
Enabling Disconnected Communication
Amy L. Murphy and Xiangchuan Chen

University of Rochester
Computer Studies Building 734

P.O. Box 270226
Rochester, New York, USA 14627

+1 716 275 1420
{murphy,chenxc}@cs.rochester.edu

ABSTRACT
Recent technological trends in the miniaturization of com-
puting devices and the availability of inexpensive wireless
communication have led to an expansion of effort in ad hoc
mobile computing. In this environment, interactions are tran-
sient, computations become highly decoupled, and commu-
nication is unpredictable. Much research energy is focused
on providing the same models of communication in this en-
vironment as exist in £xed networks, focusing on routing
protocols for message delivery within connected subsets of
hosts. While this work is crucial, it does not address the pos-
sibility of communication across disconnected clusters, tak-
ing advantage of the movement of hosts from one cluster to
another, and their ability to carry messages for hosts in their
destination cluster. In this paper, we de£ne the parameters
for this model of communication and provide an outline for
a delivery protocol in this disconnected environment.

Keywords
Mobile computing, message passing

1 INTRODUCTION
The development of compact computing devices such as
notebook computers and personal digital assistants allow
people to carry computational power with them as they
change their physical location in space. The number of such
components is steadily increasing. One goal, referred to as
ubiquitous computing, is for these devices to become seam-
lessly integrated into the environment until we are no longer
explicitly aware of their presence, much the way that the
electric motor exists in the world today. Part of enabling
this vision is coordinating the actions of these devices, most
likely through wireless mediums such as radio or infrared.

Ad hoc mobility is an extreme model of mobile environments
in which no £xed infrastructure exists to support commu-
nication. In other words, the distance between hosts deter-
mines connectivity and as components move, the network is

A

B

C
C

D

E

F

Figure 1: A sample network with six mobile components in
two clusters. Dark lines indicate direct connectivity between
devices. Dashed lines show the con£guration after node C

moves from one cluster to the other.

continuously reshaped into multiple clusters, with connectiv-
ity available within each partition but not across partitions.

Freeing mobile users from a £xed infrastructure makes the
ad hoc network model ideal for many scenarios including
systems of small components such as sensors with limited
resources to spend on communication, disaster situations in
which the infrastructure has been destroyed, and for settings
in which establishing an infrastructure is impossible as in a
battle£eld environment or economically impractical as in a
short duration meeting or conference.

Much effort has been invested in developing protocols for
point to point and multicast communication among hosts in
ad hoc networks [1, 4]. In many ways, this work mimics
routing algorithms in the £xed network, with the primary
difference being the discovery of the path from the source
to the destination only taking place on demand, as opposed
to £xed routing strategies which build routing paths even if
there is no traf£c in the network. This approach in ad hoc en-
vironments comes from the observation that the network of
connected hosts is constantly changing and pre-computing
routes which may never be used unnecessarily consumes
costly wireless resources. The focus in these message de-
livery protocols is on allowing transitive communication of a
packet through nodes which are not the destination. For ex-
ample, Figure 1 shows an ad hoc network. Even though hosts
D and F are not directly connected, any messages sent be-
tween them can go through host E, with E effectively play-
ing the role of a router for the ad hoc setting.

All of these protocols work at the packet level, and deliv-



ery is only possible if a path exists from the source to the
destination for a period of time long enough to discover the
route and send the packet. We propose a new communication
model, disconnected communication, which removes the as-
sumption of connectivity from message delivery, allowing a
message to be passed from one host to another even if the
source and destination are never connected either directly or
transitively. It is designed to act as a middleware, exploiting
existing wireless protocols while providing a useful abstrac-
tion for message delivery to applications. Our strategy is
most applicable to applications where a high degree of asyn-
chrony in message delivery is tolerable.

The remainder of this paper provides a more precise de£ni-
tion of the problem of disconnected communication and our
proposed solution (Section 2), explores some of the technical
issues which must be addressed as well as an implementation
path (Section 3) and provides a brief discussion and conclu-
sions (Section 4).

2 DISCONNECTED COMMUNICATION
The communication model, termed disconnected communi-
cation, which we describe in this paper is intended to provide
a new level of asynchronous communication not available in
lower-level mechanisms currently being explored. In proto-
cols such as Dynamic Source Routing (DSR) [2], the default
procedure to send a packet initially attempts to £nd a route to
the destination. If no such path can be found within a short
timeout of the request for transmission (500ms), the packet
is delayed for twice that timeout. This process repeats for at
most thirty seconds, after which the delivery fails.

