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Abstract

In-network data aggregation is widely recognized as an
acceptable means to reduce the amount of transmitted data
without adversely affecting the quality of the results. To
date, most aggregation protocols assume that data from lo-
calized regions is correlated, thus they tend to identify ag-
gregation points within these regions. Our work, instead,
targets systems where the data sources are largely indepen-
dent, and over time, the sink requests different combinations
of data sources. The combinations are essentially aggrega-
tion functions. This problem is significantly different from
the localized one because the functions are initially known
only by the sink, and the data sources to be combined may
be located in any part of the network, not necessarily near
one another. This paper describes MVSINK, a protocol
that lowers the network cost by incrementally pushing the
aggregation function as close to the sources as possible, ag-
gregating early the raw data. Our results show significant
savings over a simplistic approach, and demonstrate that a
data request needs to be active only for a reasonably short
period of time to overcome the cost of identifying the best
aggregation point.

1 Introduction

Data aggregation is rapidly becoming the accepted
mechanism to reduce the amount of transmitted data in
a wireless sensor network without significant loss of data
quality. This requires both the selection of the aggregation
function, a highly application-dependent task, as well as the
identification of the best node at which to apply the func-
tion. Most existing approaches assume that data from a
localized region can be fused together, thus they focus on
identifying one or more nodes in each region, rotating the
aggregation function evaluation among them.

While many applications fit this scenario, we are moti-
vated by a different class of applications in which the sen-
sors are more heterogeneous, and neither the required data
nor the aggregation function are known in advance. We dis-
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covered this problem during our prior work on the MiLAN
middleware [5] which, in summary, takes as input a large
set of sensors, and over time selects different subsets that,
when combined according to user-defined functions, meet
a minimum quality constraint. This choice of the subset
and its duration of use is made to maximize the total system
lifetime. In MiLAN, we assume that the functions operating
on data are applied at the sink, but in this work we recog-
nize that moving the functions into the network reduces the
amount of information that needs to be transmitted, thus in-
creasing system lifetime.

Our overall goal, therefore, is to identify the nodes where
the functions should be applied. For this, we take an incre-
mental, in-network approach, assuming that the sink node
is initially the only node with knowledge of the functions.
These functions are then incrementally pushed farther into
the network until the best location is found. Because we do
not perform a global, offline maximization, we recognize
that this may not be the absolute best location, but rather it
is likely to be a local minimum. Nevertheless, it is an im-
provement over a solution that applies all functions at the
sink.

Section 2 describes MV SINK, our novel protocol for in-
crementally moving a single function from the sink, closer
to two data sources that provide its input. As such, it is a
restriction of more general multiple source, multiple func-
tion problems, which instead, represent the future direction
of our work, outlined in Section 4. Nevertheless, our initial
results, presented in Section 3, indicate that our approach
provides significant benefit at reasonable cost. Section 5
places this work in the context of related efforts while Sec-
tion 6 ends the paper with brief concluding remarks.

2 MYVSINK

To clearly illustrate the problem we face, consider the
simple example in Figure 1 showing a small network with
two sources (A and B) and one sink. Initially, all data from
A and B is sent to the sink, where an aggregation function
is applied. However, the system would be more efficient
if the aggregation were performed at the intermediate node



Figure 1. A simple scenario with one sink and
two sources, A and B.

N3, and only the aggregated data sent from N3 to the sink.
It is the job of MV SINK to identify N3, starting only with
the knowledge at the sink of the aggregation function and
the identities of the source nodes.

Our protocol assumes that initially the sink node applies
the aggregation function. It then incrementally moves the
function application role through the network, each time re-
ducing the total transmission cost calculated as the paths
from the two sources to the aggregation point, and from the
aggregation point to the sink. Because the aggregation point
acts as an intermediate sink node, we refer to it as the vir-
tual sink and name our protocol MVSINK, because it in-
crementally moves the virtual sink. This section provides
the details of MVSINK, starting with a description of the
assumptions, then outlining the various components of the
protocol.

