstract

Distributed content-based publish-subscribe middleware
provides the decoupling, flexibility, expressiveness, and
scalability required by highly dynamic distributed applica-
tions, e.g., mobile ones. Nevertheless, the available systems
exploiting a distributed event dispatcher are unable to rear-
range dynamically their behavior to adapt to changes in the
topology of the dispatching infrastructure.

In this work, we first define a strawman solution based
on ideas proposed (but never precisely characterized) in ex-
isting work. We then analyze this solution and achieve a
deeper understanding of how the event dispatching infor-
mation is reconfigured. Based on this analysis, we modify
the strawman approach to reduce its overhead. Simulations
show that the reduction is significant (up to 50%), and yet
the algorithm is resilient to concurrent reconfigurations.

1 Introduction

Publish-subscribe middleware is gaining popularity be-
cause the asynchronous, implicit, multi-point, and peer-to-
peer communication style it fosters is well-suited for mod-
ern distributed computing applications. While the major-
ity of deployed systems is centralized, commercial and aca-
demic efforts are focusing on achieving better scalability by
exploiting a distributed event dispatching architecture.

Beyond scalability, the next challenge for publish-sub-
scribe middleware is dynamic reconfiguration of the topol-
ogy of the distributed dispatching infrastructure. Compa-
nies are frequently undergoing administrative and organi-
zational changes, and so is the logical and physical network
enabling their information systems. Mobility is increasingly
becoming part of mainstream computing. Peer-to-peer net-
works are defining very fluid application-level networks for
information sharing and dissemination. The very character-
istics of the publish-subscribemodel, most prominently the
sharp decoupling between communication parties, make it

amenable to these and other highly dynamic environments.
However, this is true in practice only if the publish-subscri-
be systemis itself able of dealing with reconfiguration. In
particular, all the aforementioned sources of reconfiguration
affect the topology of the event dispatching network, forc-
ing the middleware to reconfigure its behavior accordingly.

The vast majority of currently available publish-subscri-
be middleware has ignored this problem thus far. The only
exception is a very simple approach (henceforth referred
to as the“strawman approach”) suggested by some au-
thors [3, 18] but whose details have not been defined or im-
plemented to date. Hence, in this paper we put forth our
contributions by:

• providing a precise characterization of the strawman
approach, and elucidating the principles underlying re-
configuration;

• presenting a novel solution that builds upon the straw-
man approach, but modifies its processing to obtain a
significant reduction in overhead while still tolerating
frequent reconfigurations;

• validating our solution through simulation, by compar-
ing it against the strawman approach.

The paper is structured as follows. Section 2 contains a con-
cise introduction to publish-subscribe, a discussion about
the possible sources of reconfiguration, and a description of
related efforts in the field. Section 3 defines the reconfigu-
ration problem we tackle in this paper. Section 4 describes
the aforementioned strawman solution, which is then ana-
lyzed in Section 5, leading to the optimizations we propose
and illustrate in the same section. Section 6 presents the
simulation results validating our approach. The paper ends
with the brief concluding remarks in Section 7.

2 Background and Motivation

In this section we provide an overview of publish-sub-
scribe systems, describe the reconfiguration scenarios that
motivate our work, and survey related work.

1

2.1 Publish-Subscribe Systems

Applications exploiting publish-subscribe middleware
are organized as a collection of autonomous components,
theclients, which interact bypublishingevents and bysub-
scribing to the classes of events they are interested in. A
component of the architecture, theevent dispatcher, is re-
sponsible for collecting subscriptions and forwarding events
to subscribers. Recently, many publish-subscribe middle-
ware have become available, which differ along several di-
mensions1. Two are usually considered fundamental: the
expressiveness of the subscription language and the archi-
tecture of the event dispatcher.

The expressivity of the subscription language draws a
line betweensubject-basedsystems, where subscriptions
identify only classes of events belonging to a given chan-
nel or subject, andcontent-basedsystems, where subscrip-
tions contain expressions (calledevent patterns) that allow
sophisticated matching on the event content. Our approach
is applicable to both classes of systems but in this paper we
assume a content-based subscription language, as this rep-
resents the most general and challenging case.

The architecture of the event dispatcher can be either
centralized or distributed; in this paper, we focus on the
latter case. In such middleware (see Figure 1) a set ofdis-
patching servers2 are interconnected in an overlay network
and cooperatively route subscription and event messages.

The systems exploiting a distributed dispatcher can be
further classified according to the interconnection topology
of dispatchers and the strategy exploited for message rout-
ing. In this work we consider a subscription forwarding
scheme on an undirected acyclic graph topology, as this
choice covers the majority of existing systems.

In a subscription forwarding scheme [3], subscriptions
are delivered to every dispatcher, along a single undirected
acyclic graph spanning all dispatchers, and are used to es-
tablish the routes that are followed by published events.
When a client issues a subscription, a message containing
the corresponding event pattern is sent to the dispatcher the
client is attached to. There, the event pattern is inserted in
a subscription table together with the identifier of the sub-
scriber, and the subscription is forwarded to all the neigh-
bors. During this propagation, the dispatcher behaves as a
subscriber with respect to the rest of the dispatching graph.
Each dispatcher, in turn, records the event pattern and re-
forwards the subscription to its neighbors, except for the
one that sent it. This scheme is usually optimized by avoid-
ing subscription forwarding of the same event pattern in the

1For more detailed comparisons see [3, 6, 11].
2Hereafter we refer todispatching serverssimply asdispatchers, al-

though the latter refers more precisely to the whole distributed component
in charge of dispatching events, rather than to a specific server part of it.

