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Abstract. Wireless sensor networks (WSNs) are evolving to support sense-and-
react applications, where actuators are physically interspersed with the sensors
that trigger them. This solution maximizes localized interactions, improving re-
source utilization and reducing latency w.r.t. solutions with a centralized sink.
Nevertheless, application development becomes more complex: the control logic
must be embedded in the network, and coordination among multiple tasks is
needed to achieve the application goals.
This paper presents TeenyLIME, a WSN middleware designed to address the
above challenges. TeenyLIME provides programmers with the high-level abstrac-
tion of a tuple space, enabling data sharing among neighboring devices. These
and other WSN-specific constructs simplify the development of a wide range of
applications, including sense-and-react ones. TeenyLIME yields simpler, cleaner,
and more reusable implementations, at the cost of only a very limited decrease in
performance. We support these claims through a source-level, quantitative com-
parison between implementations based on TeenyLIME and on alternative ap-
proaches, and by analyzing measures of processing overhead and power con-
sumption obtained through cycle-accurate emulation.

1 Introduction

Wireless sensor networks (WSNs) are a popular technology for monitoring and con-
trol applications, where they simplify deployment, maintenance, and ultimately reduce
costs. Early WSN efforts were primarily concerned with sensing from the environment
and reporting to a central data sink [1]. In contrast, an increasing number of applica-
tions (e.g., [2–4]) now include nodes hosting actuators, able to react to external stimuli
gathered by nearby sensors and affect the environment under control.

The sense-and-react pattern has a relevant impact on application development. Ap-
propriate programming constructs are required to deal with the increased complexity
of specifying how multiple tasks coordinate to accomplish a global functionality. Ded-
icated abstractions must be provided to describe the stateful interactions commonly
present in control mechanisms. The ability to locally react based on external stimuli is
as important as—if not more important than—the ability to gather data. These aspects
are discussed in more detail in Section 2, where we describe a paradigmatic sense-and-
react application, illustrating also that many of its characteristics are typical of common
sense-only applications and lower-level system functionality.
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To meet the requirements above we developed TeenyLIME, a WSN middleware
whose foundation is the notion of distributed tuple space [5], a repository of elemen-
tary sequences of typed fields called tuples. This is revisited in TeenyLIME by consider-
ing WSN requirements (e.g., resource consumption and reliability) in the programming
model. TeenyLIME adopts a minimalist approach: a limited number of powerful op-
erations, with a simple and yet efficient implementation, allow for the development
of both application-level and system-level functionality. An overview of TeenyLIME’s
base concepts and application programming interface (API) is provided in Section 3,
while Section 4 illustrates concretely the power of its WSN-specific abstractions by
showing them in action in the design of the reference application in Section 2. Sec-
tion 5 provides a concise account of the TeenyLIME architecture.

Section 6 evaluates quantitatively TeenyLIME along two dimensions. First, we as-
sess the effectiveness of its programming model in different contexts. We examine the
implementation of the reference application, whose design we sketched in Section 4,
and report about uses of TeenyLIME in sense-only applications and at the system level.
We derive code metrics for the TeenyLIME implementations and their counterparts, im-
plemented using plain nesC or the higher-level support provided by Hood [6]. Results
indicate that the expressive power of TeenyLIME yields cleaner, simpler, and more com-
pact code. Second, we analyze the TeenyLIME implementation. We compare its over-
head, in terms of processing time and energy consumption, against existing program-
ming platforms, which typically sacrifice expressiveness for performance. The results
we gathered using cycle-accurate emulation demonstrate that the beneficial higher level
of abstraction provided by TeenyLIME comes with only a very limited overhead.

Finally, existing node-level abstractions for WSN programming are reviewed in
Section 7, before our concluding remarks in Section 8.

A preliminary description of TeenyLIME appeared in a short paper [7]. Here, in
addition to a more precise and exhaustive presentation, we illustrate key aspects entirely
missing in [7], namely: i) a complete TeenyLIME-based design of a sense-and-react
application; ii) a quantitative, source-level evaluation of the benefits to the programmer;
iii) a quantitative, cycle-accurate evaluation of the run-time performance.

2 Scenario and Motivation

Sense-and-react applications emerge in many settings, from home automation [3] to
road traffic control [4]. As a paradigmatic example, we consider building monitoring
and control. Modern buildings typically focus on the following two main functionality:

1. heating, ventilation, and air conditioning (HVAC [2]) systems provide fine-grained
control of indoor air quality;

2. emergency control systems provide guidance and first response, e.g., in case of fire.

These applications, as any embedded control system, feature four major compo-
nents, illustrated in Figure 1. User preferences represent the high-level system goals,
e.g., the desired temperature in the building and the need to limit fire spreading. Sens-
ing devices gather data from the environment and monitor relevant variables: humidity
and temperature sensors monitor air quality, while smoke and temperature detectors



3

Actuation Sensing

Sy
st

em

Smoke 
Detectors

Water 
Sprinklers

Emergency 
BellsEn

vi
ro

nm
en

t

Air 
Conditioners

User 
Preferences

Control Laws

Actuator Devices

Humidity
Sensors

Sensing Devices

Temperature 
Sensors

Fig. 1: High-level scheme of a building monitoring and control application.

recognize the presence of a fire. Actuator devices perform actions affecting the environ-
ment under control: air conditioners adjust the air quality, while water sprinklers and
emergency bells are used in case of fire. Control laws map the data sensed to the ac-
tions performed, to meet user preferences. In our case, a (simplified) control loop may
activate air conditioners when temperature deviates significantly from user preferences,
tuning the action based on humidity in the same location. Further, it may immediately
activate emergency bells when the temperature increases above a safety threshold, but
operate water sprinklers only if smoke detectors actually report the presence of fire.
Oscillating behaviors must be avoided in all situations.

Application development in these scenarios is complicated not only by the peculiar-
ities of devices, but also by the complexity of their interactions. The many requirements
can be grouped into high-level challenges common to several settings:

– Localized computations [8] must be privileged, to keep processing close to where
sensing or actuation occurs. In sense-and-react applications it is indeed unreason-
able to funnel all the sensed data to a single, powerful base-station, as this may
negatively affect latency and reliability, without any significant advantage [9].

