
Minimizing the Reconfiguration Overhead
in Content-Based Publish-Subscribe

Gianpaolo Cugola1, Davide Frey1, Amy L. Murphy1,2, and Gian Pietro Picco1

1 Dip. di Elettronica e Informazione, Politecnico di Milano, Italy
{cugola, frey, picco}@elet.polimi.it

2 Dept. of Computer Science, Univ. of Rochester, NY, USA
murphy@cs.rochester.edu

ABSTRACT
The publish-subscribe model provides strong decoupling
among the components of a distributed application. This
makes it amenable to highly dynamic environments. Nev-
ertheless, publish-subscribe systems exploiting a distributed
event dispatcher are typically not able to rearrange dynam-
ically their operations to adapt to changes which impact
the topology of the dispatching infrastructure. This paper
presents a description and analysis of a novel algorithm to
deal with this kind of reconfiguration. The strength of this
algorithm is its ability to minimize the portion of the system
affected by the reconfiguration by exploiting a novel concept
we refer to as the reconfiguration path. Simulations compare
our approach with two others and show a significant reduc-
tion (up to 76%) in the overhead caused by reconfiguration.

Keywords
Publish-subscribe, middleware, reconfigurable systems

1. INTRODUCTION
Publish-subscribe middleware is enjoying increasing pop-

ularity. After the initial centralized implementations, com-
mercial and academic efforts are bringing increased scala-
bility by distributing the event dispatching infrastructure.
The next major challenge is to allow distributed publish-
subscribe to support reconfiguration in order to adapt to
topological changes in the physical network. Such recon-
figuration may come from explicit changes in a controlled
environment, e.g., an enterprise environment whose system
administrator adds new machines to cope with increased
load. It may also arise in less controlled scenarios such as
mobile environments, where the movement of hosts commu-
nicating through wireless links affects the physical network
topology. The publish-subscribe middleware should tolerate
such reconfigurations with minimal or no perturbation of its

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

normal operation.
The majority of currently available publish-subscribe mid-

dleware ignores the issue of reconfiguration: only a few sys-
tems employ an inefficient strawman solution. Our earlier
work [10] addressed reconfiguration with the goal of identi-
fying a solution applicable to every possible reconfiguration
scenario. The resulting algorithm is a compromise between
a performance improvement over the strawman solution and
applicability. However, in controlled reconfiguration scenar-
ios, this approach generates more overhead than necessary.
Our goal in this paper is then to reduce the overhead as
much as possible, even at the cost of reducing the applica-
bility of the resulting solution. The algorithm we devised,
besides being useful by itself, also represents a “minimal” so-
lution, and is thus applicable for evaluating the performance
of other approaches.

The contributions of the paper can be summarized as fol-
lows. First, we define a notion of reconfiguration path, which
identifies the minimal portion of the system involved in re-
configuration. Second, we present an algorithm that exploits
this notion to reconfigure the system efficiently. Third, we
present simulation results that compare the performance of
the new algorithm against the strawman solution and the
solution of [10]. The results show a significant overhead re-
duction, up to 76% with respect to the strawman solution.

The structure of the paper is as follows. Section 2 provides
the reader with the basics of publish-subscribe middleware.
Section 3 defines the reconfiguration problem we tackle in
this paper. Section 4 briefly describes the strawman solution
mentioned above, introduces the notion of reconfiguration
path, and describes the new algorithm. Section 5 presents
the simulation results assessing our algorithm. Section 6
discusses the implications of our approach on the reconfigu-
ration scenarios. Finally, Section 7 discusses related efforts
in the field and Section 8 ends the paper with brief conclud-
ing remarks.

2. PUBLISH-SUBSCRIBE SYSTEMS
Applications exploiting publish-subscribe middleware are

organized as a collection of autonomous components, the
clients, which interact by publishing events and by subscrib-
ing to the classes of events they are interested in. Recently,
many publish-subscribe middleware have become available,
which differ along several dimensions [3, 5, 11].

In this paper we focus on content-based publish-subscri-
be middleware adopting a distributed infrastructure to route

Figure 1: Subscription forwarding.

events. Content-based systems enable clients to specify sub-
scriptions using a pattern matching language (e.g., based on
regular expressions). These systems provide much greater
flexibility with respect to subject-based systems, which only
allow matching against predefined classes of events. Never-
theless, the price is added complexity in the implementation.
In the context of our problem, existing solutions developed
for subject-based systems (e.g., using multicast) are not ap-
plicable, since a predefined notion of subject does not exist
in content-based systems.

