
Reliable Communication for Highly Mobile Agents

Amy L. Murphy
Washington University in St. Louis

Campus Box 1045, One Brookings Drive

St. Louis, MO 63130-4899, USA

alm@cs.wustl.edu

Gian Pietro Picco
Politecnico di Milano

P.za Leonardo da Vinci, 32

20133 Milano, Italy

picco@elet.polimi.it

February 2, 2001

Abstract. The provision of a reliable communication infrastructure for mobile
agents is still an open research issue. The challenge to reliability we address in
this work does not come from the possibility of faults, but rather from the mere
presence of mobility, which complicates the problem of ensuring the delivery of
information even in a fault-free network. For instance, the asynchronous nature of
message passing and agent migration may cause situations where messages forever
chase a mobile agent that moves frequently from one host to another. Current
solutions rely on conventional technologies that either do not provide a solution
for the aforementioned problem, because they were not designed with mobility in
mind, or enforce continuous connectivity with the message source, which in many
cases defeats the very purpose of using mobile agents.

In this paper, we propose an algorithm that guarantees delivery to highly mobile
agents using a technique similar to a distributed snapshot. A number of enhance-
ments to this basic idea are discussed, which limit the scope of message delivery by
allowing dynamic creation of the connectivity graph. Notably, the very structure
of our algorithm makes it amenable not only to guarantee message delivery to
a specific mobile agent, but also to provide multicast communication to a group
of agents, which constitutes another open problem in research on mobile agents.
After presenting our algorithm and its properties, we discuss its implementability
by analyzing the requirements on the underlying mobile agent platform, and argue
about its applicability.

Keywords: mobile agents, communication, snapshot

1. Introduction

Mobile agent systems are currently being equipped with abstractions
and mechanisms that exhibit an increasing degree of sophistication,
well beyond the purpose of achieving agent migration. Nevertheless, it
is often questionable whether these enhancements go in the direction of
tackling the novel problems posed by mobility, and hence of ultimately

c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

murphy.tex; 2/02/2001; 16:24; p.1



2 A.L. Murphy and G.P. Picco

addressing the need of developers for abstractions that are cast in the
mobile setting.
A good example of the gap between what is available and what is

needed arises in the problem of providing a communication infrastruc-
ture for mobile agents—an issue often overlooked or misunderstood in
the context of mobile agent research. By using the term communication
here, we are not referring to the abstraction level targeted by research
into the definition of a common semantic layer for the exchange of
information, as in KQML [9]. Despite its relevance, this abstract notion
of communication is only marginally affected by the mobility of agents.
Instead, the notion of communication we define for this paper is closer
to the tradition of research on distributed systems, and is concerned
solely with the delivery of opaque application data to a target agent.
From this perspective, a desirable requirement for any communica-

tion mechanism is reliability. Programming primitives that guarantee
that the data sent effectively reach the communication target, without
requiring further actions by the programmer, simplify greatly the devel-
opment task and lead to applications that are more robust. In conven-
tional distributed systems, reliability is typically achieved by providing
some degree of tolerance to faults in the underlying communication link
or in the communicating nodes.
Nevertheless, fault-tolerance techniques are not sufficient to ensure

reliability in systems that exhibit mobility. Because mobile agents are
typically allowed to move freely from one host to another according to
some a priori unknown migration pattern, delivery of data is compli-
cated. It is difficult both to determine where the mobile agent is, and to
ensure that the data effectively reaches the mobile agent before it moves
again. If this latter condition is not guaranteed, data loss may occur.
Thus, the challenge to reliable communication persists even under the
assumption of an ideal transport mechanism, which itself guarantees
only the correct delivery of data from host to host despite the presence
of faults. It is the sheer presence of mobility, and not the possibility of
faults, that undermines reliability.
Although this simple observation bears consequences with a pro-

found impact on both theory and practice, it has been largely ignored
so far by mobile agent research. By and large, currently available mobile
agent systems implement communication by relying on well-known and
conventional facilities, such as message passing or remote procedure
call. These mechanisms are often blindly borrowed from distributed
systems research and exploited with little or no adaptation to the mo-
bile setting. While the problem of guaranteeing data delivery is only
seldom acknowledged, the solutions employed usually require knowl-
edge about the location of the mobile agent. Mobile agent location is

murphy.tex; 2/02/2001; 16:24; p.2



Reliable Communication for Highly Mobile Agents 3

typically obtained either by overly restricting the freedom of mobility
or by assuming permanent connectivity—assumptions that in many
cases defeat the whole purpose of using mobile agents.
In this paper, we propose a distributed algorithm that guarantees

message delivery to highly mobile agents in a fault-free network. We
choose message passing as the communication mechanism we adapt
to mobility, because it is a basic and well understood form of com-
munication in a distributed system. This incurs no loss of generality
because more complex mechanisms such as remote procedure call and
method invocation are easily built on top of message passing. Several
variants of the algorithms are presented, with different assumptions
about the the dynamicity of the network graph and the number of
messages flowing concurrently through it. None of the algorithms pre-
sented here assumes knowledge about the location of agents. Movement
of agents is constrained only under the most permissive assumption of a
network graph that can be built incrementally and dynamically. Even
in this case, however, agents are detained only for a limited amount
of time. Finally, a remarkable property of our solution is that, with
minimal, straightforward extensions, it can be adapted to also provide
multicast communication to mobile agents, another problem for which
satisfactory solutions do not yet exist.
The paper is structured as follows. Section 2 discusses the moti-

vation for this work, and the current state of the art in the field.
Section 3 presents our algorithm, starting with the underlying assump-
tions and illustrating subsequent refinements of the original key idea.
Section 4 discusses the applicability and implementability of a com-
munication mechanism embodying our algorithm in a mobile agent
platform. Finally, Section 5 provides some concluding remarks.

