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Abstract. Publish-subscribe middleware allows the components of a
distributed application to subscribe for event notifications and provides
the infrastructure enabling event routing from sources to subscribers.
This model decouples publishers from subscribers, and in principle makes
it amenable to highly dynamic environments. Nevertheless, publish-sub-
scribe systems exploiting a distributed event dispatcher are typically
not able to rearrange dynamically their operations to adapt to changes
impacting the topology of the dispatching infrastructure.
In this work, we first describe two solutions available in the literature
that constitute the extremes of the reconfiguration spectrum in terms of
the number of nodes potentially affected by the reconfiguration. They
differ essentially in the tradeoffs between simplicity and efficiency. Then,
we introduce our contribution as a new algorithm that strikes a balance
between the aforementioned solutions by tolerating frequent reconfigu-
rations at the cost of moderate overhead.

1 Introduction

Publish-subscribe middleware are rapidly gaining popularity mostly because the
asynchronous, implicit, multi-point, and peer-to-peer communication style they
foster is well-suited for many modern distributed computing applications. While
the majority of deployed systems is still centralized, commercial and academic
efforts are currently focused on achieving better scalability by exploiting a dis-
tributed event dispatching architecture.

Beyond scalability, the next challenge for publish-subscribe middleware is dy-
namic reconfiguration of the topology of the distributed dispatching infrastruc-
ture. Companies are frequently undergoing administrative and organizational
changes, and so is the logical and physical network enabling their information
system. Mobility is increasingly becoming part of mainstream computing. Peer-
to-peer networks are defining very fluid application-level networks for informa-
tion sharing and dissemination. The very characteristics of the publish-subscribe
model, most prominently the sharp decoupling between communication parties,



make it amenable to these and other highly dynamic environments. However,
this can be true in practice only if the publish-subscribe system is itself capable
of dealing with reconfiguration. In particular, all the aforementioned sources of
reconfiguration affect the topology of the event dispatching network, forcing the
middleware to reconfigure its operations accordingly.

The vast majority of currently available publish-subscribe middleware has
ignored this problem thus far. With the exception of a few systems adopting a
very simple and inefficient solution, none of the proposals in the literature deal
with dynamic reconfiguration. In [6], we tackled this problem for the first time by
presenting an algorithm that minimizes the number of nodes involved in the re-
configuration. However, this algorithm is mostly suitable for environments where
reconfiguration is somehow controlled, or in any case does not occur frequently.
In this paper, we present instead a different algorithm that is designed expressly
for highly dynamic environments, and that tolerates frequent reconfigurations
at the cost of potentially incurring moderate overhead.

The paper is structured as follows. Section 2 provides a concise introduction
to publish-subscribe middleware and a discussion about the possible sources
of reconfiguration. Section 3 briefly describes a straightforward solution to the
problem of dynamic reconfiguration of publish-subscribe systems and the afore-
mentioned solution delimiting reconfiguration. The comparison between the two
provides the insight leading to the novel algorithm for highly dynamic environ-
ments that constitutes the main contribution of this work, and that is described
in Section 4. Related research efforts are discussed in Section 5. Finally, Section 6
draws some conclusions and discusses future avenues of research.

2 Background and Motivation

In this section we provide an overview of publish-subscribe systems, together
with a description of the reconfiguration scenarios that motivate our work.

2.1 Publish-Subscribe Systems

Applications exploiting publish-subscribe middleware are organized as a collec-
tion of autonomous components, the clients, which interact by publishing events
and by subscribing to the classes of events they are interested in. A component of
the architecture, the event dispatcher, is responsible for collecting subscriptions
and forwarding events to subscribers.

The communication and coordination model that results from this schema
is inherently asynchronous; multi-point, because events are sent to all the inter-
ested components; anonymous, because the publisher need not know the identity
of subscribers, and vice versa; implicit, because the set of event recipients is de-
termined by the subscriptions, rather than being explicitly chosen by the sender;
and stateless, because events do not persist in the system, rather they are sent
only to those components that have subscribed before the event is published.



These characteristics result in a strong decoupling between event publishers
and subscribers, which greatly reduces the effort required to modify the appli-
cation architecture at run-time to cope with different kinds of changes in the
external environment.