Our solution is developed by assuming that event rout-
ing is performed by using subscription forwarding [3] on an
unrooted tree topology, as this choice covers the majority
of existing systems. In a subscription forwarding scheme,
subscriptions are delivered to every dispatcher, along a sin-
gle unrooted tree spanning all dispatchers, and are used to
establish the routes that are followed by published events.
When a client issues a subscription, a message containing
the corresponding event pattern is sent to the dispatcher
the client is attached to. There, the event pattern is in-
serted in a subscription table together with the identifier of
the subscriber, and the subscription is forwarded to all the
neighbors. During this propagation, the dispatcher behaves
as a subscriber with respect to the rest of the dispatching
tree. Each dispatcher, in turn, records the event pattern and
re-forwards the subscription to its neighbors, except for the
one that sent it. This scheme is usually optimized by avoid-
ing subscription forwarding of the same event pattern in the
same direction1. This process effectively sets up a route for
events, through the reverse path from the publisher to the
subscriber. Requests to unsubscribe from a given event pat-
tern are handled and propagated analogously to subscrip-
tions, although at each hop entries in the subscription table
are removed rather than inserted.

Figure 1 shows a dispatching tree where some dispatchers
(the black and gray ones) are subscribed to two different
event patterns. The arrows represent the routes laid down
according to these subscriptions, and reflect the content of
the subscription tables of each dispatcher. To simplify the
treatment, here and in the rest of the paper we ignore the
presence of clients and focus on dispatchers. Accordingly,
even if in principle only clients can be subscribers, with
some stretch of terminology we say that a dispatcher is a
subscriber if at least one of its clients is a subscriber. More-
over, we assume that the links connecting the dispatchers are
FIFO and transport reliably subscriptions, unsubscriptions,
events, and other control messages. Both assumptions are
typical of mainstream publish-subscribe systems, and are

1Other optimizations are possible, e.g., through “coverage”
or aggregation of subscriptions, as in [3].

easily satisfied by using TCP for communication between
dispatchers.

3. THE RECONFIGURATION PROBLEM
The reconfiguration problem we address can be defined

informally as the ability to rearrange the dispatching infras-
tructure to cope with changes in the topology of the under-
lying physical network, and to do this without interrupting
the normal system operation.

We view this problem as composed of three subproblems
that involve:

1. the reconfiguration of the overlay network that realizes
the dispatching infrastructure, to retain connectivity
among dispatchers;

2. the reconfiguration of the subscription information held
by each dispatcher, to bring it up-to-date with the
changes above without interfering with the normal pro-
cessing of (un)subscriptions;

3. the minimization of event loss during reconfiguration.

The objective of the work we describe here is to solve the
second of the aforementioned problems. The rationale for
this choice lies in the fact that maintaining the consistency of
subscription information is the defining problem of content-
based publish-subscribe systems: if the information necessary
for event dispatching is misconfigured the whole purpose of
a content-based system may be undermined. The availabil-
ity of a single unrooted tree connecting all the dispatchers
is a precondition for the type of content-based systems we
are interested in, but it is not their core feature. Our ongo-
ing research activities are focused on addressing the other
two problems. Specifically, we are investigating how existing
overlay maintenance algorithms can be adapted to solve the
first problem, and we already devised solutions to the third
one based on epidemic algorithms [4].

Within this same framework, [10] tackled the second prob-
lem without making any assumptions about the sources of
reconfiguration or the way the overlay network is kept con-
nected. In this paper we adopt a different approach. Our
goal is i) to push overhead optimization as far as possible
and ii) to identify the implications on the tree maintenance
layer, and consequently on its applicability to various recon-
figuration scenarios. Essentially, by pushing optimization to
an extreme we seek to investigate the whole spectrum of pos-
sibilities available to deal with reconfiguration.