2. Motivation and Related Work

The typical use of a mobile agent paradigm is for bypassing a com-
munication link and exploiting local access to resources on a remote
server [10]. Thus, one could argue that, all in all, communication with a
remote agent is not important and a mobile agent platform should focus
instead on the communication mechanisms that are exploited locally,
i.e., to get access to the server or to communicate with the agents that
are co-located on the same site. Many mobile agent systems provide
mechanisms for local communication, either using some sort of meeting
abstraction as initially proposed by Telescript [22], event notification
for group communication [2, 13], or, more recently, tuple spaces [5, 20].

murphy.tex; 2/02/2001; 16:24; p.3



4 A.L. Murphy and G.P. Picco

Nevertheless, there are several common scenarios which exploit com-
munication with or among remote agents, some of which are related
to mobile agent management. Imagine a “master” agent spawning a
number of “slave” mobile agents which are subsequently injected in
the network to perform a cooperative computation, e.g., find a piece of
information. At some point, the master agent may want to actively ter-
minate the computation of the slave agents, e.g., because the requested
information has been found by one of them and thus it is desirable
to terminate the agent in order to prevent unnecessary resource con-
sumption. Or, it may want to change some parameter governing the
behavior of the agents in response to a change in the context that
determined their creation. Alternately, the slave agents may want to
detect whether the master agent is still alive by performing some sort
of orphan detection, which requires locating the master agent if this is
itself allowed to be mobile.
Other examples arise because mobile agents are just one of the

paradigms available to designers of a distributed application. Within
the context of the same application, a mixture of mobile agent and
message passing can be used to achieve different functionalities. For
instance, a mobile agent could visit a site and perform a check on a given
condition. If the condition is not satisfied, the agent could register an
event listener with the site. This way, while the mobile agent is visiting
other sites and before reporting its results, it could receive notifications
of state changes in the sites it has already visited and decide whether
a second visit is warranted.
The scenarios above require the presence of a message passing mech-

anism for mobile agents. A highly desirable property for such a mech-
anism is the guarantee that the message is actually delivered (at least
once) to the destination, independent of the relative movement of the
source and target of communication. Typical delivery schemes suffer
from the fundamental problem that an agent in transit during the
delivery can easily be missed. To illustrate this issue, we discuss two
strawman approaches to message delivery: broadcast and forwarding.
A simple broadcast scheme assumes a spanning tree of the network

nodes which any node can utilize to send a message. This source node
broadcasts a copy of the message to each of its neighbors, which broad-
cast the message to their neighbors, and so on until the leaf nodes are
reached. This, however, does not guarantee delivery of the message.
In the case when an agent is traveling along a channel in the reverse
direction with respect to the propagation of the message, as depicted in
Figure 1(a), or more generally when the agent moves from the region of
the spanning tree ahead of the message propagation to a region behind

murphy.tex; 2/02/2001; 16:24; p.4



Reliable Communication for Highly Mobile Agents 5

(b) Forwarding.(a) Spanning tree broadcasting. 

sender

agent

message

sender

home agent

A
A

A

retransmission

A

Figure 1. The problem: Missing delivery in simple broadcast and forwarding
schemes.

the message propagation, the agent and the message will cross in the
channel, and delivery will never occur.
A simple forwarding scheme maintains a pointer to the mobile agent

at a well-known location, referred to as the home agent in the Mo-
bile IP protocol [18] where this idea enables physical mobility of hosts.
Upon migration, the mobile agent must inform the home agent of its
new location in order to enable further communication. However, any
messages sent between the migration and the update are lost, as the
agent moved before the message reached the destination. Even if re-
transmission to the new location is attempted, the agent can move
again, running away from the message and effectively preventing guar-
anteed delivery, as depicted in Figure 1(b). Furthermore, forwarding has
the additional drawback that it requires communication to the home
agent every time the agent moves. In some situations, this defeats the
purpose of using mobile agents by reintroducing centralization. For
instance, in the presence of many highly mobile agents spawned from
the same host, this scheme may lead to considerable traffic overhead
around the home agent, and possibly to much slower performance if
the latency between mobile and home agent is high. Finally, because of
this umbilical cord that must be maintained with the home agent, this
approach is intrinsically difficult to apply when disconnected operations
are required.
Currently available mobile agent systems employ a variety of com-

munication strategies. The OMG MASIF standard [15] specifies only
the interfaces that enable the naming and locating of agents across
different platforms. The actual mechanisms to locate an agent and com-
municate with it are intentionally left out of the scope of the standard,
although a number of location techniques are suggested which by and
large can be regarded as variations of broadcast and forwarding. Some

murphy.tex; 2/02/2001; 16:24; p.5



6 A.L. Murphy and G.P. Picco

agent systems, notably Aglets [13] and Voyager [17], employ forwarding
by associating to each mobile component a proxy object which plays the
role of the home agent. Some others, like Emerald [12], one of the early
approaches to object migration, use forwarding and resort to broadcast
when the object cannot be found. Others, e.g., Mole [2], assume that
an agent never moves while engaged in communication; if migration
of any of the parties involved take place, communication is implicitly
terminated. Mole also exploits a different forwarding scheme which does
not keep a single home agent, rather it maintains a trail of pointers
from source to destination for faster communication. However, this is
employed only in the context of a protocol for orphan detection [3].
Finally, some systems, e.g., Agent Tcl [11], provide mechanisms that are
based on common remote procedure call, and leave to the application
developer the chore of handling a missed delivery.
A related subject is the provision of a mechanism for reliable commu-

nication to a group of mobile agents. Group communication is a useful
programming abstraction for dealing with clusters of mobile agents
which are functionally related and to which a same piece of information
must be sent. Many mobile agent systems, notably Telescript, Aglets,
and Voyager, provide the capability to multicast messages only within
the context of a single runtime support. Mole [2] provides a mechanism
for group communication that assumes agents are stationary during a
set of information exchanges.
It is interesting to note how the problem of communicating with