Given the potential of this paradigm, the last few years have seen the devel-
opment of a large number of publish-subscribe middleware, which differ along
several dimensions1. Two are usually considered fundamental: the expressivity
of the subscription language and the architecture of the event dispatcher.

The expressivity of the subscription language draws a line between subject-
based systems, where subscriptions identify only classes of events belonging to a
given channel or subject, and content-based systems, where subscriptions contain
expressions (called event patterns) that allow sophisticated matching on the
event content. Our approach is applicable to both classes of systems but in this
paper we assume a content-based subscription language, as this represents the
most general and challenging case.

A

C

B

D

E

F

X
S

Fig. 1. Distributed publish-subscribe middleware. Clients have been omitted for clarity.

The architecture of the event dispatcher can be either centralized or dis-
tributed. In this paper, we focus on publish-subscribe middleware with a dis-
tributed event dispatcher. In such middleware (see Figure 1) a set of intercon-
nected dispatching servers2 cooperate in collecting subscriptions coming from
clients and in routing events, with the goals of reducing network load and in-
creasing scalability.

The systems exploiting a distributed dispatcher can be further classified ac-
cording to the interconnection topology of dispatching servers, and the strategy
exploited to route subscriptions and events. In this work we consider a subscrip-
tion forwarding scheme on a tree topology, as this choice covers the majority of
existing systems.

1 For more detailed comparisons see [4, 5, 12].
2 Unless otherwise stated, in the following we will refer to dispatching servers simply as

dispatchers, although the latter term refers more precisely to the whole distributed
component in charge of dispatching events, rather than to a specific server that is
part of it.



In a subscription forwarding scheme [4], subscriptions are delivered to every
dispatcher, along a single tree spanning all dispatchers, and are used to establish
the routes that are followed by published events. When a client issues a subscrip-
tion, a message containing the event pattern is sent to the dispatcher the client
is attached to. There, the event pattern representing the subscription is inserted
in a subscription table, together with the identifier of the subscriber. Then, the
subscription is propagated by the dispatcher, which now behaves as a subscriber
with respect to the rest of the dispatching tree, to all of its neighboring dispatch-
ers. In turn, they record the subscription and re-propagate it towards all their
neighboring dispatchers, except for the one that sent it. This scheme is typically
optimized by avoiding propagation of subscriptions to the same event pattern
in the same direction3. The propagation of a subscription effectively sets up a
route for events, through the reverse path from the publisher to the subscriber.
Requests to unsubscribe from a given event pattern are handled and propagated
analogously to subscriptions, although at each hop entries in the subscription
table are removed rather than inserted.

Figure 1 shows a dispatching tree where a dispatcher (the dark one) is sub-
scribed4 to a certain event pattern. The arrows represent the routes laid down
according to this subscription, and reflect the content of the subscription tables
of each dispatcher. To avoid cluttering the figure, subscriptions are shown only
for a single event pattern.

2.2 Sources of Dynamic Reconfiguration

Publish-subscribe systems are intrinsically characterized by a high degree of re-
configuration, determined by their very operation. For instance, routes for events
are continuously created and removed across the tree of dispatchers as clients
subscribe and unsubscribe to and from events. Clearly, this is not the kind of re-
configuration we are investigating here. Instead, the dynamic reconfiguration we
address can be defined informally as the ability to rearrange the routes traversed
by events in response to changes in the topology of the network of dispatchers,
and to do this without interrupting the normal system operation.

Triggers for such a reconfiguration are many, with the effect being the disap-
pearance of one or more links between dispatchers, and possibly the appearance
of new ones. A link can disappear either because it is being explicitly removed
at the application layer, or because the underlying communication layers are no
longer capable of ensuring communication between the two nodes.

The first case is clearly the most controlled one. As an example of this case,
the publish-subscribe systems deployed in enterprise usually rely on a backbone
of interconnected dispatchers. A system administrator may need to substitute

3 Other optimizations are possible, e.g., by defining a notion of “coverage” among
subscriptions, or by aggregating them, like in [4].

4 More precisely, only clients can be subscribers. With some stretch of terminology,
here and in the following we will say that a dispatcher is a subscriber if it has at
least one client that is a subscriber.



one link with another to change the topology of the event dispatcher, e.g., to
balance the traffic load or to adapt to a change in the underlying physical net-
work. The result of such an operation should be an automatic reconfiguration of
the distributed dispatcher to adapt event routes to the new topology.

