
Author name(s)

Book title

– Monograph –

June 24, 2009

Springer





Chapter 1
Tuple Space Middleware for Wireless Networks

Paolo Costa, Vrije Universiteit, Amsterdam, The Netherlands,
costa@cs.vu.nl
Luca Mottola, Politecnico di Milano, Italy
mottola@elet.polimi.it
Amy L. Murphy, FBK-IRST, Povo, Italy
murphy@fbk.eu
Gian Pietro Picco, University of Trento, Italy
gianpietro.picco@unitn.it

1.1 Introduction

Wireless networks define a very challenging scenario for the application program-
mer. Indeed, the fluidity inherent in the wireless media cannot be entirely masked at
the communication layer: issues such as disconnection and a continuously changing
execution context most often must be dealt with according to the application logic.
Appropriate abstractions, usually provided as part of a middleware, are therefore
required to support and simplify the programming task.

Coordination [1] is a programming paradigm whose goal is to separate the def-
inition of the individual behavior of application components from the mechanics
of their interaction. This goal is usually achieved by using either message passing
or data sharing as a model for interaction. Publish-subscribe, described in Chap-
ter ?? is an example of the former, where coordination occurs only through the
exchange of messages (events) among publishers and subscribers. While message
passing, in its pure form, is inherently stateless, data sharing enables coordination
among components by manipulating the (distributed) state of the system. The tuple
space abstraction, the subject of this chapter, is a typical example of a data shar-
ing approach. The two models, publish-subscribe and tuple spaces, have sometimes
crossed paths in the scientific literature: their expressive power has been compared
on formal grounds in [2]; the limits of an implementation of a stateful tuple space on
top of a stateless publish-subscribe layer has been investigated in [3]; some exten-
sions of publish-subscribe with stateful features exist (e.g., the ability to query over
past events as in [4]). A thorough discussion of the relationship between the two is
outside the scope of this chapter, and hereafter we focus solely on tuple spaces.

Linda [5] is generally credited with bringing the tuple space abstraction to
the attention of the programming community. In Linda, components communicate
through a shared tuple space, a globally accessible, persistent, content-addressable
data structure containing elementary data structures called tuples. Each tuple is
a sequence of typed fields, as in 〈“foo”, 9, 27.5〉, containing the information be-
ing communicated. A tuple t is inserted in a tuple space through an out(t) oper-
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2 1 Tuple Space Middleware for Wireless Networks

ation, and can be withdrawn using in(p). Tuples are anonymous, their selection
taking place through pattern matching on the tuple content. The argument p is of-
ten called a template or pattern, and its fields contain either actuals or formals.
Actuals are values; the fields of the previous tuple are all actuals, while the last two
fields of 〈“foo”, ?integer, ?float〉 are formals. Formals act like “wild cards”, and are
matched against actuals when selecting a tuple from the tuple space. For instance,
the template above matches the tuple defined earlier. If multiple tuples match a tem-
plate, the one returned by in is selected non-deterministically. Tuples can also be
read from the tuple space using the non-destructive rd(p) operation. Both in and rd
are blocking, i.e., if no matching tuple is available in the tuple space the process per-
forming the operation is suspended until a matching tuple becomes available. The
asynchronous alternatives inp and rdp, called probes, have been later introduced to
allow the control flow to return immediately to the caller with an empty result when
a matching tuple is not found. Moreover, some Linda variants (e.g., [6]) also provide
bulk operations, ing and rdg, used to retrieve all matching tuples in one step.

The fact that only a small set of operations is necessary to manipulate the tu-
ple space, and therefore to enable distributed component interaction, is per se a
nice characteristic of the model. However, other features are particularly useful in
a wireless environment. In particular, coordination among processes in Linda is de-
coupled in time and space, i.e., tuples can be exchanged among producers and con-
sumers without being simultaneously available, and without mutual knowledge of
their identity or location. This decoupling is fundamental in the presence of wireless
connectivity, as the parties involved in communication change frequently due to mi-
gration or fluctuating connectivity patterns1. Moreover, tuple spaces can be straight-
forwardly used to represent the context perceived by the coordinating components.
On the other hand, this beneficial decoupling is achieved thanks to properties of the
Linda tuple space—its global accessibility to all components and its persistence—
difficult to maintain in a dynamic environment with only wireless links.

In the last decade, a number of approaches were proposed that leverage the ben-
eficial decoupling provided by tuple spaces in a wireless setting, while addressing
effectively the limitations of the original Linda model. Our group was among the
first to recognize and seize the potential of tuple spaces in this respect, through
the LIME model and middleware [8]. This chapter looks back at almost a decade
of efforts in the research community, by concisely describing some of the most
representative systems and analyzing them along some fundamental dimensions of
comparison. In doing so, it considers two main classes of applications that rely on
wireless communication. First, Section 1.2 considers mobile networks, where the
network topology is continuously redefined by the movement of mobile hosts. Then,
Section 1.3 considers the more recent scenario defined by wireless sensor networks
(WSNs), networks of tiny, resource-scarce wireless devices equipped with sensors
and/or actuators, enabling untethered monitoring and control.

The structure of these two sections is identical. Each first provides a brief survey
of representative systems in the corresponding class of wireless applications. Then,

1 A rather abstract treatment of coordination and mobility can be found in [7].
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it elicits some recurring themes and dimensions of comparison, which are used to
classify and compare the systems. Finally, a small case study is presented to show
how tuple spaces can be used in the context of a realistic application for the wireless
domain at hand. The case studies are borrowed from the work of the authors, and
are based respectively on LIME [9] and its adaptation to WSNs, TeenyLIME [10].

Finally, Section 1.4 offers some concluding remarks.