2.1 System Model

Our work assumes a set of connected sensor nodes,
where all pairwise links between nodes are bidirectional.
Although in a real system unidirectional links may exist, we
rely on a MAC protocol to filter out messages arriving on
unidirectional links. We further assume that all nodes oper-
ate in promiscuous mode, overhearing all transmissions by
their one-hop neighbors, whether or not the packet is des-
tined for them.

2.2 Protocol Operation

The protocol initiates when the sink node knows which
data sources are required and the aggregation function. To
establish routes from the sources to the sink, a sink an-
nouncement message (SinkAnn) is broadcast from the
sink to all nodes in the network. Initially the sink doubles
as the virtual sink, performing the aggregation on arriving
data. The remainder of the protocol, as outlined in Figure 2,
describes the active role taken by the virtual sink to iden-
tify candidate virtual sinks that result in lower transmission
cost, and inform the best candidate that it should become
the next virtual sink.
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Figure 2. Messages exchanged during
MVSINK to select the first virtual sink. Nodes
are represented symbolically by their role
w.r.t. the sink, then the (new) Virtual Sink
after it is selected. Broadcast messages are
represented by darker lines than unicast.

As our goal is to incrementally move the virtual sink
closer to its best position, we must determine the region
from which candidates are drawn. In an ideal situation
we could consider the whole network, identifying the node
that minimizes the data propagation cost, however collect-
ing sufficient information to make such a global decision is
costly. Therefore, we restrict the region from which candi-
dates are drawn to a k-hop neighborhood around the current
virtual sink, where k is a configurable parameter. Our ex-
perimental analysis showed that £ = 2 provides a reason-
able trade-off between the cost to identify the candidate and
the number of incremental steps before the protocol stabi-
lizes.

To find candidates, the current virtual sink sends a broad-
cast message (VSinkAnn) both identifying itself as the
current node to which data should be sent and requesting
nodes to identify themselves if they can serve as a better
virtual sink. A node can serve as a virtual sink only if it has
the possibility to merge data from both sinks. To evaluate
this, a node listens to all neighborhood communication, and
remembers the identities of the original data sources of all
packets. In the event that a node overhears messages origi-
nating from both sources, even if it is not on the path to the
sink, it could insert itself in that path to serve as a virtual
sink. For example, in Figure 1, N3 may forward all packets
through N1, but because N2 listens to all communication,
it hears data from both A and B. Therefore, either N1 or
N2 can serve as the next virtual sink.

A node evaluates its cost to serve as the virtual sink



by estimating the size of the routing tree connecting the
sources, itself, and the sink. The size is known because
all data packets from the sources contain their hop count
and the original sink announcement provides the number of
hops to the sink. These path lengths are returned to the cur-
rent virtual sink via unicast (Candidate). In our example,
the tree with N1 as the virtual sink has a costof 2 + 2 + 1,
where 2 is the cost from both A and B to N1, and 1 is the
cost from N1 to the sink.

The current virtual sink, after requesting the candidates,
waits a predetermined time limit, collects all candidate re-
sponses, and selects one with the lowest cost. If multi-
ple candidates have the same cost, the one with the larger
distance from the sink is selected. A unicast message
(MoveSink) is then sent to this node, informing it to take
on the role of virtual sink, completing one incremental vir-
tual sink movement.

Upon receipt of the MoveSink message, the newly se-
lected virtual sink immediately starts the process to find a
better sink. At this point the protocol considers two pos-
sibilities, one that simply re-starts candidate selection with
the k-hop broadcast and the other that short circuits the k-
hop broadcast based on locally known information.

In the first case, the virtual sink announcement
(VSinkAnn), has two effects. As indicated above, it trig-
gers nodes to send candidate responses, but it also informs
nodes to forward data packets toward the new virtual sink,
instead of along the routes either toward the previous virtual
sink or toward the sink. This allows the virtual sink to actu-
ally apply the aggregation function. In our example, if N2
is chosen, its VSinkAnn message informs N3 to direct all
packets to it, instead of N 1.

