LiME: Linda Meets Mobility

Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman
Dept. of Computer Science, Washington University
Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA
+1-314-935-{7536,7537,6132}

{picco,alm,roman}@cs.wustl.edu

Abstract

LIME is a system designed to assist in the rapid de-
velopment of dependable mobile applications over both
wired and ad hoc networks. Mobile agents reside on mo-
bile hosts and all communication takes place via tran-
siently shared tuple spaces distributed across the mobile
hosts. The decoupled style of computing characterizing
the Linda model is extended to the mobile environment.
At the application level, both agents and hosts perceive
movement as a sudden change of context. The set of tu-
ples accessible by a particular agent residing on a given
host is altered transparently in response to changes in the
connectivity pattern among the mobile hosts. In this pa-
per we present the key design concepts behind the LIME
system.

1 INTRODUCTION

Today’s users demand ubiquitous network access inde-
pendent of their physical location. This style of com-
putation, often referred to as mobile computing, is en-
abled by rapid advances in the wireless communication
technology. The networking scenarios enabled by mobile
computing range roughly between two extremes. At one
end, the availability of a fixed network is assumed, and
its facilities are exploited by the mobile infrastructure—
this is the case with Mobile IP [10]. At the other end,
the fixed network is absent and all the network facilities
(e.g., routing) must be implemented by relying only on
the available mobile hosts—this is the assumption made
by research on ad hoc networks [6]. The characteristics
of the wireless communication media, e.g., limited band-
width and frequent disconnection, favor a decoupled and
opportunistic style of computation. Computation is de-
coupled in that it is expected to proceed even in the
presence of disconnection—a frequent event in this do-
main. Computation is opportunistic in that it exploits

connectivity whenever it becomes available. This pecu-
liar style of computation demands a new approach to the
crafting of distributed applications.

Alongside this form of physical mobility, in which the
hosts roam across the physical space and modify the
topology of the network, researchers are paying increas-
ing attention to various forms of logical mobility as well.
In the latter case, often referred to as code mobility [2],
the entity being migrated is the code running on the
hosts, which are usually not allowed to move. Code re-
location is expected to offer several advantages over the
traditional client-server paradigm, the most important
being enhanced flexibility, customizability, and reduced
network traffic. Flexibility and customizability are pro-
vided by the ability to send to the server a portion of the
code available to the client, or vice versa. The opportu-
nity for a reduction in network traffic results from the
possibility to minimize the number of interactions that
take place across the network. In this paper we present
a system called LIME (Linda in a Mobile Environment)
which provides application designers and implementors
with a minimalist set of constructs to deal with both
physical and logical mobility. In our system, physical
mobility involves the movement of mobile hosts, such as
laptops or PDAs. Logical mobility is concerned with the
movement of mobile agents, i.e., processes that are able
to migrate from one host to another while preserving
their code and state. The underlying assumption in our
work is that both mobile hosts and mobile agents can be
regarded as instances of a generic concept of mobile com-
ponent, and coordination takes place through the use of
transiently shared tuple spaces accessed via the basic set
of Linda primitives [4].

In Linda, coordination is achieved through a tuple space
globally shared among components which, independent
of their actual location, can access the tuple space by in-
serting, reading, or withdrawing tuples containing infor-
mation. The model provides both spatial and temporal
decoupling. The components do not need to co-exist in
time for them to communicate and can reside anywhere
in the distributed system. Since decoupling is intrinsic

to mobility, the Linda model is a natural choice for our
system.

LIME retains the basic philosophy and goals of Linda
while adapting them to mobility. Simple and rapid ap-
plication development is facilitated by the same mecha-
nisms which made parallel programming in Linda attrac-
tive to implementors. Programs (written in a variety of
languages) view the world as a sea of tuples accessible
by contents. Movement, logical or physical, results in
implicit changes of the tuple space accessible to the in-
dividual components. The system, not the application
program, is responsible for managing movement and the
tuple space restructuring associated with connectivity
changes. The formal semantic definition of LIME is the
subject of a companion paper and relies on the use of
Mobile UNITY [8], an extension of the UNITY nota-
tion and logic proposed by Chandy and Misra [1] with
concepts that are fundamental in dealing with mobility.

The remainder of this paper is structured as follows.
Section 2 provides a brief review of Linda. Section 3
motivates LIME and its design philosophy. Sections 4, 5,
and 6 present a set of coordination primitives supporting
transiently shared tuple spaces, location-aware comput-
ing, and reactive programming—the fundamental con-
cepts underlying LIME. Section 7 highlights the technical
challenges involved in implementing LIME and outlines
several sample application scenarios. Finally, Section 8
summarizes our research contributions and highlights di-
rections for future work.

2 LINDA

Linda has been proposed at the beginning of the past
decade [4] as a new model of communication among
concurrent processes. The fundamental abstraction pro-
vided to each process is a shared tuple space that acts
as a repository of elementary data structures—the tu-
ples. Each tuple is a list of typed parameters, such as
(“foo", 9, 27.5), that contain the actual information be-
ing communicated. A tuple space is a multiset of tuples
that can be accessed concurrently by several processes.