1.2 Mobile Networks

This section discusses the applicability of tuple spaces to environments with moving
hosts. It considers two primary mobility models, namely nomadic and mobile ad
hoc networks (MANETs). In nomadic mobility, a wired infrastructure supports the
connection of mobile devices to the wired network through base stations. Instead,
MANET removes the infrastructure and nodes communicate directly only when
they are within range.

1.2.1 Representative Systems

The following outlines the main tuple space approaches developed for mobile set-
tings. Due to space constraints, this should not be considered an exhaustive list, but
rather an outline of representative systems. The sequence of presentation roughly
corresponds to the chronological order of appearance of each system.
TSpaces. After the initial enthusiasm in the 1980s with tuple spaces, the 1990s saw
a resurgence of the model for distributed computing. IBM’s TSpaces [11] was one
of the first such systems, providing a client/server interface to a centralized tuple
space, merging the simplicity and flexibility of the tuple space front-end with an
efficient database back-end. TSpaces targets both fixed, distributed systems, as well
as provides support for nomadic computing with devices such as hand held PDAs.
In both cases, all data is centrally managed and clients remotely issue operations.
L2imbo. While TSpaces relies on a centralized server, the L2imbo platform [12]
proposes a decentralized implementation in which each host holds a replica of the
tuple space. The underlying mobility model is still nomadic, forcing mobile hosts
to connect through a base station to gain full access to the data. Nevertheless, be-
cause the tuple space is replicated locally, hosts can perform limited operations even
during disconnections.

The implementation leverages off IP multicast to disseminate updates and ensure
consistency among replicas. Tuple spaces are uniquely mapped to multicast groups
and all interested hosts must be members. When a host joins a group, a local replica
of the tuple space is created and all subsequent updates are received as multicast
messages. To avoid conflicts, the authors introduce the notion of tuple ownership.
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While reading operations are always permitted, writing operations can be performed
only after the ownership for the specific tuple has been acquired.

In L2imbo all tuples are associated with a type, which is used, along with tradi-
tional field-based matching, by the in and rd requests to retrieve the desired tuples.
To enable fine-grained searches, types are arranged in a hierarchy and a match oc-
curs if a tuple of the type or any subtype is found.
LIME. The LIME model [9] defines a coordination layer that adapts and extends
the Linda model towards applications that exhibit physical mobility of hosts in a
MANET and/or logical mobility of software agents [13]. Given the topic of this
chapter, hereafter we bias our presentation towards the former case. LIME, a mobile
host has access to a so-called interface tuple space (ITS), permanently and exclu-
sively attached to the host itself. The ITS, accessed using Linda primitives, contains
tuples that are physically co-located with the host and defines the only data available
to a lone host. Nevertheless, this tuple space is also transiently shared with the ITSs
belonging to the mobile hosts currently within communication range. When a new
host arrives, the tuples in its ITS are conceptually merged with those already shared,
belonging to the other mobile hosts, and the result is made accessible through the
ITS of each of the hosts. This provides a mobile host with the illusion of a local tu-
ple space containing tuples coming from all the hosts currently accessible, without
any need to know them explicitly.

LIME also augments the Linda model with the notion of reaction. A reaction
R(s, p) is defined by a code fragment s specifying the actions to be performed
locally when a tuple matching the pattern p is found in the shared tuple space. This
effectively combines the proactive style, typical of tuple space interaction, with the
reactive paradigm useful in the dynamic, mobile environment. Recent papers further
enhance the LIME model by adding support for security [14], replication [15] and
code deployment [16].
EgoSpaces. EgoSpaces [17] is a tuple space middleware similar to LIME exploiting
a fully distributed architecture. In its model, the network is perceived as an under-
lying database of tuples. Each host defines its own tuple space by creating a view,
i.e., a subset of the tuples available at other hosts, selected according to the specified
constraints (e.g., host IDs, number of hops, tuple patterns).

Hosts interact with these views through the basic Linda operations and special
constructs for event-driven communication. EgoSpaces also provides transactional
support to ensure that a sequence of operations (e.g., a rd followed by an in) is
executed atomically.
TOTA. In contrast to the previously described systems, TOTA [18] exploits a tuple-
centric approach to support both pervasive computing and MANET mobility. In
TOTA, tuples spread hop-by-hop among nodes according to the rules specified in the
tuple itself. These rules may include, for example, the scope of the tuple (i.e., how
many hops the tuple should travel) or the conditions for the propagation to occur
(e.g, if a tuple denotes a fire alarm, it will be replicated only if the room temperature
is above a threshold). Tuples can also be modified along the way to take into account
changing conditions (e.g., a tuple containing the temperature can average its value
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TSpaces [11] L2imbo [12] LIME [9] EgoSpaces [17] TOTA [18]
Architecture Centralized Decentralized Decentralized Decentralized Decentralized
Mobility scenario Nomadic Nomadic MANET MANET MANET
Context-awareness N/A QoS attributes Context as data Context as data Context as data
Disconnected
operation

None Read-only Yes Yes None

Atomicity Yes (strong) No Yes (strong) Yes (best-effort) No
Reactions (to) Yes (operations) No Yes (state) Yes (state) Yes (operations)
Scope Whole TS Whole TS Federated TS or

single host/agent
Programmer-
defined views

Local or one hop

Other extensions Probes, bulk,
time-outs

Time-outs Probes, bulk Probes, bulk Bulk

Table 1.1 Features of representative tuple space systems for mobile computing.

over all the readings found). Hosts can access the local or neighboring tuple spaces
to retrieve, add, or remove tuples. Event-driven constructs are also present to react
when a particular tuple is inserted in the tuple space.

1.2.2 Discussion

We now focus on the features that distinguish the above representative systems.
Table 1.1 provides a concise summary while details are provided below.
Architecture and Mobility Scenario. The placement of the tuple space data plays
a key role in the applicability of the model, especially in relation to the target mobil-
ity scenario. For example, the centralized, client-server model of TSpaces supports
nomadic mobility for resource poor devices such as PDAs. It also allows the server
to both take on the majority of the computation burden as well as provide optimiza-
tions to data access, e.g., with a database back-end, which is not possible on small,
mobile devices.