A

C

B

D

E

F

X

S

Figure 1. Subscription forwarding.

same direction3. This subscription forwarding effectively
sets up a route for events, through the reverse path from the
publisher to the subscriber. Requests to unsubscribe from a
given event pattern are handled and propagated analogously
to subscriptions, although at each hop entries in the sub-
scription table are removed rather than inserted.

Figure 1 shows a dispatching graph where a dispatcher
(the dark one) is subscribed to a certain event pattern. The
arrows represent the routes laid down according to this sub-
scription, and reflect the content of the subscription tables of
each dispatcher. To avoid cluttering the figure, subscriptions
are shown only for a single event pattern. Here and in the
rest of the paper, we ignore the presence of clients and focus
on dispatchers, not only to simplify the treatment, but also
because in the domains we target there is often no distinc-
tion between the two. Accordingly, even if in principle only
clients can be subscribers, with some stretch of terminology
we say that a dispatcher is a subscriber if it at least one of
its clients is. Moreover, we assume that the links connecting
the dispatchers are FIFO and transport reliably (i.e., with no
loss) subscriptions, unsubscriptions, events, and other con-
trol messages. Both assumptions are typical of mainstream
publish-subscribe systems, and are easily satisfied by using
TCP for communication between dispatchers.

2.2 Sources of Dynamic Reconfiguration

Publish-subscribe systems are intrinsically characterized
by a high degree of reconfiguration, determined by their
very operation. Routes for events are continuously created
and removed across the tree of dispatchers as clients sub-
scribe and unsubscribe to and from events. Clearly, this is
not the kind of reconfiguration we are investigating here.
Instead, the dynamic reconfiguration we address can be de-
fined informally asthe ability to rearrange the routes tra-
versed by events in response to changes in the topology of
the network of dispatchers, and to do this without interrupt-
ing the normal system operation.

Triggers for such a reconfiguration are many, and their
effect is the vanishing and/or appearance of one or more
links between dispatchers. The simplest scenario is where
reconfiguration is triggered at the application layer. For

3Other optimizations are possible, e.g., by defining a notion of “cover-
age” among subscriptions, or by aggregating them, like in [3].

2

instance, the publish-subscribe systems deployed in enter-
prise usually rely on a backbone of interconnected dispatch-
ers. A system administrator may need to substitute one link
with another to change the topology of the event dispatcher,
e.g., to balance the traffic load or to adapt to a change in the
underlying physical network. The effect should be an auto-
matic reconfiguration of the distributed dispatcher to adapt
event routes to the new topology.

Unfortunately, the source of reconfiguration is not al-
ways under the control of applications. A dispatcher may
become disconnected from one of its neighbors because the
physical link connecting the two has failed. Mobile com-
puting defines a scenario where this is particularly likely
to happen, since the network topology can change dy-
namically as mobile hosts move and yet remain connected
through wireless links. This is brought to an extreme by mo-
bile ad hoc networks (MANETs), where the networking in-
frastructure is totally absent and connectivity is determined
solely by the distance between hosts. In all these cases, lack
of communication with a dispatcher results in the inability
to route messages towards it, due to partitioning of the dis-
patching graph. The reconfiguration process must restore
the connectivity of the overlay network, but also properly
rearrange the routing information in it.

A somehow intermediate scenario is provided by peer-
to-peer systems, where the ability to perform scalable
content-based event routing can be exploited to implement
data sharing applications based on a peer-to-peer architec-
ture. This idea has been exploited by some of the authors in
the PeerWare [7] middleware, and is also described in [9].
In this setting, each peer node routes messages much like
a dispatcher. Consequently, the underlying routing mech-
anism must be able to cope with frequent changes of the
topology of the peer overlay network, determined by users
(and hence peers) joining and leaving the system.

2.3 Related Work

Most publish-subscribe middleware are targeted to lo-
cal area networks and adopt a centralized dispatcher. In
recent years, the problem of wide-area event notification
attracted the attention of researchers [15] and systems ex-
ploiting a distributed dispatcher became available, such as
TIBCO’s TIB/Rendezvous, Jedi [6], Siena [3], READY [8],
Keryx [17], Gryphon [1], and Elvin4 [13]. To the best of our
knowledge, none of them provides any special mechanism
to support the reconfiguration addressed by this paper.

The closest match is the work on Siena [3] and the sys-
tem described in [18]. These papers briefly suggest the use
of the strawman solution to allow subtrees of dispatchers to
be merged or trees to be split, but they do not provide de-
tails about its design, let apart providing an implementation
or a validation through simulation. In this paper, we elab-

orate and provide details about the ideas presented in the
aforementioned papers, and use the strawman solution as a
term of comparison for our own solution. Jedi [6] provides
a different form of reconfiguration that allows only clients
(not dispatchers) to be added, removed, or moved to a dif-
ferent dispatcher at run-time. Similarly, Elvin [14] supports
mobile clients through a proxy server, although this feature
is not included in the latest (4.0.3) release. Finally, some
research projects, such as IBM Gryphon [1] and Microsoft
Herald [2], claim to support a notion of reconfiguration sim-
ilar to the one we address in this work, but we were unable
to find any public documentation about existing results.

