
Exploring Non Uniform Quality of Service for
Extending WSN Lifetime

Anna Egorova-Förster
University of Lugano, Switzerland

Email: anna.egorova.foerster@lu.unisi.ch

Amy L. Murphy
University of Lugano, Switzerland & ITC-IRST, Italy

Email: amy.murphy@unisi.ch

Abstract— Interest in extracting and exploiting information
from wireless sensor networks has been increasing for several
years. Most scenarios focus on collecting and evaluating large
amounts of data at a single sink, and many protocols and
algorithms have been designed to accomplish this efficiently.
However, not all applications require all data, nor do they have
a single collection point. Instead, multiple moving base stations
collect and exploit information, concentrating on data gathered
in their immediate vicinity and requiring less precise knowledge
about the data collected far away. While such a scenario can
be supported by traditional approaches that present perfect
information, they actually require less data, therefore providing
a clear opportunity for increasing network lifetime without
sacrificing the data quality requirements of the application. This
idea of non uniform quality of service is the focus of this paper,
along with two preliminary protocols demonstrating its potential
and motivating future work.

I. INTRODUCTION

Wireless sensor networks have become an interesting and
dynamic research field in recent years. As sensor hardware
shrinks, new applications emerge ranging from military obser-
vation of large-scale battlefields to environmental monitoring
and wearable health body sensors.

Research in the wireless sensor domain has concentrated
primarily on several application scenarios where data from
one or many sources is collected at one destination with
high energy efficiency and low latency and overhead. A
variety of routing, aggregation, and clustering approaches have
emerged from these efforts, some of which incorporate the
notion of quality-of-service to ensure accurate data with the
required quality is delivered to the destinations. However, the
application scenarios they support assume that the destinations,
or base stations, need exactly the same data quality from
all sources. Nevertheless, some applications can correctly
function with non uniform data quality, intuitively allowing
energy savings because less data is transmitted.

Consider a disaster recovery scenario in which hundreds or
even thousands of sensor nodes are deployed randomly over
the affected area. Several fire brigades are sent to the area, each
member with his own palmtop to access the sensor network.
Based on the reported sensor data, each rescuer independently
identifies dangerous regions he can quickly reach.

One option to provide this data is to request all sensors
to report data and display a perfectly accurate view of the
entire field to each rescuer. While the provided information is
sufficient, it is actually more than is required. Instead, each

rescuer only needs to decide where he can go quickly, and
if no help is required in his immediate vicinity, he needs to
decide a direction to move. Thus, the rescuer needs accurate
information from the region immediately surrounding him and
only an approximation of the state farther away. While it
is straightforward to define such non uniform requirements,
challenges arise to support multiple data sinks (rescuers) each
requiring a personalized information display, and sink mobility
demanding continuous updates to the provided data accuracy.

Exploring the benefits and approaches to provide non uni-
form data is the main goal of this paper. Our first contribution
is the precise definition of non uniform information dissemi-
nation in Section II. Related work is outlined in Section III,
before we present and evaluate two proof-of-concept protocols
in Sections IV and V. These evaluations clearly show the
benefits of our approach in terms of potential energy savings,
motivating future extensions outlined in Section VI. The paper
concludes with a brief summary in Section VII.

II. PROBLEM DEFINITION

As previously introduced, we target a disaster recovery
scenario that exploits a WSN of hundreds or thousands of
nodes deployed over a large area. The network is assumed
to be connected. Each node knows its location, however the
global topology is unknown. Throughout this paper we assume
the sensors have a fixed location and are homogeneous, all
reporting the same types of information, however this is not
strictly required. The data collected by the sensors is exploited
by a small set of moving rescue workers, or base stations.

While the above matches the typical wireless sensor network
scenarios, our work departs in that we assume that the rescue
workers require only approximate information about their en-
vironment. For example, they may require highly accurate in-
formation close to their present location, and only approximate
information about distant locations. In other words, the data
accuracy required by workers is proportional to the distance
between the worker and the data source. Other non uniform
quality requirements are also meaningful, e.g., incorporating
movement direction to require accurate information in the
direction of movement and less accuracy in the movement
wake, or adjusting accuracy depending on the density of
workers in a particular area. In this paper we focus on the
distance-proportional accuracy view as it is both intuitive and
demonstrates the challenges of the domain. In any non uniform



data definition, the accuracy is personalized to the location
of each worker, thus each should perceive the environment
differently and this perspective should be updated as he moves
through the region.

III. RELATED WORK

Ideas related to non uniformity have been explored by
several research groups. Here we outline a few to place our
work in context. The list is not intended to be exhaustive.