Instead, to support MANETs, a single server will not always be reachable and
each node essentially becomes a mini-server with part of the global data. This is the
decentralized model adopted by TOTA as well as the transiently shared tuple spaces
of LIME and EgoSpaces. While this fully distributed model requires direct interac-
tion among nodes to share locally hosted data, at the same time it eliminates any
central point of coordination, an essential requirement in the MANET environment.

L2imbo strikes a balance between the two approaches, supporting nomadic mo-
bility with decentralized tuple spaces. The primary advantage is support for discon-
nected operation, as discussed later.
Context-Awareness. As outlined in [19], tuple spaces naturally support the require-
ments of context-aware applications. Indeed, context data can be stored in the tuple
space just as any other data, as proposed by LIME, EgoSpaces and TOTA, leverag-
ing the decoupled nature of Linda to separate the context data producers from the
consumers.

L2imbo takes this one step further by exposing context information critical to
supporting quality of service in the mobile environment. This is accomplished
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through a set of monitors running on each host. Connectivity monitors check the
connectivity between a pair of hosts and report quality (e.g., throughput). Power
monitors, instead, observe the power level on the local host as well as on nearby
hosts such that applications can employ an appropriate saving scheme. Finally, cost
monitors track the communication costs between two hosts. Based on this informa-
tion, applications can monitor local and remote resources and, if necessary, activate
specific energy-saving policies.

Despite the suitability of the tuple space abstraction, the standard Linda matching
based on types and exact values is often insufficient for context-aware applications
as such queries frequently require range rather than exact value matching. For exam-
ple, a query may look for any host within a 50 m radius of its current location. This
has been addressed in LIGHTS [20], the tuple space underlying LIME. To support
the needs of context-awareness, LIGHTS extends Linda matching semantics to use
range matching, fuzzy logic comparison operators, and other extensions enhancing
the expressiveness of tuple queries.
Disconnected Operation. Given the dynamicity of the mobile scenario, connectiv-
ity cannot be guaranteed at all times. In some systems such as TSpaces, disconnec-
tions are considered a fault, and disconnected clients cannot access the tuple space.
Instead other systems adopt the view that disconnection is an expected event in mo-
bile computing, and some amount of functionality must be provided even when a
node is isolated from all others.

L2imbo tolerates disconnected operations by keeping a replica of the entire tuple
space on each host. Eventual consistency among different copies is ensured by a
variant of IP multicast [21] in which each tuple space is bound to a multicast group
to which every node accessing the tuple space belongs. While disconnected, a host
can optimistically read tuples from its local cache, but it cannot remove any tuples.
When a host reconnects to the network, it communicates to the multicast group
the tuples created during the disconnection and receives notification of all tuples
added/removed by other nodes.

In the MANET environment, LIME allows a node to operate freely on any tuples
in its federated tuple space. When isolated, a node has access only to the tuples it
hosts, but, still, any operations are possible. An extension [15] addresses replication
at the tuple level based on patterns. This gives the individual agent control over
the amount of data replicated and hence transmitted across the wireless links. The
update policy is also flexible, allowing updates to propagate only from the master,
from any newer version, or never.
Atomicity. A key feature of any modern distributed platform is the ability to per-
form multiple operations on a diverse set of hosts in a single atomic step. This is
particularly true for the stateful model of tuple spaces because the lack of atomicity
may lead to an inconsistent system state, e.g., when two hosts succeed in removing
the same tuple.

To this end, mainstream systems such as TSpaces offer native transactional sup-
port by using a database server as a backend. Unfortunately, this approach is overly
complex for systems of mobile devices with fluctuating connections. To overcome
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this, LIME exploits transactions only to manage group membership by implicitly
electing a single leader for each group, responsible for ensuring the atomicity of
tuple space engagement and disengagement, respectively the process of merging
or breaking down the tuple space based on a change in connectivity. Conversely,
atomicity for distributed operations (e.g., in) are guaranteed through a lightweight
approach, relying on a combination of reactions and non-blocking probes. When an
in operation is issued, if a matching tuple is found in the local tuple space, the op-
eration immediately returns. Otherwise, the run-time installs a reaction for the same
pattern. When this reactions fires, a non-blocking inp is issued to remove the tuple.
If, in the meanwhile, the tuple has been withdrawn by another host, the reaction
remains in place and the process continues to wait.

One drawback of the LIME approach, however, is that atomicity can be guaran-
teed only for system-supported operations. To address this concern, EgoSpaces pro-
poses a traditional, yet costly, transaction-based mechanism. In addition, it provides
a best-effort solution based on scattered probes. These operations are implemented
such that all the hosts participating in the view are contacted one at a time and an
empty set is returned if no matching tuple has been found. Scattered probes provide
a weaker consistency because they are allowed to miss a matching tuple in the view.
On the other hand, the implementation is both more efficient because transactions
are not employed and more flexible because hosts are not suspended.
Reactions. Mobility challenges many of the assumptions made in traditional dis-
tributed computing. Of primary concern is that data is only transiently accessible
due to changing connectivity among participants. This leads naturally to the intro-
duction of some notion of reactive operation where, similar to event-based program-
ming, a component can be notified when something interesting happens. In TSpaces
and TOTA, nodes can be notified when certain operations (e.g., the insertion or re-
moval of a tuple) are issued on the tuple space. However, the notification occurs
only if the recipient is connected to the tuple space where the operation is issued. In
LIME and EgoSpaces, instead, hosts are notified when data matching a given pattern
appears in the host’s federated tuple space. These state-based reactions are impor-
tant in the MANET environment because two agents may not be connected when a
tuple is inserted: the state-based semantics ensure that the reaction fires whenever a
“new” relevant tuple is detected (e.g., when two nodes meet), and not just upon an
insertion operation. Thus, being notified when data is accessible as opposed to when
it is inserted provides a natural and very powerful programming primitive, useful in
many mobile applications.
Scope. In large-scale mobile networks it is not practical to share the entire tuple
space across all nodes. The overhead to route requests and replies would quickly
drain all host resources. Therefore, most implementations limit the distribution to a
single (physical) hop. TOTA introduces explicitly scoped operations, such as read-
OneHop, while LIME allows the programmer to set the scope of an operation to a
single, specific host.