4. DEALING WITH RECONFIGURATION
To solve the aforementioned problem we start by observ-

ing that a tree of dispatchers may change in a number of
ways. New dispatchers can be added, dispatchers can be
removed, links may vanish or appear, and so on. To identify
a single solution applicable in every situation, we focus on
reconfigurations that involve the removal of a link and the
insertion of a replacement that keeps the dispatching tree
connected. Our motivation is that link substitution rep-
resents the fundamental building block for more complex
reconfigurations. For instance, the disappearance of a dis-
patcher from a tree can be easily dealt with as a number of
link substitutions reconnecting the children of the dispatcher
to its parent. At the same time, simpler reconfigurations,
involving only link removal or insertion and thus leading to

Figure 2: A dispatching tree during and after a
reconfiguration performed using the strawman ap-
proach. Most subscriptions removed by a quickly
propagating unsubscribe message in B’s subtree
have to be restored when the new link is established.

tree partitioning or merging, can be dealt with using plain
subscriptions and unsubscriptions, as we describe later.

Given these premises, Section 4.1 describes a strawman
approach to reconfiguration. Section 4.2 defines the notion
of reconfiguration path, which identifies precisely the mini-
mal portion of the tree that needs to be reconfigured. Fi-
nally, Section 4.3 presents our algorithm that exploits this
notion to rearrange routes for events, thus reducing the traf-
fic overhead involved in the reconfiguration.

4.1 A Strawman Approach
In principle, the removal of an existing link or the inser-

tion of a new one can be treated by using exclusively the
primitives already available in a publish-subscribe system.
In particular, the removal of a link can be addressed using
unsubscriptions. In this case, neither of the end-points of the
removed link is able to route events matching subscriptions
issued by dispatchers on the other side of the tree; hence,
each of them should behave as if it had received, from the
other end-point, an unsubscription for each of the event pat-
terns the latter was subscribed to. Similarly, the insertion
of a new link in the tree can be carried out in a dual way
using subscriptions. This approach is the most natural and
convenient when the reconfiguration involves only either the
insertion or the removal of a link, and it is actually adopted
by some publish-subscribe middleware.

Nevertheless, in many other situations reconfiguration de-
mands the replacement of a broken link with a new one,
effectively changing the topology of the tree without chang-
ing the set of connected dispatchers. This can be dealt with
by treating link substitution as a combination of the afore-
mentioned link insertion and removal operations, e.g. as
suggested in [3, 15], but the results are far from optimal.
In fact, if the route reconfigurations caused by link removal
and insertion propagate concurrently, they may lead to the
dissemination of subscriptions which are removed shortly af-
ter, or to the removal of subscriptions that are subsequently
restored, wasting a lot of messages and potentially causing

Figure 3: A dispatching tree before and after a re-
configuration.

far reaching and long lasting disruption of communication.
Figure 2 illustrates this concept on a simplified version

of the dispatching tree of Figure 1. For simplicity, only
subscriptions for a single event pattern p are shown, but in
a real system the reconfiguration algorithm would process
all event patterns in parallel. According to this strawman
solution, when the link between A and B is removed, both
end-points trigger unsubscriptions in their subtrees, without
taking into account the fact that a new link has been found
between C and D. The amount of disruption caused to the
system depends on the message propagation speed.

The deficiency of this approach is that the reconfiguration
messages reach areas of the dispatching tree that should not
be affected at all by the reconfiguration. This observation
leads to the idea of delimiting the area involved in the re-
configuration, a key element of our approach.

4.2 Delimiting the Reconfiguration
From the perspective of event routing, the events that

were intended to traverse the vanished link in order to reach
the other part of the tree must be re-routed across the new
link. This observation leads us to the definition of the recon-
figuration path that contains the dispatchers connecting the
old and new link. We define this path as the concatenation
(without duplicates) of three sequences of dispatchers:

• the head path begins with the first end-point of the
removed link (i.e., the end-point with the lowest iden-
tifier) and contains the sequence of dispatchers con-
necting it to the end-point of the new link that lies in
the same subtree, which is included as the last node of
the head path;

• the new link contains the end-point of the new link
laying in the same subtree of the first end-point of the
removed link, and the other end-point of the new link;

• the tail path begins with the other end-point of the
new link, and contains the dispatchers connecting it
to the second end-point of the removed link, inclusive.

