
WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ENABLING THE RAPID DEVELOPMENT OF DEPENDABLE

APPLICATIONS IN THE MOBILE ENVIRONMENT

by

Amy L. Murphy

Prepared under the direction of Professor Gruia-Catalin Roman

A dissertation presented to the Sever Institute of

Washington University in partial fulfillment

of the requirements for the degree of

Doctor of Science

August, 2000

Saint Louis, Missouri



WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

ABSTRACT

ENABLING THE RAPID DEVELOPMENT OF DEPENDABLE

APPLICATIONS IN THE MOBILE ENVIRONMENT

by Amy L. Murphy

ADVISOR: Professor Gruia-Catalin Roman

August, 2000

Saint Louis, Missouri

Recent technological trends in the miniaturization of computing devices and the

availability of inexpensive wireless communication have led to an expansion of effort in

mobile computing. In this environment, interactions are transient, computations become

highly decoupled and rely on weak forms of data consistency, disconnections are frequent and

unpredictable, and component behavior is sensitive to changes in location, context, quality

of service, or administrative domain. The goal of this thesis is to develop an environment

that will facilitate rapid development of dependable mobile applications executing in both

physical and logical mobile environments. Our focus is the development of abstractions

that simplify the programming task. We present two design strategies to achieve this goal,

the first of which focuses on algorithm development to support abstractions for inherently

difficult problems in mobility while the second describes a technique to develop high level

coordination constructs to support transient interactions among components.



copyright by

Amy L. Murphy

2000



to my family



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introducing Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Perspective on Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Message as a Mobile Unit:

A design strategy for the development of base station mobility abstrac-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Problem Definition: Message Delivery . . . . . . . . . . . . . . . . . . . . . 25

3.3 Previous Work on Message Delivery . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Message Delivery to Physically Mobile Hosts . . . . . . . . . . . . . . . . 30

4.1 Snapshot Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 From Distributed Snapshot Algorithms to Announcement Delivery . 30

4.1.2 Snapshot Delivery Algorithm . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Reality Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



5 Communication among Highly Mobile Agents . . . . . . . . . . . . . . . . 43

5.1 Logical Snapshot Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Delivery in a Static Network Graph . . . . . . . . . . . . . . . . . . 43

5.1.2 Delivery in a Dynamic Network Graph . . . . . . . . . . . . . . . . . 46

5.1.3 Multicast Message Delivery . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Tracking Mobile Units for Dependable Message Delivery . . . . . . . . . 56

6.1 Applying diffusing computations to mobile unit tracking . . . . . . . . . . . 57

6.1.1 Mobile tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1.2 Superimposing announcement delivery . . . . . . . . . . . . . . . . . 59

6.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2 Discussion and Generalizations . . . . . . . . . . . . . . . . . . . . . 67

6.2.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Global Virtual Data Structures:

A design strategy for the development of ad hoc mobility abstractions 80

7.1 Global Virtual Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Sample Global Virtual Data Structures . . . . . . . . . . . . . . . . . . . . 85

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Lime: Linda Meets Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Linda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Linda Extensions for a Mobile Environment . . . . . . . . . . . . . . . . . . 91

8.3 Transiently Shared Tuple Spaces . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Location-Aware Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.5 Reactive Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



9 Formalizing Lime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.1 Formal Foundations: Unity and Linda . . . . . . . . . . . . . . . . . . . . 103

9.2 Lime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2.1 Dynamic tuple space configuration . . . . . . . . . . . . . . . . . . . 113

9.2.2 Location Extended Constructs . . . . . . . . . . . . . . . . . . . . . 116

9.2.3 Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3 Practical Considerations in Implementing the Model . . . . . . . . . . . . . 125

9.3.1 Distribution and Parallelism . . . . . . . . . . . . . . . . . . . . . . . 126

9.3.2 Probing Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.3.3 Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.3.4 Engagement and Disengagement . . . . . . . . . . . . . . . . . . . . 129

9.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10 Implementing and Applying Lime . . . . . . . . . . . . . . . . . . . . . . . 131

10.1 Programming with Lime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.2 Design and Implementation of Lime . . . . . . . . . . . . . . . . . . . . . . 135

10.3 Developing Mobile Applications with Lime . . . . . . . . . . . . . . . . . . 142

10.3.1 RoamingJigsaw: Accessing Shared Data . . . . . . . . . . . . . . . 142

10.3.2 RedRover: Detecting Changes in Context . . . . . . . . . . . . . . 145

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10.4.1 Reflections and Lessons Learned . . . . . . . . . . . . . . . . . . . . 147

10.4.2 Related Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

10.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11 Extending Lime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.1 Unannounced Disconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.1.1 Disconnection during Data Transfer. . . . . . . . . . . . . . . . . . . 152

11.1.2 Duplication during Idle Communication . . . . . . . . . . . . . . . . 154

11.2 Weakening Engagement and Disengagement . . . . . . . . . . . . . . . . . . 155

11.3 Limiting the Scope of Engagement . . . . . . . . . . . . . . . . . . . . . . . 156

11.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.3.2 Creating Groups Dynamically . . . . . . . . . . . . . . . . . . . . . . 157

11.3.3 Putting it all Together . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

vi



Appendix A Supporting Invariants of Chapter 6 . . . . . . . . . . . . . . . . 172

A.1 Integrity of the Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.2 Backbone always exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.3 A most one announcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.4 No announcements during predelivery . . . . . . . . . . . . . . . . . . . . . 174

A.5 No acknowledgements during delivery . . . . . . . . . . . . . . . . . . . . . 175

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

vii



List of Figures

3.1 (a) Cellular system with one MSC per cell. All MSCs are assumed to be

connected by a wired network. (b) Abstract model of a cellular system, as a

graph of nodes and channels. Solid lines form a spanning tree. . . . . . . . 24

3.2 A connected network with connected subnetworks. Agents can enter and

leave the subnetworks only by going through the gateway servers. . . . . . . 25

3.3 The problem: Missing delivery in simple broadcast and forwarding schemes. 27

4.1 Translation of concepts from global snapshots into mobile delivery. The

curved arrow shows the processing of an element from a channel while the

text describes the action triggered by such movement. . . . . . . . . . . . . 32

4.2 Snapshot Delivery Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Phases of delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 AMPS handover protocol (a). If messages are processed (i.e., broadcast to

the mobile) immediately upon receipt, it is possible (b) for the mobile to

move faster than the message along the channel, or (c) for the message to

move faster than the mobile, thus breaking the FIFO channel property. . . 38

5.1 Using distributed snapshots for message delivery. Each concept from the

traditional snapshot is mapped to a concept in the mobile environment. The

result is the ability to trap an agent in a region of the network from which it

cannot escape without receiving a copy of the message. . . . . . . . . . . . . 44

5.2 State transitions and related diagram for multiple message delivery in a static

network graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Problems in managing a dynamic graph. Values shown inside the nodes

indicate the last message processed by the node. The subscripts on agent

a indicate the last message processed by the source of the channel being

traversed by a right before a migrated. . . . . . . . . . . . . . . . . . . . . . 47

5.4 State transitions and related diagram for multiple message delivery with a

single source in a dynamic network graph. The state transitions refer to a

single channel (S,D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



5.5 Tradeoffs when choosing a communication mechanism. . . . . . . . . . . . 53

6.1 Dijkstra-Scholten for detecting termination of a diffusing computation. Shaded

nodes are idle, white nodes are active. . . . . . . . . . . . . . . . . . . . . . 57

6.2 Diffusing computations adapted for tracking a mobile unit . . . . . . . . . . 58

6.3 Announcement delivery on top of diffusing computations. . . . . . . . . . . 60

6.4 The parent pointers of the backbone change as the mobile moves to (a) a

node not in the backbone, (b) a node higher in the backbone, and (c) a tail

node. (d) shows the state after all channels have been cleared. . . . . . . . . 63

6.5 By adapting diffusing computations to mobility, we construct a graph reflect-

ing the movement of the mobile. In order to deliver an announcement, the

only part of the graph we need is the path from the root to the mobile, the

backbone. Therefore we adapt the Dijkstra-Scholten algorithm to maintain

only this graph segment and delete all the others. . . . . . . . . . . . . . . . 64

6.6 Tracking and delivery algorithm derived using some initial ideas from termi-

nation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.7 Useful definitions for proving Dijkstra-Scholten message delivery. . . . . . . 68

7.1 Transforming a matrix into a global virtual data structure by distributing it

among mobile units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 A hierarchical data structure where units in range agree to transfer a subtree

which is under their jurisdiction even though parts of the global structure

remain hidden. Moving a subtree distributes data to a different location to

satisfy changing access patterns. . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Ant 1 learns from Ant 2 about landmark A when, by virtue of being in range,

the locally built maps are merged. Solid lines denote paths explored by Ants

1 and 2, and dashed lines denote unexplored regions. After sharing, each ant

has the same knowledge of the global structure. . . . . . . . . . . . . . . . 86

7.4 Creating the illusion of a globally shared tuple space. . . . . . . . . . . . . 87

8.1 Transiently shared tuple spaces in Lime. . . . . . . . . . . . . . . . . . . . . 92

8.2 Transiently shared tuple spaces to handle physical and logical mobility. . . 93

8.3 Persistent vs. transiently shared tuple spaces. . . . . . . . . . . . . . . . . . 95

8.4 Recomputing transiently shared tuple spaces on disengagement. . . . . . . . 97

8.5 Reacting to remote events in Lime. Thick solid lines represent reactions,

while the thick dotted line represents an asynchronous action. . . . . . . . . 101

9.1 A simple Linda tuple space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.2 A standard Unity specification with two component programs. Producer ∪

Consumer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



9.3 Summary of the Linda macros. T is a TupleSpace, t is a Tuple, p is a pattern

Tuple, and s is a set of tuples. The parameter of createTuple is a sequence of

any number of values (actuals) and types (formals). . . . . . . . . . . . . . 107

9.4 Transiently shared tuple spaces associated with each agent. . . . . . . . . . 111

9.5 Physical and logical mobility, a two tier structure. . . . . . . . . . . . . . . 112

9.6 Summary of the Lime macros. T is a TupleSpace, t is a Tuple, p is a pattern

Tuple, s is a set of tuples, x and y are formals of AgentID or AgentID subtypes,

and ρ is a unique statement label. The parameter of createTuple is a sequence

of any number of values (actuals) and types (formals). . . . . . . . . . . . . 112

9.7 A mobile producer/consumer. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.8 Persistent Linda tuple space vs. Lime transiently shared tuple Space. . . . . 117

9.9 Summary of the meaning of several possible query projections. . . . . . . . 118

9.10 A sample Lime system with two disconnected mobile hosts, A and D, each

with two mobile agents. The inner dashed line indicates the host-level tuple

space while the outer dashed line indicates the federated tuple space. . . . . 119

10.1 The class LimeTupleSpace, representing a transiently shared tuple space. . 132

10.2 The classes Reaction, RegisteredReaction, ReactionEvent, and the inter-

face ReactionListener, required for the definition of reactions on the tuple

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.3 The engagement and disengagement protocols. Dashed lines indicate multi-

cast messages, heavy solid lines represent multiple unicast, and regular lines

are unicast messages. The data message from the leader may contain tuples

(t), weak reactions (r), and all the tuples in the LimeSystem tuple space (lsts).140

10.4 RoamingJigsaw. The left image shows the view of a disconnected player

which is able to assemble only pieces it selected. The right image shows the

view after the player re-engages with the other players, seeing assembly that

occurred during disconnection. . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.5 RedRover. The main console of RedRover, and the most recent camera

image of a connected player. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.1 TCP data transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.2 Possible states for a transmission to terminate and the consequences of the

unannounced disconnection policies. . . . . . . . . . . . . . . . . . . . . . . 153

11.3 A visual interpretation of the grouping algorithm with seven hosts divided

into two groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

x



Acknowledgments

As with any non-trivial effort, this dissertation was not completed in isolation, but with

the support of many people. First, I would like to thank my advisor Catalin Roman. For

five years he has expected much from me, pushing me to do my best and giving just the

right balance between encouragement and red ink. For teaching me the art of research and

instilling in me a desire to continue, I thank you.

Next I thank Gian Pietro Picco. The many tireless hours of Java programming and

the innumerable dinners around the city changed my graduate experience for the better. I

hope this fruitful collaboration will continue.

George Varghese participated in the algorithm development presented in this thesis

and was an inspiring classroom teacher. I learned much from all my interactions with him.

I also wish to thank my doctoral committee, namely Sally Goldman, Mark Jakiela, Catalin

Roman, Tuomas Sandholm, and George Varghese. This work was financially supported by

Washington University and NSF grants CCR-9624815 and CCR-9970939.

Others who contributed to the technical content of this thesis include Jason Ginchereau,

Brian Mesh, and Bryan Payne, three talented undergraduate students I had the honor of

working with.

While pursuing this degree, many, many hours were spent in the computer science

department. I honestly believe that one of the greatest assets of this department the support

that it gives us both in official matters and in personal sanity. For both, I wish to thank the

office staff, especially Myrna Harbison, Peggy Fuller, Jean Grothe, and Sharon Matlock, as

well as the other students who make Friday afternoon Happy Hours successful, especially

Tilman Wolf who started it all. Special thanks also go out to Girish Chandranmenon, Del

Hart, and Pete McCann.

Outside the university, I have relied on the support of a variety of people. To all the

members of the Traditional Karate Institute and especially my sensei, Mr. Campbell, I owe

a debt of personal gratitude. Through interactions with them I have found a balance in

my life and leave St. Louis a better person. Thanks also to my friends, Sinique Betancourt

and Juan Caicedo. I could not have made it through the interview season without their

support.