Unfortunately, the sources of reconfiguration are not always under the control
of applications. A dispatcher may become disconnected from one of its neigh-
bors because the link connecting the two has failed. Mobile computing defines
a scenario where this is particularly likely to happen. Mobility undermines the
assumptions traditionally made in distributed systems by enabling the network
topology to change dynamically as the mobile hosts move and yet remain con-
nected through wireless links. This is brought to an extreme by mobile ad hoc
networks (MANETs) [10], where the networking infrastructure is totally absent
and physical links come and go according to the distance between hosts. In all
these cases, lack of communication with a dispatcher results in the inability to
route subscriptions and events towards it, due to the partitioning of the dis-
patching tree. A reconfiguration process is needed not only to restore the tree
connectivity, but also to properly rearrange the routing information on the tree.

A somehow intermediate scenario is provided by peer-to-peer systems. In
fact, the ability to perform scalable content-based event routing provided by
distributed publish-subscribe middleware can be exploited to implement data
sharing applications based on a peer-to-peer architecture. This idea has been
exploited in PeerWare [7], a peer-to-peer middleware developed in the context
of the EU project MOTION5, and is also described in [9]. In this setting, each
peer node plays the same role of a dispatcher in a publish-subscribe middleware,
contributing to message routing. Consequently, the underlying routing mecha-
nism must be able to cope with frequent changes of the topology of the peer
network, determined by users (and hence peers) joining and leaving the peer-to-
peer system.

3 Reconfiguration Extremes

In this paper, we focus on reconfigurations that involve the removal of a link and
the insertion of a new one, thus keeping the dispatching tree connected. Issues
of the loss of a dispatching node are more complex because the dispatching tree
is partitioned into more than two pieces. We will consider this in future work.
Simpler reconfigurations, involving only link removal or insertion, can be dealt
with using plain subscriptions and unsubscriptions, as we describe later on.

The problem of dynamically reconfiguring a publish-subscribe system can
then be seen as composed of three subproblems. The first problem is to manage
the reconfiguration of the dispatching tree itself, retaining connectivity among
dispatchers without creating loops. The second problem is to reconfigure the
subscription information held by each dispatcher, keeping it consistent with the
changes in the reconfigured tree and without interferring with the normal pro-

5 IST-1999-11400, www.motion.softeco.it.



cessing of subscriptions and unsubscriptions. The third problem is to minimize
the loss of events during the reconfiguration.

In this paper, we focus on correctly reconfiguring the subscription informa-
tion, i.e., on the second of the aforementioned problems. We assume that the
underlying tree is somehow reconfigured, and we tolerate (minor) event losses.
The rationale for this choice lies in the fact that the consistency of the subscrip-
tion information is key for the correct functioning of a publish-subscribe system,
and hence also for limiting the number of events lost. Moreover, the algorithms
for keeping the underlying tree connected strongly depend on the specific re-
configuration scenario, and in any case some existing solutions are likely to be
adaptable, as we briefly discuss in Section 4.3. Also, by operating in a dynamic
environment, the applications we consider must tradeoff some degree of reliable
delivery. It is possible to extend the solution presented here to incorporate some
fault tolerant techniques, but we leave this for future research.

Under these premises, a simple and reasonable way to compare the effective-
ness of different reconfiguration algorithms is to consider the number of dispatch-
ers involved in the reconfiguration, i.e., the number of dispatchers whose routing
tables are changed during the reconfiguration process. Intuitively, the smaller this
number the less the reconfiguration interferes with the system. Hence, not only is
the overhead reduced, but so is the disruption of event routes, and consequently
the likelyhood of an event loss. If we base our comparison only on this value, two
approaches represent the extremes of a wide spectrum: a straightforward algo-
rithm that attacks the reconfiguration problem using the same strategy adopted
when the tree of dispatchers must be split in two subtrees or when two subtrees
must be joined, and a more efficient algorithm that minimizes the number of
dispatchers involved. The remainder of this section describes these solutions and
compares them. This comparison helps us gather some observations that mo-
tivate the need for a different approach when the target scenario exhibits high
dynamicity. A description of an algorithm tailored for such environments is given
in Section 4, which represents the main contribution of the paper.