3 The Reconfiguration Problem

We see the problem of dynamically reconfiguring a pu-
blish-subscribe system as composed of three subproblems
that involve the:

1. reconfiguration of the dispatching graph, to retain con-
nectivity among dispatchers without creating loops;

2. reconfiguration of the subscription information held by
each dispatcher, to keep it consistent with the changes
in the graph without interfering with the normal pro-
cessing of subscriptions and unsubscriptions;

3. minimization of event loss during reconfiguration.

The objective of this paper is to provide an efficient so-
lution for correctly reconfiguring the subscription informa-
tion, i.e., for the second of the aforementioned problems.
The rationale for this choice lies in the fact thatmaintan-
ing the consistency of subscription information is the defin-
ing problem of content-based publish-subscribe systems: if
the information necessary for event dispatching is miscon-
figured, or propagated inefficiently, the whole purpose of a
content-based system may be undermined.

To understand why, it is useful to compare how subject-
based and content-based systems are typically imple-
mented. In subject-based systems, a spanning tree is built
for each subject, connecting all the dispatchers subscribed
to it. Once this tree is built, dispatching is trivial: an event
matching a subject is simply broadcast over the correspond-
ing tree. Notably, this closely resembles multicast systems,
which indeed provide a suitable technology for implement-
ing subject-based publish-subscribe systems. In content-
based systems, instead, the number of “subjects” (i.e., the
event patterns) is not known a priori and is potentially in-
finite, since it is entirely determined by the clients. More-
over, an event may match several event patterns at once. For
these reasons, it becomes unreasonable to build a spanning
tree for each event pattern [10]. A better solution, exploited
by most content-based systems, is to build a single tree con-
necting all the dispatchers, and decorate such a tree with

3

the information (i.e., the subscriptions) necessary to route
events over it, as we described in Section 2.1.

Hence, as mentioned earlier, the availability of a tree
connecting all the dispatchers is a precondition for content-
based systems, but it is not the distinctive feature. In the
remainder of this paper, we assume that the underlying tree
is kept connected and loop-free by some other algorithm,
and concentrate on the event dispatching issue. In doing
that, we are supported by the observation that the algorithms
for keeping the underlying tree connected strongly depend
on the specific reconfiguration scenario (e.g., MANET vs.
peer-to-peer computing over the Internet), and hence decou-
pling the event dispatching issue from the tree reconfigura-
tion issue is actually beneficial.

This, however, does not mean that we are disregarding
this tree maintenance problem. Since our ultimate goal is
the development of a publish-subscribe system for highly
dynamic environments such as those defined by mobile
computing and peer-to-peer networks, our ongoing activi-
ties are investigating how existing algorithms (e.g., those
developed for MANET routing [12] or IP multicast) can be
adapted to our needs. In parallel, to address the problem of
event loss during reconfiguration, we are looking into the
possibility of adding a layer inspired by [4] on top of our
algorithm to recover lost events.

Next we describe the aforementioned strawman solution
which, albeit currently not implemented by any system, is
the only point of comparison available in the literature.

4 A Strawman Approach

The idea of the strawman approach [3, 18] is to carry
out the reconfiguration by using exclusively the primitives
available in a publish-subscribe system. In particular, the re-
configuration triggered by a link removal can be dealt with
using unsubscriptions. When a link is removed, each of
its end-points is no longer able to route events matching
subscriptions issued by dispatchers on the other side of the
tree. Hence, each of the end-points should behave as if it
had received from the other end-point an unsubscription for
each of the event patterns the latter was subscribed to. The
insertion of a new link triggers a similar process that uses
subscriptions to reconfigure the routing. Note how the only
information needed regarding the overlay network being re-
configured is the notification that a link towards a dispatcher
has appeared or vanished.

This strawman approach is the most natural and conve-
nient when reconfiguration involves only either an isolated
link insertion or removal, thus leading to a merging of two
dispatching trees or a partitioning of one. Nevertheless, it
exhibits a number of drawbacks when applied to arbitrary
reconfigurations, e.g., those where multiple link breaks and
insertions occur randomly and concurrently, or those where

A

C

B

D

E

F

X

S

A

C

B

D

E

F

X

S

Figure 2. The dispatching tree of Figure 1 dur-
ing and after a reconfiguration performed us-
ing the strawman approach.

a broken link is shortly replaced (through the underlying
tree reconfiguration mechanism) by a new link established
in a different portion of the tree.

In fact, if the route reconfigurations caused by link re-
moval and insertion are allowed to propagate concurrently,
they may lead to the dissemination of subscriptions which
are removed shortly after, or to the removal of subscrip-
tions that are then subsequently restored, thus wasting a lot
of messages and potentially causing far reaching and long
lasting disruption of communication.

Figure 2 illustrates this concept on the dispatching tree
of Figure 1. According to the strawman approach, when
the link betweenA andB is removed the two end-points
trigger unsubscriptions in their subtrees, without taking into
account the fact that a new link will be found betweenC
andD, effectively reconnecting the two subtrees. Depend-
ing on the speed of the route destruction and construction
processes, subscriptions inB’s subtree may be completely
eliminated, since there are no subscribers in that tree. Nev-
ertheless, shortly after most of these subscriptions will be
rebuilt by the reconfiguration process. The resulting recon-
figuration of subscription information is not only inefficient,
but it may greatly increase the loss of events.

In the next two sections, we show how simple modifica-
tions to the strawman approach, driven by an in-depth anal-
ysis of its operation, lead to significant improvements in the
process of reconfiguring event dispatching information.