In the second case, a node already knows that one of its
neighbors is a better virtual sink than itself, therefore the
k-hop can be short-circuited, and its cost saved. Consider
the situation in Figure 1. If £ = 1, in the first round, N1 is
selected as the next virtual sink. While N1 could continue
by broadcasting the candidate request message, it actually
knows locally that N3 must have a lower cost than its own.
This is based on the observation that messages from both
sources A and B arrive at N1 via one single node, namely
N3. Therefore, it is clear that the network cost is reduced
by performing aggregation at N3. The k-hop broadcast is
unnecessary. Although the example in Figure 1 is simple,
this situation arises frequently in sparse networks, and re-
sults in huge savings with respect to the basic protocol that
broadcasts VSinkAnn in each iteration.

When a node does not receive any candidate response
messages within the timeout, the protocol terminates, and
the current node remains the virtual sink until the data re-
quest is terminated.

It is worth noting that the first SinkAnn may provide
a node with multiple, equivalent routes to the sink. Nev-

ertheless, MV SINK requires that a single route be selected
and used for all packets. If we loosen this restriction, it is
likely that a node will send some packets along a path that
will intersect with the virtual sink, and others will follow
independent paths to the sink without aggregation. While
this improves the load balancing, it actually increases the
cost in terms of the number of hops taken by the messages.
Since our goal is to identify the best aggregation point, we
accept this trade-off. Nevertheless, if this is a significant
concern for an application, an additional phase can be added
to MVSINK, such that if a node has been acting as such for
an extended period of time, it broadcasts a message toward
the sources to establish multiple routes toward itself. The
nodes can then alternate among these routes, as long as the
virtual sink does not move.

Finally, we note that throughout the operation of the pro-
tocol to find the best virtual sink, data is flowing to the final
destination; albeit at higher cost than after the best sink is
identified. As just noted, prior to aggregation, data follows
only one of the routes set up by the initial sink announce-
ment. After aggregation and within the k-hop neighbor-
hood, however, data can follow any path to the sink, mean-
ing we no longer restrict data forwarding to a single outgo-
ing link. Therefore, post-aggregation data is tagged as such
(DataAgg) and can be forwarded to any neighbor closer to
the sink than the current node.

3 Evaluation

Intuitively the movement of the virtual sink closer to the
sources lowers network cost, and thus has the potential to
improve system lifetime. This section supports this intu-
ition with an evaluation through simulation showing both
costs and benefits. Unless otherwise noted, all simulations
were run with nodes in a 1000 x 1000 area, a communication
radius of 100 and k¥ = 2. As a baseline, we consider a pro-
tocol that performs no in-network aggregation, and simply
uses the independent routes from both sources to the sink.
We also consider a variant of MVSINK in which only the
short-circuit sink movement is applied, without exploiting
the k-hop broadcast of the VSinkAnn.

We consider two primary ways to stress MV SINK. First
we increase the size of the network while keeping the den-
sity even. Then we fix the network size, and increase the
density. Our experiments show improvement in network
cost over the base case, and more importantly, can be used
to show the so-called break even point, a measure of the
number of times the aggregation point must be used before
the overhead energy required to find it is recovered. Since
when the protocol stabilizes every packet is aggregated, the
number of aggregations is the same as the number of pack-
ets sent by each source. Our analysis assumes all packets
have the same fixed size, and thus treats control packets the



same as data packets. In most applications, data packets are
likely to be much larger, therefore weighting messages by
size would actually improve our results.

Since the main focus of this work is on the algorithm
behavior, we chose Sinalgo, a simulator for network algo-
rithms [1], abstracting away from low-level network con-
cerns. We assume reliable, constant delay, bidirectional
channels, and while we acknowledge that limitations exist
in real deployments, they will not affect the fundamental
correctness of MV SINK.