– The system performs multiple tasks in parallel. In our example, two control laws
coexist: one for air conditioning, the other for handling emergencies. These need to
share data (e.g., temperature readings) generated by a subset of the sensing devices.

– Differently from sense-only scenarios, sense-and-react applications often require
stateful coordination, e.g., using current shared conditions (state) to act collabora-
tively. This, in combination with the use of WSNs for safety critical applications,
motivates an explicit account for reliability in the programming model.

– Reactive interactions, actions that automatically fire based on external conditions,
assume a prominent role. In our case, a temperature reading deviating from user
preferences triggers an action in either of the two application tasks. Proactive in-
teractions, common in many sense-only scenarios, are still needed to gather infor-
mation and better tune the actuation about to occur. For instance, the sprinklers in
the building ask for smoke readings before taking any action.

Note how sense-and-react scenarios essentially subsume sense-only ones. There-
fore, the aforementioned requirements represent the most general set of application-
level issues WSN developers must cope with. Also, subsets of these requirements must
be accounted for at lower levels, below the application. For instance, localization al-
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gorithms [10]—often one of the many tasks of object tracking applications [11]—must
rely on localized interactions, as most of the approaches in the field base the posi-
tion estimation on those reported by nearby hosts. Similarly, multi-hop routing mech-
anisms [12] require reactive interactions to adapt to mutable network conditions, and
may also exploit reliable operations to guarantee message delivery [13]. TeenyLIME’s
programming model, described next, supports application development without loosing
the ability to express system-level mechanisms.

3 TeenyLIME: Basic Concepts and API

TeenyLIME is based on the tuple space ab-
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Fig. 2: Tuple space sharing in
TeenyLIME.

straction originally proposed in Linda [5], here re-
elaborated in the context of WSNs. A tuple space
is a repository of data represented as tuples, se-
quences of typed fields such as 〈“foo”, 29〉. Three
core Linda operations allow processes to manip-
ulate the tuple space by creating (out), reading
(rd), and removing (in) tuples. Tuple selection
with rd and in is based on matching patterns such
as 〈“foo”, ?integer〉 against the tuple space con-
tent. Patterns may use either actual or formal val-
ues, the latter serving as a kind of “wild card”
matching any data of a particular type.

In Linda, the tuple space is assumed globally accessible to all processes—an unde-
sirable choice in WSNs. Instead, in TeenyLIME each node hosts a tuple space, shared
among nodes within direct (one-hop) communication range. Sharing means that a node
views its local tuple space as containing its own tuples, plus those in the tuple spaces
hosted by its neighbors, as shown in Figure 2. Operations span the whole shared tuple
space. For instance, a query issued by a node may return a matching tuple found in any
tuple space in the one-hop neighborhood—including the local one. Therefore, Teeny-
LIME programmers can specify interactions among nodes abstractly, by focusing on
the application logic (e.g., reading temperature in the neighborhood) and leaving sys-
tem configuration issues (e.g., tracking node identity and presence) to the middleware.

The choice to limit sharing to one-hop neighbors is motivated by the fact that inter-
actions with these nodes are the most frequent in WSNs. Whitehouse et al. analyzed 16
publicly available TinyOS applications to determine the node interactions, and

“All neighborhoods discovered were one-hop neighborhoods [...]” ( [6], p.9)
Interestingly, these neighborhoods were used either directly at the application level,
to gain access to nearby information, or as a building block for lower-level system
functionality, e.g., to implement multi-hop routing. These considerations motivate our
design choice as well. Furthermore, it should be noted that the applications considered
in [6] were conventional sense-only ones. Sense-and-react applications exacerbate the
need for localized interactions [8], and therefore benefit even more from our design
choice. As a result, the TeenyLIME programming model can be used in many contexts,
ranging from sense-and-react to sense-only, and from application-level to system-level.
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interface TupleSpace {
// Standard tuple space operations
command TLOpId_t out(bool reliable, TLTarget_t target, tuple *tuple);
command TLOpId_t rd(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t in(bool reliable, TLTarget_t target, tuple *pattern);
// Group operations
command TLOpId_t rdg(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t ing(bool reliable, TLTarget_t target, tuple *pattern);
// Managing reactions
command TLOpId_t addReaction(bool reliable, TLTarget_t target, tuple *pattern);
command TLOpId_t removeReaction(TLOpId_t operationID);
// Returning tuples
event result_t tupleReady(TLOpId_t operationId, tuple *tuples, uint8_t number);
// Request to reify a capability tuple
event result_t reifyCapabilityTuple(tuple *capTuple, tuple* pattern);

}
interface NodeTuple {
// Request to provide a tuple containing node-level system information
event tuple* reifyNodeTuple();

}

Fig. 3: TeenyLIME API.

Figure 3 shows the TeenyLIME API. While in principle the programming model
is independent from the node platform, we present here the API in nesC, as our mid-
dleware is currently built on top of TinyOS. The interface provides the operations to
manipulate TeenyLIME’s shared tuple space. The first three operations correspond di-
rectly to the Linda operations discussed earlier, while rdg and ing are variants (as
in [14]) that return all matching tuples, instead of a single match.

TeenyLIME operations are asynchronous, allowing the application to continue while
the middleware completes the operation execution5. This approach blends well with the
event-driven concurrency model of nesC. Therefore, all operations are split-phase [15]:
the operation is issued, and later the tupleReady event is signaled when the operation
completes. The tupleReady event contains an identifier that allows the application
to associate the event with its earlier request. Depending on the operation, one or more
tuples may also be contained in the event, along with a number parameter indicating
how many there are.

The operations provided in the API deserve further discussion. However, instead of
describing them in isolation, in the next section we discuss them “in action”, i.e., hand-
in-hand with the TeenyLIME-based design of the application outlined in Section 2.

4 Application Development with TeenyLIME

As discussed in Section 2, our reference application contains two sub-tasks, one manag-
ing the air conditioning system (HVAC) and the other for emergency situations such as
fire. Each sub-task involves different types of nodes, e.g., humidity sensors in the HVAC
sub-task, and smoke detectors to face fire emergencies. Temperature sensors are instead
used in both sub-tasks. For all types of nodes, the required application processing has
been implemented in a single component sitting entirely on top of the TupleSpace in-
terface, which masks completely TinyOS’ generic communication layer. An additional
component is employed to interact with the sensors/actuators attached to the node.