On a personal note, part of this thesis goes to Jay Thompson and Colleen Dodd,

two friends whose short lives touched mine.

xi



Finally, my thanks go to my family, to whom this thesis is dedicated. My parents,

Tom and Kay, have supported me throughout my life, encouraging me to achieve every-

thing I was capable of and not to give up. My brother, Kevin, has become a close friend

and confidant, giving me both an occasional kick in the behind or a shoulder to lean on,

whichever was most appropriate. To my sister-in-law, Karla, and my grandmother, Connie

Murphy, I am thankful for their company through this experience.

Thank you!

Amy L. Murphy

Washington University in Saint Louis

August 2000

xii



1

Chapter 1

Introducing Mobility

Mobility entails the study of systems in which components change location, in a voluntary

or involuntary manner, and move across a space that may be defined to be either logical or

physical. By definition, systems of mobile components are distributed systems, and while

distributed computing has been carefully studied for decades, mobility poses new challenges

that have not previously been addressed.

The development of compact computing devices such as notebook computers and

personal digital assistants allow people to carry computational power with them as they

change their physical location in space. The number of such components is steadily in-

creasing. One goal, referred to as ubiquitous computing [86], is for these devices to become

seamlessly integrated into the environment until we are no longer explicitly aware of their

presence, much the way that the electric motor exists in the world today. Part of enabling

this vision is coordinating the actions of these devices, most likely through wireless mediums

such as radio or infrared.

Logical mobility, or the movement of code and state through a fixed infrastructure

of servers, is emerging as a powerful design abstraction for distributed systems. The per-

vasiveness of the Java programming language and its portability have led to a wealth of

mobile agent systems. Demonstration purpose applications built on top of these systems

range from logical agents managing physical objects in a kitchen [56] to agents managing

the placement of a video conferencing server to minimize bandwidth consumption [10].

Developing applications in the mobile environment is a difficult task. Many existing

applications restrict themselves to addressing a specific aspect of mobility in a highly spe-

cialized environment, such as disconnected operation in the Coda filesystem [40] or using

agents to perform remote queries on a database as in the Oracle Agent System [63]. Devel-

opment of these systems requires highly specialized knowledge of low level networking as

well as details of the application domain.



2

Our goal is to enable the development of more general applications by providing

flexible abstractions which can be applied in a variety of settings. Our success in this area

comes from an integrated research approach that involved analyzing the needs of mobile

applications, formulating models to describe the key concepts of our approaches, specifying

formally these models, implementing the abstractions, and returning to the development of

applications to evaluate our results.

1.1 Contributions

In this thesis we present two new design strategies which describe the development pro-

cess for abstractions in the mobile environment, specifically identifying useful abstractions

and guiding the implementation of these abstractions. Application of these strategies has

produced a number of application programmer interfaces (APIs) for abstractions of several

complex problems of mobility.

The first design strategy applies to the base station model of mobility. This en-

compasses nomadic computing (e.g., physically mobile components moving in a cellular

network) and mobile agent computing (e.g., logically mobile code and state moving among

a set of hosts). Abstractly, a base station system can be modeled as a graph of nodes

(representing the cells or hosts) and channels providing the communication among these

fixed components. We model mobile hosts that are in communication with a base station

and mobile agents that are executing on a host as part of the state of the node and model

migration as the traversal of a link by the mobile component.

• The goal of our first strategy is to develop new algorithms to support abstractions

for difficult problems in the base station model of mobile computing. The approach

defines how algorithms from standard distributed computing can be adapted directly

to the mobile environment by noting the similarities between the abstract mobile

model and the network model of distributed computing, and by treating the mobile

unit as a persistent message moving in the network. Successful application of this

strategy involves matching algorithms from distributed computing to the abstractions

they can implement in the mobile computing environment.

This approach has two major benefits. First, by grounding new developments on

well understood algorithms from distributed computing, we are able to directly apply

the proven properties of the distributed algorithms to the mobile environment and

therefore increase the dependability of our algorithms with little effort. Second, this

straightforward approach leads to the rapid development of algorithms in the mobile

environment which solve difficult problems in mobile computing. These algorithms

can then serve as a foundation for extensions which address additional problems of

mobility.



3

• The specific abstraction we focus on is reliable message delivery to both physical

and logical mobile components. The Chandy-Lamport distributed snapshot yields

a mobile algorithm for both reliable unicast and multicast. The Dijkstra-Scholten

diffusing computation is adapted to track the movements of mobile components and

a reliable message delivery scheme is build on top of the tracking mechanism.

In both cases, the developed algorithms describe the underlying implementation to

the abstraction of reliable message delivery which is presented to application program-

mers.

Our next contribution comes from focusing on ad hoc networks where no infras-

tructure exists to support communication among physically mobile hosts. Instead, hosts

communicate directly with one another and the distance between hosts determines connec-

tivity. A system is typically composed of multiple communities of hosts with connectivity

available within the community but no communication from one community to another.

Changes in connectivity and corresponding changes in available resources make this a chal-

lenging environment for application design.

• Our strategy describes the design for new high-level coordination abstractions, gener-

ically referred to as global virtual data structures. The abstraction presented to the

application programmer is simply a local data structure whose content changes ac-

cording to connectivity. Conceptually each component stores a piece of a global data

structure, when components are within communication range these pieces are tran-

siently shared and accessible to other components. Interaction with the data structure

occurs exclusively by executing operations on the local data structure, however, tran-

sient sharing enables transparent interaction with other mobile components.

One of the features of this approach is its ability to facilitate the development of appli-

cations which never explicitly access remote data. We term this context-transparent

interaction, where the data is part of the current context in which a mobile com-

ponent finds itself. The distribution and changes to the data structure are hidden

from the application programmer by the abstraction itself. Alternately, context-aware

interaction can easily be provided as an extension to the basic model by explicitly

introducing the notion of location.

• We have successfully applied this strategy in the development of Lime which provides

the simple mobile coordination abstraction through transiently shared Linda tuple

spaces, enabling application programmers to clearly separate the concerns of compu-

tation from the communication among hosts. The implementation of Lime in the form

of middleware presents the same interface and semantics as the model, simplifying the

implementation process. Mobile application developers utilizing the Lime concepts



4

need not concern themselves with any of the low level details of communication or

changing connections, as all of these are handled within the implementation of the

Lime middleware.

Work with the Lime system has shown it to be a clean conceptual tool for introducing

programmers to the concepts of mobility. Several applications have been built on top

of the middleware, demonstrating its usefulness in a variety of mobility scenarios.

1.2 Dissertation Overview

This thesis is organized into two main parts, framed by an introduction to the current trends

in mobility in Chapter 2 and conclusions and directions for future work in Chapter 12. The

two main parts introduce and explore the new design strategies for abstraction development

outlined in the previous section of this chapter.

Algorithms to support abstractions. Chapters 3 through 6 deal with algorithm devel-

opment to support abstractions in the base station model of mobility. Chapter 3 defines in

detail our design strategy and then introduces reliable message delivery as the problem we

address in the following chapters. Chapters 4 to 6 describe the message delivery algorithms

derived by applying this strategy.

Chapters 4 and 5 both develop algorithms based on Chandy-Lamport snapshots.

Chapter 4 focuses on physical mobility, explaining the necessary details to implement the

algorithm in a network similar to the cellular telephone infrastructure. Chapter 5 approaches

the algorithm development from the perspective of logical mobility and presents several

extensions to the basic algorithm to make it more flexible and applicable to a variety of

logical mobility scenarios.

Chapter 6 shows how the Dijkstra-Scholten diffusing computation model can be

adapted to track the movement of mobile units. It then builds reliable message delivery

abstractions on top of the tracking functionality.

Global virtual data structures. Chapters 7 through 11 address the development of

high-level abstractions for ad hoc mobility. Chapter 7 begins by presenting the design

strategy for global virtual data structures while Chapters 8 through 11 present the develop-

ment of Lime, a single global virtual data structure based on the Linda tuple space model.

Lime (Linda in a Mobile Environment) serves as a proof of concept for the global virtual

data structure design strategy.

The development of Lime demonstrates our integrated design strategy by showing

the informal model definition, Chapter 8, formal specification in Mobile Unity, Chapter 9,

and implementation as middleware, Chapter 10. Our experience has been very promising



5

and the Lime model has been applied to a variety of mobile applications. Chapter 11

presents several extensions to the basic model which further broaden its applicability.



6

Chapter 2

Perspective on Mobility

Mobile computing reflects a prevailing societal and technological trend towards ubiquitous

access to computational and communication resources. The communication industry is

actively pursuing mobility opportunities by investing in new wireless technologies (e.g.,

wireless LAN [48]), by cooperating in the establishment of interoperability standards (e.g.,

IEEE 802.11b High Rate standard), and by forming powerful consortia. The IETF Mobile

Ad Hoc Networks (manet) Working Group [44] is considering standardization efforts based

on IP technology. The list of consortia includes: 3G.IP [2] which focuses on high bandwidth

wireless technology using W-CDMA; Bluetooth [25] which uses frequency hopping and is

designed to provide low-cost support for small groups of co-located devices; and others

which promise home networks (via a Shared Wireless Access Protocol or SWAP) or Web

page delivery to low-bandwidth devices (via a Wireless Application Protocol or WAP).

Of course, wireless communication is not the same thing as delivery of data to a

mobile unit. The latter presupposes the ability to find the current location of the unit

and to continue to send data as the unit moves from one place to another. Cellular phone

systems accomplish this through a combination of broadcasts (to notify the unit about the

incoming call) and hand-off protocols (to maintain the connection in the face of movement).

In the Internet setting, special protocols, such as Mobile IP [65], have been designed to

enable packet delivery while a mobile unit is away from its home base. The next version

of IP (IPv6) is anticipated to provide still better support for transparent packet delivery to

mobile units away from their home networks [66]. Efforts are also under way to respond to

the special needs of ad hoc networks. Rapidly changing topology renders impractical many

well-established routing strategies such as link-state and distance-vector. New variants

are being proposed and evaluated. They include Temporally Ordered Routing Algorithm

(TORA) [64], Dynamic Source Routing (DSR) [15], and Ad hoc On demand Distance Vector

(AODV) [67]. A common feature among all three is their reactive nature, i.e., routing

information is built in response to the demand to communicate among specific hosts. The



7

provision of multicast services is still another area receiving much attention in the mobile

setting.

The impact of mobility on systems research and development is manifest mostly at

the algorithm and middleware levels. Algorithms from the area of traditional computing do

not address the complexities of the distributed mobile environment. New algorithms must

be developed to provide the same functionality available in distributed environment to the

mobile environment. Additionally, new styles of algorithm development must be explored

to exploit the unique characteristics of the mobile environment. Middleware is emerging as

one of the most fertile areas of systems research in mobility as it allows developers to take

advantage of the deployed software infrastructure while providing clean high-level program-

ming abstractions in languages already available today. Middleware hides the protocol layer

but makes explicit the key concepts involved in the development of mobile applications, e.g.,

the management of location data, event notification, quality of service assessment, adapt-

ability, etc. Middleware can be specialized for logical or physical mobility or may combine

the two in a single cohesive package.

This chapter presents our perspective on the current status of mobility research,

exploring the application characteristics that shape research directions (Section 2.1), models

which focus on the fundamental concepts of mobility and lay the foundation for development

efforts (Section 2.2), algorithm research which centers on discovering difficult problems that

are frequently encountered during design and on formulating and analyzing basic solutions

to such problems (Section 2.3), and finally on the kinds of middleware that integrate these

concepts and ultimately help to realize mobile applications (Section 2.4).

2.1 Applications

Current trends in computing technology include the manufacturing of increasingly smaller,

more powerful, and more portable computing devices. A glance around any airport terminal

shows that notebook computers are pervasive among business travelers. Common usage of

these computers is for tasks that require no interaction with outside resources, also referred

to as disconnected operation. The Coda filesystem [40], for instance, supports this by

allowing users to specify a set of files to be hoarded on disconnection. On reconnection, any

update conflicts within this set of files must be explicitly handled by the user.

Another common task for mobile users is access to remote resources such as the

Internet or company database systems. Recently Palm Computing released the Palm VII

personal digital assistant with built in wireless capabilities for accessing the Internet [1].

By simply raising an external antenna, a connection is made to the nationwide private

3Com network. No wireless ethernet or cellular modem is necessary. Cellular telephones

with limited Internet access are also becoming commonplace. Although the user interface



8

is limited by screen size and resolution, the ability to access information is key. To access

a corporate database from a mobile device, Oracle provides support for three common

database operations [63]. First, users are able to manage a database remotely. Second,

partial database replication allows mobile devices to carry a piece of the data and have

constant access, possibly out of date with the original. Third, by using a mobile agent

paradigm, mobile users can pose queries while disconnected, an agent collects these queries

and when a connection is available to the database the agent moves to the server. The

user can then disconnect while the queries are being processed, and when the connection is

reestablished, the agent moves back to the mobile host where the results are accessible.

Smaller devices, such as active badges [85], provide several interesting application

scenarios. If a badge is associated with an individual, when that user moves to a new room,

the environment in that room can automatically adjust to predefined user preferences.

Alternately, badges can be attached to equipment and be used to locate those objects as

they are moved into different laboratories throughout an office complex. These systems rely

on an infrastructure to track and make available such information.

Another mobility scenario, different from the client-server model, describes a group

of individuals coordinating on a project in an environment without network support. For

example, laptops carried to a program committee meeting should be able to interact to

construct a short-lived network during a plenary session or allow division into multiple

independent networks to support individual working groups. Similarly, the participants in

a conference may form an ad hoc group with the need to share information such as business

cards, schedules, session notes, etc.

Global positioning systems are becoming popular devices in many automobiles and,

while the design of these devices does not require access to remote data, once wireless access

becomes readily available, new kinds of applications may be considered. For example, cars

moving in opposite directions could share information about road conditions on recently

traveled roads. Those moving in the same direction may be able to coordinate for extended

periods of time on a variety of tasks. Another interesting possibility is the placement of

information kiosks at key places throughout a city or countryside. These kiosks could pro-

vide location specific information such as tourist information, available to the automobiles

over a low power wireless link while themselves being connected to a fixed network.