3.1 A Straightforward Approach

In principle, the removal of an existing link and the insertion of a new one can be
carried out by using exclusively the primitives available in a publish-subscribe
system.

The reconfiguration triggered by a link removal can be dealt with by using
unsubscriptions. When a link is removed, each of its end-points is no longer able
to route events matching subscriptions issued by dispatchers on the other side
of the tree. Hence, each of the end-points should behave as if it had received
from the other end-point an unsubscription for each of the event patterns the
latter was subscribed to. The insertion of a new link triggers a similar process
that uses subscriptions to reconfigure the routing.

This approach is the most natural and convenient when reconfiguration in-
volves only either the insertion or the removal of a link, and is actually adopted
by some publish-subscribe middleware. On the other hand, when it is necessary
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Fig. 2. The dispatching tree of Figure 1 during and after a reconfiguration performed
using the straightforward approach.

to replace a link with a new one, thus effectively reconfiguring the topology of
the tree while keeping the same set of nodes as dispatchers, this strategy leads
to results that are far from optimal. In fact, if the route reconfigurations caused
by link removal and insertion are allowed to propagate concurrently, they may
lead to the dissemination of subscriptions which are removed shortly after, or to
the removal of subscriptions that are then subsequently restored, thus wasting a
lot of messages and potentially causing far reaching and long lasting disruption
of communication.

Figure 2 illustrates this concept on the dispatching tree of Figure 1. According
to the straightforward mechanism, when the link between A and B is removed
the two end-points trigger unsubscriptions in their subtrees, without taking into
account the fact that a new link has been found between C and D. Depending
on the speed of the route destruction and construction processes, subscriptions
in B’s subtree may be completely eliminated, since there are no subscribers in
that tree. Nevertheless, shortly afterwards most of these subscriptions will be
rebuilt by the reconfiguration process. The resulting reconfiguration of subscrip-
tion information is not only inefficient, but it may greatly increase the loss of
events.

The drawbacks of this approach are essentially caused by a single problem:
the propagation of reconfiguration messages reaches areas of the dispatching tree
that are far from the ones directly involved in the topology change, and which
should not be affected at all. This observation leads to the idea of delimiting the
area involved in the reconfiguration, a key element of the approach described in
the next section.

3.2 A More Efficient Approach

To identify the minimal set of dispatchers affected by a link removal followed by
a link insertion, we observe that each dispatcher routes events and subscriptions
based on the local knowledge gathered from its neighbors. Similarly, its actions
are limited to messages sent to its immediate neighbors. In other words, each
dispatcher has knowledge only about its immediate “next hops”. In [6], these



considerations lead to the definition of the reconfiguration path as the only por-
tion of the dispatching tree affected by the reconfiguration. The reconfiguration
path includes the two end-points of the removed link and all the dispatchers
connected to them through the new link.

If we consider the example of reconfiguration in Figure 2, where the link
(A,B) is being replaced with the link (C,D), the reconfiguration path is repre-
sented by (A,E, F, C, D,B). From the above considerations about the way sub-
scription forwarding publish-subscribe systems work, it is easy to understand
that dispatchers that do not belong to the reconfiguration path will not expe-
rience any change in their subscription tables. They will continue forwarding
events the same way they were doing before. As an example, before reconfigura-
tion (see Figure 1) dispatcher X was sending events to B, which was forwarding
them to A to reach the subscriber S. After reconfiguration (see Figure 2), X
continues sending events to B even though now B forwards them to D to reach
the same subscriber S. X has no knowledge of the fact that B’s routing table
has changed.

An algorithm that leverages off of this concept of reconfiguration path is de-
scribed in [6]. Its processing starts from one of the two end-points of the removed
link and uses a special source routed message that moves from dispatcher to dis-
patcher along the reconfiguration path, changing the routing tables according to
the new topology.

3.3 Comparison

A first comparison of the two approaches described above, based only on the
number of dispatchers involved in the reconfiguration, could lead to the conclu-
sion that the second solution is always to be preferred over the first one.