5 In most Linda systems rd and in are blocking, i.e., do not return until a tuple is matched.
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Fig. 4: Sequence of operations to handle a fire. Notified about increased temperature, a
node controlling water sprinklers queries the smoke detectors to verify the presence of
fire. If necessary, it sends a command activating nearby sprinklers.

In the following, we explain the rest of our reference application’s design and im-
plementation. We illustrate how we exploit data sharing and related operations, and how
interactions among nodes can benefit of WSN-specific API features. Throughout, the
reference application is used as a motivation and source of examples for the discussion.
Sharing Application Data through Proactive and Reactive Interactions. In our de-
sign, sensed data and actuating commands take the form of tuples. These are shared
across nodes (and components on the same node) to enable coordination of activities as
well as data communication. Access to this data can occur proactively, e.g., using the rd
and in operations. However, TeenyLIME supports also a notion of reaction, a code frag-
ment whose execution is automatically triggered upon the appearance of a given tuple
anywhere in the shared tuple space. The tuples of interest are still determined through
pattern matching, and the tupleReady event is used to signal a reaction firing. This
provides an easy and yet very powerful way to monitor changes in the neighbors’ data
through the content of the shared tuple space.

Figure 4 uses the fire control sub-task to illustrate how proactive and reactive in-
teractions are used together to trigger notifications, to perform distributed operations
to gather data from neighboring nodes, and to request actuation commands. Notably,
similar patterns of interactions recur in both sub-tasks of our application.

Both emergency bells and water sprinklers have a reaction registered on their neigh-
bors, watching for temperature tuples over a given threshold, as shown in the code in
Figure 5. Temperature sensors periodically take a sample and pack it in a tuple, which is
then stored in the local tuple space, as shown in Figure 6. Insertion is accomplished us-
ing out by setting the target parameter to TL LOCAL, which entails outputting the
tuple to the local tuple space. This operation, by virtue of one-hop sharing, automati-
cally triggers all the aforementioned reactions6, which process the tuple contained in the
event tupleReady. As mentioned in Section 2, however, different types of actuator
nodes behave differently. The node hosting the emergency bell immediately activates
its device. Instead, the water sprinkler node proceeds to verify the presence of fire. The
latter behavior, specified as part of the reaction code, consists of proactively gathering

6 We assume that actuators are interested in all temperature values. We show later how notifica-
tions can be triggered only when temperature is above (or below) a given threshold.
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command result_t StdControl.start() {
tuple tempTemplate = newTuple(2, actualField_uint16(TEMPERATURE),

formalField(TYPE_UINT16_T));
call TS.addReaction(FALSE, TL_NEIGHBORHOOD, &tempTemplate);
return SUCCESS;

}
event result_t TS.tupleReady(TLOpId_t operationId,

tuple *tuples, uint8_t number) {
// Notification triggered ...

}

Fig. 5: TeenyLIME code for an actuator node interested in temperature values.

command result_t StdControl.start() {
return call SensingTimer.start (TIMER_REPEAT, SENSING_TIMER);

}
event result_t SensingTimer.fired() {
return call TemperatureSensor.getData();

}
event result_t TemperatureSensor.dataReady(uint16_t reading){
tuple temperatureValue = newTuple(2, actualField_uint16(TEMPERATURE),

actualField_uint16(reading));
call TupleSpace.out(FALSE,TL_LOCAL,&temperatureValue);
return SUCCESS;

}

Fig. 6: TeenyLIME code for a temperature node.

the readings from nearby smoke detectors, using a rdg restricted (by setting target
to TL NEIGHBORHOOD) to the union of their tuple spaces. If fire is reported, the water
sprinkler node requests activation of nearby sprinklers through a two-step process that
relies on reactions as well. The node requesting actuation inserts a tuple representing
the command on the nodes where the activation must occur, using out with target
set to the sprinkler node address. The presence of this tuple triggers a locally-installed
reaction delivering the activation tuple to the application, which reads the tuple fields
and operates the actuator device accordingly.
Reliable Operations. Since fire detection requires the maximum degree of reliability,
its implementation takes advantage of reliable operations for guaranteeing correct com-
munication of reaction and query results, of the rdg operation on smoke detectors, and
of the out operations towards actuators. Furthermore, in the HVAC sub-task the sys-
tem runs the risk of oscillating behavior if multiple nodes controlling air conditioners in
the same location (e.g., same floor) independently run the control algorithm. To prevent
this, we designed a mechanism to assign a master role to only one of the co-located con-
troller nodes. This is identified as the node holding a special token tuple, periodically
exchanged among co-located nodes to achieve a form of load-balancing. As a token
loss implies no controller acting as the master, strong guarantees on token transfer are
imperative. Therefore, the token exchange from the previous to the new master node is
accomplished using a reliable in operation performed by the latter.

As shown in Figure 3, the selection between unreliable and reliable is done using a
flag, available in most operations. The former offers a lightweight form of best-effort
communication suitable for state-less applications (e.g., data collection), while the latter
offer stronger guarantees to applications requiring stateful interactions.
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Sharing System Data. Coordination of activities across heterogeneous nodes some-
times relies on system information, such as the node location or capabilities. In Teeny-
LIME, this information is made available in the same way as application data, i.e., as
tuples shared among neighboring nodes. In our scenario, these tuples contain a field
describing the (logical) location (e.g., a room) where a node is deployed, and the sen-
sor/actuator devices attached. Which data to provide is defined by the application pro-
grammer, by specifying the body of the handler for the reifyNodeTuple event,
shown in Figure 3. This event is signaled periodically by the TeenyLIME run-time, and
the execution of the corresponding handler regenerates the tuple with new application-
defined values. In our implementation, the local tuple space on every node contains tu-
ples describing each of its neighbors. This is accomplished by appending the neighbor
tuple to all outgoing messages; therefore, when the message is overheard by neighbors,
they extract the neighbor tuple and insert it locally. This way, it is easy to query the
tuple space to obtain information on nodes with specific abilities.

