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Abstract

Clustering and aggregation inherently increase wireless
sensor network (WSN) lifetime by collecting information
within a cluster at a cluster head, reducing the amount of
data through computation, then forwarding it. Traditional
approaches, however, both spend extensive communication
energy to identify the cluster heads and are inflexible to
network dynamics such as those arising from sink mobility,
node failure, or dwindling battery reserves. This paper
presents CLIQUE, an approach for data clustering that saves
cluster head selection energy by using machine learning to
enable nodes to independently decide whether or not to act
as a cluster head on a per-packet basis. We refer to this
lack of actual cluster head assignment as being role-free,
and demonstrate through simulations that, when combined
with learning dynamic network properties such as battery
reserves, up to 25% less energy is consumed in comparison
to a traditional, random cluster head selection approach.

1. Introduction

Clustering and data aggregation are powerful techniques
that inherently reduce energy expenditure in wireless sensor
networks while at the same time maintaining sufficient
quality of the delivered data. Clustering is defined as the
process of dividing the sensor network into groups. Often a
single cluster head is then identified within each group and
made responsible for collecting and processing data from all
group members, then sending it to one or more base stations.

While this approach is seemingly simple and straightfor-
ward, efficiently achieving it involves solving four challeng-
ing problems. First, the clusters themselves must be iden-
tified. Second, cluster heads must be chosen. Third, routes
from all nodes to their cluster head must be discovered. And
finally, the cluster heads must efficiently route data to the
sink(s). This paper focuses on the second and third problems,
using existing works for the other two.

The first problem, identifying the clusters, is specific to
the application domain. Some solutions generate random
clusters [1], while others focus on semantically formed
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Figure 1. Example of a grid clustered network with cell
size 250m, 200 nodes and 2 sinks.

clusters, e.g., grouping all sensors in a geographic area [2]
or those with similar data independent of sensor location [3].
Our parallel work identifies non-uniform clusters [4], e.g.,
small clusters near data sinks and large clusters at a distance.
As this is not our focus here, we assume a simple uniform
scheme in which a virtual grid overlays the network, forming
equal size clusters as shown in Figure 1. This can be trivially
accomplished if all nodes know their approximate locations.
The key property we rely on is that all nodes know the
identifier of the cluster to which they belong.

Regarding the fourth problem, routing data from the
cluster heads to the sinks, some approaches assume cluster
heads communicate directly with the base station, e.g., by
boosting transmission power. Such an approach places high
energy demands on the cluster heads, and makes unrealistic
assumptions about the network size or the position of the
sink. Instead, we assume multi-hop communication between
the cluster heads and the sinks. Here, we employ our
previous work on FROMS [5], a machine learning based,
multi-hop, multicast algorithm with very low overhead.
This choice allows us to take advantage of cross-layer
optimization between FROMS and the work presented here.
However, any routing approach can be applied.

This paper focuses on the second and third problems: clus-
ter head identification and intra-cluster routing. Our primary
goal is to maximize network lifetime by both minimizing the



energy expenditure at each node and balancing the energy
expenditure across all nodes such that no single node is
overburdened and thus runs out of energy prematurely. Other
approaches, such as randomly selected cluster heads, result
in unbalanced intra-cluster communication. Deterministic
selection, e.g., based on ID, remaining energy, or other
metrics, requires nodes to maintain information about all
other nodes in their k-hop neighborhood. In general, cluster
head selection requires extensive overhead which must be
repeated either periodically in an attempt to balance energy
or upon the failure of the cluster head. The key idea in this
work is to eliminate the cluster head selection phase all-
together and thus its overhead.

Regarding intra-cluster communication, much current re-
search assumes a single hop between all cluster nodes and
the cluster head, an assumption that makes selection and
propagation of cluster heads easy, but at the same time
restricts the domains to which the clustering algorithm is
applicable. For example, in scenarios with hundreds or
thousands of nodes such as those outlined in Section 2,
large clusters are necessary to achieve adequate energy
savings, thus requiring multi-hop communication to reach
the cluster head. Interestingly, many clustering approaches
assume that the cluster head requires more energy, either
to reach the sink in a single hop, as previously mentioned,
or to perform data collection and aggregation. Upon closer
evaluation, we observe that a cluster head actually requires
less energy than its direct neighbors. Consider that a cluster
head gathers data from all other nodes, aggregates it, then
sends it out as a single packet. In comparison, its neighbors
relay all inter-cluster data packets to it, and thus have higher
energy requirements. This is further exacerbated by nodes
overhearing messages that they do not need to forward,
further consuming energy. Our primary conclusion based on
these observations is that cluster head role assignment must
take into account not only the current state of the selected
cluster heads (e.g., their battery level), but also those of its
neighbors and nodes on the paths to the cluster head.

