
Enabling Disconnected Transitive Communication in
Mobile Ad Hoc Networks

Xiangchuan Chen
University of Rochester

P.O. Box 270226, CSB 734
Rochester, New York, USA 14627

chenxc@cs.rochester.edu

Amy L. Murphy
University of Rochester

P.O. Box 270226, CSB 734
Rochester, New York, USA 14627

murphy@cs.rochester.edu

ABSTRACT
Recently, mobile ad hoc computing has attracted much at-
tention in the research community. Different from most cur-
rent wireless networks, mobile ad-hoc networks have no fixed
infrastructure, all hosts are capable of movement, and the
network is continuously reconstructed into multiple discon-
nected clusters. In such environments, connection is unsta-
ble, and communication is unpredictable. Current research
mainly focuses on providing the same models of communi-
cation in this environment as in fixed networks, focusing
on routing protocols for message delivery within connected
subsets of hosts, also referred to as clusters. Although this
kind of work is crucial, it does not address the possibil-
ity of communication across clusters, taking advantage of
the movement of mobile hosts which themselves are able to
carry messages from one cluster to another. In this paper,
we propose a new model of communication model, Discon-
nected Transitive Communication (DTC), which focuses on
cross-cluster communication, and provide the details of a
routing protocol to enable it.

Keywords
Moibile ad hoc networks, message passing communication

1. INTRODUCTION
The development of compact computing devices such as

notebook computers and personal digital assistants allows
people to carry computational power with them as they
change their physical location in space. The number of such
components is steadily increasing. One goal, referred to as
ubiquitous computing, is for these devices to become seam-
lessly integrated into the environment until we are no longer
explicitly aware of their presence, much the way the electric
motor exists in the world today. Part of enabling this vi-
sion is coordinating the actions of these devices, most likely
through wireless mediums such as radio or infrared.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
POMC ’01 Newport, Rhode Island USA
Copyright 2001 ACM 1-58113-397-9/01/08 ...$5.00.

Ad hoc mobility is an extreme model of a mobile en-
vironment in which no fixed infrastructure exists to sup-
port communication. In other words, the distance between
hosts and their communication range determine connectiv-
ity and as components move, the network is continuously
reshaped into multiple clusters, with connectivity available
within each partition but not across partitions.
Freeing mobile users from a fixed infrastructure makes the

ad hoc network environment ideal for many scenarios includ-
ing systems of small components such as sensors with limited
resources to spend on communication, disaster situations in
which relief workers enter a region where the infrastructure
has been destroyed, and for settings in which establishing an
infrastructure is impossible as in a battlefield environment
or economically impractical as in a short duration meeting
or conference.
Much effort has been invested in developing protocols for

point to point and multicast communication among hosts
in ad hoc networks [2, 5]. In many ways, this work mimics
routing algorithms in the fixed network, with the primary
difference being the lack of hierarchy in the distribution of
hosts. Another feature of several proposed protocols is the
on-demand discovery of the path from the source to the des-
tination, as opposed to fixed routing strategies which build
routing paths even if there is no traffic in the network. This
approach in ad hoc environments comes from the observa-
tion that the network of connected hosts is constantly chang-
ing and pre-computing routes which may never be used un-
necessarily consumes costly wireless resources. The focus in
these message delivery protocols is on allowing communi-
cation between nodes which are multiple hops apart in the
ad hoc network. For example, Figure 1 shows an ad hoc
network. Even though hosts D and F are not directly con-
nected, any messages sent between them can pass through
host E, with E effectively playing the role of a router in the
ad hoc setting, enabling a style of transitive communication.

All of these protocols work at the packet level, and de-
livery is only possible if a path exists from the source to
the destination for a period of time long enough to dis-
cover the route and transmit the packet. We propose a
new communication model, Disconnected Transitive Com-
munication, which removes the assumption of connectivity
between source and destination from message delivery, al-
lowing a message to be passed from one host to another
even if the source and destination are never connected ei-
ther directly or transitively. It is designed to act as a mid-

A

B

C
C

D

E

F

Figure 1: A sample network with six mobile com-
ponents in two clusters. Dark lines indicate direct
connectivity between devices. Dashed lines move-
ment of node C from one cluster to the other.

dleware, exploiting existing wireless routing protocols while
providing a useful abstraction for message delivery to appli-
cations. Our strategy is most applicable where a high degree
of asynchrony in message delivery is tolerable.
The remainder of this paper provides a more precise def-

inition of the model of disconnected transitive communica-
tion (Section 2), a detailed description of our application
level routing protocol (Section 3), a discussion of our results
(Section 4), and finally some conclusions (Section 5).