Our idea is simple: Rather than simply fail when immedi-
ate delivery is not possible, move the entire message (not a
single packet) to another host as close to the destination as
possible, where closer is de£ned to be a host which is likely
to be in contact with the destination earlier than the source.
For example, in Figure 1, if host A wants to send a message
to host F , a delivery scheme such as DSR will fail. If, how-
ever, A can determine that C will soon be in contact with F ,
A can pass the message to C (using standard DSR), and C

can pass the message to F after it migrates to the new cluster.
We do not limit ourselves to a single intermediate hop as this
example suggests, but rather provide a general mechanism
to move a message through the network, constantly getting
closer to its destination. Each time the message is trans-
ferred, the new host effectively becomes the sender, taking
on the responsibility of propagating the message closer to
the destination.

A conference provides a meaningful environment for apply-
ing disconnected communication. Often, attendees wish to
exchange messages with one another and although email
is available, it is centralized and not frequently accessed.
Disconnected communication is immediately applicable to
move messages through a system of PDAs, enabling atten-
dees to arrange meetings and share comments about the pre-

sentations without requiring them to meet or check central
locations in order to plan or exchange information.

One challenge to making the protocol function is determin-
ing which host, if any, is closer to the destination. For this,
we turn to application-level knowledge about host movement
and connectivity patterns as well as some general character-
istics about hosts in ad hoc networks.

One way to determine if a host is closer to the destination
is to allow the source to de£ne a sequence of hosts which
can serve as the intermediate hops. In the example, A may
speci£cally list the sequence {C,E, F}, meaning that as
the message moves through the system, if a node which is
closer to the destination in the sequence is in the cluster, the
message should be transferred to that node. Hosts can be
skipped, and while a message is at an intermediate host, it is
not visible to the applications on that host. In other words,
the fact that a host is acting as a router for messages is trans-
parent to the applications running on that host. In the exam-
ple of Figure 1, the message will not be transferred to node E

because the destination, F , is immediately accessible when
C migrates (it will pass through E as a consequence of the ad
hoc routing protocol, but at not point will E be responsible
for £nding the next hop at the level of our protocol). Note
that a message should never move to a host which is earlier
in the sequence from its current location.

While such an explicit list of intermediate hosts is simple to
use, it is not always reasonable to expect the source to pro-
vide such a list. Instead, the sender can rely on other prop-
erties common to hosts in the ad hoc setting. For example,
the personal digital assistant is a common device in ad hoc
networks, and one typical use of a PDA is for maintaining a
user’s calendar. Our routing protocol can extract information
from the calendar to determine a probability that a speci£c
destination host will be reachable within a given time frame.
This can be based on a known shared meeting between the
hosts, or the probability of meeting a host which is closer to
the destination in a future scheduled appointment.

Alternately, a mobile host can track its history of connec-
tivity patterns from which the future likelihood of meeting
an individual can be extracted. This approach is appealing
because it does not require any application-intervention to
determine the next hop, but it does require that a log be main-
tained locally and that queries be relatively simple.

Other viable options for determining the next hop for a mes-
sage include analysis of a mobile unit’s attributes. For exam-
ple, a next-hop calculation may take into account physical
location in space, direction of travel (e.g., always trying to
move a packet north and west), remaining power (e.g., as-
suming that a mobile unit with limited power is not going
to be active for much longer and is an unwise next hop),
available storage (e.g., seeking to balance the message dis-
semination load among multiple mobile units), or any other
physical attribute.



While it is possible to design a default combination of these
attributes for calculating the next hop for a packet, we be-
lieve that knowledge provided by the application is critical in
de£ning the correct balance of properties. Therefore, we al-
low the application programmer to specify a function which,
given the attributes of the system (ranging from a calendar
to power level) and a host computes a value utility of the
host as the next-hop for a message with a given destination.
Putting the actual de£nition of the function into the hands
of the programmer not only makes the system more ¤exible,
but allows the user to manage the complexity of one of the
key components, namely the next-hop calculation. After the
utility of each host is calculated, the source selects the host
with the highest utility and hands off the message.

The next question is how to actually compute these values
for every host in the cluster. If the sender knows all of the
members in its cluster, as well as all attributes about these
host, the analysis can be done centrally. However, knowing
all of the group members has already been shown to be a
dif£cult problem [5] with moderate overhead, and to add a
requirement that all host attributes be passed with the group
membership adds unreasonable message overhead.