EgoSpaces [17], instead, enables the programmer to flexibly define the scope
of the shared tuple space, called a view. This is expressed through a declarative
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specification providing constraints over the properties of the underlying network
(e.g., only nodes within 5 hops or 500 meters), on the host (e.g., only PDAs), and
on the data (e.g., only location information).
Other Extensions. In addition to reactive operations and scoping, the transient ac-
cessibility of data changes the programming paradigm. In standard Linda programs
for parallel computation, blocking operations are natural because, unless a process
has data to work with, it should be suspended. In the mobile environment, instead,
processes are often interactive or at least more flexible to the current context. Thus,
if some needed data is not available, it may be better to switch to another task rather
than block. Moreover, knowledge about the lack of data, which may also imply the
unavailability of a host known to carry such data, may be important per se.

This kind of interaction is not supported by traditional blocking operations, thus
most of the systems discussed in this section provide the non-blocking probes men-
tioned in Section 1.1, which query a tuple space and return either a matching tuple
or a keyword indicating that no match exists. Such immediate return after the op-
eration is issued gives the programmer a high degree of flexibility. An intermediate
approach is taken in TSpaces and L2imbo, where a timeout can be specified for
(blocking) in and rd operations to avoid locking the process indefinitely.

Additionally, some applications logically create multiple versions of the same
piece of information with each successive version invalidating the previous. For
example, a location tuple constantly changes as a host moves through space. Each
new location represents an update, replacing the now-irrelevant previous location.
In most tuple space systems, it is only possible to remove the old data and insert
new data, losing any logical connection between the two. Instead, it is meaningful
to allow the data to be changed, associating it with the old data and at the same time
identifying that it has been updated. Such a mechanism is provided by a variant of
LIME [15] in which the user specifies a template for the old data together with the
actual new data. The new data is distinguished from the old with a version number.
This mechanism also serves as a building block upon which consistency between
master and replicas is managed.

1.2.3 Tuple Spaces in Action

To illustrate concretely the benefits of the tuple space abstraction in the mobile en-
vironment, this section illustrates TULING [19], a sample application built on top
of LIME for collaborative exploration of a space, emphasizing the exchange of con-
text information. While offering a simple example, TULING demonstrates how the
operations available in LIME are both natural and sufficient to provide the range of
interaction necessary for exploiting context. Moreover, the interaction patterns of
TULING are applicable to real-world collaborative applications, such as team coor-
dination in a disaster recovery scenario.
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Scenario and Requirements. TULING is intended to be used by multiple indi-
viduals moving through a common environment, each equipped with a GPS- and
wireless-enabled PDA. Users see a representation of their current position as well
as a trail representation of previous movements, as shown in Figure 1.1. When a
new user comes within range, her name is displayed and one of several monitor-
ing modes can be selected, e.g., retrieving only the current location, tracking the
location as it changes, or retrieving the entire movement history of the user. The
choice is typically based on the tolerance for the overhead associated to each type
of monitoring.

TULING also allows users to add annotations, such as a textual note or a digital
photograph, to their own current location. These annotations are indicated on the
display with a special icon: by clicking on the icon, the annotation can be viewed as
long as the requesting user is connected to the user who made the annotation.
Design and Implementation. The design and implementation of TULING focuses
on making various aspects of the application, e.g., location, other users, and annota-
tions, available as state inside the tuple space. This choice makes all data accessible
to all connected hosts. In contrast, in a model such as publish-subscribe, explored
in earlier chapters, data is typically transiently available only at the moment it is
published, thus limiting the awareness of the data to the hosts that are connected.
To overcome this restriction, a query-response paradigm can be exploited in parallel
to proactively retrieve all missed data. In contrast, the LIME model of transiently
shared tuple spaces provides a single interface for both modes of interaction, unify-
ing the treatment of new and stored data as well as system-level information such as
the presence of other hosts.

Fig. 1.1 Screenshot of a TULING user, Amy. While near a second user, GianPietro, his history and
movement are visible, but once out of range, updates are no longer propagated and only the locally
visible movements of Amy are displayed.
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public class NewHostListener implements ReactionListener{
NewHostListener() {

LimeSystemTupleSpace lsts = new LimeSystemTupleSpace();
// HOST arrival pattern
Tuple newHostPattern = new Tuple().addActual("_host")

.addFormal(LimeServerID.class);
lsts.addListener({new LimeSystemReaction (newHostPattern, this,

Reaction.ONCEPERTUPLE)});
}
void reactsTo(ReactionEvent re) {

// display name of the new host arriving
// the second field of re.getEventTuple() contains the host name

}
}

Fig. 1.2 Code to react to the arrival of a new user using the LimeSystemTupleSpace.

The combined requirements to both monitor the current location of a user and
to display the history information about the itinerary require that TULING provide
access to the current and previous locations of a user. The current location is repre-
sented by a single tuple containing the GPS coordinates and a timestamp. To repre-
sent movement history, TULING uses a separate tuple template. The chosen solution
groups multiple prior locations together into a single stride tuple that contains a se-
quence number and a list of locations. The number of locations in the stride list is
tunable to balance the overhead of retrieving all the stride tuples to build a history
against the overhead of updating the stride tuple with each new location. The up-
dating of each type of location tuple is simply a matter of issuing an out followed
by an in. This sequence ensures that at all times a location tuple is present in the
tuple space. It is also worth noting that these operations are entirely local to the host
where they are issued, therefore the overhead is minimal.