Figure 3 shows a reconfiguration example where the link
(A, B) is being substituted with the link (C, D). In this

case, (A, E, F, C) is the head path, (C, D) is the new link,
(D, G, B) is the tail path, yielding, after duplicate elimina-
tion, the reconfiguration path (A, E, F, C, D, G, B).

The importance of the concept of reconfiguration path
comes from the following consideration: during the reconfig-
uration, a dispatcher that does not belong to the reconfigu-
ration path does not experience a change in its subscription
tables. Subscription information need only change on the
dispatchers lying on the reconfiguration path.

4.3 Performing the Reconfiguration
Figure 3 provides an intuitive argument for the above

statement. The subscription ab, which was exploiting the
vanished link (A, B) to route events towards B’s subtree, is
removed by reconfiguration. Once the reconfiguration pro-
cess has been completed, the routing information it provided
is replaced by subscriptions ab1, ab2, ab3, and ab4. Similarly,
the effect formerly achieved by ba is obtained by ba1, ba2,
and ba3 that, together with the subscriptions already present
in A’s subtree, enable events to reach the subscriber E.

To understand the details of the process it is worth making
two observations. First, the subscriptions directed towards
A’s subtree only need to be added in B’s subtree. This
is because a subscriber’s subtree always contains complete
routing information to allow events to reach the subscriber
from any of its dispatchers. Second, some of the subscrip-
tions necessary to allow events to reach the other subtree
may already be present due to other subscribers. In this
example, in fact, only ab2, ab3, and ab4 need to be added in
A’s subtree: ab1 was already present to route events from
A towards the subscriber E. In the other subtree, only ba3

needs to be added towards A, since ba1 and ba2 were already
present because of D.

These observations allow us to derive a general behavior:
subscriptions replacing those from A to B are needed only
on the head path. Similarly, subscriptions replacing those
from B to A are needed only on the tail path.

To exploit the nature of the reconfiguration path, we de-
vised an algorithm that propagates along dispatchers only in
one direction, following the ordering imposed by the recon-
figuration path and updating subscription tables along the
way. The algorithm must correctly reconstruct the routing
information (i.e., appropriately insert and delete subscrip-
tions) in both directions, from A to B and vice versa. Thus,
processing must be somehow different in the head and tail
paths, and on the new link. Moreover, the normal opera-
tions of the publish-subscribe system are also being carried
out during the reconfiguration, and the system must be left
in a consistent state.

In the remainder of this section we present a reconfigura-
tion algorithm that leverages off the definitions and observa-
tions made thus far. For the sake of clarity, the description of
the algorithm is split in two parts. Section 4.3.1 describes
the basic operations of the algorithm without the details
concerning the management of the (un)subscriptions issued
during the reconfiguration; these are instead presented in
Section 4.3.2.

4.3.1 Basic Operation of the Algorithm
This section steps through a single reconfiguration. Con-

siderations for handling multiple, concurrent reconfigura-
tions can be found in Section 6.
Starting the Reconfiguration. The reconfiguration process is

started by the initiator, i.e., the first dispatcher on the re-
configuration path. Two sets of patterns are relevant: the
set Padd of patterns for which subscriptions need to be added
along the reconfiguration path, and the set Pdel of patterns
for which subscriptions need to be removed along the re-
configuration path. Looking at Figure 3, Padd enables the
insertion of the missing abi subscriptions, on the path from
A to C, while Pdel enables the removal of the unnecessary
subscriptions on the path from C to A.

At the initiator, these two sets are initialized with the
same patterns: those belonging to subscriptions previously
issued by the other end-point of the vanished link (ab in
Figure 3). For each event pattern in Padd, a new entry is
inserted in the initiator’s subscription table as if it were a
subscription coming from the next dispatcher in the recon-
figuration path (E in Figure 3). All the entries in Pdel that
identified a subscription by the other end-point of the re-
moved link (arrows toward B in Figure 3) are deleted from
the subscription table. In Figure 3, these actions cause re-
spectively the insertion of ab1 and the deletion of ab.
Reconfiguring the Head Path. After reconfiguration is com-
pleted at the initiator, the next step involves recomputing
Pdel. Generally, Pdel must contain subscriptions used only
to route events toward the removed link. Therefore if a dis-
patcher’s subscription table contains a subscription to any
dispatcher (or client) other than the next on the reconfigu-
ration path, the subscription is removed from Pdel.