2. SOLUTION STRATEGY
The communication model, termed disconnected transi-

tive communication described in this paper is intended to
provide a new level of asynchronous communication not avail-
able in the lower-level mechanisms currently being explored.
In protocols such as Dynamic Source Routing (DSR) [3],
the default procedure to send a packet initially attempts
to find a route to the destination. If no such path can be
found within a short timeout of the request for transmission
(500ms), the packet is delayed for twice that timeout. This
process repeats for at most thirty seconds, after which the
delivery fails.
Our idea is simple: Rather than simply fail when imme-

diate delivery is not possible, move the entire message (not
a single packet) to another host as close to the destination
as possible, where a closer host is defined to be one which is
likely to be in contact with the destination earlier than the
source. Note that this definition does not strictly relate to
physical proximity of the hosts. For example, in Figure 1, if
host A wants to send a message to host F , a delivery scheme
such as DSR will fail. If, however, it can be determined that
C will soon be in contact with F , A can pass the message
to C (using standard DSR), and C can pass the message to
F after C migrates to the new cluster. We do not limit our-
selves to a single intermediate hop as this example suggests,
but rather provide a general mechanism to move a message
through the network, constantly getting closer to its desti-
nation. Each time the message is transferred, the new host
effectively becomes the sender, taking on the responsibility
of propagating the message closer to the destination.

3. DISCONNECTED TRANSITIVE
COMMUNICATION

This section provides the details of our disconnected tran-
sitive communication routing protocol. The biggest chal-
lenge is determining which host, if any, is closer to the des-
tination than the host currently holding a message. For this,
we turn to application-level knowledge about host movement
and connectivity patterns as well as some general character-

istics of hosts in ad hoc networks. The protocol outlined in
this section sits at the application level (or more accurately
at the middleware level, between the operating system and
applications), requiring support from lower level unicast and
broadcast protocols.

3.1 Overview
The routing protocol is hop by hop in nature, where a

hop need not be a direct neighbor. Each host tries to find,
within its current cluster, the host which is the next best
candidate to carry the message closer to the destination.
The case where the final destination host is within the clus-
ter is treated as a special case where the destination is the
absolute best candidate host.
The first question to answer is when a host should initi-

ate the process of finding the next hop for a message. In the
ad hoc environment, the obvious answer seems to be that
this discovery should occur each time the membership of the
host’s cluster changes, however it is difficult for a host to ac-
curately detect changes in its cluster membership, especially
considering that many changes occur several hops away from
the source host and are not directly visible by monitoring
hello packets.1 We also note it is possible that even if the
membership in a cluster is not changing, the host with the
highest utility may change over time. In other words, the
choice of the best next hop for a message is parameterized
by the current time. The details of this will be evident in
Section 3.2. Therefore, we choose to discover the next host
periodically, where the period is tunable by the application
and is able to approximately detect changes in cluster mem-
bership without adding a great deal of network overhead.
The interval is shortened when cluster membership changes
are more frequent, and lengthened when changes are infre-
quent. In Section 4 we discuss the details of this parameter.
The discovery protocol runs once every period and has

three distinct phases: utility probe, utility collection, and
message redistribution. During the utility probe, the host
holding a message probes its current cluster for the utility
of the member hosts with respect to the message and its
destination. It is possible to probe for information about
the destination of multiple messages simultaneously, how-
ever for simplicity we limit our description to discovery for
a single message. The transformation necessary to send
multiple messages is straightforward. After the probe, the
source collects the utility information from its cluster mem-
bers and makes a decision about which host(s), if any, to
send the message. This decision is followed immediately by
a redistribution of the message to one or more of the clus-
ter members, using a lower level unicast routing protocol to
deliver the message. The details of each phase are discussed
in Section 3.4.