Tuples are added to a tuple space by performing an
out(t) operation on it. After its execution, the tuple ¢ is
available to any subsequent operation on the tuple space.
The update of the tuple space is performed atomically.
Tuples can be removed from a tuple space by executing
in(p). Tuples are anonymous, thus their removal takes
place through pattern matching on the tuple contents.
The argument p is often called a template, and its fields
contain either actuals or formals. Actuals are values; the
parameters of the previous tuple are all actuals, while the
last two parameters of (“foo”, ?integer, ?long) are for-
mals. Formals are like “wild cards”, and are matched
against actuals when selecting a tuple from the tuple

space. For instance, the template above matches the tu-
ple defined earlier. (Tuples can contain formals as well.)
The matched tuple and the template must have the same
arity. If multiple tuples match a template, the one re-
turned by in is selected non-deterministically and with-
out being subject to any fairness constraint. The in op-
eration is blocking, i.e., if no matching tuple is available
in the tuple space the process performing the in is sus-
pended until a matching tuple becomes available. Tuples
can also be read from the tuple space using the rd oper-
ation. The execution of a rd(p) proceeds identically to
in, except for the fact that the tuple matched and deliv-
ered to the process that executes the operation is copied
rather than withdrawn from the tuple space. Similarly to
the in operation, rd is blocking. Linda implementations
typically include also an eval operation which provides
dynamic process creation and enables deferred evalua-
tion of tuple fields. For our purposes, we use hereafter
only out, in, and rd.

Communication in Linda is decoupled in time and space.
Decoupling in time refers to the fact that senders and
receivers do not need to be in communication in order
to exchange information. Tuples are stored in the tu-
ple space and can be retrieved later, even if the process
that produced the tuple terminated its execution already.
Decoupling in space refers to the fact that a tuple in
the tuple space is available to processes dispersed on the
nodes of a distributed system—the actual location of a
tuple is hidden from the tuple producer and consumer.
Decoupling is appealing, as it separates clearly the be-
havior of the individual processes from the communica-
tion needed to coordinate their actions. The idea enjoys
wide acceptance in many scientific communities ranging
from economics to artificial intelligence, and is at the
core of a new interdisciplinary research area that inves-
tigates technologies and methodologies for the coordina-
tion of components in complex systems [7, 3]. Notably,
the decoupling between components and their coordina-
tion fostered by Linda has several points of contact with
the distinction between components and their intercon-
nection that constitutes the core of recent research on
software architecture [11]. We chose the Linda model as
the basis for this work due to its minimality and decou-
pling in time and space.

3 LINDA EXTENSIONS
FOR A MOBILE ENVIRONMENT

Linda provides coordination among concurrently exe-
cuting components accessing a shared tuple space that
is persistent, globally accessible, and statically created.
Maintaining these properties in the presence of physi-
cal mobility is complicated, because connectivity can no
longer be taken for granted. Early research on fault-
tolerant distributed implementations of Linda [12] tack-

led the problem under the assumption that disconnection
was just an unfortunate accident, and employed replica-
tion schemes to increase tuple availability. However, in
physical mobility disconnection is often forced explicitly
by the user, e.g., to save battery power during move-
ment or to reduce communication costs over expensive
cellular phone lines. To make matters worse, mobile
hosts (and mobile agents) are completely independent
and controlled by users occasionally forming transient
communities; thus, they may come in contact once and
never again. This makes unreasonable any assumptions
about eventual delivery of data. Finally, logical mobility
complicates the implementation of a distributed tuple
space even in the absence of any physical mobility. For
instance, replication schemes that rely on the locality
of processes may no longer be applicable, because pro-
cesses can move freely around the network. The idea of a
static, persistent, and globally visible tuple space is then
unreasonable. Mobility demands weaker constraints on
the tuple space and dynamic reconfiguration of its con-
tents.

In the model underlying LIME, mobile agents are pro-
grams that can travel among mobile hosts. They are
“active” components of the system. Mobile hosts are
roaming containers for agents, to which they provide
connectivity. The Linda model is adapted by LIME
through the notion of a transiently shared tuple space
that ties together physical and logical mobility. Tuple
spaces are permanently bound to mobile agents and mo-
bile hosts. Transient sharing enables dynamic reconfigu-
ration of their contents according to agent migration or
connectivity variations. At a high level of abstraction,
mobile agents interacting in the logical space provided by
a single host are akin to mobile hosts interacting in the
physical space spanned by communication links. Hence,
transiently shared tuple spaces and the associated access
primitives provide a single coordination toolkit for both
scenarios. In practice, however, distribution and mobil-
ity do complicate implementability. As a result a more
constrained use of the LIME primitives is allowed when
physical mobility is present.