We address this challenge with CLIQUE, a Q-learning
based algorithm outlined in Section 3 that learns the optimal
cluster heads and intra-cluster routes to them, simultaneously
coping with multiple mobile sinks and network dynamics
such as changing battery levels and node failures. In contrast
to most current approaches, cluster head roles are neither
explicitly assigned nor do the nodes need to agree on a
cluster head. Instead, each node decides on a per-packet
basis whether to act as cluster head (aggregating some
packets then sending the result to the sinks) or to forward
the packet to a better suited neighbor. This role-free scheme
makes the algorithm flexible and robust and eliminates the
need for multiple cluster head selection rounds. While this
approach may result in multiple nodes acting as cluster
heads in a single cluster, intuitively increasing the energy
expenditure with respect to traditional schemes, the low

overhead of CLIQUE, demonstrated through simulation in
Section 4, allows it to achieve overall energy savings up to
25%. Enhancements and potential uses of our technique are
offered in Section 5.

2. Application Scenario and Related Work
This section details our target scenario and places our

work in the context of the current state of the art.

2.1. Application Scenario

We target a traditional, periodic data reporting application
with hundreds of nodes spread randomly over a large area.
Examples include micro-climate, structural health, network
and environmental monitoring, e.g., volcano monitoring, dis-
aster recovery, pipelines, etc. These and related applications
exhibit several common characteristics:
• They consist of many unattended energy-restricted

nodes, which may fail unexpectedly. Further, new nodes
may join the network.

• The nodes communicate over lossy wireless channels.
• The sensory data gathered in the network needs to

be delivered to the destinations directly and cannot be
stored at the nodes for later access.

• Reasonable delivery delays are acceptable, e.g., in
agricultural monitoring.

• The data gathered at individual nodes can be pre-
processed in the network, e.g., correlating related data,
compressing, or filtering.

• The destinations can be multiple and mobile, e.g.,
consider scientist with a laptop walking along a volcano
monitoring network.

• The potential clusters are often geographically speci-
fied and the nodes have some position or orientation
information, e.g., room or floor of the building they
are installed in, geographic area, etc.

Given this general scenario, we concentrate on the se-
lection of cluster heads or data aggregators. Clustering and
cluster membership assignment are beyond the scope of this
paper. We assume only that the clustering is well defined
and all nodes know the identity of their clusters. This can be
achieved using a geographic grid, as illustrated in Figure 1
or with some other cluster identification protocol.

2.2. Related Efforts

We consider two research areas and their relationship to
this work: namely clustering and aggregation and applying
machine learning to WSNs.

Network clustering in WSNs. Traditional clustering
schemes consist of two basic steps: first identifying the
clusters and assigning nodes to them and second electing a
cluster head responsible for gathering and aggregating data.



In contrast to most research that addresses both problems
without differentiating between them, we focus only on
the second. Many clustering protocols are modifications of
LEACH [1], in which nodes choose to be cluster heads based
on an a-priori probability. Subsequently, cluster heads flood
a cluster head role assignment message to their neighbors,
which in turn select the nearest cluster head as their own.

Random-clustering algorithms have two advantages. First,
they are very simple, and second, they avoid multiple rounds
of control messages to converge on a single cluster head per
cluster. This, however, comes at the price of unpredictable
cluster sizes and shapes. Cluster heads can be anywhere in
the network and at times will gather data from a large portion
of the network, while at other times only a few readings are
aggregated. Another disadvantage is their implicit assump-
tion of one-hop communication and in multi-hop networks
they perform poorly due to significant control overhead.

K-hop algorithms [6]–[8] represent an evolution beyond
random clustering. They first randomly assign cluster head
roles to some nodes in the network and then “grow” clusters
around them. In case some node cannot find a cluster head at
most k hops away, it becomes a “forced” cluster head [6].
The control overhead is significant, however, cluster sizes
are bound by the k-hop requirement.