Filtering Data. In many WSN applications, including ours, action must be taken only
when a sensed value crosses a given threshold. Nodes controlling water sprinklers and
emergency bells use reactions to receive notifications when temperature rises above a
safety threshold. Nodes controlling air conditioners similarly receive notifications when
temperature falls outside a user-defined threshold. These conditions require a predicate
over tuple field values—something that cannot be achieved with the standard Linda
matching semantics, which is based on exact values. In TeenyLIME, patterns are ex-
tended to support custom matching semantics on a per-field basis. For instance, the
requirement concerning safety thresholds can be expressed concisely by using range
matching, requiring the temperature field to be greater than a given parameter, as in:

tuple temperatureTempl = newTuple(2, actualField_uint16(TEMPERATURE),
greaterField(TEMPERATURE_SAFETY));

The above uses the default range matching, which the programmer can easily redefine.
Note how the issue is not simply one of expressive power, as it deeply affects com-

munication. Without this feature, the programmer must specify a generic pattern match-
ing any temperature. Tuples matching this pattern would then be transmitted whenever
requested (in our case, each time a new sample is available) and possibly frequently
discarded as out of range, wasting significant communication resources.

Dealing with Short-Lived Data. In some cases, sensor data remain useful only for a
limited time after collection. For instance, an emergency bell is not interested in tem-
perature values sensed an hour before. Instead, the same data may be of interest for a
component that is periodically run to build a day-long analysis of temperature trends.

In TeenyLIME, time is divided into epochs of constant length, and every data tuple is
stamped with an application-accessible field containing the current epoch value. Three
helper functions allow the application developers to deal with time:

setFreshness(pattern,freshness)
getFreshness(tuple)
setExpireIn(tuple,expiration)

The first customizes a pattern, similarly to range matching above, to impose the addi-
tional constraint to match tuples no more than freshness epochs old. If a pattern
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command result_t StdControl.start(){
tuple capTSmoke = newCapabilityTuple(2, actualField_uint16(SMOKE),

formalField(TYPE_BOOL));
call TupleSpace.out(FALSE,TL_LOCAL,&capTSmoke);
return SUCCESS;

}
event result_t TupleSpace.reifyCapabilityTuple(tuple *ct, tuple *p){
return call SmokeDetector.getData(); // Request a reading from the sensor

}
event result_t SmokeDetector.dataReady(uint16_t reading){ // Sensor reading
tuple smokeValue = newTuple(2, actualField_uint16(SMOKE),

actualField_bool(reading));
call TS.out(FALSE,TL_LOCAL,&smokeValue);
return SUCCESS;

}

Fig. 7: TeenyLIME code for a smoke detector node.

does not specify freshness, it matches any tuple regardless of its age. The second func-
tion returns the number of epochs elapsed since the tuple was created. Finally, the
third specifies how many epochs the tuple is allowed to stay in the tuple space. When
the timeout associated to the tuple expires, the tuple is automatically removed.

Generating Data Efficiently. In our application, humidity sensors and smoke detectors
need not be monitored continuously: their data is accessed only when actuation is about
to occur. Reading of the sensed value is accomplished by issuing a rd, however this re-
quires that fresh-enough data be present in the tuple space when the operation is issued.
If data is only seldom utilized, the energy required to keep tuples fresh is mostly wasted.
An alternative is to require that the programmer encodes requests to perform sensing in
a way similar to actuation commands, enabling the receiving node to perform sensing
on-demand and return the result. However, this solution requires extra programming
effort, is error-prone, adds processing overhead, and is therefore equally undesirable.

To deal with these (frequent) situations,
Water 
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Fig. 8: Processing of capability tuples.

TeenyLIME provides the ability to output
capability tuples indicating that a device has
the capability to produce data of a given
pattern. A code example for a smoke de-
tector is shown in Figure 7. When a query
is remotely issued with a pattern matching
a capability tuple, the reifyCapabili-
tyTuple event is signaled. This reports
the pattern included in the query and the matching capability tuple. The application
handles this event by taking a fresh reading and outputting the actual data to the tuple
space. The sequence of operations is depicted in Figure 8. Note how, from the perspec-
tive of the data consumer, nothing changes. Instead, on the data producer, capability
tuples enable energy savings as data readings can be taken only on-demand, without
the need to maintain constantly fresh data in the tuple space.

Interestingly, capability tuples can be generalized to allow any action to be taken
transparently by the data producer. Instead of triggering a sensor reading, matching a
pattern to a capability tuple may invoke other application functions (e.g., computing
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the average of all temperature tuples), whose results are inserted in the tuple space and
returned to the requester.

5 The TeenyLIME Middleware

The design of TeenyLIME aims to enable easy customization and extension of the mid-
dleware. Therefore, local processing, distributed processing, and communication con-
cerns are fully decoupled, and one aspect can be changed without impact on the rest
of the system. Here we focus on specific aspects of our architecture, namely, the im-
plementation of distributed reactions and capability tuples, and the support for reliable
operations. More details about the current prototype are reported in [16]. Also, Teeny-
LIME’s source code is available at http://lime.sf.net/teenyLime.html.

The implementation of remote reactions currently rely on a soft-state approach, to
deal with nodes joining or failing. Each node periodically sends a message containing
the definitions of all reactions that should be installed on its neighbors. Upon receipt
of this message, a timer associated with installed reactions is refreshed. If and when a
timer expires, the corresponding reaction is removed. This may happen either because
the registering node became unreachable, or the application deregistered the reaction
(therefore stopping its refreshing). Similar approaches are widely used in WSN, (e.g.,
in [17]), as they are sufficiently lightweight and effective.

Expressing the internal processing of capability tuples requires keeping track of the
nodes whose query matched a local capability tuple so that, once the actual tuple is
(locally) output by the application, it can be returned to the appropriate node. Due to
nesC split-phase operations [15], this processing requires a lot of bookkeeping code.
However, we noted that this processing is the same as if a reaction (for the same pattern
as the query) were installed by a neighbor before the application outputs the actual tuple.
Our implementation exploits this observation and installs a local reaction for the query
pattern before firing the reifyCapabilityTuple event. When the node outputs
the tuple, this matches the aforementioned reaction and is subsequently, automatically
delivered to the intended recipient. The only additional processing required is to remove
the reaction right after it fires. This solutions requires only 24 nesC lines.