5 A More Efficient Approach

To design a new algorithm for highly dynamic environ-
ments, we begin by observing that the drawbacks of the
strawman algorithm described in Section 4 mainly result
from the fact that the unsubscription process determined by
a link removal and the subscription process taking care of a
link insertion proceed completely in parallel. This consider-
ation leads to the idea of identifying the impact of subscrip-

4

tions and unsubscriptions on an already established tree to
determine if some kind of coordination could improve the
performance of the strawman approach without sacrificing
consistency when multiple link breaks occur in parallel.

5.1 Identifying the Tradeoffs

To describe the impact of subscriptions and unsubscrip-
tions on a publish-subscribe system that adopts a subscrip-
tion forwarding strategy, it is useful to classify dispatchers
into subscribers, forwarders, and splitters4. For each event
patternp, a subscriberis a dispatcher that has at least one
client subscribed top. A forwarder is a dispatcher which
is not a subscriber and whose routing table has a single en-
try tagged withp (i.e., graphically this means that it has a
single outgoing arrow labelled withp). Finally, asplitter
is either a dispatcher whose routing table has two or more
entries tagged withp, or a subscriber.

With these definitions in mind, we can derive the fol-
lowing general rule for systems based on the subscription
forwarding strategy described in Section 4:a subscription
issued by a client is propagated in the dispatching tree fol-
lowing the unique route up to the closest splitter, if it exists;
to the whole tree, otherwise.Clearly, in the special case
where the new subscriber is also a splitter nothing happens.

To understand this rule we observe that, for each event
patternp, there exists a minimum spanning tree containing
all the dispatchers subscribed top. For instance, in Figure 3
this minimum spanning tree is made of dispatchersA, B,
C, D, E. The routing tables of the dispatchers belonging to
this subtree are organized in such a way that events match-
ing p reaching one of them are forwarded to all the oth-
ers. Moreover, the routing tables of all the other dispatchers
route events matchingp to this subtree but not vice versa,
i.e., events reaching this subtree are not forwarded outside
of it. Hence, we observe that the point of attachment for a
new subscriber to such minimum subtree is constituted by
the closest splitter. With reference to Figure 3, for the new
subscriberS to join the subtree, only the routing tables of
all the dispatchers along the path fromS to the subtree (F
andB in the figure) must be changed. A similar rule holds
for unsubscriptions, which propagate up to the first splitter
that remains such even after it has rearranged its subscrip-
tion table by processing the unsubscription message.

These rules prompt two observations. First, the price of
adding a subscription is limited. In general, it does not in-
volve a propagation along the entire tree but only along the
route to the closest splitter, unless there are no subscribers.
Second, the more splitters that exist the shorter the path that

4As already mentioned, these definitions do not take into account op-
timizations based on the notion of “coverage” among subscriptions, al-
though they could be generalized to do so. Instead, the definitions as-
sume the usual optimization of avoiding to forward a subscription already
present in the system.

A

C BDE

S

F

Figure 3. How new subscriptions propagate
on the dispatching graph.

a subscription must follow. These observations lead to a cri-
teria for designing a reconfiguration algorithm: keeping the
tree “dense” of subscriptions, thus reducing the overhead
caused by the propagation of subscriptions.

Our solution embodies this criteria by leveraging off of
the conventional subscription and unsubscription operations
like the strawman one, but by performing them in the in-
verse order: the subscriptions triggered by the appearance
of a link are issued immediately, while the unsubscriptions
due to a link break are issued only after a given delay. In
our solution, the delay is provided by a timeout, which is
initialized on both involved dispatchers when a link breaks,
and whose expiration triggers the propagation of unsub-
scriptions. Ideally, this delay should coincide with the time
needed by the underlying tree maintenance algorithm to re-
store the connectivity of the tree, by somehow replacing the
broken link with the insertion of another one.

This way, subscriptions persist longer in the tree during
a reconfiguration. It is true that this strategy may add sub-
scriptions that must be removed immediately after, but in
any case these subscriptions propagate only up to the first
splitter. Moreover, this solution has the beneficial side ef-
fect of reducing the disruption of event routes, since it is
unlikely that a subscription is removed only to be restored
shortly after. Nevertheless, some additional care must be
taken for reconfigurations where broken links and new links
have a dispatcher in common, as explained in the following.

5.2 About Links Sharing a Dispatcher

The considerations presented in the previous section en-
able relevant advantages over the strawman approach. How-
ever, the fact that subscriptions are now always processed
before unsubscriptions may be very inefficient in the case
where one end-point of one or more broken links coincides
with one end-point of one or more new links.

To understand why, let us consider the scenario in Fig-
ure 4. If subscriptions are processed before unsubscriptions
when the link(A,B) vanishes and is replaced by(A,D),
thenA andD should exchange their subscriptions across
the new link. However, since unsubscriptions have not yet
been processed, the only subscription ofA is the one rout-
ing events towards the vanished link. If propagated, this

5

A=C
D

B

S

Figure 4. A case where one end-point of the
broken link and one of the new link coincide.

subscription would cause the creation of several “wrong”
subscriptions routing events fromB’s semigraph towards
A. These subscriptions are useless and will be removed by
the unsubscription process, since there are no subscribers
in A’s semigraph. The strawman solution does not suffer
from the same problem since it processes unsubscriptions
before subscriptions;A’s subscription is removed first and
therefore it is never propagated unnecessarily.

The scenario we depicted, which at first may seem a very
special case, is actually quite common. If we disregard the
dispatcher attached to the right ofA in Figure 4, thenA is a
leaf dispatcher being detached and reattached to a different
node. Leaf nodes are usually a large fraction of the total
number of dispatcher and, since they are at the fringe of the
system, they are more subject to reconfiguration.