a mobile software component has been tackled before by research on
process migration. At their core, the techniques adopted in this area
are by and large the same as we have discussed so far. For example,
Sprite [8] and DEMOS/MP [14] both use a forwarding strategy, while
the V kernel [7] describes a broadcast protocol to rediscover the location
of a lost process. Nevertheless, the model underlying process migration
assumes tight control of the system over the movement of processes,
which usually does not occur very frequently or over long distances.
Under these constraints, forwarding and broadcasting can be enhanced
to guarantee delivery. For instance, it becomes reasonable to enclose
the sending of a message in a transaction between the source and the
destination of communication, and to prevent migration of the parties
involved in a transaction, as in Charlotte [1]. Clearly, in a scenario that
fully exploits the mobile agent concept, where processes are rapidly
moving or their migration is not as tightly controlled, most of these
techniques become rapidly inapplicable.
The approach we propose in this work provides a reasonable, broadcast-

based solution to the problem of guaranteeing delivery to a single
mobile agent, and has the nice side effect of providing a straightfor-

murphy.tex; 2/02/2001; 16:24; p.6



Reliable Communication for Highly Mobile Agents 7

ward way to achieve group communication as well. The details of our
algorithm are discussed in the next section.

3. Enabling Reliable Communication

As discussed earlier, message delivery mechanisms such as spanning tree
broadcasting and forwarding have the potential for failure when agents
are in transit or are rapidly moving. To address these shortcomings
we note that, in general, we must force the agents out of the channels
and into regions from which they cannot escape without receiving a
copy of the message. For instance, in the aforementioned broadcast
mechanism, we considered the case where the agent is moving in the
opposite direction from the message on a bidirectional channel. In this
case, if the message was still present at the destination node of the
channel, it could be delivered when the agent arrived at the node.
This leads to a solution where the message is stored at the nodes until
delivery completes. Although this extension would guarantee delivery,
it is not reasonable to expect the nodes to store messages for arbitrary
lengths of time. Therefore, we seek a solution that has a tight bound
on the storage time for any given message at a node. We must also
address the situation where a message is continually forwarded to the
new location of the mobile agent, but never reaches it because the agent
effectively is running away and the message never catches up. Again,
we could store the message at every node in the network until it was
delivered, but a better solution would involve trapping the agent in a
shrinking region of the graph so that wherever it moves, it cannot avoid
receiving the message.
The algorithms we present solve these problems and guarantee mes-

sage delivery to mobile agents. The first algorithm is a direct adaptation
of previous work done by the first author in the area of physical mo-
bility [16]. This work assumes that the network of nodes and channels
is known in advance, and further assumes that only one message is
present in the system at a time. In this setting, exactly-once delivery of
the message is guaranteed without modifying the agents behavior either
with respect to movement or message acceptance. Next, we extend this
basic algorithm to allow multiple messages to be delivered concurrently.
To achieve this enhancement we must relax the exactly-once semantics
to become at-least-once, meaning that duplication of message receipt
is acceptable, but we still prevent an agent from missing a message.
Although these algorithms provide reliable message delivery, the

assumption that the entire network graph is known in advance is often
unreasonable in situations where mobile agents are used. Therefore,

murphy.tex; 2/02/2001; 16:24; p.7



8 A.L. Murphy and G.P. Picco

Figure 2. A connected network with connected subnetworks. Agents can enter
and leave the subnetworks only by going through the gateway servers.

we enhance our algorithm by allowing the graph to grow dynamically
as agents move, and still preserve the at-least-once semantics for mes-
sage delivery. For simplicity of presentation, we will present this latter
enhancement in two stages: first assuming that all messages originate
from a single node and then allowing any node to initiate the processing
needed to send a message.

3.1. Model

The logical model we work with is the typical network graph where
the nodes represent the servers willing to host agents and the edges
represent directional, FIFO channels along which agents can migrate
and messages can be passed. The FIFO assumption is critical to the
proper execution of our algorithm and its implications on the underly-
ing mobile agent platform are discussed further in Section 4. We assume
a connected network graph (i.e., a path exists between every pair of
nodes), but not necessarily fully connected (i.e., a channel does not
necessarily exist between each pair of nodes). Communication between
each pair of nodes is assumed to be standard, bounded asynchronous
message passing. In a typical IP network, all nodes are logically con-
nected directly. However, this is not always the case at the application
level, as shown in Figure 2. There, a set of subnetworks are connected
to one another through an IP network, but an agent can enter or leave
a subnetwork only by passing through a gateway server, e.g., because
of security reasons.
We also assume that the mobile agent server keeps track of which

agents it is currently hosting, and that it provides some basic mech-
anism to deliver a message to an agent, e.g., by invoking a method
of the agent object. Finally, we assume that every agent has a single,
globally unique identifier, which can be used to direct a message to the

murphy.tex; 2/02/2001; 16:24; p.8



Reliable Communication for Highly Mobile Agents 9

agent. These latter assumptions are reasonable in that they are already
satisfied by the majority of mobile agent platforms.

3.2. Delivery in a Static Network Graph

We begin the description of our solution with a basic algorithm which
assumes a fixed network of connected nodes. For simplicity, we describe
first the behavior of the algorithm under the unrealistic assumption
of a single message being present in the system, and then show how
this result can be extended to allow concurrent delivery of multiple
messages.