Finally, TeenyLIME poses few requirements on the communication layers: essen-
tially, the ability to overhear messages for populating the tuple space with neighbor
tuples. As a result, many existing solutions (e.g., [18, 19]) can be employed to provide
reliable operations. Nevertheless, if reliability is only seldom required, the solutions
above may be overkill, e.g., because scheduling mechanisms (as in [19]) negatively
impact latency. To meet scenarios where reliable operations are rare, our current pro-
totype includes a simple reliability scheme based on explicit acknowledgments. Mes-
sages contain a unique identifier, reported in the corresponding acknowledgment when
transmission succeeds. Therefore, lost packets are easily recognized and retransmitted
upon timeout expiration. Control information is piggybacked on application messages
whenever possible, to reduce overhead. Our protocol is not tied to TeenyLIME, and ex-
ports the same interface as TinyOS’ generic communication layer. Therefore, it can be
re-used by plain TinyOS applications demanding reliable communication.
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6 Evaluation

We compare quantitatively TeenyLIME against common alternatives, analyzing its im-
pact on the application source code and on run-time performance.

6.1 Evaluating the Programming Model

Our objective is to assess the effectiveness of TeenyLIME in enabling a flexible de-
sign and clean implementations. To the best of our knowledge, there are no program-
ming abstractions expressly designed for application scenarios such as sense-and-react.
Therefore, we compare a TeenyLIME-based implementation of our reference applica-
tion against one implemented directly on top of TinyOS. On the other hand, the ap-
plicability of TeenyLIME goes beyond sense-and-react applications, and reaches into
system-level mechanisms, below the application layer. We substantiate this claim by
reporting about implementations in TeenyLIME and Hood [6], a programming abstrac-
tion designed around similar requirements.
Reference Application. In the TinyOS version of our reference application, each type
of node (e.g., temperature sensors or air conditioners) has a component configuration
similar to the one mentioned in Section 4, where however TeenyLIME is replaced by
the TinyOS GenericComm component7. However, the TinyOS-based implementation
is far more complex. The reader can informally verify this statement by visually com-
paring the excerpt of TinyOS code for a temperature sensor in Figure 9 against the
complete (and much simpler) TeenyLIME-based equivalent shown earlier in Figure 6.

The superior expressive power of TeenyLIME manifests itself in several aspects,
which are again evidenced by comparing the two implementations in Figure 6 and 9:

– Developers using plain TinyOS must keep track of all the potential data consumers
within the application code. This requires several dedicated functions, such as
matchesInterest() in Figure 9. Using TeenyLIME, the same functionality
is achieved using reactions: no application-level bookkeeping is required.

– Figure 9 contains two separate execution flows: one begins when a message is re-
ceived (ReceiveInterestMsg.receive), the other when a reading from the
sensing device is ready (TemperatureSensor.dataReady). The two are not
at all evident in the code, due to nesC split-phase operations [15]. Thus, mainte-
nance and debugging are greatly complicated [20]. This problem is significantly
alleviated using TeenyLIME, as only the latter execution flow is necessary.

– Distributed processing forces TinyOS programmers to delve into the details of mes-
sage transmission, parsing, and buffering, therefore mixing communication aspects
with the very application semantics. Instead, the TeenyLIME component in Figure 6
contains only application-specific processing related to the actual data of interest.

– As a consequence of all the above, TinyOS programmers must manage state vari-
ables to deal with nearby air conditioners (interests), the sensing device (pen-
dingReading), and the radio (pendingMsg). These can be source of race con-
ditions [15]. Conversely, in TeenyLIME these aspects are either handled by the
middleware, or no longer required.

7 Or with our reliability component if reliable interactions, not supported by TinyOS, are re-
quired by the application. We elaborate further on reliability in Section 6.2.
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bool pendingMsg, pendingReading;
TOS_Msg sendMsg, queueMsg[MAX_QUEUE_SIZE];
uint8_t nextQueueMsg, lastQueueMsg;
nodeInterest interests[MAX_AIR_CONDITIONERS];
void interest(uint16_t node,uint8_t t,uint16_t tShold,uint16_t tStamp){ // ... }
bool isRecipient(struct InterestMsg* msg,uint16_t nodeId) { // ... }
bool matchesInterest(uint16_t reading) { // ... }
bool enqueueMsg(TOS_Msg msg) { // ... }
bool messageWaiting() { // ... }
bool sendQueuedMsg() { // ... }
command result_t StdControl.start() {
// ... data initialization ...
return call SensingTimer.start(TIMER_REPEAT, SENSING_TIMER);

}
event result_t SensingTimer.fired() {
pendingReading = TRUE;
return call TemperatureSensor.getData();

}
event TOS_MsgPtr ReceiveInterestMsg.receive(TOS_MsgPtr m) {
struct InterestMsg* payload = (struct InterestMsg*) m->data;
if (!pendingReading && isRecipient(payload, TOS_LOCAL_ADDRESS))

interest(payload->sender, payload->type,
payload->threshold, payload->timestamp);

return m;
}
event result_t TemperatureSensor.dataReady(uint16_t reading){
TOS_Msg msg;
struct DataMsg* payload = (struct DataMsg*) msg->data;
payload->sender = TOS_LOCAL_ADDRESS;
payload->type = TEMPERATURE;
payload->value = reading;
if (!pendingMsg && matchesInterest(reading)) {

atomic {
pendingMsg = TRUE;
sendMsg = msg;

}
if (call SendDataMsg.send(TOS_BCAST_ADDR,

sizeof(struct AppMsg),&sendMsg)!= SUCCESS) {
pendingMsg = FALSE;

}
} else if (pendingMsg)

enqueueMsg(msg);
pendingReading = FALSE;
return SUCCESS;

}
event result_t SendDataMsg.sendDone(TOS_MsgPtr msg, result_t success) {
if (msg == sendMsg) pendingMsg = FALSE;
if (messageWaiting()) sendQueuedMsg();
return SUCCESS;

}

Fig. 9: A temperature node in our reference application, using plain TinyOS. The pro-
cessing above is equivalent to the TeenyLIME version in Figure 6.

A good way to assess the complexity of implementations is to analyze them as
state machines and count the number of explicit application states, as in [6]. These are
typically stored in state variables, modified by commands and event handlers to express
state transitions. The higher the number of application states, the harder it is to express
state transitions [20], and the more complex and error-prone applications become.