Fortunately, this case can be dealt with fairly easily. Re-
configuration can be optimized by not forwarding subscrip-
tions directedonly towards dispatchers connected through
links that are now broken. All the other subscriptions, i.e.,
those coming from clients attached to the shared dispatcher
and those associated to intact links, are propagated as usual.
An easy way to accomplish this processing, and yet delay
the propagation of unsubscriptions, consists of immediately
removing subscriptions as soon as a link breaks, and de-
lay their propagation until the aforementioned timeout, set
by dispatchers upon link breakage, expires. If the shared
dispatcher is a leaf the processing is the same but no unsub-
scription need be propagated upon expiration of the time-
out. In fact, the only link connecting the dispatcher to the
rest of the graph is now broken, and there is no dispatcher
to propagate unsubscriptions to.

Armed with this knowledge, we are now ready for a de-
tailed description and analysis of our solution.

5.3 Rearranging Subscription Tables

As in the case of the strawman solution described in
Section 4, the reconfiguration process takes place when the
overlay network maintenance layer notifies the existence of
a new or broken link. In the former case, our solution be-
haves exactly like the strawman solution, by propagating all
subscriptions across the new link. Instead, when a broken
link is detected, the subscriptions laid towards it are now

immediately removed from the local subscription table, but
not propagated. If the dispatcher at hand is a leaf, no fur-
ther processing is required. Otherwise, a timeout associated
to the broken link is set. As we discussed earlier, the time-
out has the only effect of delaying the forwarding of unsub-
scriptions. Upon timeout expiration, our solution takes care
only of forwarding unsubscriptions, since they have already
been removed locally upon detection of the broken link.

Notably, the reconfiguration described by this algorithm
does not interfere with the normal processing of events and
(un)subscriptions. In the solution we describe here we are
relying on the standard processing that, by design, deals
with the concurrent publishing of events and issuing of
(un)subscriptions. We simply intervene in the timing when
these operations are triggered to deal with reconfiguration.

As we discussed before, this algorithm makes sure that
subscriptions rerouting events through the new link are laid
down before the obsolete subscriptions that were needed
only to route events through the vanished link are removed.
Clearly, this latter unsubscription step cannot be delayed
forever, and its occurrence is governed by the timeout value.
This parameter plays a crucial role in our solution. If its
value is too small, it approaches the strawman solution, in
that unsubscriptions are triggered too early, before subscrip-
tions have been restored. If it is too large, obsolete routes
are going to remain in place and steer events where there
are no subscribers, thus increasing overhead.

In the next section, we analyze through simulation the
effect of the timeout and several other parameters.

6 Simulation Results

We defined our simulations with two different goals in
mind. The first goal was toverify that our algorithm be-
haves correctly in the presence of reconfiguration. The sec-
ond goal was toevaluatethe performance of our algorithm
in terms of minimizing overhead, using the strawman so-
lution described previously as a baseline for comparison.
These two goals were satisfied by two sets of simulations,
measuring the percentage of events correctly delivered, and
the number of messages exchanged during reconfiguration.

6.1 Simulation Setting

Published work on publish-subscribe systems rarely
presents validation of results through simulation. In the ab-
sence of reference scenarios for comparing these systems
we defined our own, based on what we believe are reason-
able assumptions covering a wide spectrum of applications.
Events, subscriptions, and matching.Events are repre-
sented as randomly-generated 9-character strings, where
each character can be any of the (96) printable charac-
ters. Subscriptions are represented as a single character.

6

An event matches a subscription if it contains the charac-
ter specified by the subscription. Hence, 96 different sub-
scriptions are available in the system5. Nevertheless, each
dispatcher can subscribe to at mosts subscriptions drawn
randomly from the 96 available. In our simulations, we
choses=10, since in a content-based system it is unlikely
that a subscription is shared among several subscribers.
Publish rate. The behavior of each dispatcher in terms of
publish and (un)subscriptions is governed by a triple of pa-
rameters,fpub, fsub, andfunsub, respectively governing the
frequency at which publish, subscribe, and unsubscribe op-
erations are invoked by each dispatcher. The most rele-
vant isfpub, which essentially determines the system load
in terms of event messages that need to be routed. Based
on this parameter, we defined two load scenarios: one with
a relatively low publish rate (fpub = 0.001, about 1 pub-
lish/s), and one with a large number of events (fpub = 0.05,
about 50 publish/s). Just to place these values in context,
the publish rate of applications dominated by human inter-
action, such as collaborative work in mobile environments
or publishing files in a peer-to-peer network, should be con-
ceivably comparable, if not lower, than 1 publish/s.
Density of subscribers. The extent to which (un)sub-
scriptions are propagated is determined by the density of
subscribers in the graph: the more subscribers, the less a
subscription travels. We defined two scenarios: one with
sparse subscribers (20% of the dispatching graph), and one
with dense subscribers (80% of the graph).
Tree topology.The results we present here are all obtained
with tree configurations up to 200 dispatchers, each con-
nected with at most other four. Simulation runs with dif-
ferent values showed that the influence of this parameter
is negligible. The links connecting two dispatchers are as-
sumed to behave as an error-free 10 Mbit/s Ethernet link.