Each data plot in the graphs represents the average re-
sults from 50 random topologies. In each topology, the sink
is located in a corner of the region in which the sensors are
deployed. As our target application domain is one in which
a sink node collects data, we believe it is reasonable to as-
sume this node will be placed at the edge, rather than at the
center of the sensed region. Admittedly, this choice posi-
tively biases our results, as the placement of the sink in the
corner provides more opportunities to move the aggregation
point with respect to situations with the sink in the center.
Sources are randomly placed.

3.1 Increasing Network Size

To evaluate the scalability of MV SINK, we considered
scenarios ranging from 200 to 1000 nodes, keeping the net-
work density approximately constant. We accomplish this
by tuning the communication range from 135 to 75.

The most fundamental measure for performance is the
tree size along which data is transmitted, or the sum of
the path lengths from both sources to the virtual sink and
from the virtual sink to the sink. Figure 3(a) compares the
tree sizes resulting from the three protocol variations. In
general MV SINK achieves significant improvements in tree
size, and with the selected density, approximately half of
the benefit arises from short-circuiting and the other half as
a result of the k-hop VSinkAnn broadcast and resulting
candidate messages.

This improvement comes at the cost summarized in Fig-
ure 3(b). As expected, the broadcast VSinkAnn messages
form a significant part of the overhead, but they are approx-
imately equal to the candidate messages. This is because
almost all nodes reached by the broadcast can potentially
serve as new virtual sinks. Part of our future work is to
reduce the number of candidate messages, either by aggre-
gating them as they flow toward the virtual sink, or eliminat-
ing the transmission of some candidates if better candidates
are overheard before the message is transmitted. Also, it is
worth noting that the total overhead does not significantly
increase as the network size increases. This is because the
overhead is tied to the number of iterations through the pro-
tocol, or the number of times the virtual sink moves. As
Figure 3(a) shows, the size of the tree does not dramatically

increase with the number of nodes, and we further note that
the branch of the tree between the sink and the virtual sink
is likely to be the shortest branch. Taken in combination,
these explain the only moderate increases in overhead.

Finally, Figure 3(c) shows the break even point of
MVSINK. Again, this value does not vary significantly with
the number of nodes, most likely for the same reasons that
the overhead does not significantly increase. Further, it is
likely that the sources will send more than 40 data values,
thus the overhead of the protocol is justified.

3.2 Increasing Density

Experiments in the previous section selected a high
network density of approximately 20 neighbors. This is
motivated by our desire to show the difference between
MVSINK and the short-circuit-only approach. Sparse net-
work topologies tend to be characterized by many small “is-
lands” of connectivity with a few “bridge” nodes. Short-
circuiting clearly takes advantage of such cases, while in
more dense networks, there are more routing options, and
short-circuiting is less applicable.

Therefore, we turn our analysis to study multiple densi-
ties. Our simulations fix the number of nodes at 1000, and
vary the communication radius to achieve network densities
from 6 to 80 neighbors.

As expected, Figure 4(a) shows smaller differences in
tree sizes between MVSINK and short-circuit-only for low
densities, and larger differences with high densities, indi-
cating that the k-hop broadcast has little benefit in low den-
sity settings. As we increase density, the short-circuit-only
approach tends to achieve results close to the Initial Tree,
while MVSINK keeps a reasonable level of transmission
savings.

Figure 4(b) again reports the protocol costs, showing a
significant increase with density. This is because as the net-
work becomes more dense, both the number of nodes re-
ceiving and re-broadcasting the VSinkAnn increases and
more nodes overhear data messages from the source and
candidate themselves in response to the VSinkAnn.

Despite these growing costs, Figure 4(c) shows that
MVSINK still provides reasonable break-even points. On
average, we can recover the investment in MV SINK in less
than 200 aggregations even for very dense networks. Fur-
ther, if we weight data messages more than control mes-
sages, this value would reduce even more. Comparison
of this and the corresponding graph of Figure 3(c) shows
that density plays a significant role in determining the break
even point, while tree size does not.
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4 Extensions

The results in the previous section indicate that MV SINK
has reasonable performance and yields significant improve-
ment. Nevertheless, our general application target are sys-
tems with more than two sources and more than one aggre-
gation function. To address this, MV SINK requires several
extensions, and extensive simulation. This section presents
our initial thoughts.