Specialized computing devices can contribute to the emergence of yet other inter-

esting applications. In a teaching laboratory, multiple devices can coordinate to assist a

student with an experiment by providing instructions, performing computations, and col-

lecting and displaying information from multiple instruments in a single place. At a smaller

level weaving processors into clothing enables wearable computing, and thus a more natural

way to carry and access computation power while moving. Tiny devices, such as those

proposed by the Dust project [38], have potential as sensing devices spread throughout a



9

room or desktop. Although some of these scenarios may appear to be the stuff of science

fiction, both society and technology are moving in this direction. Of course many technical

challenges must be addressed before they become reality and they place new requirements

on the enabling technologies.

One of the first concerns a developer must address is defining the user perception of

the application with respect to the degree to which mobility is exposed at the application

level. If the user is location-aware, one must face the related question of how the user

is made aware of this property. In a mobile filesystem such as Coda, the user explicitly

specifies information to be hoarded on disconnection and explicitly resolves conflicts on

reconnection. Alternately, when accessing location dependent information, such as a query

for local resources in Odyssey [80], the user should be able to make a generalized query

and have the system perform the specific resolution. In robot scenarios with autonomous

movement, it may be reasonable to hide the absolute location and expose only relative

positions among components, thus allowing each component to think of itself as the center

of the universe.

Variability in quality of service parameters is another factor that may contribute

to the user’s perception of location and movement. As a user moves, possible bandwidth

degradation requires some form of adaptation in the behavior of the application. Odyssey

provides a nice illustration of this feature by allowing control over the fidelity of data on

the fly. In a video session, for example, frame rate and frame quality provide two tuning

parameters. In general, applications must offer a variety of adaptive parameters that affect

the presentation style and make other adjustments reflecting different levels of knowledge

about the overall configuration and available information.

Similar situations are encountered when entering and leaving administrative do-

mains especially when they have diverse levels of security. From the user perspective, the

amount of personal information to be shared must vary depending on context. The ability

to express and alter both individual security policies and security demands of a domain

is important to many mobile applications. This ties in the issue of open environments

in which applications on mobile components must be able to interact with other mobile

components about which no prior knowledge exists and, similarly, with applications never

before encountered. While it is possible to prohibit such interaction entirely, it is much

more preferable to provide mechanisms that are capable of discovering beneficial modes

of interaction in new circumstances. The ability to adapt to an open environment must

be weighed against the associated costs. Openness, for instance, may compromise security

while excessive generality may require too many resources.

Assessing the capabilities of the environment is also important for effective perfor-

mance of an application. Mobile devices range from relatively high-power portable notebook

computers to low-power personal digital assistants with limited display and computation;



10

communication capabilities may include powerful base stations enabling full connectivity

among all mobile components or may be limited to ad hoc environments in which repar-

titioning and changes in connectivity pattern are frequent. Finally, the speed and pattern

of movement can also exhibit great variability. This variety of environmental conditions

makes application development challenging, but the ability to accommodate increases the

potential degree of penetration by mobile applications in the society at large.

2.2 Models

In this section, we focus our attention on models that entail an explicit notion of space

and components that move through it. A component may be either a code fragment that

is given the ability to roam the address spaces of a computer network or a physical device

moving through the real world. Abstraction often blurs the distinction between logical and

physical mobility thus allowing us to formally specify and reason about arbitrary compo-

nents moving across a broad range of conceivable spaces. By and large, models tend to

subsume physical into logical mobility, as the latter exhibits characteristics that have no

direct physical counterparts, e.g., the ability to spawn remotely a new mobile unit. As one

might expect, models vary greatly in the way they answer questions such as who is allowed

to move, where it can go, and how context changes caused by movement are managed.

The choice of unit of mobility is central to any model of mobility since it shapes to a large

extent the way in which the other two questions are addressed. The treatment of location

is indicative of the model’s perception of space. The handling of contextual changes reflects

the component’s perception of the coordination mechanisms that tie components into a

system. Ultimately, the assumptions and choices a model makes relative to these particular

concerns differentiate it from other models of mobility.

The unit of mobility represents the smallest component in the system that is allowed

to move. A typical choice is to make the unit of mobility coincide with the unit of execution.

This approach fits well a mobile device that moves in physical space as well as a mobile agent

that migrates among network hosts. The vast majority of models share this choice, e.g.,

higher-order extensions of π-calculus [79], Ambients [17], and Mobile Unity [50], to name

only a few. However, the reality of middleware and applications for logical mobility suggests

that finer-grained units, weaker than full-fledged execution units, are pervasive in every day

practice. Among various design paradigms for code mobility [28], for instance, code on

demand is probably the most widely used at this time. In this style of logical mobility, the

unit of execution does not actually move. Its behavior is dynamically augmented by foreign

code that becomes linked when a particular trigger condition occurs. Evidently, this fine-

grained perspective provides a new degree of freedom in describing how a distributed system

gets reconfigured by exploiting mobility among its components. The unit of execution is no



11

longer tied to a host and neither are the unit’s constituents tied to it. From this perspective,

the ability to move a unit of execution as a whole (commonly called a mobile agent) may

be regarded as a special case of a more general framework in which single code fragments

and/or their corresponding states can change location. Not surprisingly, this notion has

a direct counterpart in physical mobility, where the alter ego of code and state are the

applications and the data they use on some device.

So far, despite its theoretical and practical relevance, fine-grained mobility received

only limited attention in the formal models community. A commonly used approach is to

view the code and the state associated with an executing unit as degenerate cases of the

unit, e.g., state may be carried by a unit in which the code is missing or has no effect on the

computation. Because code and state are not treated as first-class units of mobility, this

approach is not sufficiently expressive, e.g., it cannot capture code assemblies still under

construction. To our knowledge, the only model that addresses fine-grained logical mobility

explicitly is the one presented by Mascolo, et. al [46]. In that work, this idea is pushed to an

extreme by investigating a model where the unit of mobility is as small as a single variable

or statement in a programming language. This radical perspective, readily encompassing

more common situations where the unit of mobility is as coarse as a class or an object, is

expected to provide new insights in the design of programming languages that foster high

degrees of reconfigurability.

Location identifies the position of a mobile unit in space. This view of location

is tied to the intuitive notion of mobility and distinguishes models of interest to us in

this work from other highly dynamic models that equate mobility with a more general

notion of change. In π-calculus [54], for instance, there is no notion of location built

into the model, and yet the structure of the system can change dynamically. Processes

exchange communication channels (represented by names) and, in some extensions [79], even

processes. This provides the expressive power needed to describe systems whose structure

evolves but fails to treat location as a first class concept. It is important for a model to be

capable of dealing with location throughout the software development lifecycle, starting from

the definition of the environment where mobility occurs, through designing and reasoning

about a mobile application, and down to the tools provided to programmers. For this reason,

numerous researchers are investigating calculi [17, 27, 60, 6] which extend π-calculus with

some notion of location and also approaches that are not based on process algebras but on

state transitions and logic [50].

The type of location is affected by the choice of unit of mobility. For instance,

location could be represented by Cartesian coordinates for a mobile device, by a host address

for a mobile agent, or by a process identifier in the case of a code fragment. For this

reason, some models avoid specifying the details of location altogether and focus on how to

effect movement and on how to detect and handle location changes and their consequences.



12

This is precisely the case of Mobile Unity [75], where location is modeled explicitly as a

distinguished variable that belongs to the state of a mobile component. Changes in its value

correspond to changes in the position of the component. Other models start with different

assumptions and impose a predefined structure on the space (typically hierarchical). Such

is the case with MobiS [45] where locations are nested spaces containing tuples, which in

turn may contain code as well as data with migration taking place upwards in the hierarchy

of spaces. Ambients [17] provides a richer model where locations are ambients containing

processes or other ambients. The boundary of an ambient, however, can be reconfigured

dynamically to change the overall system structure. These latter approaches combine the

notion of location, which only abstracts the notion of position in space, and the notion of

context described below.

Context represents the peculiar and novel aspect of mobile computing, to the point

that some researchers characterize mobility as “context-aware computing.” The context of

a mobile unit is determined by its current location which, in turn, defines the environment

where the computation associated with the unit is performed. The context may include

resources, services, as well as other components of the system. Conventional computing

tends to foster a static notion of context, where changes are absent, small, or predictable.

In a mobile setting, changes in location may lead to sudden changes in the context a

unit perceives. Moreover, these changes are likely to be abrupt and unpredictable. A

handheld wireless device carried across the floors of an office building has access to different

resources (e.g., printers or directory information) on each floor; a mobile agent migrating on

different servers may use different sets of services on each of them; in a fine-grained model,

a statement with free identifiers may be bound to different variable instances each time it

is linked into a different unit of execution.

The ability to detect whether the context has changed, e.g., whether a given unit is

now part of the context, is often a precondition for the ability to react to such a change.

Timely reaction is often a requirement, because some actions may be enabled for a limited

time after an event occurs (e.g., after two mobile agents become co-located, or after the

noise level on a wireless link goes beyond a given threshold). Letting the component in-

terested in handling an event probe for its occurrence proactively may not be acceptable,

due to the potentially high number of conditions to be verified and of parties involved.

Instead, a reactive approach may be more appropriate, allowing the interested component

to provide a specification of the event condition and of the actions that should handle of it.

The portion of context considered for evaluating the enabling condition and the degree of

reactivity (i.e., the degree of atomicity of the reaction with respect to the event occurrence)

is what discriminates among these models. At one extreme, event-based systems [76, 21]

consider only the occurrence of events that are filtered through a given specification. The

corresponding reaction is guaranteed to execute eventually. At the other extreme, there



13

are models [69] where the enabling condition is a particular state of the system (i.e., of the

context), and the reaction to a state change is completed before any other state change

is performed. The question about what degree of atomicity and style of reaction is more

reasonable for mobility is still an open one in the research community.

The manner in which we deal with the context is greatly affected by whether it is

distributed or localized. In logical mobility, for instance, the context is typically localized

within the boundary of a host. A code fragment is moved onto a different host in order to

exploit some resource or service provided locally. Network communication is exploited only

during the migration process. In contrast, physical mobility seems to require a distributed

notion of context. Mobile hosts construct the context through wireless communication and

the resources and services that contribute to defining the context are provided by the other

components and are accessed in a distributed fashion. While it might be reasonable to

look at both logical and physical mobility under the same modeling lens, their nature is

intrinsically different. The extent to which it is reasonable to treat both forms of mobility as

one remains an open question that demands careful consideration. Where is the threshold

separating the realm of logical mobility from the one of physical mobility?

Formal models enable precise description of the semantics of existing languages and

systems and formal reasoning about their correctness. In the novel field of mobility, models

appear to assume an increased level of significance. Models must be used as intellectual

tools to uncover the conceptual grounds of mobility and, armed with the power of ab-

straction, highlight parallels and differences among the various forms of mobility as well as

conventional distributed computing. Mobility may even throw a different light on the role

of reasoning and correctness proofs. Reasoning about locations could be exploited not only

to determine the correctness of a system, but also to optimize its configuration. For in-

stance, by analyzing formally the patterns of migration of a group of mobile agents, proper

placement of code could be determined in advance in order to minimize remote dynamic

linking.

In the past the impact of models was felt most directly through the development of

new languages and associated tools. This is no longer true today. Novel mobile applications

with great intellectual and commercial success are likely to benefit much more from the

development of appropriate middleware than from any advances in language technologies.

As such, we see middleware as the conduit through which research on models for mobile

computing will exercise its greatest influence of software engineering practice.



14

2.3 Algorithms

The algorithms we employ reflect the assumptions we make about the underlying systems.

As the shift to mobile computing is taking place, it is natural to expect that new algo-

rithms would need to be developed. Location changes, frequent disconnections, resource

variability, power limitations, communication constraints, dynamic changes in the connec-

tivity pattern, all contribute to a demand for new algorithm design strategies. Given the

diversity of mobile systems, the range of options is enormous and indeed research on mobile

algorithms spans a broad spectrum. Some of the work, however, reflects what one might

consider short-term technological limitations that will eventually be overcome or do not

enjoy universal applicability. Power consumption falls in this category. Research on energy

efficient algorithms is interesting but not necessarily fundamental. Even the concern with

quality of service, particularly in multimedia applications, is probably not of the essence.

Such research fits best in the category of system infrastructure design rather than algo-

rithms. Of course, some specific elements of these problem areas may survive the process

of abstraction and make their way into fundamental algorithms. For instance, algorithms

involving asymmetric communication channels may end up being studied because it takes

less power to listen to a signal than to broadcast it. Ultimately, it is the treatment of space

and coordination again that shape the landscape of mobile algorithms.

The ability of a mobile component to move through space requires new algorithms to

control and manage information about its location and that of other components. Spatial

knowledge is important in many applications involving independent purposeful movement,

cooperative activities, or involuntary movement. In settings where components have control

over their own location, forming and maintaining geometrical shapes proves useful. For

example in the task of robot exploration of an open field for unexploded ordnance [52], the

ability to follow a leader through a known safe path is one useful application of a group

movement strategy. Similarly, clustering around or encircling an object can be used to

identify an object’s boundaries, protect other group members from danger, or protect the

object itself. Both of these are examples of geometrical global invariants which have been

specified and achieved by describing algorithms to effect local, independent movements.

Less specifically tied to geometry is the necessity in a sparse network to maintain

connectivity among all components. Maximizing functions such as total covered area or

distance between the farthest components guide individual movements while keeping the

group goals. In highly populated networks with possibly millions of nodes, connectivity is

almost guaranteed, but organization is critical. Hierarchical structures that mimic the orga-

nization of the human body from cells into organs, and organs into a functioning whole offer

immediate applications to scoping issues, communication capability, and possible movement

patterns [20]. While these examples tend to highlight opportunities in ad hoc mobility, no-

madic computing and logical mobility also demand the ability to leverage off knowledge



15

about component locations. This is usually accomplished by keeping track of where mobile

units are located on location servers that are queried for up to date information. Varia-

tions in the assumptions made about the number and placement of servers, and in update

and query procedures are likely to lead to a rich set of algorithmic studies of practical

significance [71]. Other sources of potentially interesting algorithms may be the result of

exploiting metrics over the space and relative distances. Distance information, for instance,

is commonly utilized in route optimization.