Clients are not modeled explicitly, as their activity af-
fects only the dispatcher they are attached to. Moreover, in
the scenarios we target (e.g., MANET and peer-to-peer net-
works) the publish-subscribe system is likely to be deployed
so that clients and dispatchers coincide.
Graph reconfiguration.In our simulations we are not inter-
ested in cases where a partitioning or merging occurs, as in
this situation the behavior of the two approaches is equiv-
alent. Instead, we are interested in evaluating how the two
approaches perform when a broken link is eventually re-
placed by another. The selection of the links breaking or
appearing is done randomly. However, the same random
sequence was applied to both approaches. To retain some
degree of control about when a reconfiguration occurs, we
assume that each broken link is replaced by a new link in
0.1 s. While this is not necessarily a good representation of
reality, the bias introduced by this assumption affects both
approaches in the same way, and hence does not influence

5We assume a single application deployed on the tree.

our results. In any case, we verified that the algorithm works
also for arbitrary link breakages and insertions.

Reconfigurations are allowed only in the interval be-
tween 3 and 7 seconds, with a frequency determined by
the duration of the interval between two reconfigurations,
ρ. We consider two scenarios:ρ = 0.3s, which yields non-
overlapping reconfigurations, andρ = 0.03s, where several
reconfigurations may overlap. The latter can be regarded as
an approximation of the case where a non-leaf dispatcher
is detached from the tree and multiple links are broken at
once. In any case, it defines a difficult reconfiguration sce-
nario providing a good, extreme test case for our analysis.
Reducing the effect of randomization.Since topology, sub-
scriptions, events, and reconfigurations are determined ran-
domly, our results had a significant degree of variability. To
reduce the bias induced by randomization, we ran each con-
figuration 30 times using different seeds, and then averaged
the results. Nevertheless, for each configuration the same
seed was used for comparing the two approaches.
Simulation tool. In this paper we compare the two ap-
proaches only at the application level, and we are not con-
cerned about the underlying networking stack. Hence, we
decided to develop our simulations using OMNET++ [16],
a free, open source discrete event simulation tool.

6.2 Measuring Event Delivery

Before we proceed, it is important to note that we do not
regard event delivery as a performance metric for our solu-
tion. As we discussed earlier, in this paper we focus only
on identifying more efficient ways to restore the subscrip-
tion information necessary to route events and not to prevent
event loss, although this latter topic is the subject of our on-
going research [5]. Instead, we measure event delivery to
verify that, regardless of how disruptive is the reconfigura-
tion, a correct, loop-free routing of events is eventually re-
stored. If the algorithm behaves correctly, the percentage of
events delivered should drop temporarily as a consequence
of reconfiguration, and then come back to exactly 100%.

This is indeed the behavior resulting from our simula-
tions, as shown in Figure 5. The top plot is obtained in the
scenario withρ = 0.3 s, i.e., non-overlapping reconfigura-
tions. In this case, a correct event routing is re-established
right after each reconfiguration. Instead, the bottom plot
shows the behavior of the system whenρ = 0.03 s. Despite
the barrage of concurrent, overlapping reconfigurations, the
system quickly returns stable after the last reconfiguration.

The measurements were performed by relying on a sub-
set of the dispatchers belonging to astable core. Dispatch-
ers in the stable core have a more constrained behavior than
the others, since they are forbidden to (un)subscribe after
a given time thresholdσ, whose value is set to 2 s in our
tests. Measurements about event delivery are constructed

7

 40

 50

 60

 70

 80

 90

 100

 110

 3 4 5 6 7

%
 o

f e
ve

nt
s

de
liv

er
ed

time

 40

 50

 60

 70

 80

 90

 100

 110

 3 4 5 6 7

%
 o

f e
ve

nt
s

de
liv

er
ed

time

Figure 5. Event delivery during non-
overlapping (top) and overlapping (bottom)
reconfigurations.

by computing the ideal set of recipients for each published
message, and comparing it with the actual number of copies
received. The ideal set of recipients can be computed easily
based on knowledge of the subscription tables of dispatch-
ers in the stable core, since this information is required to
remain stable afterσ. Moreover, since only the stable core
is subject to this limitation, the algorithm is validated not
only against the reconfiguration coming from changes in the
topology, but also for the reconfiguration of routing infor-
mation determined by the (un)subscriptions coming from
dispatchers not in the core. The results in Figure 5 are
derived with 100 dispatchers, 50% of which belong to the
core. Moreover, 50% of the dispatchers inside the core, and
50% of those outside the core are subscribers. The event
load is assumed to be large, withfpub = 0.05 (i.e., about 50
publish/s). Finally, the timeout isT = 0.11 s.

6.3 Measuring Reconfiguration Overhead

The amount of reconfiguration overhead is the metric
that we need to compare our optimized solution against the
strawman one. The overhead is determined only by:i) the
(un)subscription messages being exchanged because of re-
configuration;ii) the event messages being misrouted along
obsolete subscriptions. In the following, we report about the

improvement we achieve over the strawman solution, exam-
ine the aforementioned sources of overhead in more detail,
and see how the timeout parameterT affects them.

In the simulation results we are about to present, the
overhead generated by messages is calculated in terms of
the number of hops they travelled. Thus, for instance, a
subscription issued by a dispatcher generates an overhead
equal to the number of hops travelled by the subscription
message. Moreover, overhead is measured by considering
every dispatcher in the network as part of the stable core
defined previously for the measurement of event delivery.
This way, the only (un)subscription messages exchanged in
the system are those caused by reconfiguration. Note how
this is actually a conservative situation: in fact, we verified
the intuition that the percentage of improvement is actually
larger when there are additional (un)subscriptions being in-
jected in the system concurrently to reconfigurations.