3.2 Utility computation
The key to the success of our routing strategy is the com-

putation of the next hop on the path to the destination. To
this end, we introduce a new concept, utility, to describe
the usefulness of a host as the next (application level) hop

1hello messages, or beacons are typical in many mobile
ad hoc protocols. A hello message typically contains the
identity of the sending host and is only able to be perceived
by the hosts within range of the sender. hello packets are
not typically forwarded, making their periodic transmission
ideal for immediate neighbor discovery.

for a message. In other words, for one specific message, the
utility of a host, h, reflects the possibility that h will meet
the destination of the message before the message becomes
invalid. A message carries a time to live value, and when
this expires, the message is dropped from the system. This
prevents stale, no longer useful messages from consuming
system resources.
In addition to host identity, we have identified five charac-

teristics of mobile hosts which can be exploited to increase
the dependability of the utility calculation. These include
the list of hosts most recently noticed, the list of hosts most
frequently noticed, the future plan of a host, the power level,
and the rediscovery interval. Each of these is discussed in
more detail later in this section.
To calculate utility from these parameters, we have two

basic options. First, a host holding a message and wishing
to discover the utility of its cluster members with respect
to this message can collect all the needed information from
each cluster member, then perform a local maximization to
determine the next hop for the message. This solution is
undesirable both because of the amount of network band-
width required to send the information and the requirement
that the hosts explicitly divulge the values of each of the
utility components. The second option, which we employ, is
to have each host calculate its own utility on demand. Dur-
ing the probe phase of our protocol, the source broadcasts
a request which reaches all members of the cluster, identify-
ing the key parameters of the message for utility calculation,
namely the destination of the message, the timeout of the
message, a threshold value and possibly other information
discussed later. The timeout specifies the lifetime of the
message. The threshold is a minimum utility which must be
met to consider a host as a candidate next hop and is typi-
cally set to the current host’s utility for the message. When
the utility probe arrives, the cluster member calculates its
own utility, and if the utility is above the threshold, sends
a reply back to the source. While the threshold value is not
necessary, it reduces the overall network traffic if many hosts
in the cluster have low utility.

3.2.1 Utility Components
The five components which we identify for calculation of

the utility with respect to a message are common on many
mobile hosts and can be effectively used to evaluate the pos-
sibility of future connectivity to the target host. They can
roughly be categorized into history, future, and system prop-
erties. In many mobility scenarios, the historical connectiv-
ity pattern of a host provides a reasonable estimation of the
future connectivity due to the propensity of users to repeat
patterns of movement. The two historical properties iden-
tified here are appealing because they do not require any
application intervention to collect, but instead can be ex-
tracted directly from lower level information. On the other
end of the spectrum, we can exploit the future expected be-
havior of a host which has been explicitly entered by the
user, for example in the form of a calendar (a typical appli-
cation for mobile devices such as personal digital assistants)
or a movement plan recorded for a traveling business. The
final type of property we consider includes system parame-
ters such as power and the rediscovery interval of the routing
protocol itself.
Most recently noticed. Because history is often a good

predictor for the future movement of physically mobile com-

ponents, we exploit knowledge of the hosts which have re-
cently been noticed, keeping a FIFO queue of elements of
size proportional to the portable device (assuming that a
laptop computer with a large disk can store a larger history
than a PDA with relatively little memory. To populate this
queue, a host listens to all packets on the network includ-
ing hello messages and any data messages, snooping for
message sources. If the host of a message is already in the
queue, it is removed and reinserted at the end of the queue,
stamped with the current time. A new host is simply in-
serted at the end. If this insertion causes an overflow, the
host from the head of the queue (the oldest) is evicted.
It is reasonable to expect that a host which has recently

noticed the target will do so again in the future, therefore
this component of the utility calculation (UMRN) assigns a
higher utility for a node which has recently noticed the des-
tination (D):