3.2.1. Single message delivery.

Previous work by the first author in the physical mobility environment
approached reliable message delivery by adapting the notion of dis-
tributed snapshots [16]. In snapshot algorithms, the goal is to record
the local state of the nodes and the channels in order to construct
a consistent global state. Critical features of these algorithms include
propagation of the snapshot initiation, the flushing of the channels
to record all messages in transit, and the recording of every mes-
sage exactly once. Our approach to message delivery uses many of the
same ideas as the original snapshot paper presented by Chandy and
Lamport [6]. However, instead of spreading knowledge of the snapshot
using messages, we spread the actual message to be delivered; instead
of flushing messages out of the channels, we flush agents out of the
channels; and instead of recording the existence of the messages, we
deliver a copy of the message. This correspondence of concepts in the
two domains can be seen in Figure 3.
The algorithm works by associating a state, open or flushed, with

each incoming channel of a node. Initially all channels are open and no
node is aware of a snapshot delivery in progress. Delivery is initiated
from outside the system, e.g., by an agent requesting its current host to
deliver a message. When the message arrives, the state of the channel
it came through is changed to flushed, implying that all the agents on
that channel ahead of the message have been forced out of the channel
(by the FIFO assumption). When the message arrives for the first time
at a node, it is stored locally, and delivery is attempted to all agents
present at the node. If the agent identifier does not match the message
destination, no delivery occurs. In the same atomic step, the message is
propagated on all outgoing channels, thus starting the flushing process
on those channels. Each agent that arrives through an open channel
on a node storing the message must be delivered a copy of it. When all
the incoming channels of a node are flushed, which is guaranteed to

murphy.tex; 2/02/2001; 16:24; p.9



10 A.L. Murphy and G.P. Picco

Distributed Snapshot

Snapshot Delivery

Node Mobile agent server

Message Mobile agent

Token Message

Record message Deliver message

Local snapshot ended Message deleted

sender

A
Processing

Processing
Not Yet

Processing
Finished

Figure 3. Using distributed snapshots for message delivery. Each concept from
the traditional snapshot is mapped to a concept in the mobile environment.
The result is the ability to trap an agent in a region of the network from which
it cannot escape without receiving a copy of the message.

occur by the network connectivity assumption, the node is no longer
required to deliver the message to any arriving agents, therefore the
message copy is deleted and all of the channels are atomically reset to
open.
Intuitively, this processing partitions the network into the three

regions as shown in Figure 3: regions not yet aware of the message,
currently processing the message, and where delivery has completed.
An agent which has not yet received the message must either be in the
first region or on a channel in the currently processing region. In order
for the agent to move to the completed region, it must pass through
a node in the processing region and receive the message. Because the
entire graph will eventually finish processing, it is guaranteed that the
agent will receive the message.

3.2.2. Multiple message delivery.

A possible adaptation of the previous algorithm to multiple message
delivery is to require a node to wait for the termination of the cur-
rent message delivery and to coordinate with the other nodes before
initiating a new one, in order to ensure that only one message is be-
ing delivered at any time. However, this unnecessarily constrains the
behavior of the sender and requires knowledge of non-local state. In
practical scenarios, it is desirable to allow multiple messages to flow
concurrently in the network. Typically, this is needed for two reasons:
to allow a source to transmit a burst of of messages without waiting for
the delivery of the first one to complete, and to allow multiple sources
to transmit at the same time.
We propose here a variant of the algorithm that encompasses both

murphy.tex; 2/02/2001; 16:24; p.10



Reliable Communication for Highly Mobile Agents 11

1: precondition: no incoming channels open
action: curMsg = ⊥

2: precondition: message j arrives ∧ (curMsg = ⊥ ∨ curMsg = j)
action: if curMsg = ⊥ deliver, store, propagate

3: precondition: message j finished processing
action:

4: precondition: message i arrives ∧ (curMsg = j ∧ i > j)
action: buffer message i

OPEN

BUFFERING(j)

FLUSHED
1

2

4

3

Figure 4. State transitions and related diagram for multiple message delivery
in a static network graph.

cases without requiring coordination among hosts. This is accomplished
by requiring that each message is tagged with the identifier of the host
that initially sent it, as well as an ever-increasing sequence number
(or, in practice, a sufficiently large circular window of numbers). The
sequence number addresses the case of a message burst coming from
a single source, while the host identifier allows multiple sources to
transmit at the same time.
To handle a burst of messages from a single source, additional logic

must be added to deal with the arrival of a new message while the
previous one is still being processed. This case is identified by the
arrival of a message on an already flushed channel. To handle the
new message, we introduce a new state, buffering, as shown in Fig-
ure 4 (transition 4). The new message and any additional message
arriving on a buffering channel are put into a temporary buffer to be
processed at a later time. A buffering channel is considered flushed

for the purposes of determining whether the local processing for the
delivery of the current message is complete. When this transition to
open is finally made for all incoming channels (transitions 1 and 3),
the messages in the buffers are treated as if they are new messages on
the front of the channel, and are processed again. It is possible that
after processing the first buffered message the next message causes a
transition to buffering, but the fact that the head of the channel is
processed ensures eventual progress through the sequence of messages
to be delivered.
While the above addresses multiple messages from a single source

host, it does not allow for multiple sources. To do this, we effectively

murphy.tex; 2/02/2001; 16:24; p.11



12 A.L. Murphy and G.P. Picco

execute concurrent copies of the above algorithm. Instead of keeping a
single channel state and buffer for each incoming channel, a vector of
states and buffers is maintained. Each entry in the vector corresponds
to a single source, and any message arriving from the source is processed
only with respect to this entry. Additionally, the transition of channels
to open is made on a per source basis by using the corresponding values
in the vectors of each incoming channel.
Although messages are buffered, agent arrival is not restricted, al-

lowing the agent to move ahead of any messages it originally followed
along the channel. Effectively, the agent may move itself back into the
region of the network where the message has not yet been delivered.
Therefore, duplicate delivery is possible, although duplicates can be
discarded easily by the runtime support or by the agent itself based on
the message identifier.

3.3. Delivery in a Dynamic Network Graph

Although the solutions proposed so far provide delivery guarantees in
the presence of mobility, the necessity of knowing the network of neigh-
bors a priori is sometimes unreasonable in the dynamic environment of
mobile agents. Furthermore, the delivery mechanism is insensitive to
which nodes have been active, and delivers the messages also to regions
of the network that have not been visited by agents. Therefore, our goal
is still to flush channels and trap agents in regions of the network where
the messages will propagate, but also to allow the network graph used
for the delivery process to grow dynamically as the agents migrate. A
channel is only included in the message delivery if an agent traversed
it, and therefore, a node is included in the message delivery only if an
agent has been hosted there. We refer to a node or channel included in
message delivery as active.
Our presentation is organized in two phases. First, we show a re-

stricted approach where all the messages must originate from a single,
fixed source. This is reasonable for monitoring or master-slave scenarios
where all communication flows from a fixed initiator to the agents in the
system. Then, we extend this initial solution to enable direct inter-agent
messaging by allowing any active node in the graph to send messages,
without the need for a centralized source.