Nevertheless, it turns out that the correctness of the straightforward solution
is not affected by multiple reconfigurations occurring in parallel. More precisely,
if during a reconfiguration another link break occurs the two reconfigurations
may proceed in parallel without influencing each other. Indeed, since the recon-
figuration mechanism adopts only standard subscriptions and unsubscriptions
and it does not affect the correct propagation of subscription and unsubscrip-
tion messages, the overall reconfiguration process will complete correctly, inde-
pendent from the number of link replacements involved6.

Unfortunately, the same consideration does not hold for the algorithm de-
scribed in [6] that, by rearranging the subscription information while unfolding
along the reconfiguration path, strongly relies on its connectivity. As a result,
this approach is quite sensitive to multiple reconfigurations. In particular, when
different reconfiguration paths have one or more links in common or when an
additional link break does not allow a running reconfiguration process to com-
plete as expected, special mechanisms must be put in place to guarantee the

6 Here we assume that the process keeping the tree of dispatchers connected is capable
of correctly handling multiple reconfigurations in parallel without introducing loops
among the dispatchers and without resulting in partitioned trees.



correctness of the overall reconfiguration process. Currently, these mechanisms
are still under investigation, and hence the applicability of the approach covers
only controlled environments where requests for multiple reconfigurations can
be serialized and answered in sequence.

The above considerations motivate the need of a different algorithm for very
dynamic environments such as MANETs or peer-to-peer networks, in which mul-
tiple reconfigurations occurring in parallel are more the rule than the exception.
This algorithm should try to balance the performance, in terms of the set of
dispatchers involved, of the solution described in [6] with the better resilience to
multiple reconfigurations characterizing the straightforward solution. The next
section describes our proposal for such an algorithm.

4 Striking a Balance

To design a new algorithm for highly dynamic environments, we begin by observ-
ing that the drawbacks of the straightforward algorithm described in Section 3.1
mainly result from the fact that the unsubscription process determined by a
link removal and the subscription process taking care of a link insertion proceed
completely in parallel, while some coordination would likely minimize the traffic.
This consideration leads to the idea of identifying the impact of subscriptions
and unsubscriptions on an already established tree to determine if some kind of
synchronization could improve the performance of the straightforward algorithm
without sacrificing consistency when multiple link breaks occur in parallel.

4.1 Identifying the Tradeoffs

To describe the impact of subscriptions and unsubscriptions on a publish-subscri-
be system that adopts a subscription forwarding strategy, it is useful to classify
dispatchers into subscribers, forwarders, and splitters7. For each event pattern
p, a subscriber is a dispatcher that has at least one client subscribed to p. A
forwarder is a dispatcher which is not a subscriber and whose routing table has
a single entry tagged with p (i.e., graphically this means that it has a single
outgoing arrow labelled with p). Finally, a splitter is either a dispatcher whose
routing table has two or more entries tagged with p, or a subscriber.

With these definitions in mind, we can derive the following general rule for
systems based on the subscription forwarding strategy described in Section 3.1:
a subscription issued by a client is propagated in the dispatching tree only up to
the closest splitter, if it exists; to the whole tree, otherwise. Clearly, in the special
case where the new subscriber is also a splitter nothing happens.

To understand this rule we observe that, for each event pattern p, there ex-
ists a minimal spanning tree containing all the dispatchers subscribed to p. For
7 As already mentioned, these definitions do not take into account optimizations based

on the notion of “coverage” among subscriptions, although they could be generalized
to do so. Instead, the definitions are based on the usual optimization of avoiding to
forward a subscription already present in the system.
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Fig. 3. A tree of dispatchers to show how new subscriptions propagate.

instance, in Figure 3 this minimal spanning tree is composed of dispatchers A,
B, C, D, E. The routing tables of the dispatchers belonging to this subtree are
organized in such a way that events matching p reaching one of them are for-
warded to all the others. Moreover, the routing tables of all the other dispatchers
route events matching p to this subtree but not viceversa, i.e., events reaching
this subtree are not forwarded outside of it. Hence, we observe that the point of
attachment for a new subscriber to such minimal subtree is constituted by the
closest splitter. With reference to Figure 3, for the new subscriber S to join the
subtree, only the routing tables of all the dispatchers along the path from S to
the subtree (F and B in the figure) must be changed. A similar rule holds for
unsubscriptions, which propagate up to the first splitter that remains such even
after it has rearranged its subscription table by processing the unsubscription
message.