In contrast to random and k-hop clustering, some ap-
proaches reverse the steps of the clustering process: they first
identify the clusters and their members and then select one to
serve as a cluster head. One such protocol is GROUP [2],
which builds a geographic grid over the network. Cluster
heads become nodes nearest to the crossing points of the
grid. A bounded number of messages are needed in each
cluster to agree on the cluster head. To load-balance the
nodes, GROUP periodically moves the origin of the grid and
informs all nodes with a network-wide broadcast. The main
advantage of GROUP is that clusters are well defined. Nev-
ertheless, both agreeing on cluster heads and the network-
wide broadcasts with the new grid origin incur significant
communication overhead.

Another geographic-based clustering approach is applied
in [9] for multi-resolution in-network storage of data for
WSNs. A hash function is used to map cluster head roles
to network locations and nodes nearest to those locations
become cluster heads. The approach is similar to GROUP [2]
and needs agreement rounds among the cluster members.

Some communication protocols, such as TTDD [10], are
a combination of routing and clustering. They build clusters
then use only cluster heads for data routing. Their main
requirement is that cluster heads can communicate directly
to one other to form a routing overlay. Thus, they are more
mesh or overlay routing protocols rather than traditional
clustering approaches for data aggregation. Further, no load
balancing of individual nodes is performed and cluster heads
drain their batteries very fast due to the routing overlay.

There are many clustering algorithms that require full

network topology and/or remaining energy information to
centrally compute optimal clusters [11], fully disseminating
cluster information in each round. However, such approaches
do not scale and do not consider fundamental network issues
such as failures and asymmetric links.

Machine learning for routing and clustering in WSNs.
One of the most fundamental works using machine learning
for WSNs is Q-Routing [12], which describes a Q-learning
based routing algorithm that learns the minimum latency
route from a single source to a single destination. Many
works have been inspired by Q-Routing, such as Q-Routing
with compression (Q-RC) [13], where the routing objec-
tive is not only the lowest delay, but also the maximum
aggregation rate. The scenario assumes that all data from
all nodes in the network needs to be aggregated on its way
to the single sink. This work is similar to ours, since we
also use Q-learning to learn the best aggregation (clustering)
heads. However, our routing is only intra-cluster, the learning
objective is different and, most important, the destinations
are multiple and mobile. Additionally, [13] requires global
topology knowledge.

Further related works on machine learning for routing and
clustering in WSNs are described in [14].

3. Cluster Head Selection and Routing in
CLIQUE

The main contribution of this paper is an innovative
cluster head identification algorithm with nearly zero com-
munication overhead. It copes with network dynamics such
as those arising from the mobility of multiple sinks or node
failures. This section first describes our assumptions, then
offers a high level overview. It then offers the necessary
Q-learning background and protocol details.

3.1. Prerequisites and Assumptions

CLIQUE assumes nodes know the identity of the cluster to
which they belong. This can either be established manually
(e.g., assigning room or geographic area) or computed on
the fly (e.g., using a geographic grid). The shapes and sizes
of the clusters are not important to CLIQUE, meaning it
does not rely on any specific cluster property. For simplicity,
we assume cluster membership is based on a rectangular
uniform grid, as shown in Figure 1, and each node knows
the identity of the cell to which it belongs. The computation
of such a grid is straightforward when even approximate
position information is available.

We further assume that cluster members are multiple hops
away from one another and while they know their direct one-
hop neighbors, they do not have information about all other
nodes in the same cluster.



Finally, we assume that the data destinations, the sinks,
flood the network with DATA REQUEST packets, announc-
ing their data interest, a common requirement in WSN
systems. We further assume all sinks require the same data,
which is periodically produced by all network nodes.

3.2. Overview

Clustering and aggregation in WSNs is typically per-
formed in two steps: first, clusters are identified, and second,
cluster head roles are assigned. Sometimes this sequence
is reversed: the cluster head roles are first assigned, then
nodes join the nearest cluster head, thus forming clusters.
Nevertheless, in both scenarios the nodes must agree on the
cluster heads and to find routes to them.

In contrast, we propose a cluster head assignment algo-
rithm in which nodes do not need to know the identities of
the cluster heads. Given knowledge about their cluster iden-
tifier and basic information about their one-hop neighbors,
each node tries to route its data directly to all sinks while
taking the simple decision of whether to act as a cluster
head and aggregate data or to route the incoming data to a
neighbor better suited for this role.