3.3.1. Single message source.

First, we identify the problems that can arise when nodes and channels
are added dynamically, due to the possible disparity between the mes-
sages processed at the source and destination nodes of a channel when
it becomes active. We initially present these issues by example, then

murphy.tex; 2/02/2001; 16:24; p.12



Reliable Communication for Highly Mobile Agents 13

develop a general solution.

Destination ahead of source. Assume a network as shown in Figure 5(a).
X is the sender of all messages and is initially the only active node in
the system. The graph is extended whenX sends an agent to Y , causing
Y and (X,Y ) to become active. Suppose X sends a burst of messages
1..4, which are processed by Y , and later a second sequence of messages
5..8. This second transfer is immediately followed by the migration of a
new agent to node Z, which makes Z and (X,Z) active. Before message
5 arrives at Y , an agent is sent from Y to Z, thus causing the channel
(Y,Z) to be added to the active graph.
A problem arises if the agent decides to immediately leave Z, because

the messages 5..8 have not yet been delivered to it and may never
be delivered. Furthermore, what processing should occur when these
messages arrive at Z along the new channel (Y,Z)? If the messages
are blindly forwarded on all Z’s outgoing channels, message ordering
is possibly lost and messages can possibly continue propagating in the
network without ever being deleted.
Our solution is to hold the agent at Z until the messages 5..8 are

received and, when these messages arrive, to deliver them only to the
detained agent, i.e., without broadcasting them to the neighboring
nodes. Therefore, no messages are lost and the system wide processing
of messages is not affected. Notably, although we do inhibit the move-
ment of the agent until these messages arrive, this takes place only for
a time proportional to the diameter of the network, and even more
important, only when the topology of the network is changing.

Source ahead of destination. To uncover another potential problem, we
use the same scenario just presented for nodes X, Y , and Z. However,

(a) Destination ahead
of source.

(b) Source ahead
of destination.

a8

X

Z
4 8

8

6
5

Y

8
7

X

a4
4 8

8

6
5

ZY

8
7

Figure 5. Problems in managing a dynamic graph. Values shown inside the
nodes indicate the last message processed by the node. The subscripts on
agent a indicate the last message processed by the source of the channel being
traversed by a right before a migrated.

murphy.tex; 2/02/2001; 16:24; p.13



14 A.L. Murphy and G.P. Picco

instead of assuming an agent moving from Y to Z, we assume it is mov-
ing from Z to Y , thus making (Z, Y ) active (Figure 5(b)). Although the
agent will not miss any messages in this move, two potential problems
exist.
First, by making (Z, Y ) active, Y will wait for Z to be flushed or

buffering before proceeding to the next message. However, message
5 will never be sent from Z. Our solution is to delay the activation of
channel (Z, Y ) until Y catches up with Z. In this example, we delay
until 8 is processed at Y . Second, if message 9 is sent from X and
propagated along channel (Z, Y ), it must be buffered until it can be
processed in order.

Solution. Given this, we now present a solution that generalizes the
previous one. We describe in detail the channel states and the critical
transitions among these states, using the state diagram in Figure 6.

− closed: Initially, all channels are closed and not active in mes-
sage delivery.

− open: The channel is waiting to participate in a message delivery.
When an agent arrives through an open channel on a node that is
storing a message destined to that agent, the agent should receive
a copy of such message.

− flushed: The current message being delivered has already arrived
on this channel, and therefore this channel has completed the cur-
rent message delivery. Agents arriving on flushed channels need
no special processing.

− buffering(j): The source is ahead of the destination. Messages
arriving on buffering channels are put into a FIFO buffer. They
are processed after the node catches up with the source by pro-
cessing message j. Agents arriving on buffering channels need
no special processing.

− holding(j): The destination is ahead of the source. Messages with
identifiers less than or equal to j which arrive on holding chan-
nels are delivered to all held agents. Agents arriving on holding

channels, and whose last received message has identifier less than
j, are held until j arrives.

The initial transition of a channel from closed to an active state
is based on the current state of the destination node and on the state
of the source as carried by the agent. The destination node can either
still be inactive or it can have finished delivering the same message as

murphy.tex; 2/02/2001; 16:24; p.14



Reliable Communication for Highly Mobile Agents 15

1: precondition: no incoming channels open ∧ no incoming channels holding
action: curMsg = ⊥

2: precondition: message j arrives ∧ (curMsg = ⊥ ∨ curMsg = j)
action: if curMsg = ⊥ deliver, store, propagate

3: precondition: message j finished processing
action:

4: precondition: message i arrives ∧ (curMsg = j ∧ i > j)
action: buffer message i

5: precondition: message j arrives ∧ (curMsg = ⊥ ∨ curMsg > j)
action: deliver to held agents, release held agents

6: precondition: message j arrives ∧ curMsg = j
action: deliver to held agents, release held agents

7: precondition: agent arrives ∧ D ahead of S ∧ (curMsg = j ∨ curMsg = ⊥)
action:

8:
precondition: agent arrives ∧ curMsg 6= ⊥ ∧

S and D processing same message
action:

9:
precondition: agent arrives ∧ (D not active ∨

(S and D processing same message ∧ curMsg = ⊥))
action:

10: precondition: agent aj arrives ∧ S ahead of D
action:

HOLDING(j)

OPEN

BUFFERING(j)

FLUSHED

CLOSED

5 3

4

7

8 9

10

6
2

1

Figure 6. State transitions and related diagram for multiple message delivery
with a single source in a dynamic network graph. The state transitions refer
to a single channel (S,D).