UMRN = (1−
CurrentTime − TimeLastNoticedD

TimeOutm

) ∗ 100

where TimeLastNoticedD is the time recorded in the MRN
queue for node D, CurrentTime is the current wall clock
time, and TimeOutm is the time after which the message m

is no longer valid in the system. This time value serves to
normalize the MRN utility among all host. If the destination
host has never been detected, or the right hand side of the
equation is negative, UMRN is set to 0. We also enforce this
non-negative utility policy on each of the following utility
computations.
Most frequently noticed. By adding minimal overhead

to the MRN queue we can also record information relevant
to the frequency of noticing a host, namely the number of
encounters and the time of the first encounter. Using this
information we can calculate UMFN , a utility value which
increases with the frequency of previous encounters:

UMFN = (1−
CurrentTime − FirstTimeNoticedD

NumTimesNoticedD ∗ TimeOutm

) ∗ 100

Future plans. The previous two values are nice because
they require no user intervention to collect or to exploit for
the utility computation. The only point where the users are
aware of this information is the storage requirement, which,
as mentioned earlier, can be adjusted to reflect the storage
available on the device. In other situations, the user can
have a more direct impact on a utility predictor by register-
ing a plan of future interaction. This can be as simple as a
list of the hosts which are expected to be met in a given time
frame, or as complex as a calendar where meeting names and
types can be associated to individual hosts. An immediate
issue which arises here is privacy of the calendar informa-
tion. This can be addressed in two specific ways. First,
we expect that a calendar application will provide a limited
interface which extracts only the information necessary for
the utility computation, namely the time to the next meet-
ing with a host D. If the host does not wish to reveal this
information, the return value is indistinguishable from the
case where no meeting is scheduled, and no private informa-
tion is leaked. Second, the computation of the utility value
is wholly contained within the host that owns the calendar.
We discuss this in more detail in Section 3.2.2, but the idea
is that by containing the calculation, the host has a greater
degree of control over the information released.

To calculate the utility based on this type of future in-
formation, UCAL, we define a function which decreases with
the time to the next meeting:

UCAL = (1−
NextMeetingTime

D
− CurrentTime

TimeOutm

) ∗ 100

As before, if no meeting with the given destination is sched-
uled, UCAL is set to 0.
Power. We now turn to basic system properties which

do not depend on the user, but rather are intrinsic to the
host itself such as the remaining power in the battery. The
driving idea behind using power for utility computation is
that the longer a host will remain alive, the higher the prob-
ability that it will meet the destination. Similarly, a host
with low power is likely to shut down, removing itself from
the system and making it an undesirable next hop:

UPower = (1−
TimeOutm

EstimatedRemainingPower
) ∗ 100

Rediscovery Interval. The final parameter we exploit
for utility computation is an artifact of our protocol, namely
the frequency which a host initiates the probe phase search-
ing for the next appropriate hop for the messages it is hold-
ing. The rediscovery interval of a host is allowed to vary
over time to reflect the environment of the host, increas-
ing when the members of the cluster are changing rapidly
and decreasing when the cluster members are stable. Sec-
tion 3.4 provides some insight into a mechanism to change
this value, but the intuition for the utility computation is to
send a message to a more active host, or a host with a lower
rediscovery interval (RDI).

URDI =
MINRDI

RDI
∗ 100

where MIN RDI is the minimum rediscovery interval for a
host, the value of which is determined based on the envi-
ronmental characteristics where the DTC communication
protocol is being employed. More details of the RDI are
discussed in Section 3.4. It is interesting to note that URDI

is the only parameter which is not affected by any properties
of the message.

3.2.2 Calculating Utilities
The overall utility of a host to serve as the next hop for

a message is computed using the above five values. Because
different values will have more meaning depending on the
environment of the application, we give the programmer the
opportunity to specify different weights for each parameter.
For example, some applications may consider the frequency
of past meetings more important than the future potential
of meeting. In this case, the weight applied to UMFN will be
higher than the weight of the calendar. The only restriction
is that the sum of the weights must equal 1. The default is
to assign each utility equal weight. The specific weights are
distributed with the utility probe message.
Another consideration is that a host may not want to re-

veal some piece of information about itself through the util-
ity function calculation. In this case, one of the utility values
will appear to be zero, where in fact the actual value is pos-
itive. While this does affect the performance of the routing
algorithm, it is something we cannot expect to control in the
anarchic mobile ad hoc environment. This, however, does
mean that because the utility calculation is contained com-
pletely within a host, that host has complete control over

int utilityComp() {
identifier hopList[]= {C, E, F};
/* retrieve this host’s id */
identifier myID = getLocalHostID();

if (myID==HopList[0]) return 30;
if (myID==HopList[1]) return 50;
if (myID==HopList[2]) return 100;
else return 0;

}

Figure 2: Specifying a hop list as part of a user
defined utility calculation.

the amount of information shared, and on whether they will
even participate in the DTC routing protocol. A host that
never replies to utility probes will never receive any packets
(including those with it as the destination).