Other aspects of mobility entail more of a coordination perspective on algorithm

development. Mobile components often work together to perform collective tasks which

need to be monitored and controlled. Although many of these task oriented algorithms have

been solved for traditional distributed computing, the reality of voluntary disconnection

of mobile components demands the redesign of these algorithms with mobility in mind.

For example, a traditional distributed snapshot relies on the availability of communication

between neighboring nodes. In a mobile system, not only do neighbor sets change, but

disconnections often prohibit communication with some components for extended periods

of time. Global checkpointing [4], causal event ordering [70], leader election, and termination

detection [47] are other examples of algorithms which are meaningful to mobile distributed

processing and must be revisited to account for disconnections. Transactions involving

mobile components must be reexamined to address the movement of components, location

dependent queries, and data delivery to future locations [24].

Strategies used in the development of algorithms for mobility vary widely. In the

presence of a fixed support infrastructure, the most common strategy is to push computation

and communication away from the mobile components and wireless links and onto the

infrastructure [9]. For example, in the case of checkpointing, while storage on physically

mobile devices may be limited and even inaccessible due to disconnection, the state of the

mobile components can be stored at a fixed node and communicated to other nodes along

a fixed, higher bandwidth communication medium.

When a network infrastructure does not exist or the network has no inherent struc-

ture of its own, an artificial structure can be imposed over the components, grouping them

for communication concerns or creating a hierarchy for management. The ability to main-

tain and rely on this structure depends on the patterns of movement of the mobile compo-

nents. Different situations call for a variety of patterns ranging from general connectivity

constraints such as eventual transitive communication between all pairs of components, to

physical movement characteristics such as a predetermined path or direction of movement.

These general patterns can be exploited by any fundamental algorithms.



16

Other strategies try to exploit the advantages of known algorithm design paradigms

and re-adjust them for mobility. For example, randomized algorithms can be used to gener-

ate probabilistic results when component reconnection is uncertain. Alternately, if connec-

tivity is guaranteed to be reestablished, disconnection may be viewed in a manner similar

to a network fault. In this case, fault tolerant algorithms and self-stabilizing techniques can

be applied. Epidemic algorithms may prove to be the key to distributing information to

components when connectivity is available.

The availability of a standard and well-understood set of algorithms, supported

through formal models and middleware, is a measure of the field’s level of maturity but

also an asset for the developers. Experience with distributed computing has shown that

problems that may appear to be simple have very subtle solutions prone to error. This is

likely to continue to be the case in the area of mobile computing.

2.4 Middleware

Middleware supports the software development task by enhancing the level of abstraction

associated with the programming effort. Middleware adds mechanisms and services that

are much more specialized than those provided by the operating system, within the context

of established languages without modifying their syntax and semantics. Recent years have

seen a flurry of middleware developments for distributed systems. It is then reasonable to

expect that a new generation of middleware specialized for mobility will follow suit. Despite

the similarities between logical and physical mobility, research on middleware tends to treat

the two forms of mobility very differently. Besides factors that have to do with separation

of the related research communities, a compelling reason for this situation rests with the

different roles logical and physical mobility play with respect to application development.

Logical mobility is essentially a new design tool for the developers of distributed

applications. The ability to reconfigure dynamically the binding between hosts and ap-

plication components provides additional flexibility and, under given conditions, improved

bandwidth utilization. On the other hand, physical mobility poses new requirements for dis-

tributed applications, by defining a very challenging target execution environment. These

different roles are mirrored in the characteristics of the corresponding middleware. Middle-

ware for logical mobility is centered around new abstractions that enable code and state

relocation, whereas middleware for physical mobility often tends to minimize differences

with respect to non-mobile middleware, by relegating, as much as possible, the differences

into the underlying runtime support. In the remainder of this section, we report about the

state of the art in the field and highlight some of the open research issues.

Traditionally, middleware for physical mobility has been application centered. For

instance, the Bayou [84] system provided the core functionality needed to build database



17

applications that can handle disconnection through reconciliation and data hoarding. This

approach was symptomatic of an interpretation of mobile computing as a very specialized

and rare form of computing that could be accommodated with application specific support

and by exposing as little as possible of its characteristics to the user. Although this view

may still hold true for many applications, with the rise of mobility as the base of future com-

puting, general purpose middleware becomes more of a necessity. Hiding mobility becomes

more difficult, if at all meaningful, and a new core of abstractions that extend distributed

middleware with support for mobility must be devised.

With regard to physical mobility, the challenge for mobile middleware is to devise

mechanisms and constructs to allow detection of changes in location, to specify what belongs

to the context of the computation, to relate changes in location to context modifications,

and to determine how the computation itself is affected by changes in the context.

Many issues related to tracking the dynamics of location and context require tight

interaction with the underlying operating system and device. Of particular significance is

the availability of mechanisms that enable detection of connectivity, of variations in the

quality of service of communication, of the appearance of new mobile hosts within com-

munication range, and of battery power status. All these considerations are of paramount

importance for the core of mobile applications and constitute a major point of departure

from distributed computing, where the need for primitives that dig so deeply into the under-

lying machine is more the exception than the rule. For the time being, availability of such

mechanisms and primitives is heavily constrained by the lack of appropriate programming

interfaces at the underlying wireless device level.

Similar constraints exist for detecting changes in the location of a mobile device.

Location management is a novel and interesting requirement of mobile middleware, one

that is likely to become more and more important as experience with a wide range of truly

mobile applications becomes available. Managing the location of a mobile host may assume

many different nuances. It is desirable to have mechanisms that allow the programmer to

determine where the host currently is and to maintain a history of the visited locations.

Furthermore, it is natural to think about their integration with mechanisms that allow

reactive modification of the context. It should be possible, for instance, to have location

changes trigger specialized computations in order to reconcile data or to determine the role

the mobile host must assume upon entering a new administrative domain. Location may

be absolute or relative to that of other neighbors. In both cases, primitives are needed

to define a notion of space and the associated notions of position and distance. It should

be noted that relative locations pose demanding requirements on location management, as

they presuppose the ability to track continuously the movements of a given set of mobile

hosts. In a world of autonomous mobile entities, tracking services may become fundamental

to enable cooperation when decoupled computation is not possible.



18

A different set of issues that middleware for mobility must consider are actually

well known in distributed computing, but need to be redefined in the new context. Service

lookup belongs to this category. In distributed computing, the problem of discovering

available services is often solved by forcing service providers to register with a server. In

many popular architectures, e.g., Jini [49], the server is essentially centralized and more

sophisticated schemes that take into account mobility being hand-coded on top of Jini.

Instead, mobility scenarios often require constructs that allow the programmer to perform

service lookup without any knowledge about the configuration of the current context.

A well known alternative to centralized service discovery is the use of an event

dispatching mechanism, which provides also for reactive capabilities. Although most com-

mercially available event dispatching systems are indeed centralized, there is a significant

body of research on distributed events growing both in industry and academia. Mobility

complicates further the picture of dispatching events in a distributed fashion. Hierarchi-

cal configurations of dispatchers, like those proposed in [21], are no longer suitable when

confronted with the fluid configuration of mobile hosts. Disconnection translates to the

impossibility of delivering an event to a subscriber for a given time interval, thus raising

the problem of how to reconcile the view of the subscriber upon reconnection. If events

generated during disconnection are discarded, the subscriber may miss relevant events; if,

on the other hand, events are queued and transmitted to the subscriber, the overhead of

this bulk transmission may be prohibitive. Finally, delivering an event to a mobile unit may

become a problem itself, even in presence of a fault-free network. Other issues that need

to be revisited for mobility include mechanisms for security and access control, as well as

support for transactions.

Early approaches to logical mobility started out as what nowadays would be called

middleware. For instance, the REV system [82] provided an extended version of remote

procedure call where the client could specify the code of the procedure to be executed, and

the Emerald [37] system provided an object-oriented layer on top of an operating system that

handled transparent object migration. By contrast, recent approaches to logical mobility

focused initially on the design of new languages or on the extension of already existing

languages with primitives expressly conceived for handling logical mobility. This is the

case of Telescript [87] and Facile [41], among the others. The creation of a brand new

language was justified by the absence, in traditional languages, of hooks into the runtime

support to enable relocation of code and state. The fact that today these systems, that

nevertheless influenced heavily subsequent developments, are relegated to a totally marginal

role is a symptom of the current trend dominated by systems based on the Java language.

Java provides some of the runtime hooks, notably the ability to reprogram dynamic linking,

combined with a degree of portability and security that, although not optimal, is still higher

than what many other platforms provide.



19

However, current middleware for logical mobility is falling short of expectations. On

one hand, there are mobile agent systems, i.e., systems providing as the main abstraction

a unit of mobility coincident with the unit of execution. Despite the initial excitement

about this notion of mobile agents, technology did not meet the expectations. Most ex-

isting systems provide basically the same abstractions with the same limitations. In many

respects, rather than building mobile agent systems as a facility that can interoperate with

mainstream distributed middleware, many systems reimplement support mechanisms like

events, dispatching, directory services, transactions, messaging. This could be justified by

the challenges logical mobility poses on the implementation of such services (very similar

to those present in physical mobility). Yet, in many instances the tough problems are left

unsolved and the mobility of agents is curtailed (impacting negatively on the very reason

for the existence of mobile agent system). The key observation that logical mobility is just

another design tool, and it should be made available to the programmer in combination,

and not in alternative, to distributed middleware is not acknowledged by these systems.

Notable exceptions, representative of very different design strategies, are Voyager [39], a

distributed middleware that provides object mobility as one of the many features of a full-

fledged platform, and µCode [68], a minimal, lightweight support for mobile code providing

abstractions that enable the relocation of any mixture of code and state, thus encompassing

also the notion of mobile agent.

At the other extreme there are systems that exploit logical mobility by choosing a

unit of mobility smaller than the unit of execution, typically the Java class. In contrast to

the notion of mobile agent, this finer-grained logical mobility is finding its way into popular

distributed middleware like Java/RMI and Jini [49]. In these systems, logical mobility is

exploited for the sake of improved flexibility. While the benefits of static type checking are

retained through the notion of a mutually agreed service interface between client and server,

the implementation of such service may be changed dynamically by using subtyping and

code mobility. The problem with this form of middleware, however, is that it exploits only

a minimal fraction of the power provided by logical mobility. Only the code on demand

paradigm [28] is supported; other paradigms, like mobile agent or remote evaluation, that

have been proven useful [10], must be hand-coded. No relocation of state is allowed, except

for the ability to copy the entire closure of an object that is being passed as a parameter of

a remote invocation.

Contrary to popular belief, building support for relocation of code and state is not

a monumental endeavor, especially using the Java language which already provides many

of the necessary building blocks. The real issue is the design of the constructs that are

made available to the programmer and their underlying conceptual model. Researchers

have only begun to scratch the surface of discovering the level of flexibility provided by

logical mobility. The next challenge is to provide support for varying grains of mobility,



20

mechanisms allowing different rebinding strategies, and different architectural styles for

relocation—all in a single, uniform programming interface.

Coordination, by abstracting away from the behavior of the mobile units and focus-

ing on high level communication protocols, may provide a way to rejoin the logical and

physical mobility in a single, uniform framework. In particular, systems based on tuple

spaces provide a suitable and direct abstraction for an unstructured (and thus general)

representation of the context where a mobile computation is performed. This way, coordi-

nation middleware does not impose specific data structures to represent the constituent of

the context, instead, it provides basic mechanisms that rule the access, modification, and

consistency of such data structures.

It is interesting to note that the advantages of coordinating distributed compo-

nents through a Linda-like model are well recognized also by the industry, where companies

like IBM and Sun compete with their Java-based implementations of a tuple space called

T Spaces [33] and JavaSpaces [35], respectively. The two systems have slightly different

implementations but a very similar philosophy. The degree of distribution is still extremely

limited, as these systems essentially provide remote access to a centralized tuple space which

acts as a tuple server providing shared access to clients. No support for disconnection is

provided, and the presence of a centralized, well-known server almost instantly rules out

applicability to an ad hoc network setting. Logical mobility is more of an hindrance than

an asset for these systems, as downloading of tuple code is not handled automatically. The

Linda model is coupled with a primitive event system that augments the expressive power,

but its policies and guarantees are not easily adaptable by the user in need of specialized

and reactive cooperating behavior.

Some academic systems push further the coordination perspective by providing sys-

tems that tie together Linda with mobility. For instance, the MARS and TuCSoN sys-

tems [16] provide the notion of a reactive tuple space. Changes in the tuple space content

trigger reactions that modify the tuple space.

By and large, these coordination approaches tend to adopt a coarse grain perspective,

providing support for coordination of mobile agents and mobile hosts. Nevertheless, mobile

code could be exploited as a means to modify dynamically the behavior of such mobile

components, e.g., by employing schemes where tuples actually contain code, as in the MobiS

model [45], and providing reactive rules for their dynamic linking and execution.

Independently of the slant towards coordination, however, middleware systems are

ultimately generated through a design mindset and, as such, they are the result of compro-

mises resulting from proper evaluation of tradeoffs. A first relevant tradeoff is about how

much power should be put in the hands of the programmer. Middleware platforms nowa-

days tend to provide extremely rich interfaces, i.e., powerful and expressive constructs, at

the cost of increased complexity, poor conceptual cohesion, and high performance overhead.