the source (9), it can still be still processing such message (8), it can
be processing an earlier message (10), or it can be processing a later
message (7). Based on this comparison, the new active state is assigned.
Once a channel is active, all state transitions occur in response to the
arrival of a message. Because we have already taken measures to ensure
that all messages will be delivered to all agents, our remaining concerns
are that detained agents are eventually released, and that at every node
the next message is eventually processed.
Whether an agent must be detained or not is determined by com-

paring the identifier of the latest message received by the agent, carried
as part of the agent state, and the current state of the destination node.
Only agents that are behind the destination are actually detained. If an

murphy.tex; 2/02/2001; 16:24; p.15



16 A.L. Murphy and G.P. Picco

agent is detained at a channel in state holding(j), it can be released
as soon as j is processed along this channel. In this case, the agent was
delivered a copy of the message when the agent first arrived, but we
assume that this out of order message is ignored by the runtime sup-
port, based on the message identifier. Therefore, message j is processed
when it arrives on the channel the agent is holding on. By connectivity
of the network graph, we are guaranteed that j will eventually arrive1.
When it does, the destination node will either still be processing j, or
will have completed the processing. In both cases the agent is released.
In the former case, the channel transitions to flushed (6) to wait for
the rest of the channels to catch up, while in the latter case the channel
transitions to open (5) to be ready to process the next message.
To argue that eventually all messages are delivered, we must extend

the progress argument presented in Section 3.2 to include the progress
of the holding channels as well as the addition of new channels. As
noted in the previous paragraph, message j is guaranteed to eventu-
ally arrive along the holding channel, thus ensuring progress of this
channel. Next, we assert that there is a maximum number of channels
that can be added as incoming channels, bounded by the number of
nodes in the system. We are guaranteed that if channels are continu-
ously added, eventually this maximum will be reached. By the other
progress properties, eventually all these channels will be either flushed

or buffering, in which case processing of the next message (if any)
can begin.

3.3.2. Multiple message sources.

Although the previous solution guarantees message delivery and allows
the dynamic expansion of the graph, the assumption that all messages
originate at the same node is overly restrictive. To extend this algo-
rithm to allow a message to originate at any active node, we effectively
superimpose multiple instances of the same algorithm on the network,
in a manner similar to the multiple message delivery in a static network.
For the purposes of explanation, let n be the number of nodes in the
system. Then:

− The state of an incoming channel is represented by a vector of size
n where the state of each node is recorded. Before the channel is
added to the active graph, the channel is considered closed. Once

1 The connectivity assumption we make here is that in the initial system state,
before any agents migrate, the node identified as the source of all messages must
be connected to all nodes which can spontaneously generate agents. Spontaneous
generation of agents means that a node can create an agent without the prior arrival
of another agent.

murphy.tex; 2/02/2001; 16:24; p.16



Reliable Communication for Highly Mobile Agents 17

the channel is active, if no messages have been received from a par-
ticular node, the state of the element in the vector corresponding
to that node is set to open.

− Processing of each message is done with respect to the channel
state associated with the node where the message originated.

− Nodes can deliver n messages concurrently, at most one for each
node. As before, if a second message arrives from the same node,
it is buffered until the prior message completes its processing.

− An agent always carries a vector containing, for each message
source, the identifier of the last message received. Moreover, when
an agent traverses a new outgoing channel, it carries another vector
that contains, for each message source, the identifier of the last
message processed by the source of the new channel right before
the agent departed.

− An incoming agent is held only as long as, for each message source,
the identifier of the last message received is greater than the corre-
sponding holding value (if any) of the channel the agent arrived
through.

− To enable any node to originate a message, we must guarantee that
the graph remains connected. To maintain this property we make
all links bidirectional. In the case where an agent arrives and the
channel in the opposite direction is not already an outgoing chan-
nel, a fake agent message is sent to S with the state information
of D. This message effectively makes the reverse channel active.

Again, we must argue that detained agents are eventually released
and that progress is made with respect to the messages sent from each
node. Assume that message i is the smallest message identifier from
any node which has not been delivered by all nodes. There must exist
a path from a copy of i to every node where i has not arrived, and
every node on this path is blocked until i arrives. By connectivity of
the network graph, i will propagate to every node along every channel
and will complete delivery in the system. No node will buffer i because
it is the minimum message identifier which is being waited for. When i
has completed delivery, the next message is the new minimum and will
make progress in a similar manner. Because the buffering of messages
is done with respect to the individual source nodes and not for the
channel as a whole, the messages from each node make independent
progress.
Holding agents requires coordination among the nodes. The j value

murphy.tex; 2/02/2001; 16:24; p.17



18 A.L. Murphy and G.P. Picco

with respect to each node for which the channel is being held, e.g.,
holding(j), is fixed when the first agent arrives. Because the messages
are guaranteed to make progress, we are guaranteed that eventually j
will be processed and the detained agents will be released.

3.4. Multicast Message Delivery

In all the algorithms described so far, we exploited the fact that a
distributed snapshot records the state of each node exactly once, and
modified the algorithm by substituting message recording with message
delivery to an agent. Hence, one could describe our algorithm by saying
that it attempts to deliver a message to every agent in the system,
and only the agents whose identifier match the message target actually
accept the message. With this view in mind, the solution presented can
be adapted straightforwardly to support multicast. The only modifica-
tion that must be introduced is the notion of a multicast address that
allows a group of agents to be specified as recipients of the message—no
modification to the algorithm is needed.

4. Discussion and Future Work

In this section we analyze the impact of our communication mechanism
on the underlying mobile agent platform, argue about its applicability,
discuss the current implementation and comment on possible extensions
and future work on the topic.