Figure 10 reports this and other metrics for the temperature sensor and other com-
ponents of our sense-and-react application, showing that the advantages of TeenyLIME
hold for all the (diverse) tasks of our application. For instance, the plain-TinyOS com-
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Explicit states Lines of code
Component TeenyLIME Plain TinyOS TeenyLIME Plain TinyOS % of application

data in TeenyLIME

AirConditioner 3 8 93 282 72%
MutualExclusion (ML× 2) (ML× 3) + 1 153 205 48%
TemperatureSensor 0 NC + 2 44 107 100%

Fig. 10: Comparing the TeenyLIME-based implementation against plain TinyOS. ML
represents the maximum number of different locations the component implementing
mutual exclusion handles, NC represents the maximum number of air conditioners
around a temperature sensor.

ponent implementing the air conditioner control law has 8 explicit application states,
whereas the TeenyLIME-based one has only 3. The reduction is due to the aforemen-
tioned ability of TeenyLIME to hide communication details, here complemented by
the ability to express data filtering as patterns. The former avoids the use of several
state variables, while the latter delegates most of the data processing to the middleware.
Nicely, the reduction of explicit states in the application code causes the number of lines
of code to decrease as well, as shown in the second column of Figure 10. Indeed, fewer
state transitions, and therefore far less bookkeeping code, are needed.

It is worth noting that the above simplifications are not accomplished by remov-
ing application information. Doing so would indeed affect the application semantics.
Rather, they are obtained by moving information and related processing from the ap-
plication components into TeenyLIME. This is not possible using plain TinyOS, as its
abstractions provide only message passing and do not explicitly represent state. This is
instead achieved in TeenyLIME using the tuple space, as its content is persistent. For
instance, a reading tuple output by a temperature sensor node represents its current state
and remains in its tuple space until a new reading becomes available.

To quantify this aspect, the rightmost column in Figure 10 indicates the amount of
information that can be moved from the application component into TeenyLIME. We
compute it by looking at the per-component storage of global variables concerned with
application data. It is expressed as the percentage ratio between the TeenyLIME-based
and the TinyOS-based applications. The results confirm the reasoning above, showing
that a considerable portion of the application state can be managed inside the middle-
ware. Remarkably, all the application data and related processing for a temperature
sensor can be moved into the tuple space, as shown by comparing Figure 6 and 9.

The advantages above come at the price of a slight increase in the size of the binary
code deployed on the motes. The code of a temperature node occupies 69 Kbytes using
plain TinyOS and 80 Kbytes using TeenyLIME (including the middleware itself). These
figures increase to 72 Kbytes and 90 Kbytes, respectively, for the air conditioner. We
note, however, that the latter is a complex component, and yet is well within the limits
imposed by commercially available sensor platforms (e.g., 128 Kbytes for MICA2).

Sense-only Applications and System-level Functionality. TeenyLIME provides rel-
evant benefits also to the development of sense-only WSN applications and system-
level functionality. We support this statement by illustrating insights obtained by re-
implementing some of the applications used in [6] to evaluate Hood, a programming
abstraction geared towards sense-only applications and system mechanisms that, like
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TeenyLIME, focuses on one-hop interactions. Notably, by limiting ourselves to sense-
only (instead of sense-and-react) applications, and comparing against Hood on the same
applications used for its evaluation, we put ourselves in the most challenging situation.

Specifically, we consider the object tracking application and the multi-hop rout-
ing protocol called Mutation Routing, both described in [6]. In these applications, the
evaluation using the same quantitative metrics considered earlier for plain-TinyOS ap-
plications shows that TeenyLIME achieves slight improvements also w.r.t. Hood. For
instance, only three explicit application states are needed to implement Mutation Rout-
ing, whereas five states are required using Hood. Space constraints prevent us from a
deep discussion of these aspects, better detailed in [16]. Instead, we draw qualitative
considerations showing that TeenyLIME yields cleaner and more reusable designs:

– TeenyLIME achieves a more flexible software architecture w.r.t. Hood. In object
tracking, for instance, three components cooperate on a node to implement the de-
sired processing: a localization algorithm, a tracking mechanism, and a geographi-
cal routing protocol. In Hood, the three need to be wired together using dedicated
nesC interfaces. Therefore, adding a further component (e.g., to log the position of
the moving object on external memory) requires modifications in several places. In-
stead, in TeenyLIME the three components are fully decoupled, and exchange data
anonymously through the local tuple space. Thus, adding a logging component can
be easily achieved without affecting the rest of the application.

– TeenyLIME fosters code re-use to a great extent. For instance, in Mutation Routing
two nodes are appointed the role of source or destination for packets flowing along a
multi-hop path. The source (destination) role must be passed between neighboring
devices as some physical phenomena moves. In a TeenyLIME-based implemen-
tation, this processing can be accomplished by reusing as is the component im-
plementing the token-based mutual exclusion mechanism described in Section 4.
Simply, we create a token for each role at system start-up, exchanged based on the
presence of the moving target close to a given node. In Hood this functionality is
interspersed with message processing, preventing its reuse.

– TeenyLIME’s one-hop shared tuple space and associated operations are sufficiently
powerful to express multi-hop mechanisms. In both Mutation Routing and the ge-
ographical routing of object tracking, messages are easily described as tuples. At
each hop, these are output to the tuple space of the next-hop node, where a previously-
installed reaction delivers the tuple to the routing component. There, the subsequent
forwarding to the next-hop node is determined based on the status of neighboring
devices, as reflected by the information locally available in the tuple space. As a re-
sult, all the routing decisions are encapsulated in the tupleReady event handler.
This provides an easy and clean way of implementing this class of functionality, and
one that cannot be achieved in Hood due to the absence of abstractions to describe
the node state.

The considerations above confirm that TeenyLIME’s benefits in terms of better de-
sign and simpler code hold not only for the development of application logic in sense-
and-react scenario, but also for sense-only applications and system-level functionality.
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6.2 Evaluating the Middleware Implementation

To verify that the advantages we identified do not negatively affect system performance,
we extend our evaluation beyond the programming model and into TeenyLIME’s imple-
mentation. Specifically, a middleware layer may impact the execution time, due to the
additional processing w.r.t. a plain TinyOS implementation. As a consequence, the sys-
tem lifetime may decrease as well. The latter is key in WSNs, as nodes are usually
battery-powered and must operate unattended for long periods of time.