21

The other tradeoff is between horizontal coverage for a broad range of scenarios and con-

figurations (e.g., a platform providing abstractions that span from the fixed to the ad hoc

setting) in contrast with a vertical coverage of specific scenarios (e.g., providing support

only for palmtop devices in a nomadic setting). Identification of the proper balance be-

tween these opposing forces, combined with effective and validated support to real world

applications, is what will ultimately determine the emergence of a new generation of mobile

middleware.

2.5 Concluding Remarks

Mobility is rapidly emerging as an important research area with concerns ranging from

low-level media issues to high-level application concerns. In this chapter we focused on

the more abstract issues, outlining several current research projects and presenting several

perspectives to guide continued research in areas we believe will be critical to enabling

future developments in mobility. It is also clear that a successful research effort should at

least be aware of, if not inclusive of both systems and theory.



22

Chapter 3

Message as a Mobile Unit:

A design strategy for the

development of base station

mobility abstractions

The typical model of distributed computing treats a network as a graph in which vertices

represent processing nodes and edges denote communication channels. Faults may render

parts of the network inoperational either temporarily or permanently. Despite faults, the

overall structure is considered to be static. One way to introduce mobility in a similar

model is to treat the nodes as mobile support centers coordinating multiple radio base sta-

tions. Mobile units are allowed only to connect and disconnect from mobile support centers

through communication with the base stations. The result is a fixed core of static nodes and

a fluid fringe consisting of mobile units. The obvious connection to traditional distributed

computing and an extensive investment in current network technologies helped this model,

commonly referred to as nomadic computing, become dominant in mobile computing to-

day [8, 36]. This model also applies to logical mobility where the nodes represent the serves

willing to host mobile agents and the edges represent channels along which mobile agents

man migrate.

While mobility demands a novel perspective on distributed computing, it is equally

imperative to investigate any essential features of mobility that are already present in our

current view of distributed computing. In fact, the term ”mobility” has been used already

to refer to processes that migrate across the network [31, 72]. We suggest yet another way

of thinking about mobility in the context of the traditional fixed graph structure. The

basic idea is to treat mobile units as roving messages which preserve their identity as they

travel across the network. Many practical applications may be suitable for this kind of



23

modeling. A cellular telephone, for instance, travels from one cell to the next. While

operating inside one cell, the phone may be viewed as residing at a node inside the support

network; similarly, the handover protocol (triggered by the detection of signal degradation)

may be modeled as the traversal of a channel between two nodes representing the individual

cells. Voice transmissions among two phones are also modeled as messages. Logical mobility

is naturally represented by this model with the agents taking the role of persistent messages

moving among hosts.

Our interest in this model rests with its ability to facilitate the application of estab-

lished distributed algorithms to problems in mobile computing. The resulting algorithms can

then be used to support the design of higher level abstractions, which can be provided to

the application programmer to aide in application development.

By viewing the mobility infrastructure as a graph of nodes and channels, we have a

model similar to the model of networked distributed system where the nodes are processes

and the communication links between them are channels. An immediate observation is

that many common distributed algorithms can be executed in the mobile setting with few

changes. It has been noted that because of the unique properties of mobility such as

limited bandwidth and disconnection, it is not practical to do such a direct translation.

We propose a fundamentally different direction. Previous work has focused on moving

distributed algorithms into the mobile domain to solve the same types of problems, while

we adapt distributed algorithms to solve issues unique to the mobile environment. The

execution of the algorithm does not change, but the semantics of the algorithm do.

In the following chapters we make this strategy concrete by showing how it can

be applied to the development of algorithms for reliable message delivery to mobile units

in both the physical nomadic computing model and logical mobility. Specifically this is

accomplished by adapting the Chandy-Lamport distributed snapshot algorithm [18] and

the Dijkstra-Scholten model for diffusing computations [23] to mobility. The remainder of

this chapter describes the details of the nomadic and logical mobility models (Section 3.1),

provides a precise definition and the motivation for providing algorithms for reliable message

delivery (Section 3.2), and shows several previous message delivery approaches and where

many fail to provide reliability (Section 3.3).

3.1 Model

Nomadic mobility. The cellular telephone design provides the foundation for the model

of nomadic mobility we adopt. Figure 3.1(a) shows a typical cellular telephone model with a

single mobile support center (MSC) in each cell. The MSC is responsible for communication

with the mobile units within its region and serves as a manager for handover requests when

a mobile moves between MSCs. Figure 3.1(b) shows how the cellular telephone model is



24

transformed into a graph of nodes and channels where the nodes represent the individual

cells and the channels represent the ability of a mobile unit to move from one cell to another.

For simplicity, we assume that the resulting network is connected, in other words, a path

exists between every pair of nodes.

1

2
2

1

(a) Cellular system (b) Graph model

Figure 3.1: (a) Cellular system with one MSC per cell. All MSCs are assumed to be
connected by a wired network. (b) Abstract model of a cellular system, as a graph of nodes
and channels. Solid lines form a spanning tree.

We also assume that a mobile unit moving between two MSCs can be modeled as

being on a channel identical to messages in transit. In this manner, we no longer differentiate

between physical movement and wired communication. It is reasonable to ask what happens

when messages and mobile units are found on the same channel. We make the assumption

that all channels preserve message ordering, i.e., they are FIFO channels. The details of

how to achieve this in a real setting are discussed in Chapter 4.

Logical mobility. The logical mobility model we work with is the typical network graph

where the nodes represent the servers willing to host agents and the edges represent direc-

tional, FIFO channels along which agents can migrate and messages can be passed. The

FIFO assumption will be discussed in more detail in Chapter 5.

We assume a connected network graph (i.e., a path exists between every pair of

nodes), but not necessarily fully connected (i.e., a channel does not necessarily exist between

each pair of nodes). Communication between each pair of nodes is assumed to be standard,

bounded asynchronous message passing. In a typical IP network, all nodes are logically

connected directly. However, this is not always the case at the application level, as shown

in Figure 3.2. There, a set of subnetworks are connected to one another through an IP

network, but an agent can enter or leave a subnetwork only by passing through a gateway

server, e.g., because of security reasons.

We also assume that the mobile agent server keeps track of which agents it is cur-

rently hosting, and that it provides some basic mechanism to deliver a message to an agent,



25

Figure 3.2: A connected network with connected subnetworks. Agents can enter and leave
the subnetworks only by going through the gateway servers.

e.g., by invoking a method of the agent object. Finally, we assume that every agent has a

single, globally unique identifier, which can be used to direct a message to the agent. These

latter assumptions are are already satisfied by the majority of mobile agent platforms.

3.2 Problem Definition: Message Delivery

The problem we are interested in is the delivery of messages among pairs of either physically

or logically mobile units. A mobile unit can send and receive messages only when it is present

at some node in the fixed network, a situation that models the existence of an established

connection between a mobile unit and a support center or a mobile agent executing on a host.

When a mobile unit is on a channel, it may be viewed as being temporarily disconnected

from the network and, therefore, unable to communicate.

In typical distributed systems, message passing communication is handled by the

routers in the fixed network which track of the relative location of all attached computing

devices based on IP address. This model cannot be extended to mobile computing because

the location of the mobile units changes with respect to the fixed routers. However, the

ability to send and receive messages is critical to many applications.

The typical use of the logical mobile agent paradigm is for bypassing a commu-

nication link and exploiting local access to resources on a remote server [28]. Thus, one

could argue that, communication with a remote agent is not important and a mobile agent

platform should focus instead on the communication mechanisms that are exploited locally.

Nevertheless, there are several common scenarios which exploit communication with or

among remote agents, some of which are related to mobile agent management. Imagine a

“master” agent spawning a number of “slave” mobile agents which are subsequently injected

in the network to perform a cooperative computation, e.g., find a piece of information. At

some point, the master agent may want to actively terminate the computation of the slave

agents, e.g., because the requested information has been found by one of them and thus it is



26

desirable to terminate the agent in order to prevent unnecessary resource consumption. Or,

it may want to change some parameter governing the behavior of the agents in response to

a change in the context that determined their creation. Alternately, the slave agents may

want to detect whether the master agent is still alive by performing some sort of orphan

detection, which requires locating the master agent if this is itself allowed to be mobile.

Other examples arise because mobile agents are just one of the paradigms available to

designers of a distributed application. Within the context of the same application, a mixture

of mobile agent and message passing can be used to achieve different functionalities. For

instance, a mobile agent could visit a site and perform a check on a given condition. If

the condition is not satisfied, the agent could register an event listener with the site. This

way, while the mobile agent is visiting other sites and before reporting its results, it could

receive notifications of state changes in the sites it has already visited and decide whether

a second visit is warranted.

In both physical and logical mobility, a desirable requirement for any communica-

tion mechanism is reliability. Programming primitives that guarantee that the data sent

effectively reach the communication target, without requiring further actions by the pro-

grammer, simplify greatly the development task and lead to applications that are more

robust. In conventional distributed systems, reliability is typically achieved by providing

some degree of tolerance to faults in the underlying communication link or in the commu-

nicating nodes.

Nevertheless, fault-tolerance techniques are not sufficient to ensure reliability in sys-

tems that exhibit mobility. Because mobile units are move freely from one node to another

according to some unknown migration pattern, delivery of data is complicated. It is dif-

ficult both to determine where the mobile unit is, and to ensure that the data effectively

reaches the mobile unit before it moves again. If this latter condition is not guaranteed,

data loss may occur. Thus, the challenge to reliable communication persists even under

the assumption of an ideal transport mechanism, which itself guarantees only the correct

delivery of data from node to node despite the presence of faults. It is the sheer presence

of mobility, and not the possibility of faults, that undermines reliability.

Problem definition. The reliable message delivery problem can now be formulated as

follows: Given a fully connected graph with FIFO channels and guaranteed message delivery

between nodes, a message located at one node, and a mobile unit for which the message

is destined, develop a distributed algorithm that guarantees single delivery of the message,

and leaves no trace of the message, at either a node or a mobile unit, within a bounded

time after delivery. The solution should have a tight bound on the storage time for any

given message at a node.



27

Because mobile units do not communicate directly with one another, the network

must provide a mechanism to transmit the message. The original message is assumed to

be in the local memory of some node, presumably left there by the mobile unit which is

the source of the message. Since a mobile unit is not required to visit all nodes to gather

its messages, the message cannot remain isolated at the node on which it is dropped off,

but instead must be distributed through the network. The specifics of this distribution

mechanism are left to the algorithm.

3.3 Previous Work on Message Delivery

Typical message delivery schemes suffer from the fundamental problem that a mobile unit

in transit during the delivery can easily be missed. To illustrate this issue, we discuss two

strawman approaches to message delivery: broadcast and forwarding.

(b) Forwarding.(a) Spanning tree broadcasting. 

message

sender sender

M
mobile
unit

retransmission

home agent

M
M

M

Figure 3.3: The problem: Missing delivery in simple broadcast and forwarding schemes.

A simple broadcast scheme assumes a spanning tree of the network nodes which any

node can utilize to send a message. This source node broadcasts a copy of the message to

each of its neighbors, which broadcast the message to their neighbors, and so on until the

leaf nodes are reached. This, however, does not guarantee delivery of the message. In the

case when a mobile unit is traveling along a channel in the reverse direction with respect to

the propagation of the message, as depicted in Figure 3.3(a), or more generally when the

agent moves from the region of the spanning tree ahead of the message propagation to a

region behind the message propagation, the agent and the message will cross in the channel,

and delivery will never occur.

A simple forwarding scheme maintains a pointer to the mobile unit at a well-known

location, referred to as the home agent in the Mobile IP protocol [65] where this idea en-

ables physical mobility of hosts. Upon migration, the mobile unit must inform the home

agent of its new location in order to enable further communication. However, any messages

sent between the migration and the update are lost, as the mobile unit moved before the



28

message reached the destination. Even if retransmission to the new location is attempted,

the mobile unit can move again, running away from the message and effectively preventing

guaranteed delivery, as depicted in Figure 3.3(b). Furthermore, forwarding has the addi-

tional drawback that it requires communication to the home agent every time the mobile

unit moves. In some situations of logical mobility, this defeats the purpose of using mobile

agents by reintroducing centralization. For instance, in the presence of many highly mobile

agents spawned from the same host, this scheme may lead to considerable traffic overhead

around the home agent, and possibly to much slower performance if the latency between

mobile and home agent is high. In the physical mobility environment, the rapid movement

necessary to avoid a forwarded message seems unlikely. However, one of the trends in mo-

bility is to reduce the size of the cell (e.g., nanocells) to increase the frequency reuse. As

cell sizes decrease, the time that it takes to traverse a cell similarly decreases.

In the logical mobility environment, currently available mobile agent systems imple-

ment communication by relying on well-known and conventional facilities, such as message

passing or remote procedure call. These mechanisms are often blindly borrowed from dis-

tributed systems research and exploited with little or no adaptation to the mobile setting.

While the problem of guaranteeing data delivery is only seldom acknowledged, the solutions

employed usually require knowledge about the location of the mobile agent. Mobile agent

location is typically obtained either by overly restricting the freedom of mobility or by as-

suming permanent connectivity—assumptions that in many cases defeat the whole purpose

of using mobile agents.

The OMG MASIF standard [55] specifies only the interfaces that enable the naming

and locating of agents across different platforms. The actual mechanisms to locate an

agent and communicate with it are intentionally left out of the scope of the standard,

although a number of location techniques are suggested which by and large can be regarded

as variations of broadcast and forwarding. Some agent systems, notably Aglets [42] and

Voyager [61], employ forwarding by associating to each mobile component a proxy object

which plays the role of the home agent. Some others, like Emerald [37], one of the early

approaches to object migration, use forwarding and resort to broadcast when the object

cannot be found. Others, e.g., Mole [11], assume that an agent never moves while engaged

in communication; if migration of any of the parties involved take place, communication

is implicitly terminated. Mole also exploits a different forwarding scheme which does not

keep a single home agent, rather it maintains a trail of pointers from source to destination

for faster communication. However, this is employed only in the context of a protocol for

orphan detection [12]. Finally, some systems, e.g., Agent Tcl [32], provide mechanisms that

are based on common remote procedure call, and leave to the application developer the

chore of handling a missed delivery.