4.1. Implementation Issues

A fundamental network property that must be preserved in order for
our communication algorithms to function properly is the FIFO behav-
ior of communication channels—a legacy of the fact that the core of our
schema is based on the Chandy-Lamport distributed global snapshot.
The FIFO property must be maintained for every piece of informa-
tion traveling through the channel, i.e., messages and agents. This
is not necessarily a requirement for mobile agent platforms. Rather,
a common design is to map the operations that require message or
agent delivery on data transfers taking place on different data streams,
typically through sockets or some higher-level mechanism like remote
method invocation. In the case where these operations insist on the
same destination, the FIFO property may not be preserved, since a data
item sent first through one stream can be received later than another
data item through another stream, depending on the architecture of the
underlying runtime support. Nevertheless, the FIFO property can be

murphy.tex; 2/02/2001; 16:24; p.18



Reliable Communication for Highly Mobile Agents 19

implemented straightforwardly in a mobile agent server by associating
a queue that contains messages and agents that must be transmitted to
a remote server. This way, the FIFO property is structurally enforced
by the server architecture, although this may require non-trivial mod-
ifications in the case of an already existing platform.
Our mechanism assumes that the runtime support maintains some

state about the network graph and the messages being exchanged. In
the static single message delivery algorithm we present, this state is
constituted only by the last message received. In a system with bidirec-
tional channels, this message must be stored only for a time equal to the
maximum round trip delay between the node and its neighbors. At the
other extreme, in the dynamic variant of our algorithm with multiple
message sources, each server must maintain a vector of identifiers for
the active (outgoing and incoming) channels and, for each incoming
channel, a vector containing the messages possibly being buffered. The
size of the latter is unbounded, but each message must be kept in the
vector only for a time proportional to the diameter of the network.

4.2. Applicability

It is evident that the algorithm presented in this work generates consid-
erable overall traffic overhead if compared, for instance, to a forwarding
scheme. This is a consequence of the fact that our technique involves
contacting the nodes in the network that have been visited by at least
one agent in order to find the message recipient, and thus generates
an amount of traffic that is comparable to a broadcast. Unfortunately,
this price must be paid when both guaranteed delivery and frequent,
unconstrained agent movement are part of the application require-
ments, since simpler and more lightweight schemes do not provide these
guarantees, as discussed in Section 2. Hence, the question whether the
communication mechanism we propose is a useful addition to mobile
agent platforms will be ultimately answered by practical mobile agent
applications, which are still largely missing and will determine the
requirements for communication.
In any case, we do not expect our mechanism to be the only one

provided by the runtime support. To make an analogy, one does not
shout when the party is one step away; one resorts to shouting under
the exceptional condition that the party is not available, or not where
expected to be. Our algorithm provides a clever way to shout (i.e.,
to broadcast a message) with precise guarantees and minimal con-
straints, and should be used only when conventional mechanisms are
not applicable. The runtime support should leave to the programmer
the opportunity to choose different communication mechanisms, and

murphy.tex; 2/02/2001; 16:24; p.19



20 A.L. Murphy and G.P. Picco

Guaranteed Multicast Delivery Knowledge

Delivery Capable Overhead Maintained

Forwarding No No One indirection Agent location

Broadcast No Yes One msg. per Spanning tree

(no guarantees) spanning tree edge

Static Yes Yes One msg. Neighbors

Snapshot per edge (known in advance)

Dynamic Yes Yes One msg. per Neighbors

Snapshot traversed edge (discovered)

Figure 7. Tradeoffs when choosing a communication mechanism.

even different variants of our algorithm. For instance, the fully dynamic
solution described in Section 3.3 is not necessarily the most convenient
in all situations. In a network configuration such as the one depicted in
Figure 2, where the graph is structured in clusters of nodes, the best
tradeoff is probably achieved by using our fully dynamic algorithm only
for the “gateway” servers that sit at the border of each cluster, and a
static algorithm within each cluster. Such an approach leverages off of
the knowledge of the internal network configuration and the inherent
network knowledge and broadcast capability of a local area network.
Along the same lines, it is possible to exploit hybrid schemes. For
instance, in the common case where the receipt of a message triggers
a reply, bandwidth consumption can be reduced by encoding the reply
destination in the initial message and using a conventional mechanism,
as long as the sending agent is willing to remain stationary until the
reply is received.
Figure 7 highlights some of the tradeoffs among our solutions and

those discussed in Section 2. A fully reliable communication can only be
provided by the modified snapshot delivery algorithms, but guaranteed
delivery comes at the cost of increased traffic overhead to deliver a single
message, and additional network information that must be maintained
at each host. At the other extreme, forwarding exhibits a minimal traffic
overhead for message delivery, namely the path from the message source
to the home node and from the home node to the current location of
the mobile unit, but the current location of each mobile unit must be
maintained. In the case of frequent movement and infrequent commu-
nication, the cost of updating the location information may outweigh
the limited overhead of delivery, especially as far as the traffic around
the home node is concerned.

murphy.tex; 2/02/2001; 16:24; p.20



Reliable Communication for Highly Mobile Agents 21

We are currently investigating further the tradeoffs of the various
communication schemes by exploiting a communication package devel-
oped for the µCode [19] mobile code toolkit. The package contains an
implementation of the algorithms presented here, as well as of broad-
casting and forwarding schemes. Hence, the application programmer
can choose among the most appropriate message delivery schemes, and
possibly different choices may coexist in the same application. The im-
plementation enabled us to validate the feasibility of our approach, and
will allow further exploration of its interplay with more conventional
mechanisms. Nevertheless, our research plans will leverage off of this
implementation to derive a precise and quantitative characterization of
our approach in comparison with the other mechanisms.