3.3 Source-de£ned utility
With the system defined utility parameters of the previous

section the source of the message has only the freedom to
define weights, however this still limits the control of the
sender in affecting the routing. For example consider the
case where the source has explicit information about how to
route a message, such as a sequence of hosts which is likely
to result in delivery of the message. The utility parameters
cannot effective encode this information. While it would be
possible to simply add another utility parameter to handle
this case, we opt for an overall increase in flexibility, allowing
the source to provide the code of a specifically tailored utility
function (utilityComp). This function is distributed during
the utility probe phase of the protocol, is evaluated at each
host in the cluster and the value is returned during the utility
collection phase.
To avoid many of the security concerns associated with

general mobile code, we assume that this source-defined
function only has access to a very restricted set of system
parameters which are made explicitly available by the host.
These parameters are either known in advance or extracted
on the fly using a reflection mechanism. In this paper we
do not propose a specific solution, but instead rely on the
existing and growing body of work on mobile code. Figure 2
provides a simple example of a source define function which
specifies a hopList, or a sequence of hosts which, if traversed,
will most likely reach the destination. The only system in-
formation used by this function is the identity of the host on
which the function is executing (seen in the getLocalHost()
function call);
In the example, A specifically lists the sequence {C, E, F},

meaning that F is the destination, and E is closer to F

than C. As the message moves through the system, if a
node which is closer to the destination in the sequence is in
the cluster, the message should be transferred to that node.
Hosts in the sequence can be skipped. In the example of
Figure 1, the message will not be explicitly transferred to
node E because the destination, F , is immediately accessible
when C migrates (the message will pass through E as a
consequence of the underlying point to point ad hoc routing
protocol, but at no point will E be responsible for finding
the next hop at the level of our protocol).
Another possible use of this source defined function is to

findNextHop (message m)
utilityResponses = {};
myUtility = localUtility(M);
threshold = myUtility;

while (true) do
delay(RDI);
utilityResponses = {};

/* phase 1, utility probe */
broadcast(utilityProbe(m.dest,

m.timeOut,
m.weights,
m.utilityComp),

threshold);

/* phase 2, utility collection*/
delay(ResponseTimeOut);

/* phase 3, message redistribution*/
myUtility = localUtility(m);
if (utilityResponses != {}

∧(x is host in utilityResponses
with maximum utility))

send(x.host, m);
break;

enddo

Figure 3: Three phase protocol for routing a single
message m to its next destination. Functions in all
capital letters are system functions. The parameters
of send are the unicast destination and the message
being sent.

exploit the location awareness of nodes in certain situations.
Consider a set of robots with integrated global positioning
systems. Interesting utility functions can be devised to send
a message toward a home base with hosts moving in that
direction, or always propagate message to the north. The
flexibility of the application programmer to take advantage
of specialized hardware and keep the same communication
model makes this model of a user-defined utility function
attractive.

3.4 DTC routing protocol details
As outlined previously, our disconnected transitive com-

munication protocol proceeds in three phases: utility probe,
utility collection, and message redistribution. Figure 3 out-
lines the process taken to send a single messagem to its next
hop. The host holding the message iterates through a loop
containing the three phases and when the message has been
passed to the next hop, the loop terminates. While we show
this for only a single message, adding multiple messages is
trivial and can be done in one of two ways. Either a separate
loop can exist for each message, effectively running multiple
instances of the same algorithm in parallel, or the loop can
be expanded to account for multiple messages and sending
a single utilityProbe message representing all of the pend-
ing messages. This latter idea is more appealing because it
more efficiently uses the network bandwidth, an important
concern in a wireless network.
While the critical parts of the protocol appear in Figure 3,