To access the location context of other hosts, TULING uses a combination of
reactions and probe operations. Specifically, it uses a feature of LIME called the
LimeSystem tuple space, a system-maintained tuple space that contains information
about which hosts are currently connected. To display the name of a user within
range, it employs a reaction on the LimeSystem tuple space. To give a feel for how
simple it is to accomplish this operation, Figure 1.2 shows the required code to
register a reaction for the arrival of a new host. A similar process is required for
reacting to the departure of a host.

Once the name of a user is displayed, the monitoring mode must be selected. As
a result of LIME’s transient sharing of the tuple spaces among hosts within range,
the locations of all connected users are available to one another. To get the current
position, a non-blocking read operation rdp, restricted in scope to the selected host,
is issued for the location tuple. A probing read is used to prevent the system from
blocking in the case where the host disconnects before the read operation completes.
Similarly, retrieving the itinerary requires a bulk read operation, rdg, on the stride
tuples for the selected host. Instead, monitoring a user is accomplished by installing
a reaction on the location tuple. Each time a new location is inserted, the reaction
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fires remotely, a copy of the tuple is sent to the registered user, and their local dis-
play is updated. When two hosts disconnect causing their tuple spaces disengage
and become no longer shared, the reaction ceases to fire. Nevertheless, when they
come back within range, the reaction is automatically reinstalled by the system and
updates propagate once again. It is worth noting that a similar reaction for loca-
tion tuples scoped on the entire federated tuple space can be installed to display the
locations of all users who come within range. In this case, the individual per-user
reactions described above are unnecessary. The trade-off, however, is the inability
to control the overhead as all users are unconditionally monitored.

The annotation feature is similarly supported with a combination of a reaction
scoped over the entire federated tuple space to track which annotations are acces-
sible, and a rdp to retrieve the contents of a requested annotation. Importantly, the
implementation separates the knowledge of the existence of an annotation from the
annotation itself, using two different tuple formats. This was motivated by the ob-
servation that the annotation contents themselves may be large, e.g., a digital photo-
graph. Because a LIME reaction retrieves a copy of the matching tuple, reacting to
the annotation contents would involve transferring the entire annotation whether or
not it will be used, unnecessarily using the wireless communication media. Instead,
by reacting to a small tuple which is essentially a reference to the actual annotation,
the reaction processing remains efficient. The result, however, is the restriction that
annotations can only be viewed while users are connected; a reasonable compromise
for effectively managing overhead.

Experience with TULING clearly demonstrates the effectiveness of LIME to sup-
port context aware interactions in the MANET environment. The simple combina-
tion of key LIME operations, such as the probing inp and reactions, give the pro-
grammer rich mechanisms to interact with both the application and context data.

1.3 Wireless Sensor Networks

Wireless sensor networks (WSNs) pose peculiar challenges, only partially overlap-
ping with those of mobile networks. Although communication occurs wirelessly,
nodes tend to be static. Moreover, WSN devices typically offer much fewer re-
sources than those employed in mobile networks. As a result, a good fraction of
the programming effort often focuses on low-level concerns such as resource man-
agement. Abstractions such as tuple spaces can help programmers to address the
requirements of WSN applications by raising the level of abstraction and hiding
distribution.

Differently from the approaches described in the previous section, in WSNs few
works provide a genuine tuple space abstraction to application programmers. Never-
theless, a relevant fraction of existing approaches leverages off the same first princi-
ples. The systems surveyed in this section indeed provide data-centric programming
abstractions where the location of data, as well as the identity of the individual de-
vices, plays only a secondary role. On top of this feature, they enable various forms
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of data sharing among different devices. Consequently, distributed interactions oc-
cur implicitly in accessing some piece of data that programmers cannot a priori
locate on some specific device. Blending these features in a single programming
framework finds fertile ground in WSNs, where data is of paramount importance to
application developers.

The structure of presentation is similar to the one we followed for mobile com-
puting in the previous section. Section 1.3.1 describes exemplary approaches from
the current state of the art. Again, the choice of systems to be discussed does not
pretend to be exhaustive: the goal is to give the reader the insights necessary to
appreciate how the driving concepts of tuple spaces have been applied in WSNs.
Next, Section 1.3.2 illustrates the key features of the approaches described, compar-
ing them against each other. Finally, Section 1.3.3 discusses a small case study to
provide a concrete example of how tuple spaces are applicable to the WSN domain.

1.3.1 Representative Systems

This section surveys systems that either provide a tuple space abstraction to ap-
plication developers, or more generally take inspiration from the key features of
tuple spaces. In doing so, the discussion is limited to approaches geared towards
programming individual WSN devices. Alternative paradigms have been explored
in WSNs, whose goal is to give programmers a way to program the network as a
whole. These approaches, commonly termed “macroprogramming” [22], radically
depart from traditional programming. Therefore, they are not directly comparable
with the ones discussed next.
Abstract Regions. Welsh et al. [23] propose a set of general-purpose communica-
tion primitives providing addressing, data sharing, and aggregation among a given
subset of nodes. A region defines a neighborhood relationship between a specific
node and other nodes in the system. For instance, a region can be defined to include
all nodes within a given number of hops or within physical distance d. Data sharing
is accomplished using a tuple space-like paradigm by giving developers language
constructs to read/write 〈key,value〉 pairs at remote nodes. In a sense, this resembles
the rd and out operations in traditional tuple space middleware, although the data
format and matching is clearly much less expressive. Dedicated constructs are also
provided to aggregate information stored at different nodes in a region. Moreover, a
lightweight thread-like concurrency model, called Fibers, is provided for blocking
operations. By their nature, Abstract Regions target applications exhibiting some
form of spatial locality, e.g., tracking moving objects, or identifying the contours of
physical regions.
Agilla. The work in [24] presents a middleware system for WSNs that adopts a mo-
bile agent paradigm [13]. Programs are composed of one or more software agents
able to migrate across nodes. In a sense, an Agilla agent is similar to a virtual ma-
chine with its own instruction set and dedicated data/instruction memory. Coordina-