While straightforward to explain, one major challenge
remains: how do nodes, using only neighbor information,
decide both the next hop and whether or not to act as a
cluster head? To address this, we observe that sinks flood
the network with DATA REQUEST packets, with the result
that each node knows some routing information regarding
each individual sink in terms of parameters such as hop
count, geographic location, or battery status. However, our
challenge is to route to multiple sinks by first routing to the
cluster heads most appropriate for each cluster. Therefore,
each node must combine the single-sink routing information
to identify the cost to route to multiple sinks and decide
whether or not to act as the cluster head. Unfortunately,
the local information from the DATA REQUEST packets
provides only an approximate, upper-bound on the cost, and
does not take into account the real multicast cost to the sinks.
Therefore, a node can only approximate the total routing
costs, and further can only make a best estimate about
whether or not to serve as a cluster head. Nevertheless, these
approximations are reasonable, and using them eliminates
substantial communication overhead found in traditional
cluster head assignment.

To improve the localized cost estimates, we employ Q-
learning, incrementally learning the real global costs to all
sinks through the best cluster head. Additional information
is gathered by exchanging feedback among neighbors while
routing data packets. We calculate routing cost using a
combination of hop counts to reach the sinks (through the
cluster heads) and battery status of the nodes on the routes
to the sinks. Note that the data is always routed first to the
cluster head where it is aggregated. Only after this point

can it be duplicated to follow multiple paths to the sinks.
Any splitting before aggregation would result in multiple
cluster heads aggregating data for each of the sinks and thus
significantly increasing the communication overhead both
for routing to the cluster heads and to the sinks.

3.3. Q-Learning Model and Solution

Q-learning [15] is a model-free reinforcement learning
technique, based on agents taking actions and receiving
scalar rewards from the environment in response to those
actions. It assigns Q-values to each possible action, rep-
resenting the approximate goodness of the action. In the
learning process, the agent selects and executes one action,
then receives the reward, which it uses to update the Q-
value. Over time the agent learns the real action values
(costs), which it uses to select the most appropriate route. Q-
learning has been widely applied in robotics, wireless ad hoc
communications [14], etc. Its main challenge is to properly
model the agent and define the Q-values.

In our cluster head routing scenario, each sensor node
is an independent learning agent, and actions are routing
options using different neighbors as the next hop toward the
cluster head. The cluster head is defined as the cluster
node with the best (lowest) routing cost to all sinks. The
following provides detail for our Q-learning solution.

Agent states. The state of an agent is a tuple
{D, costN+self

D }, where D is the set of sinks and costN+self
D

is essentially all available routing information on this node
through all its neighbors N , including the costs of the node
itself.

Actions. An action identifies the next hop on the route to the
cluster head. This could be a neighbor or the node itself if it
is acting as cluster head and aggregating packets. We define
a possible action as ani = (ni, D) with ni ∈ {N, self }.

Q-values. Q-values represent the goodness of actions and
the goal of the agent is to learn the actual goodness of
the available actions. In our case, Q-values represent an
estimate of the cost to route through a neighbor, a value
composed of two parts. The first part is the broadcast hop
count to reach all sinks from the agent and the second is
the minimum battery level among the nodes on the route to
the sinks through this neighbor. The first part accounts for
energy efficiency by minimizing communication overhead.
The second, the minimum battery of the nodes, allows very
low powered nodes to be avoided. The two elements of the
cost function are united with a hop count multiplier (hcm)
value, which grows exponentially for decreasing battery
levels [16]. This means that when the batteries of the nodes
are full, the routing cost of a neighbor is exactly the number
of hops to reach the sinks; while with decreasing batteries
this cost exponentially grows, giving preference to higher
powered nodes on possibly longer routes.
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Figure 2. Learned cluster head in a connected scenario (a), in a disconnected scenario (b) and recovery after node
failure (c). Data gathering and aggregation is shown only inside the cluster.

To initialize these values, we could use random values, as
is common in many learning approaches. However, we use
a more sophisticated approach that calculates an estimate
based on the hop counts to individual sinks available in a
standard routing table, thus speeding up the learning process.