Together Padd, Pdel, and a list of the dispatcher iden-
tifiers in the reconfiguration path form the reconfiguration
message, recmsg, which is created at the initiator and prop-
agated along the reconfiguration path. Each dispatcher re-
ceiving the recmsg, performs the same operations originally
performed by the initiator: update of the subscription table,
re-computation of Pdel, and propagation of a new recmsg.
Reconciling Subscriptions Across the New Link. When the
recmsg reaches the first end-point of the new link (C in
Figure 3), the new link is physically available but it has not
been logically “activated” in the tree. Therefore, because C

is a member of the head path, it updates its subscription
table as described earlier. Then, it activates the new link
and sends to the second end-point a subscription message
for each event pattern in its subscription table, followed by
a recmsg containing only Padd.
Completing the Reconfiguration. At this point, the subscrip-
tions sent across the new link propagate throughout the sec-
ond subtree normally. Most importantly, they enable the
correct routing of events across the new link and establish
the path for event propagation on the tail path. The only
remaining step is the removal of superfluous subscriptions
on the tail path, i.e., those subscriptions that were used
only to route events to the first subtree via the removed
link (e.g., the subscriptions from G to B and from D to G

in Figure 3). These subscriptions cannot be removed until
the subscription messages have propagated all the way to
the end of the reconfiguration path (B in Figure 3), since
they may be needed by other subscribers in the second sub-
tree, and this information cannot be known by the recmsg

that travels along the tail path.Therefore, the second end-
point of the new link propagates the recmsg along the tail.
Each dispatcher simply forwards the message, but when
it reaches the last dispatcher on the reconfiguration path,
this dispatcher behaves as if it had received unsubscription
messages for each subscription toward the initiator in its

subscription table (ba in Figure 3). These unsubscriptions
propagate normally, eliminating only the superfluous sub-
scriptions on the reconfiguration path.

4.3.2 Dealing with Concurrent (Un)Subscriptions
This section completes the algorithm description by ad-

dressing issues that arise when subscriptions and unsub-
scriptions are issued during the reconfiguration process.
Avoiding Race Conditions on the Head Path. To understand
the first issue, we observe that the recmsg flows along the
head path in the opposite direction to normal subscription
messages, yet part of its behavior is to add subscriptions. In
other words, the recmsg activates a subscription before the
event recipient is aware of it. While this is normally accept-
able, in the case where the recipient is already a subscriber
and issues an unsubscription between the establishment of
the subscription at the upstream dispatcher and the arrival
of the recmsg, the unsubscription has the effect of remov-
ing the subscription established by reconfiguration. Such
behavior interrupts the propagation of events along the re-
configuration path to the second subtree.

The solution we adopt requires the upstream dispatcher to
remember the subscriptions just added, and to delay the pro-
cessing of unsubscriptions until the downstream dispatcher
acknowledges the receipt of the recmsg. This allows the
upstream dispatcher to discern between an unsubscription
which would disrupt event propagation along the reconfigu-
ration path, and one that should instead be processed.
Reconciling Subscriptions Across the New Link. Prior to
the arrival of the recmsg at the second end-point of the
new link, the second subtree is unaffected by the reconfigu-
ration, and normal subscriptions and unsubscriptions can be
issued without the possibility to reach the initiator’s subtree.
Therefore, the views of the two subtrees must be reconciled.

As for unsubscriptions on the second subtree, it is possi-
ble that the new subscriptions laid down on the initiator’s
subtree are no longer necessary. This can be determined
by the second end-point of the new link (D in Figure 3)
by comparing Padd against its own subscription table. For
each subscription found in Padd but not in the local table,
an unsubscription message is sent across the new link.

Similarly, there may be new subscriptions in the table that
are not present in Padd. Immediately propagating such sub-
scriptions upon receipt of the recmsg may, however, lead
to the propagation of subscriptions that are going to be re-
moved by the unsubscription messages sent by the second
end-point of the removed link. Therefore, we delay the prop-
agation of these subscriptions until the second end-point of
the new link receives notification from the last dispatcher
that the reconfiguration process is complete. At this time,
the second end-point of the new link has already processed
any unsubscriptions generated during the reconfiguration.
Therefore it can compare the copy of Padd it received earlier
against its current subscription table and propagate only the
necessary subscriptions.