several actions to handle the arrival of system messages oc-
cur in parallel, supporting the routing protocol. These op-

receiveUtilityProbeh(x)
/* probe message x from host h */
if (x.utilityComp ! = null)
/* use user defined utility computation */
utility = exec(x.utilityComp);

else
/* use default or provided weights with
usual utility parameters */

utility = x.weights
* localUtility(x.dest, x.timeOut);

if (utility > x.threshold)
send(h, utilityResponse(utility))

receiveUtilityResponseh(x)
/* response message x from h */
utilityResponses += (h, x);

receiveMessageh(x)
/* receive a data message from host h */
if (x.destination == myID)
pass x to application

else
/* initiate DTC for message x */
findNextHop(x);

Figure 4: Atomic operations at each host which fire
in response to the arrival of either a control mes-
sage (utilityProbe, utilityResponse) or an actual data
message.

erations are outlined in Figure 4, and are distinguished by
the type of message which arrives. A host can expect to re-
ceive a utilityProbe message at any time, in which case it
will simply compute the utility using either the user utility
function or the system parameters and weights. If the utility
is above the threshold sent with the message (x.threshold),
a reply is generated to the host which initiated the util-

ityProbe. These utilityResponse messages will be re-
ceived during phase two of the protocol, and will simply be
stored, to be examined during phase three. The only other
messages in transit are the actual data messages which are
distributed in the final phase. When one of these messages
arrives, if the receiving host is the destination, it passes the
message to the application, otherwise it begins the rediscov-
ery process for this message, calling the function defined in
Figure 3.
Rediscovery Interval. The rediscovery interval (RDI)

is critical to the routing protocol because it indicates the
frequency which the host holding the message searches for a
new host to carry the message. A small rediscovery interval
means a high load placed on the network to transmit the
utility probe and response packets. Alternately, if the re-
discovery interval is too large, the host runs the risk of not
taking advantage of a transient connection with a host with
a very high utility. Therefore, we must dynamically bal-
ance between the network load and the chance of successful
delivery.
Our current solution sets a default RDI and doubles it

each time a utility probe is completed, effectively slowing
down the frequency of rediscovery exponentially. When a
host detects new hosts in its cluster, the value is immedi-
ately reset to the initial value, forcing a quick rediscovery.
For a host to detect that new host are present, every host
listens to the periodic hello messages from its neighbors,

C

B

D

E

A

Figure 5: An example of RDI resetting: An isolated
host A moves toward a cluster.

recording whether there are new neighbors since the last
utility probe. This only captures the immediate neighbors
of a host as hello packets are not propagated to the whole
cluster. In order to detect information beyond the imme-
diate neighbors, we augment every hello message with a
boolean variable which indicates whether the RDI of the
hello sender has been reset since the last hello message
was transmitted. By adding this single bit of information,
we can effectively detect the dynamicity of the network. The
result is that the response to a new host is delayed by time
proportional to the number of intermediate hops between
hosts, as this is the time that it takes to propagate the ex-
tra bit of information through the network.
Figure 5 shows a sample of setting the RDI. Initially, hosts

B, C, D and E are in one cluser, and A, a previously isolated
host moves within range of B. During the first hello period
hosts A and B will reset their RDIs. In the second period,
C and D will reset their RDIs, and finally in the third pe-
riod, host E will reset its value. To avoid a host constantly
resetting its RDI, we impose a two cycle delay between any
resets. In the example, this means that although C and
D will see hello messages from one another in the third
round with the RDI bit indicating a reset, they will only
reset their RDI one time (in response to the message from
B in round two, ignoring the fact that the reset bit is also
sent in message received in round three).