Overall improvement. Figure 6(a) shows the percentage
of improvement of our solution against the strawman one,
in a configuration withfpub = 0.001, ρ = 0.3 s, andT =
0.15 s. The original data points are reported together with
their Bezier interpolation to help visualize the overall trend.

By showing the results for dense (80%) and sparse (20%)
configurations of subscribers, the chart in Figure 6(a) con-
firms our intuition that the optimization we propose is even
more efficient when subscribers are sparse. In fact, in
this case the splitters are farther away, and the unneces-
sary (un)subscriptions propagated by the strawman solu-
tion travel to a greater extent. Moreover, there are also
greater chances that a splitter does not exist—a case where
the strawman solution performs particularly poorly.

To give a feel of the relevance of the percentage improve-
ment, in a dense tree with 200 dispatchers there are about
3,500 messages (on the average, with a peak of 8,000) be-
ing exchanged during the reconfigurations, while in a sparse
tree there are about 5,300 (with a peak of 18,000). Hence,
even our lowest improvement of 20% may already lead to a
significant reduction in the traffic overhead.

Figure 6(b) shows how the overhead is affected by the
frequency of reconfiguration and the event load. The sce-
nario considered is with sparse subscribers, andT = 0.15 s.
It is interesting to note how the improvement we obtain is
essentially independent from the frequency of reconfigura-
tion. Even with the barrage of overlapping reconfigurations
induced by an intervalρ = 0.03 s, our solution achieves
basically the same percentage improvement as before, at
least after 70 dispatchers. Before this limit, performance
is worse essentially because, with few dispatchers, the tree
is so disrupted that the optimizations introduced by our ap-
proach have a reduced impact. Nevertheless, in this case the
actual overhead reduction, opposed to the percentage im-
provement, is even greater, since the number of messages

8

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
m

pr
ov

em
en

t

number of dispatchers

+ dense
x sparse

(a) % of improvement vs. density of subscribers.

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
m

pr
ov

em
en

t

number of dispatchers

+ sparse, overlapping, few events
x sparse, non-overlapping, few events
* sparse, non-overlapping, many events

(b) % of improvement in various scenarios.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
m

pr
ov

em
en

t

number of dispatchers

+ timeout=110ms
x timeout=150ms
* timeout=300ms

(c) Impact of timeout on (un)subscriptions.

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
m

pr
ov

em
en

t

number of dispatchers

+ (un)subscriptions
x total overhead

(d) Impact of misrouted events on overhead, in
terms of percentage improvement.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

nu
m

be
r o

f m
es

sa
ge

s

number of dispatchers

strawman (un)subscriptions
optimized (un)subscriptions
strawman misrouted events
optimized misrouted events

(e) Impact of misrouted events on overhead, in
terms of messages exchanged.

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

%
 o

f i
m

pr
ov

em
en

t

number of dispatchers

+ timeout=110ms
x timeout=150ms
* timeout=300ms

(f) Impact of timeout on misrouted events.

Figure 6. Measuring overhead and comparing it with the strawman solution.

caused by reconfiguration is much larger. For instance, in
a configuration with 200 dispatchers, the strawman solution
needs (on average) 63,162 messages to reconfigure, while
our solution needs only 34,458. Instead, the percentage im-
provement obtained by our solution is lower when the event
load is high, like in the case withfpub = 0.05 shown in Fig-
ure 6(b). The reason for this behavior is that a high publish
rate increases the overhead caused by misrouted events. On
the other hand, it must be observed that a high publish rate
may determine a huge event load, to the point of making
irrelevant any kind of optimization regarding the reconfigu-
ration of dispatching information. For instance, in the case
with many events shown in Figure 6(b), the total number of
events flying in the system during the reconfiguration period
is 2,025,756 (368,319 events/s are being dispatched in the
system), while the total overhead generated by the straw-
man solution consists of 11,028 messages.

(Un)Subscriptions. The hypothesis underlying our algo-
rithm is that the number of (un)subscription exchanged dur-
ing reconfiguration is significantly lower than that needed
by the strawman solution. This hypothesis is actually veri-
fied by our simulations, e.g., as shown by Figure 6(a), where
the impact of misrouted events is negligible. However, it
remains to be seen what is the effect of the timeout param-

eter over (un)subscriptions. The answer to this question
is provided by Figure 6(c). The chart is obtained by as-
suming a sparse configuration of subscribers (20%), a low
publish rate (fpub = 0.001), and overlapping reconfigu-
rations (ρ = 0.03 s). It is easy to see how, in this sce-
nario, increasing the timeout improves performance: about
a 10% improvement is obtained by simply increasing the
timeout fromT = 0.11 s to T = 0.3 s. The reason for
this is interesting: under frequent reconfiguration, unsub-
scriptions from the end-points of the old link are triggered
much later than in the strawman case. During this extra
time, other concurrent reconfigurations may cause the ap-
pearance of new links, and the consequent propagations of
subscriptions. Hence, when the unsubscriptions should be
finally propagated, they are likely to be “short-circuited”
by the existence of the new subscriptions. This largely re-
duces the traffic caused by subscriptions that are removed
and subsequently restored by a concurrent reconfiguration.
This phenomenon explains also why the effect of the time-
out on non-overlapping reconfigurations is negligible—the
reason for not showing specific charts of this situation.