From these rules it is possible to derive two considerations. First, the price
that must be paid for adding a subscription is limited. In general, it does not
involve a propagation along the entire tree but only along the route to the
closest splitter, unless there are no subscribers. Second, the more splitters that
exist the shorter the path that a subscription must follow. These considerations
lead to the idea of an algorithm that behaves like the straightforward one but
performs the subscription step before unsubscribing. This way, the tree is kept
“dense” of subscriptions, thus reducing the overhead caused by the propagation
of subscriptions. It is true that this strategy may add subscriptions that must be
removed immediately after, but in any case these subscriptions will propagate
only up to the first splitter. Moreover, this solution has the beneficial side effect
of minimizing the disruption of event routes, by minimizing the likelihood that
a subscription is removed only to be restored shortly after. The next section
describes such an algorithm in detail.

4.2 Rearranging Subscription Tables

In the following, we assume that the links connecting the dispatchers are FIFO
and transport reliably (i.e., with no loss) subscriptions, unsubscriptions, events,
and other control messages. Both assumptions are typical of mainstream publi-



sh-subscribe systems, and are easily satisfied by using TCP for communication
between dispatchers.

The operation of the algorithm starts when a broken link between two dis-
patchers is detected. The actual processing is triggered by one of the two end-
points, called the initiator, chosen according to some ordering criteria. The ini-
tiator starts a tree reconstruction process that tries to reconnect the tree without
creating loops. For the moment, we gloss over the details of how the new link is
identified and assume that this information becomes somehow available to the
initiator after a given delay. We provide details about how this can be accom-
plished in reality at the end of this section. Here we focus on the processing
needed to reconfigure the information for routing events over the reconnected
tree.

The algorithm unfolds as follows:

1. When the end-points of a link detect that it is broken, they both start a
timer T . In addition, the initiator starts the tree reconstruction process.

2. After the initiator (e.g., A in Figure 2) has determined the new link that
needs to be established in order to reconnect the tree, it sends an openlink
message to the end-point of such link belonging to the same semitree as
the initiator (C in Figure 2). The openlink message is sent using a unicast
channel that does not follow the dispatching tree, and must be acknowledged
by the recipient using the same “out of band” channel. openlink contains
a reconfiguration identifier recID , which distinguishes it among multiple,
concurrent reconfiguration processes. For each link, the value of recID is
determined by the end-points when the link is first established successfully.
Hence, the value of recID associated to the link is known to both end-points
when reconfiguration actually occurs.

3. Upon receiving the openlink message, the end-point of the new link belong-
ing to the initiator semitree opens the new link and forwards the openlink
to the other end-point. Each end-point behaves as in a merge of the two
semitrees, as described in Section 3.1, by exchanging their subscriptions over
the new link, unless the old and new link share an end-point. In this case,
subscriptions that exist only towards the other end-point of the new link
are not forwarded. Moreover, immediately after the exchange, they start the
propagation throughout their semitree of a flush message containing the
recID originally contained in openlink.

4. At each dispatcher in each of the semitrees, subscriptions are propagated
according to the normal processing. According to the discussion in the pre-
vious section, they propagate only up to the first splitter. Instead, the flush
message is broadcasted to all the dispatchers in the semitree8.

5. If the flush message reaches the end-points of the broken link or the timeout
T expires, whichever occurs first, each of the end-points behaves as during

8 Ideally, the flush message needs to propagate only along the reconfiguration path,
up to the end-points of the vanished link. This can be accomplished if the tree re-
construction process provides information about the reconfiguration path. However,
broadcasting along the whole tree is more resilient to concurrent reconfigurations.



a partition, by starting an unsubscription process for all subscriptions that
came originally from the other end-point of the vanished link. In the case
where the timeout expires, the corresponding recID is temporarily saved, to
allow discarding of delayed flush messages.

As we discussed before, this algorithm makes sure that subscriptions rerout-
ing events through the new link are laid down before the obsolete subscriptions
that served the only purpose to route events through the vanished link are re-
moved. The openlink message is essentially used to activate the new link and
trigger the spreading of subscriptions between the semitrees. Instead, the flush
message is used to notify the end-points of the vanished link that it is now safe
to remove unnecessary subscriptions. This property is ensured by the fact that
the new subscriptions propagate ahead of the flush message in FIFO chan-
nels. Essentially, openlink triggers the portion of the reconfiguration taking
care of merging the semitrees through the new link, while flush triggers the
partitioning of the semitrees across the vanishing link.