5. SIMULATION RESULTS
In this section we assess our algorithm through simulation.

The first goal is to verify whether the algorithm correctly re-
stores routes upon reconfiguration. Our results show2 that

2The interested reader can find the corresponding charts and
additional details in the full technical report [6].

indeed event delivery returns to 100% after each reconfig-
uration. The other and primary goal, which we discuss
thoroughly in the following, is to compare the reconfigu-
ration overhead against other approaches. The baseline of
our comparison is the strawman solution described in Sec-
tion 4. In addition, we consider an enhancement, referred
to with the oxymoron “optimized strawman”, which lim-
its route disruption—and hence overhead—by appropriately
performing unsubscriptions after subscriptions. Details can
be found in [10].

The overhead is determined by the sum of three com-
ponents: i) the (un)subscription messages being exchanged
because of reconfiguration; ii) the event messages being mis-
routed along obsolete subscriptions; and iii) the additional
messages required by our solution to limit the changes to the
reconfiguration path. Message overhead is defined in terms
of number of hops. Thus, for instance, a subscription issued
by a dispatcher generates an overhead equal to the number
of hops traveled by the subscription message.

Simulations were run by using the settings extensively de-
scribed in [10]. Here, we only point out that we compare the
algorithms in scenarios with low (20%) and high (80%) den-
sity of subscribers, and with low (1 publish/s) and high (50
publish/s) event publishing load per dispatcher. As in [10],
data points are reported together with their Bezier interpo-
lation to help visualize the overall trend.
Overall improvement. Figure 4 shows the percentage of im-
provement of both our solution and the optimized straw-
man with respect to the strawman solution, in a configura-
tion with low publishing load. The charts confirm the intu-
ition that both these solutions perform better in scenarios
with a low density of subscribers. In this case, the unneces-
sary (un)subscriptions propagated by the strawman solution
travel farther in the network than in the other two cases.
Moreover, in sparse trees (i.e., trees with few dispatchers)
our approach improves more than the optimized strawman,
since it limits the reconfiguration strictly to the reconfigura-
tion path while the optimized strawman algorithm allows a
small fraction of unnecessary subscriptions to travel farther.

To give a feel for the relevance of the percentage improve-
ment, in a tree of 200 dispatchers a strawman reconfigura-
tion generates an average of 3,500 messages (with a peak
of 8,000) when the density of subscribers is high, and 5,300
(with a peak of 18,000) when it is low. Hence, even the
improvement provided by the optimized strawman—15% in
a dense tree—already leads to a significant overhead reduc-
tion, which is improved further (up to 40%) by our solution.

The top chart in Figure 5 shows how the overhead is af-
fected by a low density of subscribers when the event load is
high. Comparing this chart to the top one in Figure 4, it is
evident that the improvement brought by both solutions is
smaller under a high event load, due to the increased number
of misrouted events.
Misrouted Events. When events are published at a high
rate the overhead becomes more dependent on the number
of misrouted events, because more events can be forwarded
along stale routes not yet removed by reconfiguration. The
solution that suffers most from this phenomenon is the opti-
mized strawman, since it may maintain obsolete routes for a
longer period of time due to its deferral of unsubscriptions.
Our solution exhibits a lower overhead because the stale
subscriptions that can cause the propagation of misrouted
events are situated only along the reconfiguration path. The

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pe
rc

en
ta

ge
 o

f i
m

pr
ov

em
en

t

number of dispatchers

sparse subscribers - low event load

optimized strawman
reconfiguration path

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pe
rc

en
ta

ge
 o

f i
m

pr
ov

em
en

t

number of dispatchers

dense subscribers - low event load

optimized strawman
reconfiguration path

Figure 4: Improvement against the strawman solu-
tion with a low (top) and a high (bottom) density
of subscribers.

bottom chart in Figure 5 shows the difference in the number
of misrouted events in a scenario with high event load.

Going back to the top chart in Figure 5 and the top chart
in Figure 4, we can now appreciate better the impact of mis-
routed events. The improvement obtained by the optimized
strawman drops from an average of about 44% with few
events to an average of about 10% with a large number of
events. Instead, the improvement achieved by our solution
only decreases from 70% to 60%.