4 TRANSIENTLY SHARED TUPLE SPACES
The fundamental abstraction provided by LIME is the
notion of a transiently shared tuple space. As summa-
rized in Figure 1, in LIME each mobile agent has access
to an interface tuple space (ITS) that is permanently as-
sociated with that agent and transferred along with it
when movement occurs. Each ITS contains information
that the mobile agent is willing to share with others, and
is accessed using the conventional Linda operations in,
rd, and out described in Section 2, whose semantics are
unaffected. On the other hand, the actual content of
the 1Ts is determined differently from Linda. The set of

Mobile Agents {

Transiently Shared Tuple Space

Figure 1: Transiently shared tuple spaces in LIME.

tuples that can be accessed through the ITS is dynam-
ically recomputed in such a way that, for each mobile
agent, the content of its ITS gives the appearance of hav-
ing been merged with those of the other mobile agents
which are currently co-located. This way, each mobile
agent “sees” through its own ITS the same transiently
shared tuple space presented to the others. Operations
performed on the I1TS are effectively performed on the
contents of the transiently shared tuple space; e.g., if
agents A and B are co-located and A performs an out(t)
on its ITS, after the tuple ¢ is inserted in A’s ITS it is
available for retrieval with an in(t) by agent B.

The tuple space that can be accessed through the 1TS
of an agent is shared by construction and is transient
because its content changes according to the migration
of agents. The action of making the contents of an 1TS
accessible to other agents through the transiently shared
tuple space takes place in reaction to changes in the set
of co-located agents. Upon arrival of a new mobile agent,
the transiently shared tuple space is recomputed by tak-
ing into account the ITS of the new agent. The result
is made accessible to all the agents currently co-located.
This sequence of operations is called engagement of the
tuple spaces, and is performed as a single atomic trans-
action. Similar considerations hold for the departure of a
mobile agent, resulting in the disengagement of the cor-
responding ITS. Its content is removed atomically from
the transiently shared tuple space according to rules that
are discussed later.

In LIME, agents may have multiple 1TSs, and also private
tuple spaces, i.e., not subject to sharing. Tuple spaces
are named; the name effectively defines a notion of typing
for the tuple space and, in the case of ITSs, determines
the sharing rule. If an agent has multiple 1TSs, these
are shared independently with the corresponding 1TSs of
other co-located agents, if any. In other words, if agent
A owns the 1Tss named S, T', and U, while agent B owns
the 1Tss named T', U, and V, only T' and U will become
transiently shared between A and B. For instance, this
enables an agent to exchange information with a service
broker about the available CD resellers by transiently
sharing the corresponding ITS, and then subsequently

Mobile Host
Mobile Agents

migrate

Host-Level Tuple Space (7 Interface Tuple Space
Federated Tuple Space

Figure 2: Transiently shared tuple spaces to handle phys-
ical and logical mobility.

share information about a given title and the payment
options with the reseller selected through a different 1TS,
thus keeping separate the information concerned with
different tasks and different roles. By construction, all
agents are bound to a LimeSystem 1TS whose tuples can
be read but not withdrawn. This ITS contains system
information concerning the agent, e.g., its identifier, as
well as information concerned with the host, e.g., quality
of service information. Transient sharing of LimeSystem
enables co-located agents to access global system infor-
mation. We will detail the role of this tuple space later
on. To identify the tuple space on which a given opera-
tion is performed, we use the dot notation, e.g., T.out(t).
However, in this paper we will focus on agents with a sin-
gle 1Ts, unless otherwise specified, and drop the name of
the tuple space.

So far, the discussion has been focused on mobile agents.
However, LIME applies the notion of transiently shared
tuple space to a generic mobile component regardless
of its nature—physical or logical. This relies on an ex-
tended notion of connectivity that encompasses both
kinds of components. Mobile hosts are connected if a
communication link connecting them is available. Avail-
ability may depend on a variety of factors, including
quality of service, security considerations, or connection
cost; in principle, all of these can be represented in LIME.
However, in this paper we limit ourselves to a simple no-
tion of availability based on the presence of a function-
ing link. Because we assume bidirectional links and the
presence of routing capabilities in the physical network,
our notion of connectivity is commutative and transitive.
Mobile agents are connected if they are co-located on the
same host or they reside on hosts that are connected.
Changes in connectivity among hosts depend only on
changes in the physical communication link. Connectiv-
ity among mobile agents may depend also on arrival and
departure of agents with creation and termination of mo-
bile agents being regarded as a special case of connection
and disconnection, respectively. Finally, we assume that
both mobile agents and mobile hosts are given globally

unique identifiers. Figure 2 depicts the model adopted
by LIME.

The content of the 1TS of each mobile agent is determined
by the presence of connectivity, in the aforementioned
extended meaning. By definition, agents co-located on
the same host are connected, and this creates a host-
level tuple space that is transiently shared among all
such agents and accessible through each agent’s 1TS. As
evident in Figure 2, the host-level tuple space can be
regarded as the 1TS of a mobile host, as it is perma-
nently associated with it; if no mobile agents are cur-
rently hosted, the host-level tuple space is empty. Next,
the mechanism of transient sharing is applied to the host-
level tuple spaces. Hosts that are connected merge their
host-level tuple spaces into a federated tuple space whose
content is transiently shared across the network. A tuple
in the 1TS of an agent can be either local and thus be-
longing to the local host-level tuple space, or remote and
thus belonging to the host-level tuple space of a mobile
host that is currently accessible.