Clearly, in a highly dynamic environment connectivity may change during a
reconfiguration, e.g., by causing multiple, concurrent link breaks. This does not
constitute a problem if the reconfiguration paths determined by the breaks are
not overlapping, in that reconfiguration can proceed independently. If instead the
reconfiguration paths are overlapping, an additional link break may determine a
temporary inability to communicate between the initiator and the end-point of
the new link until a new tree reconstruction process has completed. Effectively,
the second reconfiguration is “nested” in the first one, which cannot complete
until the second is over. Besides increasing the overall time needed to recover
from the first break, this situation may lead to a delay, if not a loss, of the flush
message.

This situation is handled by the last step of the algorithm, that performs the
same action no matter whether a flush message has been received, delayed or
lost. Interestingly, the effect of such action in these situations is different, and
is determined by the configuration of subscriptions that have already been laid
out. When a flush message is received, the corresponding new subscriptions
are already setup correctly. Hence, the unsubscription process will remove only
unnecessary subscriptions, along the reconfiguration path. On the other hand,
if the timeout has expired two cases are possible. In the first case, no route
reconnecting the tree exists. Hence, the unsubscriptions will rightfully propagate
throughout the tree and possibly outside the reconfiguration path, up to the
first splitter. In the case where the flush message has been simply delayed,
some overhead will result, depending on how fast the subscriptions ahead of the
flush message have travelled, with respect to the unsubscriptions triggered by
the expiration of the timeout.

This latter aspect of the algorithm is controlled by the value of the timeout
T . If T is too small, an unnecessary unsubscription process is likely to be trig-
gered while the flush is still on its way. On the other hand, if T is too large
superfluous subscriptions are retained for a longer time, steering events towards
dead branches of the tree. Essentially, the value of T must be chosen by evaluat-



ing a tradeoff between the responsiveness of reconfiguration and the bandwidth
overhead caused by superfluous subscriptions. We are currently developing simu-
lations to determine reasonable values for T and to investigate how they impact
performance.

Notably, the reconfiguration described by this algorithm does not interfere
with the normal processing of events and (un)subscriptions. In the solution we
describe here, we are not trying to enforce any custom, source routed processing
of messages like in the solution we described concisely in Section 3.2. Instead, we
are relying on the standard processing that, by design, deals with the concurrent
publishing of events and issuing of (un)subscriptions. We simply intervene in the
timing when these operations are triggered to deal with reconfiguration. The only
addition is the presence of a flush message that, however, does not impact the
normal processing.

Finally, our algorithm intuitively loses fewer events than the straightforward
solution. In fact, in the case where the flush message is correctly received by
the initiator, the routes for events are never disrupted. The only events lost
are those that reached the end-points of the vanished link before the subscrip-
tions exchanged through the new link. Instead, the straightforward solution may
lose events in areas potentially very far from the one where reconfiguration is
occurring (i.e., from the reconfiguration path), since the uncoordinated propa-
gation of subscriptions and unsubscriptions may temporarily remove routes. In
the cases where the timeout expires and the unsubscription process is triggered,
the amount of events lost is intuitively in between these two extremes.

4.3 Keeping the Tree Connected

Thus far, we focused only on how to update the routing information on the
dispatching tree, without considering how a broken link is detected and a new
route, involving a new link, is determined. In this section we hint at some ways
of providing this functionality.

Detecting a Broken Link If the links between the nodes of the tree are actu-
ally mapped directly on physical communication links between the nodes, then
detecting a link break can be dealt with in the same way as routing proto-
cols for MANETs (e.g., DSR [2] or AODV [11]): essentially using MAC-level or
application-level beaconing. A beacon is a packet that is periodically broadcasted
with a time-to-live of 1, and hence reaches only the stations that are physically in
communication range. When a station no longer detects a beacon9 from another
station, the link between the two can be considered broken. A similar approach
can be adopted both in wired networks and when the logical link to be mon-
itored does not map directly to a single physical link. In these cases a special
point-to-point protocol, e.g., ICMP, must be used to implement the beaconing
mechanism.