Our solution is to de£ne a next-hop discovery protocol which
distributes the application-de£ned function to the hosts in the
cluster utilizing a standard ad hoc broadcast protocol to reach
all connected hosts in a cluster. The function is evaluated
at each host and if the computed value is above a source-
de£ned threshold, a message is sent to the source, indicating
the host and its value. The source collects the responses, de-
termines the best, next-hop, and hands off the message. Pass-
ing around a function is appealing for a number of reasons.
First, the computation is spread among multiple processors,
increasing parallelism and fault tolerance. Additionally, the
use of mobile code technologies to distribute a user-de£ned
function greatly increases the ¤exibility, but we must weigh
the cost of the overhead of the message carrying the code
with the savings gained by not needing to propagate the host
attributes throughout the system. After the function is evalu-
ated and the value is calculated, if it is above a certain thresh-
old, it is sent back to the source in a unicast message.

To increase the reliability that a message will reach its target
destination, the source can specify that the message is to be
sent to multiple next hops simultaneously. In other words,
instead of choosing only the most optimal next-hop based
on the utility, a host can choose the top n hosts. While this
replication may increase the chances of successful delivery,
it also introduces complexity to the protocol to deal with du-
plicate messages moving through the system. There is a need
to control both the level of fan-out of the message as well as
provide a mechanism to clean up old copies.

3 TECHNICAL CHALLENGES
AND IMPLEMENTATION PATH

While this new form of message delivery provides interest-

ing opportunities for communication, the ad hoc network
presents certain challenges that must be addressed during the
development of the protocol. As we have mentioned, one of
the typical concerns in wireless communication is the energy
spent on communication as the number of packets sent and
received consumes battery power on resource limited mobile
devices. Therefore, it is essential to consider the overhead
imposed by our algorithm and the effect it can have on the
performance of the devices supporting it.

One of the key parameters to ensuring that our algorithm
functions correctly is determining the frequency at which
messages held at each node are reexamined and the network
queried for a new next-hop. If this value is too large, we
waste valuable network resources with redundant queries. If
this value is too small, we may miss the arrival of an optimal
next-hop for a message. One way to balance these con¤ict-
ing concerns is to analyze the variance in the ad hoc network.
If the network is changing rapidly, with new nodes arriving
and departing quickly, then the extra bandwidth to test for a
new next-hop is more justi£ed. In a more stable network, it
is not necessary to check as frequently for a new next-hop.

This brings up the question of how to calculate the degree of
change in the network without introducing additional mes-
sage overhead for this computation. For this, we can take
advantage of a low-level protocol present in wireless hard-
ware devices which periodically broadcasts the identity of
the host on a well-known broadcast channel. This message,
commonly referred to as a HELLO packet, is never forwarded
beyond the £rst hop, and serves to identify all neighbors with
whom direct communication is available. One possibility for
determining the change in the network is to collect the direct
neighbors whose HELLO messages are received during an in-
terval of time and compare the list with the hosts detected in
the previous interval. While this accurately measures the de-
gree of change in the neighbors, it may not accurately re¤ect
the dynamicity of the remainder of the cluster.

For example, in Figure 1, if D, E and F are relatively sta-
ble, then D will perceive little change in its neighbor list and
conclude that the cluster is stable. If, however, node F was
physically located near a door with a stream of hosts passing
by, the cluster membership would be highly dynamic, F ’s
neighbor list would be constantly changing, and D’s inter-
pretation of cluster stability would be incorrect.

To counter this, we propose adding a single variable to the
HELLO message indicating the current perception of the ac-
tivity of the network. This value is calculated based on the di-
rect information collected from the change in neighbor lists,
as well as the perception value of the hosts in the neigh-
bor list. For example, if F has a high value, this will be
passed along to E through F ’s HELLO message, causing E

to increase its perception of dynamicity. When this value in-
creases, it will be passed along to D, similarly increasing its
perception of the dynamicity of the cluster.



Several questions are immediately apparent, and still under
investigation. First, what is the optimal period for detecting
changes in the neighbor list? Should this value somehow be
related to the perception of the dynamicity of the cluster?
How quickly should nodes adapt to larger values observed
in the HELLO packets of their neighbors? Put another way:
what is the optimal function for calculating the dynamicity
value? Is it reasonable to consider a function which quickly
ramps up to higher values, but more gradually decreases?
The answers to these questions will be the subject of future
study and will most likely involve careful de£nition and eval-
uation of target application environments.