The notion of transiently shared tuple space is a natural
adaptation of the Linda tuple space to a mobile envi-
ronment. When physical mobility is involved, there is
no place to store a persistent tuple space. Connection
among machines comes and goes and the tuple space
must be partitioned in some way. In the scenario of log-
ical mobility, maintaining locality of tuples with respect
to the agent they belong to may be complicated. LIME
enforces an a priori partitioning of the tuple space in
subspaces that get transiently shared according to pre-
cise rules, providing a tuple space abstraction that de-
pends on connectivity. In a sense, LIME takes the notion
of decoupling proposed by Linda further, by effectively
decoupling the mobile components from the global tuple
space used for coordination.

In this model physical and logical mobility are separated
in two different tiers of abstraction. It is worth not-
ing, however, that many applications do not need both
forms of mobility, and straightforward adaptations of the
model are possible. For instance, applications that do
not exploit mobile agents but run on a mobile host can
employ one or more stationary agents, i.e., programs that
do not contain migration operations. In this case, the de-
sign of the application can be modeled in terms of mobile
hosts whose 1TS is a fixed host-level tuple space. Applica-
tions that do not exploit physical mobility—and do not
need a federated tuple space spanning different hosts—
can exploit a host-level tuple space as a local communi-
cation mechanism among co-located agents.

5 LOCATION-AWARE COMPUTING
The transient nature of the LIME shared tuple space
poses some additional challenges, as illustrated in Fig-

Mobile Agents Mobile Agents

A | AQB
0
‘(7]
ITS

Persistent Tuple Space

S
|
\

Figure 3: Persistent vs. transiently shared tuple spaces.

ure 3. Let us consider a simple system composed of two
mobile agents, A and B. A is initially co-located with
B; before departing, A leaves some information that is
intended to be eventually processed by B. This sim-
ple scenario, depicted in the left hand side of Figure 3,
is represented straightforwardly in Linda. A performs
out(t) and deposits in the tuple space the tuple ¢ con-
taining the information to be communicated to B (step
1). Thanks to the persistence and global availability of
the tuple space, the tuple ¢ remains in the tuple space
even after A departs (step 2), thus it is still available
when B eventually tries to withdraw it by performing
in(t) (step 3). The situation with transiently shared tu-
ple spaces is depicted on the right hand side of the same
figure. Since A and B are initially co-located, when A
performs out(¢) the tuple ¢ is inserted in the 1TS of A and
becomes available to B thanks to the transient sharing
of the agents’ 1TSs (step 1). However, when A departs,
it takes along its own ITS (step 2). If B tries to pick up
the tuple t after A has already departed, the correspond-
ing in(¢) will be performed on a transiently shared tuple
space consisting of B’s ITS only, and thus may block since
t is no longer present there and there might not be any
other tuple satisfying the match (step 3).

This problem is a consequence of the fact that in LIME
there is no well-known persistent tuple space that can be
used as a global repository of tuples. The configuration
of the tuple space, i.e., its content, varies dynamically
according to the location of components. Still, it is de-
sirable to retain the advantage provided by the decou-
pling in time and space characterizing the Linda model
of communication. In our example, from B’s perspective
it would be desirable for the withdrawal of ¢ to be pos-

sible any time after A becomes co-located with B. To
accomplish this, A should be allowed to specify that the
effect of an out(t) on the transiently shared tuple is to
place t in B’s 1TS rather than keeping it in A’s ITS as we
assumed so far.

In LIME this is accomplished by exploiting the notion
of location—central to mobility in general. The location
of a tuple is a tuple space. In the case of an I1TS, the
location of a tuple is identified uniquely by the name of
the tuple space and by the identifier of the mobile agent
owning the I1TS, since the agent and its ITS are perma-
nently bound. Given this notion, in LIME a tuple can
be placed into the 1TS T of a mobile agent A by simply
using T.out[\|(¢), a version of out annotated with the
tuple’s intended location. The semantics of the out[)]
operation take into account the location of agents, and
involve conceptually two steps. The first step is equiv-
alent to a conventional out(t), the tuple ¢ is inserted in
the 1TS of the agent calling the operation, say w. At this
point the tuple ¢ has a current location w, and a destina-
tion location X\. If the agent A is currently connected, i.e.,
either co-located or located on a connected mobile host,
the LIME system reacts to the out operation by moving
the tuple ¢ to the destination location. The combination
of the two actions—the insertion of the tuple in the 1TS
of w and its instantaneous migration to the 1TS of A —
are performed as a single atomic operation. On the other
hand, if X is not currently connected, the tuple remains
at the current location, the ITS of w.

Thus, in our example, A could circumvent the prob-
lem described earlier by performing out[B](t) on its ITS.
Note that performing out[\](¢) does not necessarily im-
ply guaranteed delivery of t to A; the rules for non-
deterministic selection of tuples as defined by Linda are
still in place and the tuple ¢ is always available in the
transiently shared tuple space, even when it is not yet
within the intended 1Ts. Thus, it might be the case that
while waiting for A to connect, or after it becomes con-
nected and t is transferred to A’s ITS, some other agent
may withdraw t from the tuple space before .