9 Typically, a k-out-of-n policy is adopted, to avoid rapid fluctuations in connectivity.



This proactive approach, however, constantly monitors the network. An al-
ternative, lazier approach can detect link breakages only when a communication
failure is notified at the application level, e.g., by an error returned while trans-
mitting data on a socket. Clearly, this is possible only if the underlying transport
protocol is reliable.

Replacing a Broken Link With a New Route After a broken link is detected,
a new one must be found to reconnect the two partitioned subtrees without
creating loops. The initiator must request a new route to its neighbors; new
routes must be computed, possibly in a distributed way; they must be delivered
back to the initiator, which will select one. A number of mechanisms can be used
for this purpose.

For instance, it is reasonable to assume that each dispatcher maintains a
cache of the network addresses of the dispatchers connected to its neighbors
(i.e., each dispatcher has a partial visibility of the system topology). When a
link vanishes, the initiator can send a message containing the list of dispatchers
known to be part of the disconnected subtree, that gets propagated along the
tree up to a certain number of hops. Each dispatcher receiving this message can
then determine if it can reach one of the dispatchers on the list and how far
it is, and send back a reply containing this information. The initiator uses the
information to select the best route. The goal behind this process is clearly to
keep the topology of the logical network of dispatchers as close as possible to the
topology of the underlying physical network. In alternative, existing mechanisms
for maintaining multicast trees can be used. For instance, for MANETs the
strategy adopted by MAODV [13], heavily based on network-level broadcast
and propagation of route requests, can be applied or adapted to our needs.

Thus far, we assumed that only a single link is added. This is reasonable in
wired networks, where the routing infrastructure hides the details of communi-
cation between dispatchers. However, this may not hold true in a MANET or
whenever the dispatching network is mapped directly on the network topology.
In this case, one link is often not sufficient to reconnect the two partitioned sub-
trees, and additional intermediate nodes are needed. The new link can then be
stretched into a sequence of nodes, whose end-points constitute the end-points
of what we considered thus far as the new link.

5 Related Work

Most publish-subscribe middleware are targeted to local area networks and adopt
a single, centralized dispatcher. In recent years, the problem of wide-area event
notification has attracted the attention of researchers [16] and some systems
have been presented, which adopt a distributed dispatcher, such as TIBCO’s
TIB/Rendezvous, Jedi [5], Siena [4], READY [8], Keryx [17], Gryphon [1], and
Elvin4 [14] in its federated incarnation.

To the best of our knowledge, none of these systems provide any special mech-
anism to support the kind of reconfiguration proposed in this paper. Siena [4]



and the system described in [18] adopt the straightforward solution we describe
later in Section 3.1 to allow subtrees of dispatchers to be merged or trees to be
split. Jedi [5] provides a different form of reconfiguration that allows only clients
(not dispatchers) to be added, removed, or moved to a different dispatcher at
run-time. A similar capability has been conceived also for Elvin [15], that sup-
ports mobile clients through a proxy server, although this feature is not included
in the latest (4.0.3) release.

Finally, some research projects, like IBM Gryphon [1] and Microsoft Her-
ald [3], claim to support a notion of reconfiguration similar to the one we ad-
dress in this work, but we were unable to find any public documentation about
existing results.

6 Conclusions and Future Work

Currently available publish-subscribe systems adopting a distributed event dis-
patcher do not provide any special mechanism to support the dynamic reconfig-
uration of the topology of the dispatching infrastructure to cope with changes in
the external environment. Solutions available in the literature at best exploit a
straightforward solution whose simplicity is often outweighed by its inefficiency,
since it involves areas that should not be affected by reconfiguration. Previous
work by the authors has shown instead that there is a way to constrain recon-
figuration, at the cost of increased complexity and poor tolerance to frequent
topological changes.

In this work, we presented a solution that strikes a balance between these
two reconfiguration extremes, by tolerating frequent reconfigurations at the cost
of moderate overhead. Essentially, a mechanism is provided to ensure that the
new routes caused by reconfiguration are laid down before the obsolete ones
are removed. Besides optimizing the reconfiguration of routing information, this
approach is also intuitively better at delivering events during reconfiguration.

Future work will investigate quantitatively the benefits of this solution against
the other ones we described in this paper, using a simulation approach. More-
over, we will verify the feasibility of our approach by implementing a prototype
and validating in the field.
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