1.3 Wireless Sensor Networks 13

tion among agents is accomplished using a tuple space. Agents insert data in a local
data pool to be read by different agents at later times. The data of interest is identi-
fied using a pattern matching mechanism, in a way similar to what is described in
Section 1.1. In Agilla, the use of tuple spaces allows one to decouple the application
logic residing in the agents from their coordination and communication. At the same
time, tuple spaces also provide a way for agents to discover the surrounding context,
e.g., by reading tuples describing the most recent sensed values. Reactive applica-
tions requiring on-the-fly reprogramming of sensor nodes (e.g., fire monitoring) are
thus an ideal target scenario for Agilla.
ATaG. The Abstract Task Graph (ATaG) [25] is a programming framework pro-
viding a mixed declarative-imperative approach. The notions of abstract task and
abstract data item are at the core of the ATaG programming model. A task is a log-
ical entity encapsulating the processing of one or more data items, which represent
the information. The flow of information between tasks is defined in terms of ab-
stract channels used to connect each data item to the tasks that produce or consume
it. To exchange data among tasks, programmers are provided with the abstraction of
a shared data pool where tasks can output data or be asynchronously notified when
some data of interest is available. This style of interaction is similar to tuple spaces
for mobile networks when using reactive operations, as described in Section 1.2.2,
although in ATaG this is limited to triggering notifications when other processes per-
form a write, and the data of interest is determined solely based on its type, rather
than an arbitrary pattern. The ability to isolate different processing steps in different
tasks makes ATaG suited to control applications requiring multi-stage processing,
e.g., road traffic control [26].
FACTS. Terfloth et al. [27] propose a middleware platform inspired by logical rea-
soning in expert systems. In FACTS, modular pieces of processing instructions
called rules describe how to handle information. These are specified using a ded-
icated language called RDL (ruleset definition language), whereas data is specified
in a special format called a fact. The appearance of new facts trigger the execu-
tions of one or more rules, that may generate new facts or remove existing ones.
Facts can be shared among different nodes. The basic communication primitives in
FACTS provide one-hop data sharing. Facts are reminiscent of tuples as a way of
structuring the application data, while the triggering of rules in response to new facts
is similar to the execution of reactions in mobile tuple space middleware. Reactive
applications such as fence monitoring [28] are easily implemented using FACTS,
thanks to the condition-action rules programmers can specify.
Hood. The programming primitives provided by Hood [29] revolve around the no-
tion of neighborhood. Constructs are provided to identify a subset of a node’s phys-
ical neighbors based on application criteria, and to share data with them. A node ex-
ports information in the form of attributes. Membership in a programmer-specified
neighborhood is determined using filters. These are boolean functions that exam-
ine a node’s attributes and determine, based on their values, whether the remote
node is to become part of the considered subset. If so, a mirror for that particular
neighbor is created on the local node. The mirror contains both reflections, i.e., lo-



14 1 Tuple Space Middleware for Wireless Networks

Abstract
Regions [23]

Agilla [24] ATaG [25] FACTS [27] Hood [29] TeenyLIME [30]

Reactive vs. Proactive Proactive Both Reactive Reactive Proactive Both
Push vs. Pull Push Both Push Push Push Both
Data Filtering Shared variables Pattern

matching
Named
channels

Fact
constraints

Application-
level
filtering

Pattern matching
w/ value constraints

Data Processing Reduce operator N/A N/A N/A N/A N/A
Scope Programmer-

defined
Local Programmer-

defined
One-hop One-hop One-hop

Table 1.2 Features of tuple space systems for wireless sensor networks.

cal copies of the neighbor’s attributes that can be used to access the shared data,
and scribbles, which are local annotations about a neighbor. Hood can be seen as
a tuple space system where out operations are used to replicate local information
on neighboring nodes, and filters take care of the matching functionality. Thanks to
the support of multiple independent neighborhoods, Hood is applicable in diverse
settings ranging from target tracking applications to localization mechanisms and
MAC protocols [29].
TeenyLIME. Inspired by LIME, TeenyLIME [30] offers a Linda-like interface to
programmers. To make the tuple space paradigm blend better with the asynchronous
programming model of most WSN operating systems (e.g., TinyOS [31]), opera-
tions are non-blocking and return their results through a callback. In TeenyLIME,
tuples are shared among neighboring nodes. Reactions are provided to allow for
asynchronous notifications in case some specific piece of data appears in the shared
tuple space. In addition, several WSN-specific features are made available to better
address the requirements of sensor network applications. For instance, a notion of
capability tuple is provided to enable on-demand sensing. This can save the energy
required to keep sensed information up to date in the shared tuple space in the ab-
sence of any data consumer. Similarly to Hood, TeenyLIME reaches into the entire
stack, providing constructs to develop full-fledged applications as well as system-
level mechanisms, e.g., routing protocols. However, TeenyLIME specifically targets
sense-and-react applications, (e.g., HVAC in buildings [32]), where its reactive and
WSN-specific features provide a significant asset.