29

While the unicast problem of delivering a message to a single recipient is important,

in recent years the multicast problem of delivering a message to multiple recipients has also

become crucial. Multicast support through the MBONE has become a standard part of the

Internet [26] and is finding wide use for conferencing (e.g., tools like VIC and VAT [51, 34])

and video distribution. In the context of Mobile IP, two possible approaches are available.

The mobile unit can register to receive multicast packets through its home agent, in which

case, the home agent must encapsulate every multicast message and unicast it to the foreign

location of the mobile unit. Alternately, the mobile unit can join the multicast group at a

local multicast router on the subnet it is visiting. This assumes the local subnet supports

multicast. Because many multicast protocols rely on the address of the sender to properly

forward messages along a multicast tree, corresponding changes must be made in order for

the mobile unit to send to a multicast group address

In logical mobility, many agent systems, notably Telescript, Aglets, and Voyager,

provide the capability to multicast messages only within the context of a single runtime

support. Mole [11] provides a mechanism for group communication that assumes agents are

stationary during a set of information exchanges.

3.4 Concluding Remarks

Focusing on the problem of message delivery incurs no loss of generality because more

complex mechanisms such as remote procedure call and method invocation are easily built

on top of message passing. Chapters 4 through 6 describe the development of algorithms

for reliable message delivery using our strategy of treating a mobile unit as a message.



30

Chapter 4

Message Delivery to Physically

Mobile Hosts

This chapter describes the first application of our design strategy as described in Chapter 3.

We show how applying this approach to distributed snapshot algorithms yields an algorithm

for reliable message delivery to physically mobile units, an inherently difficult mobility

problem.

The remainder of this chapter is organized as follows: Section 4.1 explores the details

of the use of snapshot algorithms for message delivery, presenting an overview, algorithm

properties, and possible extensions. In the following section, we consider adaptations that

make the approach viable in a model similar to the cellular telephone system. Finally,

Section 4.4 provides a brief discussion of the results.

4.1 Snapshot Delivery

In this section we present the details of applying the snapshot algorithm to message delivery.

In order to avoid confusion in terminology between the control traffic generated by the

snapshot algorithms and the data traffic containing the information being communicated

to the mobile unit, from this point forward, we will use the term announcement to refer

specifically to the data message being delivered while a message can be either data or

control.

4.1.1 From Distributed Snapshot Algorithms to Announcement Delivery

To guarantee delivery in any circumstance, we propose an alternative broadcast algorithm

which is based on the classical notion of distributed snapshots. Before addressing announce-

ment delivery, we first note the general properties of snapshot algorithms and those that

will be important in announcement delivery. The goal of a snapshot algorithm is to provide



31

a consistent view of the state of a network of nodes and channels. The state consists of

the process variables, and any messages in transit among the nodes. A simple snapshot

algorithm would freeze the computation until all messages are out of the channels, record

the state of the processors (including outgoing message queues), then restart the compu-

tation. Although this is an impractical solution in most distributed settings, it provides

the intuition behind a snapshot algorithm, in particular that the consistent global state is

constructed by combining the local snapshots from the various processors. In general, a

snapshot is started by a single processor and control messages are passed to neighboring

nodes informing them that a snapshot is in progress, and initiating local snapshots. The

main property of snapshots that we will exploit is that every message will appear exactly

once in the recorded snapshot state.

Although snapshot algorithms were developed to detect stable properties such as

termination or deadlock by creating and analyzing a consistent view of the distributed state,

minor adjustments which we describe in this chapter adapt them to perform announcement

delivery in the dynamic, mobile environment. To move from the network of nodes and

channels into the mobile computing environment, we return to the cellular structure of

mobile support centers. These components and the wires connecting them map directly

to the network graph of standard distributed computing. The mobile units are simply

represented as persistent messages in the distributed environment, meaning they are always

somewhere in the system, either at a node (when in communication with a base station)

or on a channel (during a handover). At this point, we have a structure on which to run

the snapshot, and note that because the mobile unit is a message, and the snapshot records

the location of messages, the global snapshot of the mobile system will show the location

of the mobile unit. Therefore, one option is to simply deliver the announcement directly

to this location; however, it is possible (and likely in systems with rapidly moving mobile

units) that the mobile unit will move between the time its position is recorded and when the

announcement arrives at the recorded position. Therefore, we alter the snapshot recording

to delivery of the message by augmenting the control messages with the announcement and

changing the recording of messages into the delivering of announcements. We further note

that the global state of the system is no longer important for delivery, so no system state

information needs to be collected.

4.1.2 Snapshot Delivery Algorithm

Throughout this section, we will use the Chandy-Lamport snapshot algorithm [18] and

show its adaptation to announcement delivery. In making the transition to the mobile

environment, we carry the restrictions of the original distributed algorithm, and clarify

certain characteristics of the mobile model moving from the cell structure to the graph

setting. First, the Chandy-Lamport algorithm relies on unidirectional, FIFO channels. To



32

Global Snapshot Mobile Delivery

(a) processor state to be (c) mobile unit to be
recorded delivered to while stationary

(b) message to be recorded (d) mobile to be delivered to
on channel upon arrival

marker/announcement

next action

not involved in snapshot/

message

mobile unit

received announcement
started snapshot/

has no announcement

Figure 4.1: Translation of concepts from global snapshots into mobile delivery. The curved
arrow shows the processing of an element from a channel while the text describes the action
triggered by such movement.

model bidirectional channels, we place two unidirectional channels in opposite directions;

however, to handle the FIFO assumption, extensions to the handover protocol are necessary.

These will be presented in Section 4.3. In the cellular model, a mobile unit moves directly

between cells; however, in the graph representation, the mobile must move onto a channel

before arriving at the new cell. This is a natural assumption when the details of the handover

are considered.

In the Chandy-Lamport algorithm, it is possible for the snapshot to be initiated

at more than one location in the graph, however, we assume that the announcement will

be located initially at one point in the network, therefore the snapshot will originate from

a single MSC. The Chandy-Lamport algorithm consists of two main localized actions to

collect the local snapshot: the processing of the control messages (markers) and the arrival

of the messages to be recorded. The marker arrival rule states that when a marker arrives

at a node not involved in a snapshot, the node begins its local snapshot by recording the

processor state, then sends the marker on all outgoing channels (Figure 4.1a). In the mobile

environment, this is analogous to the announcement arriving at a node. If the mobile unit

is present, it will receive the announcement, otherwise the node will remain in the local

snapshot state and will store the copy of the announcement until the local snapshot is

complete. The local snapshot is complete when the marker/announcement has arrived from

all incoming channels. The message arrival rule states that if the message arrives at a node

from channel C before the marker arrives on channel C, and the node is in the middle of

the local snapshot, the message is to be recorded as on the channel during the snapshot

(Figure 4.1b). In the mobile setting, this condition is the arrival of the mobile unit at an



33

State
flushedA,B boolean, true if announcement traversed the link from A to B; initially

false everywhere
AnnAtA boolean, true if announcement stored at A; initially true only where

announcement starts
MobileAtA boolean, true if mobile unit at A; initially true only where mobile located

Actions

AnnArrives A(B) ;arrival at A from B
Effect:

flushedB,A:=true
if ¬AnnAtA

send ann. on all outgoing channels
AnnAtA:=true ;save ann.
if MobileAtA

deliver announcement
endif

endif

MobileLeaves A(B) ;leaves from A to B
Preconditions:

MobileAtA and channel (A,B) exists
Effect:

MobileAtA:=false
mobile unit moves onto (A,B)

MobileArrives A(B) ;arrival at A from B
Effect:

MobileAtA:=true
if ¬flushedB,A and AnnAtA

deliver announcement
endif

CleanUp A ;A finishes local snapshot
Preconditions:

Forall neighbors X, flushedX,A=true
Effect:

AnnAtA:=false ;delete ann.
Forall neighbors X, flushedX,A :=false

Figure 4.2: Snapshot Delivery Code

MSC which is storing a copy of the announcement. Therefore, the arrival of the mobile

triggers the transmission of the announcement to the mobile.

We capture these actions in an I/O Automata-like pseudo code program shown in

Figure 4.2. In addition to the announcement arrival and mobile arrival, we also include

statements to terminate the local snapshot (cleaning up the state) and to allow the mobile

unit to move from a node to a channel. The channels are assumed to be FIFO, and hold

both mobile units and all messages.

We assume the system is initialized with the location of the mobile unit(MobileAt,

MSC A in Figure 4.3) and a single announcement copy at some node (AnnAt). Channels are

assumed to be empty. We introduce one state variable quantified over the channels (flushed)

which is used to identify when the local snapshot is complete. Basically a flushed channel

has received a marker. As noted previously, when all incoming channels have received a

marker, the local snapshot is complete.

These actions describe the local node state transitions which are sufficient for mes-

sage delivery. No global information must be maintained. A node will be in one of three

states: not yet aware of the snapshot (unnotified), taking a local snapshot (notified), and



34

C

F

G

H

E

A

B

D

not yet started

in local snapshot

announcement

finished

flushed

not-flushed

finished

Figure 4.3: Phases of delivery

finished with the local snapshot (finished). In Figure 4.3, these states are represented by

white, grey, and black respectively. All nodes (except the node where the announcement

originates) start unnotified. An unnotified node such as E will eventually receive an an-

nouncement along one of its incoming channels (AnnArrives) (such as (B,E)). This

action causes it to transition to the notified state, delivering the announcement if possi-

ble, storing a copy of the announcement, marking the channel the announcement arrived

on as flushed, and sending announcement copies on all outgoing channels. Once a chan-

nel is flushed, if the mobile unit arrives on that node, it is guaranteed to have seen the

announcement at some other node (to have been recorded in some other local snapshot).

Therefore, to avoid multiple delivery, if the mobile arrives on a flushed channel, delivery is

not repeated (MobileArrives). If the announcement arrives at a notified node such as

A (MobileArrives), the channel it arrives on will be marked as flushed, but since the

announcement is already stored, no additional copy is made. When all incoming channels

have been flushed (as in B), the node’s local snapshot is complete and the local state (in-

cluding the flushed status of the channels and the stored announcement) can be deleted

(CleanUp). The final action, MobileLeaves, models the movement of a mobile away

from a node. The mobile is simply placed on the channel and the state variables updated

to reflect this change. This effectively achieves random mobile unit movement, however if

a particular movement pattern is desired, it can be added to this action.



35

4.1.3 Properties

In the previous section we presented a global snapshot algorithm modified to perform an-

nouncement delivery in a mobile system. Because the approach is based on a well under-

stood algorithm from distributed computing, we can adapt the proven properties from the

distributed computing environment into the mobile environment. The three primary prop-

erties proven for the Chandy-Lamport distributed snapshot are: (1) there is no residual

storage in the system at some point after the algorithm begins execution, (2) every message

is recorded once, and (3) no message is recorded more than once. We translate these prop-

erties directly into the mobile environment stating that (1) eventually there is no residual

storage in the system at some point after the delivery process begins, (2) the announcement

is delivered to the intended recipient, and (3) the announcement is delivered only once. In

this section, we present first the intuition behind why these properties hold, followed by a

reduction style proof outline moving from the distributed snapshot properties to the mobile

announcement delivery properties stated above.

To show that eventually all information concerning the announcement is removed

from the system, we must show that the program will eventually reach a state where there

are no announcements at any nodes, there are no announcements in any channels, and

all channels are unflushed. This can be shown by observing that by the connectivity of

the graph and the dispersion rules of the algorithm, every node eventually receives a copy

of the announcement on each of its channels. In Figure 4.3, this is analogous to each

node eventually becoming notified. Once this occurs, each of the channels is flushed, and

the cleanup action is enabled, clearing the flushed variable and removing the copies of the

announcement at each node. In the figure, the node will transition to finished. There will be

no announcements in channels because once an announcement has passed through a channel,

it is not possible for another announcement to be sent down that channel. Therefore, we

have shown that eventually the system is clear.

Next we must show that the announcement is eventually delivered. First we note

(from the previous paragraph) that eventually all nodes receive the announcement. When

this occurs, if the mobile unit has been delivered to, then the proof is complete. Otherwise,

if the mobile unit has not been found then it must be the case that the mobile unit is

located on an unflushed channel and the mobile unit must be in front of the announcement

on this channel. In Figure 4.3, an unnotified mobile unit could be located at a white node,

or on a dotted channel, but in this case, we are describing a graph in which all nodes

are already notified, therefore the mobile unit must be located on an unflushed channel

segment in front of an announcement. If the mobile unit was behind the announcement, it

would have already received the announcement. Therefore, because the mobile unit arrives

on an unflushed channel, and by the assumption that all nodes have received a copy of



36

the announcement, the node it is heading toward must have a copy of the announcement.

Delivery will occur when the mobile unit moves onto the node.

Having shown the announcement will be delivered, it remains to be shown that

the announcement is delivered only one time. To do this, it is sufficient to show that

after delivery occurs, a mobile unit cannot be in the position to be delivered to. Delivery

can occur in two situations: (1) by the mobile being on an unnotified node when the

announcement arrives, and (2) by the mobile arriving (along an unflushed channel) to a

notified node. To show each of these cases will not arise after delivery, we characterize a

region of the graph called will-be-notified and define it as the set of all unnotified nodes,

and the channels or channel segments which have not had a copy of the announcement pass

through them. In Figure 4.3, this region corresponds to the white nodes (unnotified) and

dotted channels (unflushed). Having defined this region, and noted that both of the above

delivery cases occur when the mobile is in this region, it is sufficient to show that after

delivery the mobile unit will not be in the will-be-notified region. To show this, we use the

intuitive notion of a path as a sequence of nodes and channels between a mobile unit and

the will-be-notified region. It can be shown that after delivery on such a path, there must

always be an announcement. Therefore, in order for the mobile unit to move back into

the will-be-notified region, it must overtake this announcement, and because of the FIFO

assumption of the channels and the rules for dispersion of the announcement, this is not

possible. Therefore, the announcement can only be delivered once.