User-specified tuples are automatically augmented by
the run-time support with fields recording their cur-
rent and destination locations. This information enables
LIME to detect the presence of “misplaced” tuples (i.e.,
tuples whose current location is different from their in-
tended destination) and facilitates state reconciliation
upon engagement and disengagement of tuple spaces.
For instance, if ¢ still belongs to the 1TS of w, and A
becomes connected, the system detects the presence of
the misplaced tuple ¢ and migrates it to the 1S of A,
also changing the current location of ¢ to the value of its
destination, A. Since this action is part of the engage-
ment of tuple spaces, the actions of becoming connected,

Disconnection

Mobile Agents

Figure 4: Recomputing transiently shared tuple spaces
on disengagement.

merging of the ITS, and migrating misplaced tuples take
place in a strictly sequential order and are executed as
if they were a single atomic operation.

Disengagement relies on the notion of location, as well.
When an agent departs, the transiently shared tuple
space that is presented to mobile agents must be recom-
puted accordingly. Conceptually, this process can be de-
scribed as depicted in Figure 4. Initially (step 1), the 1TS
of each mobile agent has access to the (bag) union of the
tuples contained in the physical 1Ts actually associated
with the agent. This is represented by using different
fill patterns for the boxes representing the 1TSs. Upon
occurrence of a disconnection, be it the departure of an
agent or a physical disconnection like in Figure 4, the
transiently shared tuple spaces are partitioned into their
constituents (step 2) such that the ITS of each agent, say
w, contains only the portion of the shared tuple space
it is responsible for, i.e., all the tuples whose current lo-
cation is w. This includes also misplaced tuples, whose
final destination is different from w; if the destination is
not present, placing these tuple with the agent that gen-
erated them is the only meaningful solution. Thus, this
step basically partitions the contents of the transient tu-
ple spaces back into the “concrete” 1TSs that are actually
physically carried by each mobile agent. Finally, these
ITS are merged again according to the new configuration
of the system, thus completing the tuple space update
process caused by disconnection (step 3).

The ability to abstract away the location of mobile
agents and hosts as well as to access their data seam-
lessly simplifies certain programming tasks. However,

there are situations where it may be desirable to
limit access only to a portion of a transiently shared
tuple space, either for programming convenience or for
performance reasons. For instance, the programmer
may be temporarily concerned only with the ITS of a
given agent or a particular host-level tuple space. These
situations demand new forms of in and rd annotated
with locations, similar to out[\]. In LIME, annotations
for these operations come in the form infw,] and
rdlw, A], where the current and destination locations
defined earlier are used. Either of the two locations can
be left unspecified, in which case the symbol “” will
be used. Different combinations of location parameters
identify different projections of the transiently shared
tuple space. In the following, we review first the
combinations allowed in LIME when dealing with logical
mobility on a single host. Later on, we show what
operations are permitted in the presence of physical
mobility. The discussion focuses on the in operation.

The operation injw,] performs an in on the projection
of the transient tuple space whose tuples have current
location equal to w. This operation provides a means to
restrict the scope of the in operation to the ITS of a single
agent, including misplaced tuples that have been created
by this agent. LIME allows one also to refer to tuples
that are in a given ITS but whose destination is actually
another agent A, in the form infw,\]. The ability to
perform these operations can be useful, for instance, in a
kind of tuple “garbage collection.” If a garbage collector
agent has some application knowledge that it will never
meet the agent \ again, then it can purge useless tuples
from the 1TS of w. As a special case, injw,w| performs
the in on the tuples in w’s ITS that are not misplaced,
i.e., whose destination is w and whose current location
is w as well. in[_, \] restricts the scope of the in to the
tuples in the transiently shared tuple space whose final
destination is A. If A is currently not present, such tuples
are currently misplaced in the 1TS of some other agent.
If X\ is present, then the operation becomes equivalent
to in[A, A\] because, according to semantics of transient
sharing, if A is present all misplaced tuples directed to
it migrate atomically to the correct 1TS at the time of
engagement.

When physical mobility is present, LIME provides also
the capability to restrict the query performed by in to
a specific host-level tuple space. This is achieved by
specifying the identifier Q of a mobile host as the first
parameter, e.g., in[Q),]. In general, the current location
can be specified either as the identifier of a mobile agent
or of a mobile host. On the other hand, the destination
location must always be the identifier of a mobile agent.
This restriction holds also for the out[A] operation whose
A\ parameter, representing the destination location for ¢,

cannot be a mobile host. If this were allowed, the tu-
ple would eventually belong to a host-level tuple space.
However, we already discussed that this tuple space is
actually made of the concrete ITSs associated to mobile
agents, they are the ones physically holding tuples. Ac-
cording to our model, if no agent is specified as a desti-
nation location for ¢, the tuple vanishes upon disconnec-
tion. Nevertheless, if in some applications the host must
own a tuple space, this can be realized in LIME by using
a stationary and persistent agent that is responsible for
holding incoming tuples destined to that host and for
making them available to the agents located there.