Misrouted Events. As we mentioned earlier, when events
are published at a high rate our solution achieves a lower
improvement, because a lot of events get misrouted through

9

obsolete routes in the time interval between a link break and
the corresponding timeout expiration. Figure 6(d) shows
graphically the impact of misrouted events, in a scenario
with fpub = 0.05, sparse subscribers, non-overlapping re-
configurations, andT = 150 ms. The chart evidences
how the significant reduction achieved for (un)subscriptions
does not yield a comparable overall improvement, due to
the presence of misrouted events. Figure 6(e) evidences
the same phenomenon from a different angle, by compar-
ing the actual number of messages generated by the two ap-
proaches, and shows how the number of misrouted events is
actually comparable to the number of (un)subscriptions.

Nevertheless, the timeout parameter may play a signifi-
cant role in reducing also the impact of misrouted events, as
illustrated by Figure 6(f). The chart is obtained in the sce-
nario defined by the same parameters used for Figure 6(d)
and 6(e), but shows how the percentage improvement varies
along with the timeout. The chart confirms the intuition
that, with a high publish rate, the smaller the timeout the
better, since it minimizes the time interval during which
events are duplicated along obsolete routes. In the situation
of Figure 6(f) the best performance is provided by a time-
outT = 110 ms, i.e., close to the time needed to restore the
tree connectivity (100 ms), while a timeout ofT = 300 ms
provides the worst performance.

7 Conclusions

Currently available publish-subscribe systems adopting
a distributed event dispatcher do not provide any special
mechanism to support the dynamic reconfiguration of the
topology of the dispatching infrastructure to cope with topo-
logical changes. Solutions available in the literature at
best mention a strawman solution whose simplicity is of-
ten outweighed by its inefficiency, since it involves areas
that should not be affected by reconfiguration.

In this work, we started by characterizing precisely the
strawman approach and analyzing its performance in dif-
ferent scenarios. We then described some modifications to
the strawman approach and evaluated this optimizations by
running a large set of simulations, whose results show that
we are able to achieve an overhead reduction of up to 50%,
while remaining resilient to multiple concurrent reconfigu-
rations involving several nodes. Simulations also allowed
us to characterize precisely the cases where the strawman
solution could be preferred, thus contributing to clarify the
impact of the different parameters on the overall system per-
formance in presence of reconfigurations.

Future work on this topic will complement the results
presented in this paper with mechanisms to provide over-
lay network maintenance, and with solutions for recovering
lost events. For the latter problem, we already developed a
solution [5] based on epidemic algorithms. All these efforts

are finding their natural exploitation in the implementation
of a new generation content-based publish-subscribe mid-
dleware supporting our approach to reconfiguration.

References

[1] G. Banavar et al. An Efficient Multicast Protocol for
Content-based Publish-Subscribe Systems. InProc. of
ICDCS, 1999.

[2] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald:
Achieving a Global Event Notification Service. InProc. of
the 8th Workshop on Hot Topics in Operating Systems, 2001.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service.ACM Trans.
on Computer Systems, 19(3):332–383, Aug. 2001.

[4] R. Chandra, V. Ramasubramanian, and K. Birman. Anony-
mous gossip: Improving multicast reliability in mobile ad-
hoc networks. InProc. of ICDCS, 2001.

[5] P. Costa, M. Migliavacca, G. Picco, and G. Cugola. Epi-
demic Algorithms for Reliable Content-Based Publish-
Subscribe. Technical report, Politecnico di Milano, 2003.

[6] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development
of the OPSS WFMS.IEEE Trans. on Software Engineering,
27(9):827–850, Sept. 2001.

[7] G. Cugola and G. Picco. Peerware: Core middleware sup-
port for peer-to-peer and mobile system. Technical report.
Available atwww.elet.polimi.it/˜picco .

[8] R. Gruber, B. Krishnamurthy, and E. Panagos. The archi-
tecture of the READY event notification service. InProc.
of the 19th Int. Conf. on Distributed Computing Systems—
Middleware Workshop, 1999.

[9] D. Heimbigner. Adapting Publish/Subscribe Middleware to
Achieve Gnutella-like Functionality. InProc. of SAC, 2001.

[10] L. Opyrchal et al. Exploiting IP Multicast in Content-Based
Publish-Subscribe Systems. InProc. of Middleware, 2000.

[11] D. Rosenblum and A. Wolf. A Design Framework for
Internet-Scale Event Observation and Notification. InProc.
of ESEC/FSE97, LNCS 1301. Springer, 1997.

[12] E. Royer and C. Perkins. Multicast Operation of the Ad-hoc
On-Demand Distance Vector Routing Protocol. InProc. of
MobiCom99, 1999.

[13] B. Segall et al. Content Based Routing with Elvin4. InProc.
of AUUG2K, Canberra, Australia, June 2000.

[14] P. Sutton, R. Arkins, and B. Segall. Supporting
Disconnectedness—Transparent Information Delivery for
Mobile and Invisible Computing. InProc. of the Int. Symp.
on Cluster Computing and the Grid, May 2001.

[15] Univ. of California, Irvine. WISEN, Workshop on Internet
Scale Event Notification, July 1998.http://www1.ics.
uci.edu/IRUS/twist/wisen98/ .

[16] A. Varga. OMNeT++ Web page.www.hit.bme.hu/
phd/vargaa/omnetpp.htm .

[17] M. Wray and R. Hawkes. Distributed Virtual Environments
and VRML: an Event-based Architecture. InProc. of the
7th Int. WWW Conf., 1998.

[18] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy
architecture for Internet-scale event services. InProc. of the
8th WETICE Workshop, 1999.

10