4. DISCUSSION AND RELATED WORK
One of the features of the disconnected transitive commu-

nication protocol we present is the flexibility available to the
application designer to either accept the default parameters
of specify their own weights or even a function for utility cal-
culation. Because the choice of utility function and weights
affect the behavior of the algorithm, we believe it is critical
to put this control in the hands of the application program-
mer. Another way to increase the likelihood of successful
delivery is to increase the number of hosts the message is
propagated to on each hop. Instead of simply choosing a
single host to carry the message to the next hop (as shown
in Figure 3), the algorithm can be tailored to select the top
n hosts in the cluster with the highest utilities, where n is
specific either to the application or unique to each message.
This reduces the chance that a message will get stuck in
a local maximum, unable to get closer to the destination.
However, this benefit must be weighed against the increase
in network traffic and the overall storage required through-
out the system during message delivery.
Another possibility is to assign the rediscovery interval on

a per message basis rather than per host. A message with
high priority can be given a small RDI while one with low
priority or a distant timeout can be assigned a low RDI.
This allows the sender to have even greater control over the

forward progress made by a message, but at the same time
may place unreasonable demands on the intermediate hosts
both in terms of computation as well as network overhead if
it becomes the next hop for several high priority messages.
We must also consider the overhead on the wireless net-

work. Because the utility probe is distributed using broad-
cast, we need to pay attention to the effects of broadcast
storms and insist on the use of existing techniques to reduce
to the overhead required to broadcast [6]. Second, when
there are large numbers of messages in transit through the
system, we can consider caching information about the gen-
eral utilities of the members of the cluster in much the same
manner which ad hoc routing algorithms such as AODV [5]
store information about the current path to various hosts.
This style of caching must be carefully conceived as the
cached values will need to be more generic than the utility
calculations presented in the previous section as they can
only take into consideration the message destination, and
no information specific to the message (such as the timeout
or a user-defined utilityComp() function).
Using our algorithm in conjunction with DSR [3] also of-

fers many opportunities for optimization. At the highest
level, the DSR algorithm first enters a discovery phase to
find a path to the next host, waits for a response, then
sends a message to the discovered destination. These phases
closely match the phases of our algorithm, and combining
our utility probe with the route discovery of DSR seems
a natural place for reducing network overhead. Of course,
we must consider the tradeoff between remaining indepen-
dent of the underlying routing algorithm and the potential
increase in efficiency.
In either case, the return of utility values to the source is

an interesting place to consider for optimization. We cur-
rently assume that as soon as the utility computation is
complete, the utilityResponse message is sent via unicast
directly to the host that sent the original utilityProbe.
While this is functionally correct, the burden on the sys-
tem to establish these individual routes to the source may
be unreasonable, especially if an on-demand routing mech-
anism such as DSR is used. It may be possible during the
broadcast phase to build a short-lived spanning tree rooted
at the source, along which the reply message can be sent
without the additional routing overhead of unicast. Alter-
nately, or in addition, multiple utilityResponse message
can be collected and sent in a single message to the source.
Another approach to disconnected communication, devel-

oped at Duke university leverages off of the idea of epidemic
algorithms to propagate messages in an ad hoc network [7].
When two hosts come into communication range, the host
with the smaller identifier initiates an anti-entropy session
with the host with the larger identifier. During this session,
two hosts exchange packets that have not been seen by the
counterpart. Given sufficient buffer space and time, these
anti-entropy sessions, with reasonable probability, will even-
tually deliver the message. Unlike our approach, they do not
leverage off of any application level information. Thus, the
number of packet exchanges may be numerous. There is also
a high possibility that every message will flood the entire set
of hosts, regardless of the probability of hosts meeting. By
exploiting application knowledge and the ability of hosts to
remember their own history, our approach also achieves a
high probability of success but with many fewer messages.
An essential question to answer is whether the incorpora-

tion of application-level knowledge makes sense in a routing
protocol. To answer this, we consider the typical analysis
of traditional ad hoc routing protocols using the CMU ex-
tensions to the Berkeley NS2 simulator [1]. The input to
this simulator includes application-level information such as
the number of nodes in the system, their speed, the size of
the environment, and the model of communication among
hosts. In other words, the very analysis of the algorithms
depends on these parameters, but the behavior of the algo-
rithms does not! In fact, recent literature comparing various
ad hoc routing protocols suggests that the choice of routing
protocol depends greatly on the application environment [4].
From this, we conclude that adding this kind of application
knowledge to the routing protocol is a natural step, espe-
cially considering the potential gains in the ability to send
efficiently messages across disconnected clusters.
We are currently in the process of simulating our DTC