The initial Q-value for an action ani
= (ni, D) is:

Q(ani
) = Qhops(ani

) ∗Qbattery(ani
))

=
∑
d∈D

hopsni

d ∗ hcm(batni
) (1)

where hopsni

d is the number of hops neighbor ni needs to
reach sink d. The initial value of the battery element is set
to the battery status of neighbor ni. Note that the hop-count
estimation is an upper bound of the real costs, because
subsequent hops are expected to be able to share routes
to multiple sinks, decreasing the number of transmissions
needed to reach the sinks. On the other hand, the battery
element is expected to decrease, because battery levels
decrease. Thus, the Q-values are expected first to drop,
reflecting the learning of the real hop costs to reach the
sinks, and then to slowly and constantly increase because of
depleting energy on the nodes.

Updating a Q-value. To learn the real values of the actions,
the agent uses the reward values from the environment. In
our case, each neighbor to which a data packet is forwarded
sends the reward, its best Q-value, piggybacked on its next
data packet. The new Q-value of the action is:

Qnew (ani
) = Qold(ani

) + α(R(ani
)−Qold(ani

)) (2)

where R(ani
) is the reward value and α is the learning rate

of the algorithm. We use α = 1 to speed up learning and

because we initialize the Q-values with non-random values.
Therefore, with α = 1, the formula becomes Qnew (ani

) =
R(ani

), directly updating the Q-value with the reward.

Reward function. Intuitively the reward function is the
downstream node’s opportunity to inform the upstream
neighbors of its actual cost for the requested action. Thus,
when calculating the reward, the node selects its lowest Q-
value among all its actions and adds the real action cost:

R(nself ) = cni
+ min

ni∈N
Q(ani

) (3)

where cni
is the cost of reaching node ni and is always 1

(hop) in our model. This propagation of Q-values upstream
is piggybacked on usual DATA packets and allows all nodes
to eventually learn the actual costs.

Exploration strategy (action selection policy). One final,
important learning parameter is the action selection policy.
A trivial solution is to greedily select the action with the best
(lowest) Q-value. However, this policy ignores some actions
that may, after learning, have lower Q-values, resulting in
a locally optimal solution. Therefore, a tradeoff is required
between exploitation of good routes and exploration among
available routes. This problem has been extensively studied
in machine learning [15]. Here we chose the standard ε-
greedy strategy, which selects a random route with proba-
bility ε and the best route otherwise. Our previous work [16]
showed that a dynamic cost function whose value changes
continuously over time, such the one here based on battery
level, results in implicit exploration of the routes. This is
because the changing route costs force the protocol to switch
to other, less costly routes, thus also learning their real costs.



3.4. Key Properties, Convergence and Optimality

The most important property of CLIQUE is its role-free
nature. In contrast to most cluster head selection algorithms,
it does not try to find the optimal cluster head (in terms
of cost), but incrementally learns the best without knowing
either where or who the real cluster heads are. As a result, at
the beginning of the protocol, multiple nodes in the cluster
may act as cluster heads. While this temporarily increases
the overhead, it is a short-term tradeoff in comparison to the
overhead required to agree on a single cluster head. Later in
the protocol operation, after the real costs have been learned,
multiple cluster heads occur only in disconnected clusters,
where a single cluster head cannot serve all cluster members.

Even in the case of a connected cluster in which two nodes
have exactly the same routing costs and are not neighbors,
there will exist a single node in this cluster who needs to
decide to which of the two possible cluster heads to route
the data. If both options have exactly the same routing
costs, a simple ID-based tie-break will uniquely identify
one option. If the routes to both possible cluster heads have
different costs (e.g., there is a depleted node on the path to
one of them), then the data will be routed automatically to
the cluster head with the lower cost route. This intuitively
argues that CLIQUE converges to a single cluster head (iff
the cluster is connected).

Figure 2 shows some cluster head learning scenarios.
Scenario (a) presents a simple cluster, where all nodes within
the cluster are connected. The optimal cluster head lies in
the lower left corner of the cluster because all sinks lie
in this direction. A more problematic scenario is presented
in Figure 2(b), where the cluster is disconnected. Such a
scenario is challenging for traditional clustering approaches
as they need a complicated recovery mechanism which
requires large control overhead. On the contrary, CLIQUE
automatically identifies two cluster heads, as shown in the
figure.