For systems involving one function applied to more than
two sources, MVSINK needs to be able to identify differ-
ent subsets of sources, generating one or more virtual sinks
to aggregate such subsets. For example, assume that a vir-
tual sink is currently aggregating data from four different
sources A, B,C and D. If this virtual sink receives mes-
sages from two candidates: one offering to aggregate A and
B, and the other one willing to be a virtual sink to C and D,
the two candidates would both be new virtual sinks, one for
each subset of sources. Of course it is very likely that such
non-disjoint subsets arise, and a proper algorithm to find the
best virtual sink splitting strategy needs to be developed.

The problem becomes even more complex if the func-
tion itself can be split into pieces, for example, from an
aggregation function f(A, B, C) into an equivalent defini-
tion such as g(h(A, B),C) or g(A, h(B, C)). The decision
about how to best split the function to best place the virtual
sinks is quite complex.

To consider such multiple-function scenarios, we face
the challenge to identify multiple virtual sinks, and possi-
bly even virtual sinks that combine data after a first round
of aggregation has been performed. For example, consider
a scenario with four sources, and three functions, combined
as follows f(g(A, B),h(C,D)). We could conceive of a
solution with three virtual sinks, one for each of f, g, and
h, or alternately a single virtual sink that applies all three
functions.

To address this, we intend to extend candidacy messages
to include multiple options for combining various sinks, and
allow the current virtual sink to select. In other words, the
virtual sink must choose whether to simply move the virtual
sink, create two virtual sinks, or assign itself part of the role
of virtual sink. Our initial investigations indicate that bet-



ter solutions can be found with this information, but further
study is required to get such solutions as close to optimal as
possible.

5 Related Work

Aggregation has been extensively studied in the litera-
ture, and in general has been shown to provide significant
performance gains in a wide range of scenarios [8].

Some aggregation oriented protocols require additional
information such as node location [7], or require that ex-
tensive information is sent from aggregating nodes all the
way to the sources [2]. Our protocol does not require any
additional knowledge above what is provided by a simple
broadcast sink announcement for establishing routes, such
as that provided in simple versions of directed diffusion [6].

Other approaches address aspects such as quality of ser-
vice [10], security [3] or load balancing [7] and assume the
existence of a proper aggregation tree over which to apply
their technique. The focus of MVSINK is on the more ba-
sic problem of finding a good tree. Therefore such tech-
niques can be applied after MV SINK generates the aggre-
gation tree. Other protocols provide aggregation in hierar-
chical topologies [4, 9], but they rely on an established hier-
archy from which generating an aggregation tree is straight-
forward. Our approach does not make any topological as-
sumptions, and is thus applicable in any random, connected
topology.

Another approach [7] is similar to the short-circuiting
component of our approach, however, as our evaluation
shows, the full MV SINK outperforms short-circuit-only in
terms of tree size in all studied scenarios, with only moder-
ate additional cost.

One of the main concerns regarding the use of aggrega-
tion is the latency it adds to the network. But, as shown by
Zhu et al. [10], in extreme cases where there is too much
traffic in the network, the use of aggregation can actually
reduce latency in the network. It is important to notice that
these are also the cases in which aggregation is most useful.

6 Conclusion

This paper presents the initial description and evalua-
tion of MVSINK, a new protocol for identifying aggrega-
tion points in a wireless sensor network. It is unique in its
approach to incrementally move this point from the sink,
making it applicable in scenarios with sink-driven data col-
lection that changes over time. Our analysis clearly showed
the low break even point for overcoming the overhead of
the protocol, thus motivating our continued work to extend
the protocol to address additional numbers of sources and
aggregation functions.
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