To investigate the above concerns, we conduct experiments using Avrora [21], an
instruction-level emulator for WSNs equipped with a precise energy model. The latter
is based on experimental data relative to MICA2 [22] nodes, a widespread hardware
platform for WSNs. This approach allows us to gather realistic, fine-grained statistics
regarding the processing overhead and energy consumption of arbitrary nesC code. We
consider two benchmarks:

1. The HVAC sub-task we illustrated in Section 2, whose TeenyLIME implementation
is described in Section 4. We place a variable number of temperature/humidity
sensors in the same neighborhood as an air conditioner node. In each epoch, each
temperature sensor randomly generates a reading, whose value can deviate from the
user preference with a 20% probability. This triggers actuation at the air conditioner
controller, which first queries nearby humidity sensors for their most recent reading,
and then decides on the specific actions to be taken.

2. A simple application using the token-based, mutual exclusion component illustrated
in Section 4. A variable number of nodes, in the same neighborhood, express the
intention to obtain the token. In each epoch, the token is released by the node hold-
ing it, and a different, randomly chosen node is selected as the new token holder,
while the others are notified about the change in token ownership.

Both applications above involve several TeenyLIME-specific constructs. In the first
one, a temperature sensor reading may trigger a remote reaction previously installed
by the air conditioner, whose pattern contains a dedicated range field to express the
user preference as a temperature interval. Moreover, humidity values are represented as
capability tuples. Therefore, the (unreliable) query coming from the air conditioner trig-
gers the execution of the reifyCapabilityTuple event on the humidity sensors.
These react by locally outputting the actual tuple8, which is delivered by TeenyLIME to
the air conditioner as the result of the initial query. Similarly, in the mutual exclusion
application, releasing a token entails outputting a token tuple in the local tuple space,
and possibly triggering some previously installed, remote reaction. Nodes receiving this
notification then perform a reliable in operation to obtain the token. Among them, only
one will succeed.

The processing above is the same in other scenarios where the data involved have
different semantics. For instance, the processing to exchange the token (i.e., a reaction
firing followed by a reliable query) is the same executed by a water sprinkler in the fire
sub-task, shown in Figure 4: only the tuple content changes. In this sense, the meaning
of our results extends beyond the benchmark applications we consider here.

8 Gathering of physical readings from the sensor device is assumed to be instantaneous.
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Parameter Name Value
MAC Layer standard TinyOS MAC for CC1000 chip
Initial Energy Budget ≈ 2 AA batteries
Message Size 47 bytes (TinyOS), 104 bytes (TeenyLIME)
Epoch Duration 10 secs

Fig. 12: Emulation parameters.

Operation TeenyLIME Plain TinyOS Overhead
Notifying the
Air Conditioner

2.18ms 1.99ms 9.54%

Sending a
Humidity Query

1.97ms 1.85ms 6.48%

Replying to a
Humidity Query

2.25ms 2.03ms 10.08%

(a) HVAC.

Operation TeenyLIME Plain TinyOS Overhead
Releasing the
Token

2.03ms 1.97ms 3.04%

Sending a Token
Notification

2.28ms 2.07ms 8.21%

Requesting the
Token

2.09ms 1.92ms 8.85%

(b) Mutual exclusion.

Fig. 13: Execution times in the components of our benchmark applications.

For comparison, we consider a plain TinyOS implementation of the same applica-
tions. Figure 11 illustrates the component configurations in the two cases. To compare
them on common ground, we provide TinyOS with reliable communication by using
our reliable protocol, mentioned in Section 5.

The emulation settings, in Figure 12, are taken from real MICA2 motes. The larger
message size in TeenyLIME is due to the additional control information contained in
the tuples. As independent variables, we vary the number of nodes in a neighborhood
and the probability ε of loosing a message, to investigate TeenyLIME’s overhead w.r.t.
system scale and network conditions.

Results. In our benchmark applications, TeenyLIME does not Application

TeenyLime
TupleSpace

ReliableComm
(when needed)

SendMsg/ReceiveMsg

GenericComm
SendMsg/ReceiveMsg

TinyOS

(a) TeenyLIME-based.

Application

ReliableComm
(when needed)

SendMsg/ReceiveMsg

GenericComm
SendMsg/ReceiveMsg

TinyOS

(b) TinyOS-based.

Fig. 11: Component
configurations.

generate any increase in the number of messages exchanged
w.r.t. a TinyOS-based implementation. Therefore, TeenyLIME’s
overhead in execution time is essentially due to extra local pro-
cessing. In this respect, Figure 13 analyzes the CPU time taken
to perform a set of relevant operations in our benchmark appli-
cations. The worst case accounts for a 10.08% overhead, which
is reasonable given the absolute values involved. We believe
these results are due to the generality of TeenyLIME’s abstrac-
tions. These can capture commonly-used sequences of opera-
tions in a natural way, which allows our TeenyLIME implemen-
tation to perform close to application-specific mechanisms.

Figure 14 further elaborates on the timing aspects in our
TeenyLIME implementations, showing the breakdown of CPU
time in the different layers. Figure 14(a) illustrates the afore-
mentioned metric for an air conditioner node in the HVAC ap-
plication, against the number9 of temperature/humidity nodes
in its neighborhood. TinyOS is responsible for most of the pro-
cessing, as it handles all hardware interrupts and radio-related
functions, triggered quite frequently. The trend of the process-

9 Half of the nodes in the x-axis are temperature nodes, while the other half are humidity nodes.
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Fig. 14: CPU time breakdown in TeenyLIME-based implementations.

 0

 20

 40

 60

 80

 100

 2  4  6  8  10
 0

 20

 40

 60

 80

 100

sy
st

em
 li

fe
tim

e 
(d

ay
s)

pe
rc

en
ta

ge
 li

fe
tim

e 
re

du
ct

io
n

temperature/humidity nodes

TeenyLIME
plain TinyOS

% lifetime reduction

(a) HVAC.