Figure 2(c) shows a recovery scenario in which node 13
fails. Node 11 is no longer able to send its data to the cluster
head and needs to find a new solution. Instead of searching
for a new route to the cluster head it simply becomes a
cluster head itself. Because of its learning properties and
network status awareness, this requires no control overhead.

It is also worth noting that CLIQUE is a reactive protocol:
it only learns the optimal cluster heads when data traffic is
flowing. If some part of the network remains silent, it will
not spend any energy on learning or clustering. Note also
that after aggregation, the packet is routed to the sink via
the routing protocol.

3.5. Sink Mobility

CLIQUE also handles sink mobility. When a destination
moves, it must re-broadcast its data request to update rout-

Table 1. Energy expenditure model for our simulations
(taken from the MICA-2 data sheet)

mode energy spent
sleeping 0.054 mW
idle 66 mW
RX 117 mW
TX 117 mW

ing information at all nodes. However, when we combine
CLIQUE with the FROMS routing protocol (our multicast
reinforcement learning based algorithm), the full-network
broadcasts can be avoided. They are compensated by the
feedback (reward) mechanism, which updates the Q-values
at all nodes while forwarding normal data to the destinations.
Thus, the sinks need to broadcast their data request only one
hop to their immediate neighbors, who then piggyback the
new Q-values (costs to reach the sinks) to the other nodes.

4. Simulation Results

We validate CLIQUE through simulation, and begin with
a sketch of the simulation environment.

4.1. Simulation Environment

Our evaluation employs OMNeT++1, the event-based net-
work simulator that is gaining importance for both wired
and wireless simulations. We combine OMNeT++ with the
Mobility Framework, which allows for fast implementation
of communication protocols for WSNs, and the Feedback
Framework, our implementation supporting feedback-driven
protocols. Further, our configuration includes a Nakagami-1
radio probabilistic propagation model, linear battery model
with 3000 mA initial energy (2 AAA batteries) with the
energy expenditure model given in Table 1, a CSMA MAC
protocol, and an application layer that generates a single
DATA packet at every node except the sinks every 2 sec.

Unless otherwise stated, our experiments run with 30
random connected networks with 30 random seeds (900 runs
in total). The network scenario contains from 100 to 300
nodes in an area of 2000x2000m, with 1 to 5 sinks and
cluster sizes from 250m to 1000m.

4.2. Comparative Study

As sketched in Section 2.2, there are many different clus-
tering approaches for WSNs. To make a fair comparison to
CLIQUE, we need an algorithm that uses the same grid clus-
tering approach. However, most of the grid-based algorithms
require one-hop connectivity between all cluster members,
which is not true for CLIQUE. Conversely, algorithms that
have k-hop connectivity inside the clusters are usually not

1. http://www.omnetpp.org/
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Figure 3. First node death for different number of sinks, cluster sizes and nodes in the network

grid-based. Thus, we have chosen a variation of the work
presented in [6], which we call the Traditional Random
Clusterhead Assignment (TRC). The original algorithm uses
an a-priori probability at each node to decide whether or not
to become a cluster head. If it does, the node broadcasts a
notification. Non-cluster head nodes simply join the nearest
cluster head. Our modification consists of clustering the
network exactly as in CLIQUE. Then, the probability-based
cluster head assignment from [6] is applied, and nodes
join the nearest in-cluster cluster head. If no cluster head
is announced after some time, the algorithm is re-run and
data packets are buffered. The algorithm runs periodically to
spread energy expenditure among the nodes. The probability
is derived from the expected number of nodes in one cluster
and is different for different network deployments:

Pclusterhead =
Nclusters

Nnodes
(4)

With both clustering protocols, cluster heads collect all
arriving packets for a predefined interval (200 msec in our
evaluation), aggregate them, then forward the aggregate to
the sinks using the routing protocol.

For our study, we use the FROMS multicast routing
protocol [5] to forward aggregated packets from cluster
heads to sinks. Similarly to CLIQUE, FROMS is based on
reinforcement learning, and uses a cost metric which is a
combination of remaining node energy and number of hops
to the sinks. Furthermore, FROMS handles mobility and
recovery after node failures. The combination of CLIQUE
with FROMS is efficient since both use the same cost metric
and are designed for multiple mobile sinks. We also consider
FROMS as a good choice to combine with TRC, however
any multi-hop multicast routing protocol may be used for
either clustering approach.