routing protocol using the Berkeley NS2 simulator [1]. Af-
ter considering the four ad hoc routing protocols which are
available in NS (DSDV, DSR, TORA, and AODV), we chose
to build on top of DSR due to the similarities between it and
our protocol. The core modification is that upon the fail-
ure of DSR to find a route, the DTC routing protocol takes
over, broadcasting a utility probe message and collecting re-
sponses. The MRN and MFN queues are filled by monitor-
ing all messages that flow through the DSR agent, extracting
and recording the source. Because DSR is an on-demand
protocol, it has no need of the proactive hello mecha-
nism, therefore we have included the hello protocol from
TORA in our extensions and use it to update the rediscov-
ery interval. We also expect to exploit the power-awareness
mode of NS and by assigning different initial power levels to
the hosts, analyze the protocol’s effect. Another important
point to consider is the set of scenarios suitable for testing
our protocol. The standard NS distribution contains two
basic scenarios, however they do not match well the environ-
ments where our protocol will be most useful. In general,
these scenarios have a high density of hosts, movement is
slow, and the overall connectivity among all of the hosts in
the system is high. We are currently working on scenarios
where the density of nodes is much lower, leading to multi-
ple, independent clusters with nodes moving among clusters
fairly frequently.
Once the initial simulation is complete, we expect to ex-

plore several additional scenarios, including introducing sta-
tionary hosts which can serve as stable points in the discon-
nected routing infrastructures. Although these hosts will
have the same communication capabilities as the mobile
hosts, their lack of movement lends them different character-
istics which we expect to exploit in utility calculation. We
expect that addition of these extremely predictable nodes
will, in general, increase the probability of successful deliv-
ery of a host.

5. CONCLUSION
In this paper, we identified a limitation of current com-

munication models in mobile ad hoc networks, namely their
inability to provide any communication across disconnected
clusters. We proposed a new of model for disconnected tran-
sitive communication and also described the details neces-
sary to implement our model in an application level routing
protocol based on the calculation of host utilities, contin-
uously moving messages to hosts which are likely to meet

the destination. Future research will include the develop-
ment of a more effective assignment of the rediscovery in-
terval, testing the routing protocol under various mobility
patterns, and the introduction of security mechanisms to
ensure that messages transit without corruption. Although
this work is at its very beginning stages, our initial findings
indicate that the integration of application level knowledge
into the disconnected transitive communication model has
a great potential in maximizing the communication ability
of ad hoc networks.

6. REFERENCES
[1] CMU Monarch Project Extensions to ns2.

http://www.monarch.cs.cmu.edu/cmu-ns.html, 2001.

[2] S. Das, C. Perkins, and E. Royer. Performance
comparison of two on-demand routing protocols for ad
hoc networks. In Proc. of the IEEE Conf. on Computer
Communications (INFOCOM), pages 3–12, Tel Aviv,
Israel, March 2000.

[3] D. Johnson, D. Maltz, Y. Hu, and J. Jetcheva. The
Dynamic Source Routing Protocol for Mobile Ad Hoc
Networks . Internet Draft, March 2001. IETF Mobile
Ad Hoc Networking Working Group.

[4] A. B. McDonald and T. Znati. A dual-hybrid adaptive
routing strategy for routing in wireless ad-hoc
networks. In Proc. of IEEE Wireless Communications
and Networking Conference 2000 (WCNC ’00),
Chicago, IL, USA, September 2000.

[5] C. Perkins and E. Royer. Ad-hoc on-demand distance
vector routing. In Proc. of the 2nd IEEE Wkshp. on
Mobile Computing Systems and Applications, pages
90–100, New Orleans, LA, USA, February 1999.

[6] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih. Adaptive
approaches to relieving broadcast storms in a wireless
multihop mobile ad hoc network. In Proc. of the 21st
IEEE Int. Conf. on Distributed Computing Systems
(ICDCS), Mesa, AZ, USA, April 2001.

[7] A. Vahdat and D. Becker. Epidemic routing for
partially-connected ad hoc networks. Technical Report
CS-2000-06, Duke University, 2000.