This paper represents an extension beyond our own initial
exploration of non uniform data dissemination [1] that also
presented some preliminary protocols. The primary distinction
with respect to the work presented here is the scenario.
Previously we assumed all nodes acted as data sinks and the
protocols explored various data flooding techniques. Here, our
multiple mobile sink scenario offers more opportunities for
optimization and distinction from broadcast protocols.

To the best of our knowledge, no comparable efforts exist
for achieving non uniformity in WSNs. However, the fish-
eye [2] technique from computer graphics has a similar prop-
erties, using distance to determine accuracy. This technique
inspired Fisheye state routing [3], a MANET routing protocol
in which nodes exchange routing tables with frequencies
dependent on the distances to the routing table entries. The
main difference with respect to our approach is the application
of non uniformity itself, namely in the routing tables instead
of the data and our assumption of mobile sinks.

Similar non uniformity of data approaches have been in-
troduced in distributed systems [4], [5]. However, neither of
these approaches consider energy or CPU processing and both
require global knowledge of the static network, thus making
them inappropriate for the wireless sensor network domain.

Our work also resembles data clustering and aggregation
in WSN. Several approaches [6]–[9] concentrate on creating
and maintaining energy-efficient clusters in the network. They
have no notion of non uniform cluster sizes or data aggregation
techniques and rarely address multiple, mobile sinks. Thus,
they cannot be reused for implementing our goals for non
uniform quality of service.

IV. ACHIEVING NON UNIFORM DATA DISSEMINATION

Considering our target application scenario, we have iden-
tified two promising techniques for achieving non uniform
data quality. The first changes the flow of uniformly produced
data, e.g. through clustering and aggregation, while the second
affects actual data production on the sensors.

A. Non Uniform Data Clustering

The first and most intuitive option to achieve non uniformity
of the data in a sensor network is to cluster nodes into
non uniform size clusters and aggregate the data inside each
cluster before sending it to sink. In other words, data is
produced uniformly by all nodes in the network, but the sink
does not receive all data. It instead receives aggregated data
representing several raw data elements.

Fig. 1. An idealized non uniform clustering. Circles, bubbles, represent
clusters whose size grows with increasing distance from the sinks (black dots).
Clusters are shared among all sinks.

The crucial property for achieving non uniformity of the
data is the size of the cluster. Here we assume a simple
function that makes clusters bigger farther away from the
sink, however as mentioned previously, other functions are
possible. To visualize the effect of our simple clustering
function, consider each cluster as a bubble containing several
sensor nodes. Bubbles around a sink are small while those
farther away are larger and contain more nodes. With multiple
sinks, bubbles should be shared among the sinks as shown in
Figure 1. This bubbles analogy takes on additional meaning
when considering movement. When a sink moves, bubbles
in front of it should break into smaller bubbles, while those
behind should merge.

Protocol Definition. Our goal in this paper is to simulta-
neously provide evidence of the potential benefits of a non
uniform data model and demonstrate the feasibility of the
approach. Thus we define here a simple, “proof-of-concept”
protocol for establishing non-uniform cluster heads for the
single, stationary sink scenario.

The first step requires announcement by the sink that wishes
to receive data, establishing routing information from each
node to the sink. This is accomplished by broadcasting a
request from the sink. Upon receipt of this announcement, each
node remembers from which node it received the message and
its own hop count to the sink, then re-broadcasts the request.
Thus, each node eventually receives the request, knows how
many hops it is away from the sink, and which node(s) it can
use as uplink-nodes for routing the data to the sink. The result
is a routing tree rooted at the sink.

After this initialization, each source (typically all nodes)
starts gathering data and sending it through one of its uplink
nodes. However, before sending the data, it checks whether it
is a cluster head or not. For our initial evaluation, we base this
decision only on the number of hops to the sink:

clusterhead =
{

true , hops is a power of 2
false , otherwise

If a node is not a cluster head, it sends all data it receives
(either its own or from other nodes) through the first uplink
node. If it is a cluster head, it does not immediately forward the
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Fig. 2. A sample network with non uniform data clusters. The sink and the
cluster heads are circled, two clusters are highlighted with dashed lines.

data. Instead, it waits for some predefined, configurable period,
gathers all the data received in this time (including its own),
aggregates them according to an aggregation function (to be
discussed shortly), marks the new data packet as aggregated,
then forwards it to the sink. Already aggregated data packets
are not aggregated again, but forwarded directly.

Figure 2 shows a sample network for aggregating data as
just described. Uplink connections form a tree rooted at the
sink and circled nodes are identified as cluster heads that
aggregate data between themselves and the next cluster heads
deeper in the tree. Intuitively, the size of the clusters grows
with increasing distance from the sink, due to the power-
of-2 function used for establishing cluster-head identity. For
example, in Figure 2 node 12 aggregates data from nodes 12,
21 and 17 while node 36 aggregates data from all nodes in its
subtree: 36, 27, 10, 50 etc.