6 REACTIVE PROGRAMMING

In the rapidly changing environment that characterizes
mobility, the ability to react to events, and to do it as
soon as possible, is of great importance. Events can be
concerned with the physical environment, like discon-
nection or changes in the quality of service, or with the
application, like the availability of data carried by other
parties. A typical example might be the arrival or de-
parture of a mobile agent.

Events are naturally represented in the Linda model as
tuples. This is actually the solution exploited by LIME
as well. It leverages off the LimeSystem 1TS described
earlier. The run-time support, which can be modeled as
a stationary agent, continuously monitors the underlying
layers of the virtual machine for system events. These
events, that include departure or arrival of mobile agents,
changes in connectivity, and changes in the quality of ser-
vice, are transformed into event tuples and are inserted
in the LimeSystem ITS of the stationary agent. There,
this information becomes available to all the agents con-
nected through the federated tuple space generated by
transient sharing of all the LimeSystem 1TSs.

In Linda, the in operation already provides a basic mech-
anism for coping with events. Processes can suspend
on the occurrence of an event, modeled by the appear-
ance of the corresponding tuple in the tuple space, and
will take appropriate actions after the tuple is retrieved
by the in. However, this solution has some drawbacks.
From a semantic point of view, there is no guarantee that
the event is actually caught by a process A interested in
it. Another process u could be interested in the same
event and perform the in operation before \. To guaran-
tee event delivery, more complex schemes must be used.
They must involve a priori knowledge about the number
of processes interested in an event. From a performance
point of view, since in is blocking, listening to multiple
events requires one thread of control per event, which is
often impractical. The fundamental problem rests with
the fact that Linda forces applications to “pull” out tu-
ples, while reactive programming demands to have tuples
“pushed” to applications. Finally, it is desirable to en-

capsulate the reaction to an event into its own definition,
thus providing a higher level of abstraction to the pro-
grammer who should be freed from the burden of dealing
explicitly with synchronization issues.

LIME introduces the notion of a reactive statement hav-
ing the form T'.reactsTo(s, p) where s is a code fragment
containing non-reactive statements that is to be executed
when a tuple matching the pattern p is found in the tu-
ple space T. T can be any tuple space. However, in
the next section, we will see that some additional con-
straints are necessary to deal with remote tuple spaces.
The execution of reactsTo “registers” the reaction with
T; a complementary operation to “de-register” the re-
action is also provided by LIME. The semantics of the
reactsTo statement are the same as those defined for Mo-
bile UNITY reactive statements, described in [8]. After
each non-reactive statement, a reaction is selected non-
deterministically among those registered, and its guard
is evaluated. If the guard is true, the corresponding ac-
tion is executed, otherwise the reaction is equivalent to
a skip. This selection and execution proceeds until there
are no enabled reactions and the normal execution of
the non-reactive statements can resume. Thus, reactive
statements are executed as if they belong to a separate
reactive program that is run to fixed point after each
non-reactive statement. These semantics offer an ade-
quate level of reactivity, because all the reactions reg-
istered are executed before any other statement of the
co-located agents, including the migration statements.
Thus, the programmer’s effort in dealing with events is
minimized.

Although in principle s and p could have arbitrary forms,
in practice their structure is constrained by implemen-
tation considerations. For example, if the definition of
p contained arbitrary expressions in the host language—
Java in the current implementation of LIME—the truth
of p would need to be evaluated after each statement.
This would require either access to the innards of the
Java virtual machine or the development of a higher level
language built on top of Java whose run-time support
manages arbitrary reactive statements. For this reason,
in the current implementation of LIME the specification
of p is reduced to a pattern that is matched against tu-
ples in the tuple space on which the reactive statement is
executed. This way, the only statement that can trigger
a reaction is the insertion of a tuple in the tuple space,
which is under the control of LIME. Similar issues re-
late to s. Conceptually, s could be any code fragment
containing non-reactive statements, thus including tuple
space operations. In practice, reactions are executed in a
separate thread of control belonging to the LIME system.
Thus, blocking operations are forbidden in s, as they
would actually block the processing of all the reactions.

In general, the presence of tuple space operations in s
complicates matters. From a performance point of view,
s should be kept as small as possible to allow fast process-
ing of reactions; as execution of tuple space operations
is usually more demanding than conventional statements
and they should be used with much care. From a seman-
tic point of view, if an out(t) operation is allowed in s,
t may match the pattern p specified by some other re-
action and thus generate a potentially infinite reaction
loop. LIME presently allows tuple space operations in
s, although subject to the constraints described below.
Our rationale stems from the notion that preventing the
programmer from modifying reactively the tuple space is
worse than leaving up to the programmer the evaluation
of the semantic and performance tradeoffs. Application
development with the LiIME API will hopefully validate
this hypothesis.

The actual form of the reactsTo operation is annotated
with locations—this has been omitted so far to keep
the discussion simpler. A reaction assumes the form
T.reactsTo|w, A|(s,p), where the location parameters
have the same meaning as discussed for in and rd.
However, reactive statements are not allowed on feder-
ated tuple spaces; in other words, the current location
field must always be specified, although it can be the
identifier either of a mobile agent or of a mobile host.
The reason for this lies in the constraints introduced by
the presence of physical mobility. If a federated tuple
space is present, its content, accessed through the 1TS
of a mobile agent, actually depends on the content of
ITSs belonging to remote agents. Thus, to maintain
the requirements of atomicity and serialization imposed
by reactive statements would require a distributed
transaction encompassing several hosts for each tuple
space operation on any ITS—very often, an impractical
solution.