6. DISCUSSION
The simulation results show that our initial goal of push-

ing optimization to an extreme has been achieved. The iden-
tification of the reconfiguration path as the minimal portion
of the tree of dispatchers to be involved in the reconfigura-
tion guided us in defining an algorithm that performs very
well even with respect to the optimized solution described
in [10]. On the other hand, the peculiarities of this solution
pose some requirements on the tree maintenance algorithm
which, in turn, suggest specific scenarios of reconfiguration.

The algorithm we presented here requires a tree main-
tenance algorithm capable of detecting link breakage and
of determining a new route that could replace the broken
link (i.e., the reconfiguration path). Moreover, concurrent
reconfigurations can be easily taken into account by distin-
guishing them through a reconfiguration identifier, as long
as their reconfiguration paths do not overlap, i.e., they do
not share a link. In this case, in fact, the corresponding
reconfiguration processes would interfere.

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

pe
rc

en
ta

ge
 o

f i
m

pr
ov

em
en

t

number of dispatchers

sparse subscribers - high event load

optimized strawman
reconfiguration path

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140 160 180 200

m
is

ro
ut

ed
 e

ve
nt

s

number of dispatchers

sparse subscribers - high event load

optimized strawman
reconfiguration path

Figure 5: Improvement against the strawman solu-
tion (top) and number of misrouted events (bottom)
in a scenario with low density of subscribers and
high event load.

These considerations suggest that the scenarios where our
algorithm finds immediate and practical applicability are
those involving a reconfiguration triggered at the applica-
tion layer, e.g., when reconfiguration is initiated by a system
administrator for balancing the traffic load or to add new
dispatchers. In these controlled environments the above re-
quirements are easily met, and our algorithm provides the
best performance in terms of traffic overhead due to reconfig-
uration. The applicability of our approach is strengthened
further by the observation that these controlled scenarios
are very common in the domains where publish-subscribe
middleware is currently deployed, i.e., large enterprise net-
works.

Another scenario that recently became popular and that
can exploit our approach is provided by peer-to-peer appli-
cations [9]. Well-known problems in this field include how
to route information among peers (e.g., queries and replies
in file sharing applications, or messages in messaging ap-
plications) and how to reconfigure routes to cope with the
frequent changes of the topology of the peer overlay net-
work as users join and leave the system. This is where our
approach can be applied. In fact, as observed also by other
researchers [8], content-based routing may be easily adapted
to this setting by providing each peer with the ability to
route messages much like a dispatcher. This scenario fits
the constraints identified above since connection and dis-
connection of peers is usually kept under strict control of
the application, e.g., users must press a button to join or
leave the peer-to-peer network.

More problems exist in less controlled scenarios, such as
those resulting from the adoption of mobile, wireless net-
works. In these settings, reconfiguration is largely out of
the control of the application and it is difficult to avoid con-
current, overlapping reconfigurations. While our approach
currently does not solve these issues, we are investigating
alternative mechanisms exploiting the novel notion of re-
configuration path introduced by this paper. On the other
hand, it is worth noting that the solution we presented
in [10] does fit these more extreme situations. Together, the
two approaches cover the whole spectrum of reconfiguration:
the solution presented here brings maximum performance
in controlled scenarios, while the one presented in [10] still
brings significant improvements but for arbitrary reconfigu-
rations. Clearly, the choice of which approach is best is tied
to the nature of the deployment environment.

7. RELATED WORK
Most publish-subscribe middleware target local area net-

works and adopt a centralized dispatcher. Recently, the
problem of wide-area event notification attracted the atten-
tion of researchers and systems exploiting a distributed dis-
patcher became available, e.g. ([5, 3, 7, 14, 1, 12]). To the
best of our knowledge, none of them provide any mechanism
to support the reconfiguration addressed by this paper.

The closest match is the work on Siena [3] and the system
described in [15]. These papers briefly suggest the use of
the strawman solution to allow subtrees of dispatchers to be
merged or trees to be split, but they do not provide details
about its design, let apart providing an implementation or
a validation through simulation. Jedi [5] provides a differ-
ent form of reconfiguration that allows only clients (not dis-
patchers) to be added, removed, or moved to a different dis-
patcher at run-time. Similarly, Elvin supports mobile clients
through a proxy server [13]. Finally, IBM Gryphon [1] and
Microsoft Herald [2] claim to support a notion of reconfig-
uration similar to the one we address in this work, but we
were unable to find any public documentation.