B. Non Uniform Data Production
A second approach for implementing non uniformity of data

in a sensor network is to change the production of the data
rather than change its flow in the network. For example, a
simple approach is to have only half of the nodes produce data.
Alternatively, nodes farther from the sink could produce data
less frequently than close nodes. A simple protocol achieving
the later idea is described below.

Protocol Definition. As before we assume each sink broad-
casts its request for data, but instead of simply informing nodes
about their hop count from the sink, the request also defines
the data request function to be applied at each node. This is
a function over the parameters of the request, for example
including the data production frequency as in:

f(hops) =
{

FREQ ∗ hops , hops ≤ 10
0 , hops > 10

The effect of this function is to lower the frequency of
data production farther away from the sink. If the original
frequency is once per second, one-hop nodes will produce
data every second, two-hop nodes will produce data every two
seconds, etc. Nodes more than ten hops away will not produce
data. The overall result is a reduction in the traffic between
all sources and the sink.
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Fig. 3. Energy comparison between DIRECTEDDIFFUSION and NUDATA-
CLUSTERING over 20 different topologies. The first two bars indicate the
number of transmissions in the whole network, the last two show the load of
the maximum loaded nodes.

V. PRELIMINARY EVALUATION

The previously presented proof-of-concept protocols,
termed NUDATACLUSTERING and NUDATAPRODUCTION,
intuitively reduce data rate. Here we provide a numerical
evaluation in comparison to a simple DIRECTEDDIFFUSION
technique, similar to the “one phase pull” protocol proposed in
[10], in which gradients are built at all nodes towards each of
the sinks and all network nodes submit their (non-aggregated)
data to the sinks.

All simulations are performed in MATLAB with 50, ran-
domly deployed nodes. Influences from the physical and MAC
layers are ignored for this early evaluation, and radio range is
simulated with a constant communication radius. The scenar-
ios have one sink (randomly chosen) and all topologies are
guaranteed to be connected. Figure 2 represents one scenario
we experimented with using 50 nodes in a 100x100 area with
a radio range of 25. Our simulation code is available at our
website (http://www.inf.unisi.ch/projects/mics).

A. Non Uniform Data Clustering

Our first NUDATACLUSTERING experiments use the power-
of-two clustering presented earlier and our primary evaluation
interest is in the energy consumed for data forwarding. We
consider two measures, first the total amount of data trans-
mitted during a single round of data production, and second
the maximum amount of data transmitted through a single
node. The former reports the energy consumption across the
whole network while the later is related to the time to the first
node failure. Figure 3 shows results with 20 different initial
networks. It clearly shows that aggregating data dramatically
reduces overall network cost, a fact that implies longer network
lifetime.

These reductions in energy expenditure come at the cost of
a loss in data accuracy at the sink. The ability of the sink to
reconstruct the data in a meaningful manner depends mostly
on the data aggregation function. Here we both average the
data collected at the cluster head and report the coordinates of
this value as an average of the coordinates of the original data.
Figure 4 shows how the reconstruction of the sensor field data
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Fig. 4. Reconstruction of sensor data at the sink. The left figure shows
the data after aggregation of NUDATACLUSTERING and the right without
aggregation from DIRECTEDDIFFUSION.
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Fig. 5. Energy comparison between DIRECTEDDIFFUSION and NUDAT-
APRODUCTION over 20 different topologies, for 100 sec. The first two bars
give the number of transmissions in the whole network, the last two give the
loads of the maximum loaded nodes.

is done at the sink. The right figure shows the reconstruction
with perfect data without aggregation while the left uses only
virtual aggregated items. The X and Y coordinates identify the
sensor node position and the Z axis represents the data itself,
e.g. temperature readings. The reconstructed data fields are
extremely similar, implying both that the aggregation function
is suitable for this kind of data and its accuracy is not severely
impacted by aggregation.

Another important property to consider is the overhead
our protocol imposes. Because NUDATACLUSTERING assigns
cluster heads during the flooding of data interests, it does not
increase the overhead with respect to DIRECTEDDIFFUSION.
On the other hand, the latency of the data increases because the
cluster head waits to receive multiple values before forwarding
the aggregated data. Latency can be tuned by setting the
duration of the wait time, yielding corresponding changes in
the overall data transmission cost.

B. Non Uniform Data Production

Our second approach, NUDATAPRODUCTION, changes data
production at each node according to the earlier function that
reduces data production frequency farther from the sink.