For these reasons, LIME offers the capability to react
asynchronously to the availability of tuples in a remote
ITS by providing an operation T.upon(s,p) that has
weaker semantics than the reactsTo. Conceptually, it
works as depicted in Figure 5, where an additional, pri-
vate tuple space associated with each mobile agent is
shown. The purpose of this event tuple space (ETS) is to
collect event tuples and is introduced here only to sim-
plify the presentation—it is not actually provided among
LIME constructs. The semantics of upon can then be de-
scribed as follows:

1. When upon(s, p) is invoked on the 1TS T} of a given
agent A, a reaction reactsTo(s',p) is registered
on each 1TS currently shared with 7. A reaction
reactsTo(s,p’) is also registered on \’s ETS, Ej.

2. When an out(t) operation with ¢ matching the pat-

Figure 5: Reacting to remote events in LIME. Thick
solid lines represent reactions, while the thick dotted line
represents an asynchronous action.

tern p is performed on the 1TS T}, of a given agent
w, the reaction T),.reactsTo(s', p) fires and s’ is ex-
ecuted. s’ performs an E,,.out(t') where t is a copy
of t augmented with information that enables the
system to bind an event tuple to the agent that is
performing the upon.

3. An asynchronous action moves the tuple from the
E, to Ey. There is no guarantee that this ac-
tion happens as soon as t’ shows up in E,,, because
this would require starting a distributed transaction
and suspending the execution of all the connected
agents. Instead, LIME guarantees eventual delivery
of t’ to E,, if connectivity is available.

4. When ¢’ reaches E}, the reaction E).reactsTo(s,t’)
fires, where s is actually the statement specified
originally in the upon.

The operation upon in LIME is similar to the notify op-
eration provided by Sun’s JavaSpace [9] and to the event
registration mechanism provided by IBM’s T-Spaces [5].
The development of a richer event model, allowing reac-
tions to arbitrary events other than insertion of a new
tuple, is the subject of on-going work.

7 DISCUSSION

The technical issues involved in the development of LIME
are complex. For instance, in a fully mobile setting dis-
connection can take place at any time; tuple transfers
may lead to distributed consensus problems and proper
application level protocols are needed to prevent tuple
duplication or loss. Matters are complicated further by
the semantics of engagement, which requires the trans-
fer of misplaced tuples to take place as if part of a dis-
tributed transaction. Tuple transfer is also affected by
the availability of routing at the network layer, presently

P EE | -
Y | e | er | cvoe | O oty ¢4
epted words g wvords
Y | T
| aar
E.«uzr
|ATE
| GANG
| Bag
iy I Pause l

@ & Any | scores |
FASHINGTON lN]V‘E&WYE STLOUS o
words plicated vords
P | S
BARK
BARKER |
HERD
BEC
RAT
RATE
Pl | Pause |

Figure 6: Mobile Boggle. The objective of Boggle™ is to use adjacent letters on the board to form as many words
as possible before the timer expires. Only words that are not found by others score points. In our version, a game is
initiated by one player. Other players can join the game whenever connection is established with one of the already
active players, and then disconnect. The game then proceeds in a disconnected fashion; whenever two or more players
become connected they exchange their words and update the list of duplicate words and their scores accordingly.

an open issue for ad hoc networks. Detection of connec-
tivity changes is another challenge. Implementation is
relatively easy in the case of mobile agents, but is con-
strained by the capability of the APIs with which the
hardware mobile hosts are equipped. As for logical mo-
bility, LIME should ideally provide a communication API
that can be exploited by any Java-based mobile code

& Washington
WASHINGTON- UNIVERSITY- IN-ST-LOUS

Figure 7: Another snapshot of Mobile Boggle. Game
termination is determined by connectivity. If a player’s
timer has expired, this information is passed to the other
players whenever they become connected. When a player
knows that all the other players have terminated, the
final scores are computed. In the figure, Gian Pietro
knows Amy has terminated but Catalin has not.

system—very poor primitives exist today. Minimizing
the invasiveness of LIME on the host mobile code system
is another complex design task. All these issues entail
a careful balancing act between semantic simplicity and
implementability. For instance, Mobile UNITY has been
used to define a number of interesting and potentially
useful constructs but it is unclear at this time the ex-
tent to which they have reasonable implementations in
the presence of arbitrary disconnections. There are also
many interesting and still unexplored constructs, e.g.,
transient sharing of complex data structures. What are
the weakest assumptions one needs to make while still
able to ensure implementability and usefulness? This is
a question that we will continue to ask ourselves through-
out this investigation.