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7
 0

 20

 40

 60

 80

 100

sy
st

em
 li

fe
tim

e 
(d

ay
s)

pe
rc

en
ta

ge
 li

fe
tim

e 
re

du
ct

io
n

message error rate ε

TeenyLIME
plain TinyOS

% lifetime reduction

(b) Mutual exclusion.

Fig. 15: System lifetime.

ing dedicated to the application and to TeenyLIME is due to the number of notifications
and query replies received at the air conditioner, that grows with the number of nearby
nodes. TeenyLIME engages the CPU for at most 15% of the time, when 10 nodes are
in reach of the air conditioner. The above metric is not directly affected by the message
error rate in the HVAC application, as reliability guarantees are not required.

Conversely, when reliability is required it becomes the dominant factor, and system
scale bears little effect on our metrics. Figure 14(b) analyzes the CPU time breakdown
in the mutual exclusion application against a varying message error rate, with eight
nodes in the neighborhood. The chart indeed shows how the reliability protocol increas-
ingly engages the CPU as communication becomes less reliable. In fact, our reliable
protocol runs periodic activities (e.g., checking whether messages not yet acknowl-
edged need a retransmission) that take a time proportional to the number of buffered
messages. In absolute values, TeenyLIME execution times remain the same regardless
of mutable network conditions. Therefore, its relative contribution decreases as the reli-
able protocol is more stressed. This is a result of our design: TeenyLIME and the reliable
communication component are fully decoupled, and the processing implemented in the
former is independent from the latter.

It is interesting to look at how TeenyLIME affects the overall system lifetime. Fig-
ure 15(a) shows the time until the air conditioner node in the (unreliable) HVAC appli-
cation runs out of power. This metric is only marginally affected by TeenyLIME, whose
additional overhead is always under 4%. The chart also illustrates an almost constant
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behavior w.r.t the number of temperature/humidity nodes. This is expected: reactions
and queries are issued in broadcast by the air conditioner, therefore the energy expendi-
tures for communication are independent of the number of neighbors. Conversely, the
number of temperature/humidity sensors affects the local processing, as more neigh-
bors correspond to more replies received. Nevertheless, the extra overhead imposed by
TeenyLIME has a very limited impact on the overall lifetime. Along the same lines, Fig-
ure 15(b) shows the lifetime in the (reliable) mutual exclusion application, measured as
when the last node depletes its battery. The trends here are strongly tied to the message
error rate: an increasing number of retransmissions are indeed required as communi-
cation becomes less reliable. TeenyLIME’s overhead, however, is comparable to the
HVAC application, and becomes less relevant as the probability of losing a message
increases and, consequently, the reliable protocol is involved more.

Finally, we analyzed our reliable protocol,
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Fig. 16: Performance of TeenyLIME
reliable protocol.

to verify that our results are not biased by an
inefficient implementation. Instead, Figure 16
shows that our solution can provide 100% mes-
sage delivery with a very small number of re-
transmissions. This performance is in line with
alternative reliability mechanisms in the litera-
ture [23], and therefore confirms that our reli-
able protocol is a valid choice in our evaluation.

In conclusion, the trade-offs between the ben-
efits of the programming model and its run-time
overhead are reasonable, making TeenyLIME a
valid middleware choice.

7 Related Work

TeenyLIME is inspired by LIME [24], which originally introduced the notion of shared
tuple spaces in mobile ad hoc networks. However, not only is TeenyLIME’s imple-
mentation based on entirely different technologies and mechanisms from LIME, but
its model and API introduce novel concepts geared expressly towards WSNs, such as
range matching, capability tuples, freshness, and explicit control over reliability. Teeny-
LIME follows in time another adaptation of LIME to WSNs, called TinyLIME [25].
The two, however, profoundly differ in target scenario, model, and implementation.
TinyLIME focuses on mobile data collection and employs the standard LIME middle-
ware to provide data sharing over 802.11 among mobile sinks (the data consumers)
that, in turn, gather data from nearby WSN sensor nodes (the data producers). There-
fore, intelligence is on sinks: the TinyLIME code deployed on sensors is “dumb” and
largely application-agnostic, reporting data to external sinks (its only interlocutor) on
request. Instead, TeenyLIME is expressly designed for scenarios where the application
intelligence is in the network, built around node-to-node interactions inside the WSN.

The work most closely related to TeenyLIME is Hood [6], a neighborhood abstrac-
tion where nodes can share state with selected one-hop neighbors. Selection is based on
attributes periodically broadcast by neighbor nodes. Neighborhoods are specified using
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extensions to the basic nesC constructs, precompiled into plain nesC. Therefore, unlike
TeenyLIME, in Hood data sharing is decided at compile-time. Moreover, Hood pro-
vides neither the ability to affect the state of another node nor the abstractions to react
to changes in the shared state. This hampers its use in sense-and-react applications, and
in general provides a less expressive programming framework.

In Abstract Regions [26] 〈key , value〉 pairs are shared among nodes in a region (i.e.,
a set of topologically-related nodes), and manipulated through read/write operations.
Again, there is no way to receive notifications when some given data appears in the
system, unlike TeenyLIME. Moreover, although nodes in a region may leverage multi-
hop communication, this and other aspects must be coded explicitly by the programmer
on a per-region basis, therefore hampering generality and applicability.

Context Shadow [27] exploits multiple tuple spaces, each hosting only locally-
sensed information representing a given context. Applications retrieve the data of in-
terest by explicitly connecting to one of them. Similarly, the tuple spaces used in Ag-
illa [28] for coordinating among mobile agents are shared only local to a node. Instead,
TeenyLIME enables data sharing in a neighborhood by creating the illusion of a single
address space. Moreover, these systems lack WSN-specific constructs.

8 Conclusions

Developing WSN applications is a difficult task, and sense-and-react applications are
the most challenging. This paper presented and evaluated TeenyLIME, a middleware
designed for sense-and-react WSN applications, but whose programming constructs
are effective in a wide range of applications. TeenyLIME brings simpler, cleaner, more
reusable designs, as we evaluated quantitatively in non-trivial applications. Moreover,
our evaluation with the cycle-accurate emulation demonstrated that these benefits are
supported by an efficient implementation that introduces low overhead w.r.t. plain-
TinyOS implementations.

The TeenyLIME middleware is freely available for download at http://lime.
sf.net/teenyLime.html.
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