To more explicitly show the relationship between the snapshot algorithm and an-

nouncement delivery, we provide a reduction proof outline from the Chandy-Lamport dis-

tributed algorithm to the adapted snapshot delivery algorithm, showing the mapping be-

tween the actions (such as marker arrival and announcement arrival) and the system vari-

ables (such as the marker and announcement). In the Chandy-Lamport algorithm, a process

begins its local snapshot when it receives the first marker. When this occurs, the marker is

sent on all other outgoing channels and the state of the processor is recorded. If there are

any messages at the node, they are recorded as part of the processor state (Figure 4.1a).

If the node has already started its local snapshot when a message arrives along a channel

(that the node has not seen the marker on), the message is recorded as being on the channel

(Figure 4.1b). Recording continues until a marker is received on all incident links.

We translate these actions to the mobile environment. The announcement corre-

sponds to the marker, and the mobile node corresponds to a message in the Chandy-Lamport

algorithm. When an MSC receives the announcement for the first time, it sends copies on

all outgoing channels and attempts delivery to any mobile unit present. If the mobile unit

is at the MSC, it will receive the announcement (Figure 4.1c).

Just as a node continues recording until it has received the marker on all links,

the delivery algorithm will keep a copy of the announcement until it receives a copy of



37

the announcement from all neighbors. Intuitively, this prevents the mobile from hopping

from node to node eluding the announcement. Thus if the mobile arrives prior to the

announcement on a channel, the MSC delivers the data as soon as the handover is complete

(Figure 4.1d) because it has a stored local copy.

4.2 Reality Check

When moving from the distributed computing environment to the mobile environment,

we made several assumptions about the nature of the network and the behavior of the

components in the network. In this section, we reexamine these assumptions, showing why

they are reasonable, or how the algorithm can be adapted to make them more reasonable.

Specifically, we will look at the issues of non-FIFO channels, base station connectivity,

reliable delivery on links, the involvement level of MSCs, and storage requirements.

FIFO Channels. One major objection to using the Chandy-Lamport algorithm is its

reliance on FIFO behavior of channels. More specifically, in Section 4.1.1, we modeled both

the mobile units and the messages as traveling on the same channel. This seems to be an

unreasonable assumption given that mobile units move much more slowly through space

than messages move through a fixed network. To further explore this problem, we must

look in detail at the movement of messages and mobile units, specifically the handover of

mobile units between cells. We will show how the FIFO assumption can be broken, and

propose a simple mechanism to restore it.

One of the U.S. standards for analog cellular communication is AMPS [83], in which

cellular telephones tune to only one frequency at a time. When the signal between the

MSC and a mobile unit begins to degrade, the MSC searches for a neighboring MSC with

a stronger communication signal potential indicating the mobile unit is moving into that

particular cell, and an available frequency within that cell. When the frequency is requested,

a handover begins. Figure 4.4a shows the control messages exchanged as a mobile unit, m,

moves from cell A to cell B. First the frequency request is exchanged between the MSCs.

At this point the mobile unit is made aware of the handover by receiving a new frequency

from its current MSC, A. After switching to the new frequency, the mobile sends a hello

on the new frequency, alerting B that the mobile is now listening on the new frequency.

Finally, B sends a handover complete to A, which releases the old frequency.

By using the AMPS approach, we know when a mobile unit is moving between cells

and which cells it is moving between. We also note that the mobile unit is not involved in

the handover until the moment it changes the frequency it is tuned to.

Our primary concern is making the channels FIFO with respect to mobile units and

messages (both control messages and announcements). Even if we assume that channels



38

hello

A B m AA B m

hello

freq(f)

B

msg

msg

requestrequestrequest
frequencyfrequency frequency

freq(f)

m

freq(f)

msg
hello

msg

(a) (b) (c)

Mobile overtakes
Mobile

Message overtakes

switch(f) switch(f) switch(f)

Message

complete complete complete
handover

Handover
Protocol

handoverhandover

Figure 4.4: AMPS handover protocol (a). If messages are processed (i.e., broadcast to the
mobile) immediately upon receipt, it is possible (b) for the mobile to move faster than the
message along the channel, or (c) for the message to move faster than the mobile, thus
breaking the FIFO channel property.

between MSCs are FIFO, reordering is possible because part of the handover takes place

over wireless channels which are not synchronized with the wired channels. Specifically we

address the two cases of non-FIFO behavior where (1) the mobile overtakes a message and

(2) the messages overtakes the mobile.

It is important to define the point at which the mobile logically moves onto the

channel. We define this to be when communication with A is terminated, or when the

switch message is transmitted. Similarly, the mobile moves off of the channel when the

wireless transmission of the hello message is accepted at the destination. As can be seen

in Figure 4.4b, it is possible for a messages sent on the wired channel before the switch

message to arrive at the destination after the arrival of the mobile unit, breaking the FIFO

ordering. Similarly, a message sent after the switch message can move quickly through the

channel and arrive at the destination before the mobile (Figure 4.4c).

We propose a minor change in the protocol to involve both the wired and wireless

channels in the handover. The only change to the source side (A in this case) is the wire

transmission of a message atomically with the wireless switch transmission. We call this

message the virtual mobile unit (vmu) because it identifies the point on the wired channel

at which the mobile leaves the source. All messages sent before the vmu were sent before

the mobile unit left, and all messages after the vmu were sent after the mobile unit left.



39

Therefore, we change the behavior of the destination (B in this case) to yield this behavior.

The goal is to have the virtual mobile unit and the physical mobile unit arrive at the

destination at the same time. Therefore, if the hello arrives before the vmu, all incoming

messages on the wired channel are treated as if the mobile is not present even though

communication is possible. Conversely, if the vmu arrives before the hello, all messages

sent on the wired channel are buffered until the hello arrives. When both messages have

arrived and have been processed, B continues processing all messages in the order in which

they are received. By forcing the receiver to wait for both messages, the wired and wireless

channels are synchronized, effectively yielding a single FIFO channel for both mobile units

and messages.

Base station connectivity. Another possible concern with the model we presented is

the necessity for physical connections between all MSCs whose cells border one another.

Because of the high cost for such connectivity, it is possible that the physical wires may not

exist. To allow the snapshot to function in such a setting, we add virtual channels between

adjacent cells and include such channels in the snapshot as a channel along which control

messages must be sent and received. In the implementation, however, we must be careful

to ensure the FIFO nature of this virtual channel. It would also be possible to add a virtual

channel between two non-adjacent cells if a mobile unit was likely to move between them

in a disconnected manner. This would only work if the same type of handover was used

for disconnected movement, which is not likely the case because disconnection is typically

a longer-lived situation, but the possibility is worth mentioning.

Reliable delivery on links. The snapshot delivery algorithm assumes that link delivery

is reliable. Most of the Internet uses unreliable links like Ethernets, frame relay, and ATM.

The probability of error on such links may be small but packets are indeed dropped. A

possible solution is to add acks for multicast messages as is done, for example, in the

intelligent flooding algorithm used in Links State Routing in OSI [89] and OSPF [57].

Another solution is to only provide best-effort service. Since lost messages can lead to

deadlock we need to delete a message after a timeout even if it is still expected along a

channel.

Involvement level of MSCs. In every snapshot, every MSC must be involved to guar-

antee delivery and termination. In a paper on running distributed computations in a mobile

setting [9], the authors warn against requiring involvement of all mobile units in a computa-

tion, especially due to the voluntary disconnection often associated with mobile computing.

Such disconnection is often done to conserve power, or in some cases, to allow disconnected

operation. In either case, the mobile unit is not available for participation in the distributed

algorithm. These arguments are important for creating distributed algorithms for mobile



40

computing environments, however our goal is not to create a global snapshot of the mobile

units, but instead to employ the snapshot technique to a different end, namely announce-

ment delivery. Additionally, the control messages of the snapshot are not being run over

the mobile units, but rather over the fixed mobile support centers. In order to guarantee

delivery, the mobile unit must be present in the system, however, this is a reasonable as-

sumption because there are no means to reach a disconnected mobile unit. At this point, it

is interesting to note that if the mobile unit is not present in the system during a delivery

attempt, the algorithm will terminate normally, removing all trace of the announcement

from the system, but without delivery.

Storage requirements. In snapshot delivery, we assume that the MSCs hold a copy of

the announcement for delivery to the mobile agents for a bounded period of time limited

to the duration of the local snapshot. This is more efficient than another proposal [3]

which broadcasts the announcement to all nodes, which then store the announcement until

notified that delivery has occurred. This is essentially a network propagation delay factor.

In a system with bi-directional channels, because the local snapshot terminates when the

announcement arrives on all incoming channels, a local snapshot can be as short as a single

round trip delay between the MSCs, or a local propagation delay. One can argue that it is

not the place of the MSCs to be maintaining copies of announcements when their primary

purpose is routing. However, in this case, because no routing information is being kept

about the mobile units, the system will be required to keep additional state in order to

provide delivery guarantees. Therefore, keeping a copy for a short duration is a reasonable

assumption.

4.3 Extensions

The snapshot delivery algorithm is extendable to perform delivery to rapidly moving mobile

units, route discovery, multicast, and working with the mobile code environment. Each of

these will be examined in turn.

Rapidly moving mobile units. One advantage to this algorithm is the ability to operate

in rapidly changing environments with the same delivery guarantees. In Mobile IP, mobile

units must remain in one place long enough to send a message with their new address to

their home agent for forwarding purposes, and remain at that foreign agent long enough

for the forwarded messages to arrive. With forwarding enhancements added to the foreign

agents in Mobile IP, the issue is minimized because the former location of a mobile unit

becomes a kind of packet forwarder. However, even with forwarding, if the agent moves

too rapidly and the system is unable to stabilize, forwarded packets will chase the mobile



41

unit around the system without ever being delivered. Because snapshots do not maintain a

notion of home or route, movements are immediately accounted for by the delivery scheme.

Route discovery. In more moderately changing environments, route discovery can in-

crease efficiency and decrease overhead. In these situations, the snapshot delivery algorithm

can be used to perform route discovery. When the discovery message from source S located

at MSCS arrives at the destination mobile unit D located at MSCD, the mobile unit re-

sponds with a packet directed toward MSCS with MSCD and a particular RBS in its data

to identify its location to the source. This assumes that the source is also moving relatively

slowly, however a route response message could be sent to S from D in a similar manner

as the route discovery. All packets sent to D after the discovery should contain MSCD and

RBS, and routing along the fixed network is now possible.

Multicast. As stated previously, another concern in the mobility community is multicast.

While Mobile IP addresses the issues of macromobility, and some work has been done on

reliable multicast for micromobility [3] when the set of recipients is known, our algorithm

easily extends to perform multicast to all mobile units in the system during the execution

of the snapshot without knowing the list of recipients. Without changing the snapshot

algorithm, it can be shown that delivery of an announcement is attempted to all mobile units

in the system before the algorithm terminates. If the announcement contains a broadcast

or multicast destination address, delivery can be carried out whenever a connection with

the mobile unit accepting those addresses is established. Interestingly, even in broadcast

or multicast, the restriction of single delivery of an announcement holds. Although this

description is concise, the importance of it should not be lost in its simplicity.

Our modified snapshot algorithm has worst-case overhead of one announcement per

link in each direction to multicast. By contrast, the algorithm used in IP DVMRP [22]

effectively computes a tree. Its overhead is the number of links in the tree plus the number

of links that have endnodes that participate in this multicast.

Logical Mobility. Thus far we have only considered physical movement of mobile units,

but another possible application that is characterized by rapid mobile movement is logical

mobility where it is not a physical component that moves, but rather a program moving

along the fixed network doing computation at various network nodes. We consider this in

much more detail in the next chapter.



42

4.4 Concluding Remarks

In this chapter we presented an algorithm for reliable message delivery by applying the

design strategy presented in Chapter 3. Its mechanics are borrowed directly from the es-

tablished literature of distributed computing, specifically distributed snapshots. The ease of

extending this algorithm to reliable multicast in a mobile environment without knowing the

recipients, as well as working in the mobile code arena are added benefits to the approach.

More generally, we show that treating mobile units as messages provides an effective means

for transferring results from classical distributed algorithm literature to the emerging field

of mobile computing.



43

Chapter 5

Communication among Highly

Mobile Agents

The previous chapter showed how the distributed snapshot algorithm by Chandy and Lam-

port can be applied to reliable message delivery in the physically mobile environment. This

chapter starts with the same premise, but from the perspective of logical mobility. By

moving to this arena, we uncover many issues that are not addressed by the basic snapshot

delivery algorithm. For example, in a physical mobile environment, the support infrastruc-

ture consists of large pieces of dedicated hardware creating a known and stable environment.

In contrast, the support structure of a logical mobility system consists of multi-purpose com-

puting components executing agent support software. It is likely that this network will not

be known in advance, making the original snapshot approach unusable, however, the need

for reliable message delivery persists. This chapter shows how the original algorithm can

be extended to allow for an expanding network of support nodes, increasing the overall

flexibility of these abstractions.

Section 5.1 begins by briefly summarizing the original results from the previous

chapter, introducing the notation used for logical mobility and using it as the starting point

for the extensions which follow. Section 5.2 discusses the applicability and implementability

of a communication mechanism embodying our algorithm in a mobile agent platform.

5.1 Logical Snapshot Delivery

5.1.1 Delivery in a Static Network Graph

We begin the description of our solution with a basic algorithm which assumes a fixed

network of connected nodes. For simplicity, we describe first the behavior of the algorithm

under the unrealistic assumption of a single message being present in the system, and then

show how this result can be extended to allow concurrent delivery of multiple messages.