1.3.2 Discussion

The approaches outlined above are possibly more heterogeneous than those we dis-
cussed in Section 1.2. Table 1.2 summarizes the most important similarities and
differences.
Reactive vs. Proactive Operations. The ability to react to external stimuli is of
paramount importance in WSNs. Likewise, being able to proactively influence the
data shared with other processes is fundamental to achieve coordination through the
tuple space. Agilla and TeenyLIME provide both modes of operations, i.e., the tra-
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ditional tuple space operations to express proactive interactions along with a notion
of reaction inspired by similar functionality in the mobile setting, as described in
Section 1.2.2. The semantics provided, however, are generally weaker. For instance,
no guarantees are provided on whether a reaction can fire multiple times for the
same tuple. Similarly, the RDL language in FACTS allows for the specification of
programmer-provided conditions for a rule to fire. Nevertheless, in these cases, im-
plementing reactive operations raises issues with their semantics that are difficult to
face on resource constrained devices. For instance, in the presence of multiple re-
actions (rules) being triggered simultaneously, the aforementioned systems provide
no guarantees w.r.t. the order they are scheduled. This issue is partially solved in
ATaG by forcing channels to behave in a FIFO manner, and imposing a round-robin
schedule across different channels. Differently, both Abstract Regions and Hood
provide only proactive operations. In Abstract Regions, the only way of observing
a change in the shared data is to proactively read the value of a variable. Similarly,
in Hood the local reflections must be manually inspected to recognize some change
in the shared data. Both systems are therefore significantly less expressive, and lead
to more cumbersome programming whenever some form of reactive behavior is re-
quired.
Proactive Push vs. Proactive Pull. Although the approaches described above do
provide some notion of data sharing, none of them completely abstracts away the
location of data. As a result, proactive operations can occur with different modes
of operations. Existing systems operate either in a push manner—where the data
producers move the data towards the data consumers—or in a pull manner, i.e.,
where data stays with the data producer until a consumer explicitly retrieves them.
ATaG and FACTS provide only push primitives. In the latter, for instance, facts can
be written at remote nodes but cannot be retrieved from them. The rest of the systems
described, instead, provide both modes of operation. Agilla and TeenyLIME provide
simple variations of the traditional tuple space API, offering pull operations such as
rd as well as push ones, e.g., out. In Abstract Regions, remote variables can be
read and written, which provides a way to describe both push and pull interactions.
Likewise, although the normal operational mode in Hood is to periodically push a
node’s attributes towards its neighbors using a form of beaconing, a node can also
request an on-demand update of a neighbor’s data, a functionality analogous to a
pull operation.
Data Filtering. The pattern matching mechanism in traditional tuple spaces provide
an expressive way to identify the data of interest. Agilla and TeenyLIME retain the
same by-field, type-based matching semantics, but also provide the ability to specify
further conditions on the value of the data themselves other than simple equality. For
instance, in TeenyLIME it is straightforward to specify a pattern identifying a tuple
whose first field is a 16 bit integer with a value above a given threshold. A similar
feature is also present in FACTS, though the processing to enforce the condition on
the fact repository is partially left to the application programmer. The other systems
considered, instead, provide simpler—but less expressive—mechanisms for identi-
fying the data of interest. In Abstract Regions, variable names are, in a sense, the
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only data filtering mechanism available; similar considerations hold for ATaG and
Hood. Furthermore, in all these latter approaches the type of data to be shared is
essentially decided at compile time. Therefore, the conditions to filter data cannot
be changed by the application while the system is running.
Data Processing. Embodying constructs dedicated to elaborate data in the program-
ming model can help WSN programmers to deal with commonly seen processing
patterns, e.g., averaging the reading of a number of sensor nodes. The only work ex-
plicitly addressing this concern is Abstract Regions. The presence of the reduce()
operator in the API allows programmers to apply a given operator to all shared vari-
ables of a given type, and possibly to assign the result to a further shared variable.
The set of operators available, however, strictly depends on the specific implemen-
tation used in support of the region at hand. Some operators, (e.g., MAX) can be
straightforwardly implemented for various kinds of regions. Instead, others need
customized, per-region implementations: for instance, computing the correct out-
come of AVG requires keeping track of duplicates.
Scope. In Section 1.2.2, it was observed that providing a shared tuple space span-
ning all the nodes in the system is often prohibitive in mobile networks. This issue is
brought to an extreme in WSNs, due to the limited communication abilities of typi-
cal WSN devices. Consequently, in the current state of the art, the span of the shared
memory space turns out to be quite limited. Most approaches provide one-hop data
sharing, or even just local sharing as in the case of Agilla. Notable exceptions are
Abstract Regions and ATaG. In both cases, however, dedicated routing support must
be provided to enable data sharing beyond the physical neighborhood of a node. In
Abstract Regions, each different region requires a dedicated implementation. For in-
stance, an n-hop region can be implemented using limited flooding, whereas a region
defined in terms of geographic boundaries can be implemented using GPSR [33].
This same protocol is used in ATaG when the span of the data pool is defined based
on the locations of nodes assigned a given task. Alternatively, the data pool in ATaG
can be shaped according to logical attributes of the nodes (e.g., their type) using the
routing provided by Logical Neighborhoods [26].

1.3.3 Tuple Spaces in Action

This section illustrates how the driving concepts of tuples spaces can be applied
to a paradigmatic sensor network scenario. We discuss the implementation of a
sense-and-react application using TeenyLIME. In similar scenarios, nodes hosting
actuators are deployed alongside sensing devices. The system is designed to react to
stimuli gathered by sensors and affect the environment by means of actuators.
Scenario and Requirements. Consider an application for emergency control in
buildings whose main functionality is to provide guidance and first response un-
der exceptional circumstances, e.g., in case of fire. The application logic features
four main components, illustrated in Figure 1.3. The user preferences represent the
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Fig. 1.3 Emergency control in buildings.

high-level system goals, in this case, the need to limit fire spreading. Sensing de-
vices gather data from the environment and monitor relevant variables. In this case,
smoke and temperature detectors recognize the presence of a fire. Actuator devices
perform actions affecting the environment under control. In the scenario at hand,
water sprinklers and emergency bells are triggered in case of fire. Control laws map
the data sensed to the actions performed, to meet the user preferences. In this case,
a (simplified) control loop may activate emergency bells when the temperature in-
creases above a safety threshold, but operate water sprinklers only if smoke detectors
actually report the presence of fire.