As before, our primary goal is to manage the energy
production, therefore Figure 5 again presents the total and
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Fig. 6. Percentage energy improvement over DIRECTEDDIFFUSION by our
protocols for various network sizes. Each point represents an average over 30
different topologies.

maximum single node transmissions. The simulation runs
for 100 seconds, using the data production formula from
Section IV-B. The highest data production frequency is once
per second, meaning nodes one hop away from the sink
produce data every second.

There is no difference in the latency or the accuracy of
the delivered data, as no aggregation takes place. However,
data freshness is affected because distant nodes send data
infrequently.

C. Comparing both techniques

As a final consideration, we show the behavior of both
protocols as the size of the network increases. Figure 6 shows
that, in comparison to DIRECTEDDIFFUSION, NUDATACLUS-
TERING maintains approximately the same energy savings as
the network grows. This is expected because although the
clusters far from the sinks increase in size, the communication
inside the clusters also increases, thus keeping the relative en-
ergy requirements stable. In contrast, NUDATAPRODUCTION
causes nodes far away from the sink to produce less data,
dramatically reducing the overall amount of data transmitted.
Thus, in comparison to DIRECTEDDIFFUSION, the attainable
benefits from reducing data that travels multiple hops to the
sink grows as the network grows.

VI. PROTOCOL EXTENSIONS

The primary result of our simulations is the positive proof of
concept that our ideas have potential applicability in an energy-
restricted wireless sensor network. Therefore, the next step is
to extend these preliminary protocols in several directions.

A. Features

Thus far the scenario for both the data clustering and data
production approaches includes only a single, stationary sink.
However our eventual target scenario requires support for
multiple, mobile sinks.

Mobile Sinks. We are currently exploring two basic ap-
proaches to address mobile sinks, one global and one local.

In the global scenario, the distributed data generated as a
result of a request is considered soft state that expires after



a given time period. This requires each sink to periodically
renew the request, but also trivially allows the request to
change each period. Each time the sink renews the request,
it floods the network again, resetting the whole system.

Instead, a locally-restricted approach constantly maintains
routing and clustering state. As the sink moves, it triggers
routing and clustering updates only where applicable, e.g. in a
restricted area around the sink. In reference to the bubbles idea
presented earlier, this corresponds to breaking big bubbles and
merging small bubbles when the sink correspondingly moves
in and out of a region.

Multiple Sinks. While both of our current approaches can
trivially be extended to maintain distinct state for multiple
data sink requests, further increases in network lifetime can
be achieved by sharing the aggregation points or merging the
data sending functions for multiple sinks. Clearly coordination
is required to merge the state from different requests, thus
demonstrating the trade-off between the possible savings from
sharing and the cost to determine how to share.

B. Approaches

As already noted, the protocols of the previous section are
simply a proof of concept to demonstrate the potential benefits
of non uniform information dissemination. The protocols
themselves are simple, straightforward approaches that can
easily be improved through a variety of techniques.

Combining Clustering and Production Functions. So far we
have described two approaches, one that defines aggregation
points and the other that manages the data production function.
We also intend to consider a combination of the two that
essentially elects a single node inside each cluster to report
data, and turns off data production at all other nodes. Rotating
the reporting node can likely further improve results. Overall,
while we expect that efficiency will increase, this will come at
the cost of determining and rotating the single data producer.

Learning. One approach for solving the general non uniform
data dissemination problem is through learning of the best
nodes to serve as cluster heads or the best routes for data
to take back to the source. Our prior research [11] explores
ideas of learning the best routes from a single data source
to multiple sinks, using local feedback information to find
the optimal results. Our idea is to apply similar feedback
techniques locally within the clusters, and globally to adapt
as the sinks move and the flow of data changes.

The cost of such an approach is the exploration phase
which may make non-optimal selections while searching for
the best available solution. By minimizing the duration of
the exploration phase, the additional overhead for learning is
amortized by the lower cost results.

Exploiting Node Location. Throughout our discussion we
have assumed that nodes know their own location, but make all
decisions without taking this into consideration. We intend to
exploit location information in the learning phase, for example
refining the choice of clusters to eliminate extensive overlap
in the coverage areas of adjacent clusters. Precisely how to
use location depends on the approach, but both clustering

and adjusting the data production can be improved using this
additional information.

VII. CONCLUSION AND FUTURE WORK

The main goal of this paper is to define non uniform quality
of service for WSN and to explore the opportunities it raises
for prolonging network lifetime. As such, we have identified
the main challenges and advantages and presented two proof-
of-concept protocols. Our initial evaluations of these very
simple approaches show that, in general, the concept of non
uniform data quality has enormous potential to extend network
lifetime over conventional approaches. This clearly motivates
future work to extend and enhance our initial protocols to
capture all features required by applications that can support
non uniform data quality.
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