4.3. Evaluation Results

With our main goal of minimizing network energy expen-
diture, we consider multiple metrics.

First node death. This is a good indicator for the expected
lifetime of network as it shows how well clustering and
routing avoid bottlenecks and spread energy expenditure.
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Figure 6. Total (top) and intra-cluster communication
(bottom) in number of generated packets of all types

The later the first node dies the better. We evaluate the net-
work lifetime and scalability of CLIQUE in three dimensions:
increasing number of sinks, increasing cluster sizes (more
nodes per cluster), and increasing density of network nodes.

Figure 3 shows that CLIQUE prolongs network lifetime
in terms of first node death by 20-25% and scales well
in all load tests. Interestingly, while the gain is constant
for different numbers of nodes or different cluster sizes, it
increases with increasing number of sinks. This is because of
the multicast nature of CLIQUE, which considers the routing
costs to all sinks.

Standard deviation of the remaining energy on the
nodes. This is closely related to efficiently balancing energy
consumption and shows the balance of node usage during
the network lifetime (until first node death). Low standard
deviation implies good balancing. Figure 4 summarizes the
results over the same three dimensions as before (number of
sinks, node density and cluster sizes). It is worth noting that
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Figure 4. Standard deviation of remaining energies at first node death for different number of sinks, cluster sizes
and nodes in the network
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Figure 5. Delivery rate at the sinks for different number of sinks, cluster sizes and node density

with an increasing number of sinks CLIQUE does not achieve
much better energy spreading than TRC. This is because the
overall communication load increases so much that TRC also
uses many nodes, implicitly spreading the load. However,
note also that in the same scenario CLIQUE prolongs the
network lifetime by almost 25% (Figure 3 rightmost).

CLIQUE’s ability to spread energy expenditure is espe-
cially clear in Figure 4 center. Here, with increasing node
density, CLIQUE makes extensive use of multiple routing
options, thus spreading the load among the nodes.

Delivery rate. This is closely related to network com-
munication overhead: with more packets transmitted, the
probability of collisions or overflowing MAC layer buffers
increases. However, it should be noted that delivery rate
is not an absolute metric in a simulation environment and
instead simply provides intuition of the expected behavior.
Figure 5 summarizes the results. The behavior of CLIQUE
can be characterized as stable, as it always shows a delivery
rate increase between 20%-30%. It is interesting to consider
these results with those in Figure 6 where the total number
of generated packets is presented (see below).

Generated packets. Here we count the total number of
packets generated in the whole network, including data
requests, aggregated and non-aggregated data packets and
cluster head selection packets. Figure 6 (top) shows that the
overall communication overhead is reduced with CLIQUE

by 25%-30%, due mostly to the reduced in-cluster commu-
nication, see Figure 6 (bottom). We show these results for
increasing cluster sizes (increasing number of nodes in one
cluster with constant node density) since it shows clearly
how CLIQUE saves even more communication overhead with
growing clusters.

Total energy spent. This measures the ability of the clus-
tering approach to minimize network communication as a
whole. While longer network lifetimes can be due either to
better resource balancing or to less communication overhead,
the total spent energy clearly shows the communication
overhead. Low energy spent implies less overhead.

The results in Figure 7 show that not only does CLIQUE
reduce the energy spent by 25% (left plot), it also doubles
the delivery rate (right plot). This is because the communi-
cation overhead is significantly smaller, thus also reducing
collisions. The total communication overhead (center plot)
is nearly halved: however, this does not result in halving the
total energy due to packet overhearing.

5. Summary and Future Work

This paper presented CLIQUE, a novel role-free rein-
forcement learning based clustering approach that learns
the optimal cluster head without control overhead. Simu-
lation results show that approximately 25% less energy is
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Figure 7. Energy expenditure for networks with unlimited energy for 1000 seconds.

spent compared to a traditional random clustering algorithm.
CLIQUE enjoys wide applicability in scenarios where regular
data reporting and in-network aggregation are desirable. Its
most important properties are its fully distributed, localized
role-free nature, its current network status awareness, and
its flexibility in case of node and link failures.

We plan to implement CLIQUE in a testbed environment
in the near future with multiple mobile sinks to verify
the simulation results. At the same time we will continue
exploring the non-uniform data dissemination paradigm [4]
and evaluate CLIQUE in a non-uniform setting.
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