One problem which may arise is looping in the path that a
message takes from the source to destination. In some cases,
a loop may actually facilitate more timely delivery of the
message, but it is possible for a message to enter a tight loop
where each time the next hop is determined, it bounces be-
tween two hosts for whom the utility is changing quickly.
This situation unnecessarily wastes bandwidth and should be
taken into consideration.

Another practical consideration is the amount of buffer space
available on the mobile hosts for storing messages in transit.
We cannot assume in£nite storage capabilities, and therefore
must de£ne a buffer management scheme which discards
messages with some policy. The de£nition of this policy
remains an open issue. Should an old packet be discarded
simply because it is old, or should an old packet be kept be-
cause it is closer to its destination? Packets which have been
replicated as part of their delivery can be deleted as they are
likely to reach the destination through some other path, but
we still need a mechanism to discriminate among multiple
such messages. It is likely that a meaningful strategy can
only be de£ned with respect to the speci£c application using
this protocol, making it important that our implementation
describe a clean API to guide the programmer in the de£ni-
tion of this function.

We must also consider that requiring the user to provide a
function may be too complex, or may put too much overhead
on the network. For this reason, we will investigate de£ning
a default next-hop protocol calculated at a host based only
on the identity of the destination host. We will also evaluate
sending the entire message as part of the next-hop discovery
protocol in order to eliminate the overhead of sending the
utility responses back to the sender. Any host with a utility
above the utility of the source will keep the message.

Our immediate plans include a prototype implementation to
enable experimentation with the practicality of our approach
as well as the variety of next-hop calculation routines for
multiple ad hoc applications. Initially, we will leverage off of
the LIME middleware [3]. LIME enables the coordination of
mobile units by associating a tuple space with each unit and
transiently sharing these tuple spaces when connectivity ex-
ists. Currently LIME includes a mechanism to migrate a tu-

ple exactly one hop from its source to the destination, requir-
ing connectivity between the source and destination to de-
liver the message. Our prototype is designed as a communi-
cation wrapper, allowing the programmer to specify the tuple
(message), destination, and a next-hop function for describ-
ing the migration of a tuple to its destination. This extension
allows the message tuple to take multiple hops through the
network to reach the destination, and does not require that
the source and destination ever be connected.

Once we have built this prototype and demonstrated the use-
fulness of the protocol, we will extract the functionality into
a stand-alone message delivery sub-system and work to opti-
mize the lower-level communications, using multicast mes-
sages where possible to distribute the request for a next-hop
calculation, and exploring different ad hoc routing protocols
and the support they can lend to our protocol.

4 CONCLUSIONS
In this paper we introduced a new communication model
which removes the assumption of connectivity between the
source and the destination. We also provided an initial proto-
col description which describes how multiple aspects of the
ad hoc network can be combined to enable such communi-
cation. This protocol is not intended to replace existing work
on ad hoc routing, but in fact is built on top of these mecha-
nisms and extends them, enabling the new model of discon-
nected communication. This work is in its initial stages, yet
our initial £ndings indicate that it has great potential for ex-
tending the communication patterns available in ad hoc net-
works.

REFERENCES

[1] S. Das, C. Perkins, and E. Royer. Performance com-
parison of two on-demand routing protocols for ad hoc
networks. In Proc. of the IEEE Conf. on Computer Com-
munications (INFOCOM), pages 3–12, Tel Aviv, Israel,
March 2000.

[2] D. Johnson, D. Maltz, Y. Hu, and J. Jetcheva. The Dy-
namic Source Routing Protocol for Mobile Ad Hoc Net-
works . Internet Draft, March 2001. IETF Mobile Ad
Hoc Networking Working Group.

[3] A. Murphy, G. Picco, and G.-C. Roman. LIME: A mid-
dleware for physical and logical mobility. In Proc. of
the 21st Int. Conf. on Distributed Computing Systems
(ICDCS), Phoenix, AZ, USA, April 2001.

[4] C. Perkins and E. Royer. Ad-hoc on-demand distance
vector routing. In Proc. of the 2nd IEEE Wkshp. on
Mobile Computing Systems and Applications, pages 90–
100, New Orleans, LA, USA, February 1999.

[5] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent
group membership in ad hoc networks. In Proc. of the
23rd Int. Conf. in Software Engineering (ISCE), Toronto,
Canada, May 2001.