8. CONCLUSIONS
The problem of dealing with topological reconfiguration

in publish-subscribe middleware has been brought only re-
cently to the attention of the research community. Existing
solutions are based on a strawman approach whose simplic-
ity is often outweighed by its inefficiency. The only example
of an enhanced solution is described in [10]. In this work, we
wanted to push the overhead reduction further and, at the
same time, investigate the required assumptions about the
management of the underlying topology. Our solution limits
reconfiguration to a well defined path involving the topologi-
cal change, which however requires greater knowledge about
the topology. In scenarios where these assumptions can be
met, simulations show that our approach enables a remark-
able 76% overhead reduction against the strawman solution,
and significant improvements over the one described in [10].

Acknowledgements. The work described in this paper was
partially supported by the Italian Ministry of Education,
University, and Research (MIUR) under the VICOM project,
and by the National Research Council (CNR) under the IS-
MANET project.

9. REFERENCES
[1] G. Banavar et al. An Efficient Multicast Protocol for

Content-based Publish-Subscribe Systems. In Proc. of
the 19th Int. Conf. on Dist. Computing Systems, 1999.

[2] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald:
Achieving a Global Event Notification Service. In
Proc. of the 8th Wkshp. on Hot Topics in Operating
Systems, Elmau, Germany, May 2001.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service.
ACM Trans. on Computer Systems, 19(3):332–383,
Aug. 2001.

[4] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola.
Epidemic Algorithms for Reliable Content-Based
Publish-Subscribe: An Evaluation. In Proc. of the
24th Int. Conf. on Distributed Computing Systems,
2004. To appear.

[5] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI
Event-Based Infrastructure and its Application to the
Development of the OPSS WFMS. IEEE Trans. on
Software Engineering, 27(9):827–850, Sept. 2001.

[6] G. Cugola, D. Frey, A. Murphy, and G. Picco.
Minimizing the Reconfiguration Overhead in
Content-Based Publish-Subscribe. Technical report,
Politecnico di Milano, 2003. Available at
www.elet.polimi.it/~picco.

[7] R. Gruber, B. Krishnamurthy, and E. Panagos. The
Architecture of the READY Event Notification
Service. In Proc. of the 19th IEEE Int. Conf. on
Distributed Computing Systems—Middleware Wkshp.,
1999.

[8] D. Heimbigner. Adapting Publish/Subscribe
Middleware to Achieve Gnutella-like Functionality. In
Proc. of the ACM Symp. on Applied Computing, 2001.

[9] A. Oram, editor. Peer-to-Peer—Harnessing the Power
of Disruptive Technologies. O’Reilly, 2001.

[10] G. Picco, G. Cugola, and A. Murphy. Efficient
Content-Based Event Dispatching in Presence of
Topological Reconfiguration. In Proc. of the 23rd Int.
Conf. on Distributed Computing Systems, May 2003.

[11] D. Rosenblum and A. Wolf. A Design Framework for
Internet-Scale Event Observation and Notification. In
Proc. of the 6th European Software Engineering Conf.
held jointly with the 5th Symp. on the Foundations of
Software Engineering, LNCS 1301, Zurich
(Switzerland), 1997. Springer.

[12] B. Segall et al. Content Based Routing with Elvin4. In
Proc. of AUUG2K, Canberra, Australia, June 2000.

[13] P. Sutton, R. Arkins, and B. Segall. Supporting
Disconnectedness—Transparent Information Delivery
for Mobile and Invisible Computing. In Proc. of the
IEEE Int. Symp. on Cluster Computing and the Grid,
May 2001.

[14] M. Wray and R. Hawkes. Distributed Virtual
Environments and VRML: An Event-based
Architecture. In Proc. of the 7th Int. WWW Conf.,
Brisbane, Australia, 1998.

[15] H. Yu, D. Estrin, and R. Govindan. A hierarchical
Proxy Architecture for Internet-Scale Event Services.
In Proc. of the 8th Int. Wkshps. on Enabling
Technologies: Infrastructure for Collaborative
Enterprises, 1999.