4.3. Enhancements and Future Work

In this work, we argued that the problem of reliable message delivery is
inherently complicated by the presence of mobility even in the absence
of faults in the links or nodes involved in the communication. In prac-
tice, however, these faults do happen and, depending on the execution
context, they can be relevant. If this is the case, the techniques tradi-
tionally proposed for coping with faults in a distributed snapshot can be
applied to our mechanism. For instance, a simple technique consists of
periodically checkpointing the state of the system, recording the state
of links, keeping track of the last snapshot, and dumping an image of
the agents hosted. (Many systems already provide checkpointing mech-
anisms for mobile agents.) This information can be used to reconcile the
state of the faulty node with the neighbors after a fault has occurred.
A related issue is the ability not only to dynamically add nodes to

the graph, but also to remove them. This could be used to model faults
or to optimize the network to remove hosts which are not active in
hosting agents. Alternately a host may request to be removed because
it is no longer willing to host agents, e.g., because the mobile agent
support is to be intentionally shut down. A simple solution consists of
“short circuiting” the node to be removed, by setting the incoming
channels of its outgoing neighbors to point to the node’s incoming
neighbors. However, this involves running a distributed transaction
and thus enforces an undesirable level of complexity. In this work, we
disregarded the possibility for a couple of reasons. First of all, while it
is evident that the ability to add nodes dynamically enables a better
use of the communication resources by limiting communication to the
areas visited by agents, it is unclear whether a similar gain is obtained in
the case of removing nodes, especially considering the aforementioned
implementation complexity. Second, very few mobile agent systems pro-

murphy.tex; 2/02/2001; 16:24; p.21



22 A.L. Murphy and G.P. Picco

vide the ability to start and stop dynamically the mobile agent runtime
support: most of them assume that the runtime is started offline and
operates until the mobile agent application terminates.

5. Conclusions

In this work we point out how the sheer presence of mobility makes the
problem of guaranteeing the delivery of a message to a mobile agent
inherently difficult, even in absence of faults in the network. To our
knowledge, this problem has not been addressed by the research com-
munity. Currently available mobile agent systems employ techniques
that either do not provide guarantees, or overly constrain the movement
or connectivity of mobile agents, thus to some extent reducing their
usefulness. In this work, we propose a solution based on the concept
of a distributed snapshot, leveraging off of a wealth of research on this
subject to provide immediate new results in the mobile agent setting.
Several extensions of the basic idea allow us to cope with different levels
of dynamicity and, along the way, provide a straightforward way to im-
plement group communication for mobile agents. Our communication
mechanism is meant to complement those currently provided by mobile
agent systems, thus allowing the programmer to trade reliability for
bandwidth consumption. Further work will address fault tolerance and
exploit an implementation of our mechanism to evaluate its tradeoffs
against those of conventional mechanisms.

Acknowledgements

We wish to thank Jason Ginchereau for his work on the implementation
of the algorithms, and Gruia-Catalin Roman for his helpful comments.
This paper is based upon work supported in part by the National

Science Foundation (NSF) under grant No. CCR-9624815. Any opin-
ions, findings and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views
of NSF.

References

1. Y. Artsy and R. Finkel. Designing a Process Migration Facility: The Charlotte
Experience. IEEE Computer, 22(9):47–56, September 1989.

2. J. Baumann et al. Communication Concepts for Mobile Agent Systems. In
K. Rothermel and R. Zeletin, editors,Mobile Agents: 1st Int. Workshop MA’97,
LNCS 1219, pages 123–135. Springer, April 1997.

murphy.tex; 2/02/2001; 16:24; p.22



Reliable Communication for Highly Mobile Agents 23

3. J. Baumann and K. Rothermel. The Shadow Approach: An Orphan Detection
Protocol for Mobile Agents. In [21], pages 2–13.

4. J. Bradshaw, editor. Software Agents. AAAI Press/MIT Press, 1996.
5. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile

Agent Coordination. In [21], pages 237–248.
6. K.M. Chandy and L. Lamport. Distributed Snapshots: Determining Global

States of Distributed Systems. ACM Trans. on Computer Systems, 3(1):63–75,
February 1985.

7. D.R. Cheriton. The V Kernel: A Software Base for Distributed Systems. IEEE
Software, 1(2):19–42, April 1984.

8. F. Douglis and J. Ousterhout. Transparent Process Migration: Design Alterna-
tives and the Sprite Implementation. Software–Practice and Experience, 21(8),
August 1991.

9. T. Finin, Y. Labrou, and J. Mayfield. KQML as an Agent Communication
Language. In [4].

10. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Trans. on Software Engineering, 24(5):342–361, May 1998.

11. R.S. Gray, G. Cybenko, D. Kotz, and D. Rus. Agent Tcl. In Itinerant Agents:

Explanations and Examples with CDROM. Manning, 1996.
12. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained Mobility in the

Emerald System. ACM Trans. on Computer Systems, 6(2):109–133, February
1988.

13. D. Lange and M. Oshima. Programming and Deploying Mobile Agents with

Aglets. Addison-Wesley, 1998.
14. B. P. Miller and D. L. Presotto. DEMOS/MP. Software - Practice and

Experience, 17(4), April 1987.
15. D. Milojicic et al. MASIF—The OMG Mobile Agent System Interoperability

Facility. J. of Personal Technologies, (2):117–129, September 1998. Also in [21].
16. A.L. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal reasoning

about mobile computations. In Proc. of the 9th Int. Workshop on Software

Specification and Design, pages 25–33. IEEE Computer Society Press, 1998.
17. ObjectSpace Inc. Voyager ORB 3.0—Developer Guide, 1999.

www.objectspace.com.
18. C.E. Perkins. IP mobility support. RFC 2002, IETF Network Working Group,

October 1996.
19. G.P. Picco. µCode: A Lightweight and Flexible Mobile Code Toolkit. In [21],

pages 160–171.
20. G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In

D. Garlan, editor, Proc. of the 21st Int. Conf. on Software Engineering, pages
368–377, May 1999.

21. K. Rothermel and F. Hohl, editors. Mobile Agents: 2nd Int. Workshop MA’98,
LNCS 1477. Springer, September 1998.

22. J.E. White. Telescript Technology: Mobile Agents. In [4].

murphy.tex; 2/02/2001; 16:24; p.23



murphy.tex; 2/02/2001; 16:24; p.24