The soundness of our approach is going to be verified
during application development. Applicability to real-
world mobile devices will be a driving criteria in select-
ing the domains we will experiment with. We plan to
experiment with a variety of hardware including laptops,
hand-held devices, and possibly Java-enhanced customer
appliances, in order to evaluate their different require-
ments with respect to platform support, computational
resources, and usability. Applications that can benefit
from LIME are countless. Transient sharing could enable
hand-held devices to re-synchronize their data with cen-
tral repositories without requiring insertion in docking
stations: being in range with the source of information
would be sufficient for triggering a reactive exchange of
information. A team of robots at the scene of natural dis-
aster can build cooperatively and dynamically a global

map of the area by transiently sharing their local infor-
mation each time they come in contact. Finally, an in-
telligent transport system can feed drivers on a highway
location-dependent information with the transfer being
activated by the appearance of a car in the communi-
cation range, or by an explicit request made by mobile
agents on behalf of the driver. Our initial set of target
applications under development focuses on cooperative
games that exhibit predictable disconnection and appli-
cations that involve mobile agents. Figures 6 and 7 show
snapshots of a LIME implementation of a popular word
game!, called Boggle™.

A prototype of LIME, built upon IBM’s T-Spaces [5] is
under development at our university. The initial version
was developed under the constraining assumptions of
full connectivity and anticipated disconnection—indeed,
meaningful for small communities of people using col-
laborative applications in a short communication range,
e.g., managers synchronizing their agendas in an airport
meeting room. The next objective is to build a Java API
fully implementing the LIME abstractions. This will give
us the opportunity to evaluate the implementability of
our constructs and possibly modify the design of LIME
accordingly. At the same time, this will provide a soft-
ware package available for experimental development of
sample applications involving both physical and logical
mobility.

8 CONCLUSIONS

In this paper we presented the design of LIME, a system
that adapts the Linda model of communication to mobil-
ity by introducing the notions of transiently shared tuple
spaces, tuple location, and reactive statement. The hy-
pothesis behind our research is that the minimalist set of
operations and concepts provided by LIME, in particular
the transient sharing of tuple spaces, enable rapid and
dependable development of applications which involve
mobility.

Our ultimate goal is to verify the validity of this hypoth-
esis. The approach we plan to pursue involves a blend of
formal studies, algorithm design, and application devel-
opment. We seek to provide application developers with
tools that facilitate rapid development of such applica-
tions through careful selection of a small set of commu-
nication primitives and constructs which have semantic
definitions tailored for mobility, support both decoupled
and cooperative styles of computing, are precisely de-
fined so as to enable formal analysis, and ensure a high
degree of dependability with minimal programming ef-
fort. We see LIME as the key vehicle for achieving these
ambitious goals with Mobile UNITY providing the for-
mal underpinnings in terms of semantic definitions, ver-

1Boggle™ is a trademark of Parker Brothers.

ification methods, and novel coordination constructs.

ACKNOWLEDGEMENTS

This paper is based upon work supported in part by
the National Science Foundation (NSF) under grants
No. CCR-~9217751 and CCR~9624815. Gian Pietro Picco
was partially supported by Centro Studi e Laboratori
Telecomunicazioni (CSELT) S.p.A., Italy. Any opinions,
findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not neces-
sarily reflect the views of NSF or CSELT. The authors
wish also to thank Gustavo A. Rosini for his implemen-
tation of the Boggle demo and his suggestions and com-
ments about LIME.

REFERENCES

[1] K.M. Chandy and J. Misra. Parallel Program De-
sign: A Foundation. Addison-Wesley, 1988.

[2] A. Fuggetta, G. P. Picco, and G. Vigna. Under-
standing Code Mobility. IFEE Trans. on Software
Engineering, May 1998.

[3] D. Garlan and D. Le Métayer, editors. Proc. of the
2 Int. Conf. on Coordination Models and Lan-
guages (COORDINATION °97), volume 1282 of
LNCS. Springer, Sept. 1997.

[4] D. Gelernter. Generative Communication in Linda.
ACM Computing Surveys, 7(1):80-112, Jan. 1985.

[5] IBM. T Spaces. www.almaden.ibm.com/cs/TSpaces.

[6] D.B. Johnson. Routing in Ad Hoc Networks of Mo-
bile Hosts. In Proc. of the Workshop on Mobile
Computing Systems and Applications, pages 158—
163, 1994.

[7] T.M. Malone and K. Crowston.
plinary study of coordination.
Surveys, 26(1):87-119, Mar. 1994.

[8] P.J. McCann and G.-C. Roman. Compositional
Programming abstractions for Mobile computing.
IEEFE Trans. on Software Engineering, Feb. 1998.

The interdisci-
ACM Computing

[9] Sun Microsystems. JavaSpace Specification, March
1998. http://java.sun.com/products/jini/specs.

[10] C. Perkins. IP mobility support. RFC 2002, IETF
Network Working Group, 1996.

[11] M. Shaw and D. Garlan. Software Architecture:
Perspective on an Emerging Discipline. Prentice
Hall, 1996.

[12] A. Xu and B. Liskov. A design for a fault-tolerant,
distributed implementation of Linda. In Digest of
Papers of the 19" Int. Symp. on Fault-Tolerant
Computing, pages 199-206, June 1989.