The characteristics of the scenario make programming similar systems a chal-
lenging task:

• Localized computations [34] must be privileged to keep processing close to
where sensing or actuation occurs. It is indeed unreasonable to funnel all the
sensed data to a single base-station, as this may negatively affect latency and
reliability without any significant advantage [35].

• Reactive interactions, i.e., actions that automatically fire based on external con-
ditions, play a pivotal role. In this case, a temperature reading above a safety
threshold must trigger an action on the environment.

• Proactive interactions, however, are still needed to gather information and fine
tune the actuation about to occur. For instance, the sprinklers in the building ask
for smoke readings before taking any action.

The stateful nature of the tuple space abstraction naturally lends itself to address-
ing the above requirements, as the actions taken on the environment must be decided
based on the current sensed state. In addition, tuple spaces make it easier to express
the coordination required in these scenarios, e.g., since they provide both proactive
and reactive operation. Alternative paradigms, such as publish-subscribe, only par-
tially meet the above challenges, being essentially biased towards either reactive or
proactive interactions.
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Fig. 1.4 Sequence of operations to handle a fire. Once notified about increased temperature, a node
controlling water sprinklers queries the smoke detectors to verify the presence of fire. If necessary,
it sends a command activating nearby sprinklers.

Design and Implementation. In our design, sensed data and actuating commands
take the form of tuples. These are shared across nodes to enable coordination of
activities and data communication. Figure 1.4 illustrates how proactive and reac-
tive interactions in TeenyLIME are used to deal with the possibility of a fire. Both
emergency bells and water sprinklers have a reaction registered on their neighbors,
watching for temperature tuples over a given threshold. This is accomplished using
TeenyLIME’s value matching functionality, described in Section 1.3.2. Temperature
sensors periodically take a sample and pack it in a tuple, which is then stored in
the local tuple space. This operation, by virtue of TeenyLIME’s one-hop sharing,
automatically triggers all the aforementioned reactions in case of a positive match.

However, different types of actuator nodes behave differently when high temper-
atures are detected. The node hosting the emergency bell immediately activates its
attached device. Instead, the water sprinkler node proceeds to verify the presence
of fire, as shown in Figure 1.4. The latter behavior, specified as part of the reaction
code, consists of proactively gathering the readings from nearby smoke detectors,
using a rdg over the entire shared tuple space. If fire is reported, the water sprinkler
node requests activation of nearby sprinklers through a two-step process that relies
on reactions as well. The node requesting actuation inserts a tuple representing the
command on the nodes where the activation must occur. The presence of this tuple
triggers a locally-installed reaction delivering the activation tuple to the application,
which reads the tuple fields and operates the actuator device accordingly.

Based on the above processing, smoke detectors need not be monitored continu-
ously: their data is accessed only when actuation is about to occur. However, when
a sensed value is requested (e.g., by issuing a rd) fresh-enough data must be present
in the tuple space. If these data are only seldom utilized, the energy required to keep
tuples fresh is mostly wasted. An alternative is to require that the programmer en-
codes requests to perform sensing on-demand and return the result. To avoid this
extra programming effort, TeenyLIME’s capability tuples can be used as described
in Section 1.3.1. Here, a capability tuple is used as a placeholder to represent a
node’s ability to produce data of a given type, without keeping the actual data in
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the tuple space. When a query is remotely issued with a pattern matching a capa-
bility tuple, a dedicated event is signaled to the application. In response to this, the
application takes a fresh reading and outputs the actual data to the tuple space. The
sequence of operations is depicted in Figure 1.5. Note how, from the perspective of
the data consumer, nothing changes. Instead, at the data producer, capability tuples
enable considerable energy savings as the readings are taken only on-demand.

The simple yet expressive programming primitives provided by TeenyLIME al-
low programmers to express complex interactions in a few lines of code. [30] com-
pares TeenyLIME-based implementations of various applications and system-level
mechanisms, e.g., routing protocols, against functionally equivalent nesC imple-
mentations. Results indicate that TeenyLIME yields cleaner and simpler implemen-
tations. For instance, the number of lines of code written by programmers using
TeenyLIME is usually half of the corresponding counterpart implemented in nesC.

1.4 Summary and Outlook

Tuple spaces were originally invented as a computational and programming model
for parallel computing. Later on, companies such as IBM proposed tuple spaces as
a programming model for distributed computing. The next natural step is, therefore,
for the programming models inspired by tuple spaces to follow the evolution of net-
working towards untethered, wireless communication. In this context, simplicity of
the programming interface and decoupling in time and space are the most significant
advantages. Nevertheless, the characteristics of wireless communication demand a
re-thinking and extension of the base model made popular by Linda.

This chapter concisely presented the state-of-the-art concerning middleware plat-
forms based on the tuple space abstraction and expressly designed for wireless sce-
narios. By analyzing and comparing representative systems it provided the reader
with a wide perspective on the efforts in this specific field. Moreover, by exem-
plifying the use of tuple spaces in realistic application case studies, it conveyed
concretely the power of this abstraction.

Although the presentation is structured along the two application scenarios de-
fined by mobile computing and wireless sensor networks, this does not necessarily
imply that these two realms must be treated separately. Indeed, in our own work we
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explored a two-tier approach where sensor data is available to mobile data sinks,
from which it is available to other sinks in range. In this model and system, called
TinyLIME [36], the transiently shared tuple space originally introduced by LIME is
the unifying abstraction enabling seamless access to information spanning different
kinds of networks. Indeed, bridging the physical world where users live and move
with the virtual world enabled by sensing and actuating wireless devices is a new
frontier of computing [37], and one where the simple and effective data sharing
paradigm fostered by tuple spaces can give a fundamental contribution.
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