44

Distributed Snapshot

Snapshot Delivery

Node Mobile agent server
Message Mobile agent
Token Message

Record message Deliver message
Local snapshot ended Message deleted

sender

A
Processing

Processing
Not Yet

Processing
Finished

Figure 5.1: Using distributed snapshots for message delivery. Each concept from the tradi-
tional snapshot is mapped to a concept in the mobile environment. The result is the ability
to trap an agent in a region of the network from which it cannot escape without receiving
a copy of the message.

Single message delivery.

Chapter 4 approached reliable message delivery in the physical mobility environment by

adapting the notion of distributed snapshots [58]. In snapshot algorithms, the goal is to

record the local state of the nodes and the channels in order to construct a consistent global

state. Critical features of these algorithms include propagation of the snapshot initiation,

the flushing of the channels to record all messages in transit, and the recording of every

message exactly once. Our approach to message delivery comes directly from the ideas in

the original snapshot paper presented by Chandy and Lamport [18], applying our design

strategy to treat the mobile unit as a message. In this move to the mobile environment,

the meaning of basic algorithm properties change: instead of spreading knowledge of the

snapshot using messages, we spread the actual message to be delivered; instead of flushing

messages out of the channels, we flush agents out of the channels; and instead of recording

the existence of the messages, we deliver a copy of the message. This correspondence of

concepts in the two domains can be seen in Figure 5.1.

The algorithm works by associating a state, open or flushed, with each incoming

channel of a node. Initially all channels are open and no node is aware of a snapshot delivery

in progress. Delivery is initiated from outside the system, e.g., by an agent requesting its

current host to deliver a message. When the message arrives, the state of the channel it came

through is changed to flushed, implying that all the agents on that channel ahead of the

message have been forced out of the channel (by the FIFO assumption). When the message

arrives for the first time at a node, it is stored locally, and delivery is attempted to all

agents present at the node. If the agent identifier does not match the message destination,

no delivery occurs. In the same atomic step, the message is propagated on all outgoing

channels, thus starting the flushing process on those channels. Each agent that arrives



45

1:
precondition: no incoming channels open
action: curMsg = ⊥

2:
precondition: message j arrives ∧ (curMsg = ⊥ ∨ curMsg = j)
action: if curMsg = ⊥ deliver, store, propagate

3:
precondition: message j finished processing
action:

4:
precondition: message i arrives ∧ (curMsg = j ∧ i > j)
action: buffer message i

OPEN

BUFFERING(j)

FLUSHED
1

2

4

3

Figure 5.2: State transitions and related diagram for multiple message delivery in a static
network graph.

through an open channel on a node storing the message must be delivered a copy of it.

When all the incoming channels of a node are flushed, which is guaranteed to occur by

the network connectivity assumption, the node is no longer required to deliver the message

to any arriving agents, therefore the message copy is deleted and all of the channels are

atomically reset to open.

Intuitively, this processing partitions the network into the three regions as shown

in Figure 5.1: regions not yet aware of the message, currently processing the message, and

where delivery has completed. An agent which has not yet received the message must either

be in the first region or on a channel in the currently processing region. In order for the

agent to move to the completed region, it must pass through a node in the processing region

and receive the message. Because the entire graph will eventually finish processing, it is

guaranteed that the agent will receive the message.

Multiple message delivery.

A possible adaptation of the previous algorithm to multiple message delivery is to require

a node to wait for the termination of the current message delivery and to coordinate with

the other nodes before initiating a new one, in order to ensure that only one message is

being delivered at any time. However, this unnecessarily constrains the behavior of the

sender and requires knowledge of non-local state. In practical scenarios, it is desirable to

allow multiple messages to flow concurrently in the network. Typically, this is needed for

two reasons: to allow a source to transmit a burst of of messages without waiting for the

delivery of the first one to complete, and to allow multiple sources to transmit at the same

time.

We propose here a variant of the algorithm that encompasses both cases without



46

requiring coordination among hosts. This is accomplished by requiring that each message

is tagged with the identifier of the host that initially sent it, as well as an ever-increasing

sequence number (or, in practice, a sufficiently large circular window of numbers). The

sequence number addresses the case of a message burst coming from a single source, while

the host identifier allows multiple sources to transmit at the same time.

To handle a burst of messages from a single source, additional logic must be added to

deal with the arrival of a new message while the previous one is still being processed. This

case is identified by the arrival of a message on an already flushed channel. To handle

the new message, we introduce a new state, buffering, as shown in Figure 5.2 (transition

4). The new message and any additional message arriving on a buffering channel are put

into a temporary buffer to be processed at a later time. A buffering channel is considered

flushed for the purposes of determining whether the local processing for the delivery of the

current message is complete. When this transition to open is finally made for all incoming

channels (transitions 1 and 3), the messages in the buffers are treated as if they are new

messages on the front of the channel, and are processed again. It is possible that after

processing the first buffered message the next message causes a transition to buffering,

but the fact that the head of the channel is processed ensures eventual progress through

the sequence of messages to be delivered.

While the above addresses multiple messages from a single source host, it does not

allow for multiple sources. To do this, we effectively execute concurrent copies of the above

algorithm. Instead of keeping a single channel state and buffer for each incoming channel,

a vector of states and buffers is maintained. Each entry in the vector corresponds to a

single source, and any message arriving from the source is processed only with respect to

this entry. Additionally, the transition of channels to open is made on a per source basis

by using the corresponding values in the vectors of each incoming channel.

Although messages are buffered, agent arrival is not restricted, allowing the agent to

move ahead of any messages it originally followed along the channel. Effectively, the agent

may move itself back into the region of the network where the message has not yet been

delivered. Therefore, duplicate delivery is possible, although duplicates can be discarded

easily by the runtime support or by the agent itself based on the message identifier.

5.1.2 Delivery in a Dynamic Network Graph

Although the solutions proposed so far provide delivery guarantees in the presence of mo-

bility, the necessity of knowing the network of neighbors a priori is sometimes unreasonable

in the dynamic environment of mobile agents. Furthermore, the delivery mechanism is in-

sensitive to which nodes have been active, and delivers the messages also to regions of the

network that have not been visited by agents. Therefore, our goal is still to flush channels

and trap agents in regions of the network where the messages will propagate, but also to



47

allow the network graph used for the delivery process to grow dynamically as the agents

migrate. A channel is only included in the message delivery if an agent traversed it, and

therefore, a node is included in the message delivery only if an agent has been hosted there.

We refer to a node or channel included in message delivery as active.

Our presentation is organized in two phases. First, we show a restricted approach

where all the messages must originate from a single, fixed source. This is reasonable for

monitoring or master-slave scenarios where all communication flows from a fixed initiator to

the agents in the system. Then, we extend this initial solution to enable direct inter-agent

messaging by allowing any active node in the graph to send messages, without the need for

a centralized source.

Single message source.

First, we identify the problems that can arise when nodes and channels are added dy-

namically, due to the possible disparity between the messages processed at the source and

destination nodes of a channel when it becomes active. We initially present these issues by

example, then develop a general solution.

Destination ahead of source. Assume a network as shown in Figure 5.3(a). X is the sender

of all messages and is initially the only active node in the system. The graph is extended

when X sends an agent to Y , causing Y and (X,Y ) to become active. Suppose X sends a

burst of messages 1..4, which are processed by Y , and later a second sequence of messages

5..8. This second transfer is immediately followed by the migration of a new agent to node

Z, which makes Z and (X,Z) active. Before message 5 arrives at Y , an agent is sent from

Y to Z, thus causing the channel (Y,Z) to be added to the active graph.

A problem arises if the agent decides to immediately leave Z, because the messages

5..8 have not yet been delivered to it and may never be delivered. Furthermore, what

processing should occur when these messages arrive at Z along the new channel (Y,Z)?

(a) Destination ahead
of source.

(b) Source ahead
of destination.

a8

X

Z
4 8

8

6
5

Y

8
7

X

a4
4 8

8

6
5

ZY

8
7

Figure 5.3: Problems in managing a dynamic graph. Values shown inside the nodes indicate
the last message processed by the node. The subscripts on agent a indicate the last message
processed by the source of the channel being traversed by a right before a migrated.



48

If the messages are blindly forwarded on all Z’s outgoing channels, message ordering is

possibly lost and messages can possibly continue propagating in the network without ever

being deleted.

Our solution is to hold the agent at Z until the messages 5..8 are received and, when

these messages arrive, to deliver them only to the detained agent, i.e., without broadcast-

ing them to the neighboring nodes. Therefore, no messages are lost and the system wide

processing of messages is not affected. Notably, although we do inhibit the movement of

the agent until these messages arrive, this takes place only for a time proportional to the

diameter of the network, and even more important, only when the topology of the network

is changing.

Source ahead of destination. To uncover another potential problem, we use the same scenario

just presented for nodes X, Y , and Z. However, instead of assuming an agent moving from

Y to Z, we assume it is moving from Z to Y , thus making (Z, Y ) active (Figure 5.3(b)).

Although the agent will not miss any messages in this move, two potential problems exist.

First, by making (Z, Y ) active, Y will wait for Z to be flushed or buffering

before proceeding to the next message. However, message 5 will never be sent from Z.

Our solution is to delay the activation of channel (Z, Y ) until Y catches up with Z. In

this example, we delay until 8 is processed at Y . Second, if message 9 is sent from X and

propagated along channel (Z, Y ), it must be buffered until it can be processed in order.

Solution. Given this, we now present a solution that generalizes the previous one. We

describe in detail the channel states and the critical transitions among these states, using

the state diagram in Figure 5.4.

• closed: Initially, all channels are closed and not active in message delivery.

• open: The channel is waiting to participate in a message delivery. When an agent

arrives through an open channel on a node that is storing a message destined to that

agent, the agent should receive a copy of such message.

• flushed: The current message being delivered has already arrived on this channel,

and therefore this channel has completed the current message delivery. Agents arriving

on flushed channels need no special processing.

• buffering(j): The source is ahead of the destination. Messages arriving on buffer-

ing channels are put into a FIFO buffer. They are processed after the node catches

up with the source by processing message j. Agents arriving on buffering channels

need no special processing.



49

1:
precondition: no incoming channels open ∧ no incoming channels holding
action: curMsg = ⊥

2:
precondition: message j arrives ∧ (curMsg = ⊥ ∨ curMsg = j)
action: if curMsg = ⊥ deliver, store, propagate

3:
precondition: message j finished processing
action:

4:
precondition: message i arrives ∧ (curMsg = j ∧ i > j)
action: buffer message i

5:
precondition: message j arrives ∧ (curMsg = ⊥ ∨ curMsg > j)
action: deliver to held agents, release held agents

6:
precondition: message j arrives ∧ curMsg = j
action: deliver to held agents, release held agents

7:
precondition: agent arrives ∧ D ahead of S ∧ (curMsg = j ∨ curMsg = ⊥)
action:

8:
precondition: agent arrives ∧ curMsg 6= ⊥ ∧

S and D processing same message
action:

9:
precondition: agent arrives ∧ (D not active ∨

(S and D processing same message ∧ curMsg = ⊥))
action:

10:
precondition: agent aj arrives ∧ S ahead of D
action:

HOLDING(j)

OPEN

BUFFERING(j)

FLUSHED

CLOSED

5 3

4

7

8 9

10

6
2

1

Figure 5.4: State transitions and related diagram for multiple message delivery with a single
source in a dynamic network graph. The state transitions refer to a single channel (S,D).

• holding(j): The destination is ahead of the source. Messages with identifiers less

than or equal to j which arrive on holding channels are delivered to all held agents.

Agents arriving on holding channels, and whose last received message has identifier

less than j, are held until j arrives.

The initial transition of a channel from closed to an active state is based on the

current state of the destination node and on the state of the source as carried by the

agent. The destination node can either still be inactive or it can have finished delivering

the same message as the source (9), it can still be still processing such message (8), it can

be processing an earlier message (10), or it can be processing a later message (7). Based

on this comparison, the new active state is assigned. Once a channel is active, all state

transitions occur in response to the arrival of a message. Because we have already taken

measures to ensure that all messages will be delivered to all agents, our remaining concerns



50

are that detained agents are eventually released, and that at every node the next message

is eventually processed.

Whether an agent must be detained or not is determined by comparing the identifier

of the latest message received by the agent, carried as part of the agent state, and the current

state of the destination node. Only agents that are behind the destination are actually

detained. If an agent is detained at a channel in state holding(j), it can be released as

soon as j is processed along this channel. In this case, the agent was delivered a copy of

the message when the agent first arrived, but we assume that this out of order message

is ignored by the runtime support, based on the message identifier. Therefore, message j

is processed when it arrives on the channel the agent is holding on. By connectivity of

the network graph, we are guaranteed that j will eventually arrive1. When it does, the

destination node will either still be processing j, or will have completed the processing. In

both cases the agent is released. In the former case, the channel transitions to flushed

(6) to wait for the rest of the channels to catch up, while in the latter case the channel

transitions to open (5) to be ready to process the next message.

To argue that eventually all messages are delivered, we must extend the progress

argument presented in Section 5.1.1 to include the progress of the holding channels as

well as the addition of new channels. As noted in the previous paragraph, message j is

guaranteed to eventually arrive along the holding channel, thus ensuring progress of this

channel. Next, we assert that there is a maximum number of channels that can be added as

incoming channels, bounded by the number of nodes in the system. We are guaranteed that

if channels are continuously added, eventually this maximum will be reached. By the other

progress properties, eventually all these channels will be either flushed or buffering, in

which case processing of the next message (if any) can begin.

Multiple message sources.

Although the previous solution guarantees message delivery and allows the dynamic expan-

sion of the graph, the assumption that all messages originate at the same node is overly

restrictive. To extend this algorithm to allow a message to originate at any active node,

we effectively superimpose multiple instances of the same algorithm on the network, in a

manner similar to the multiple message delivery in a static network. For the purposes of

explanation, let n be the number of nodes in the system. Then:

• The state of an incoming channel is represented by a vector of size n where the state

of each node is recorded. Before the channel is added to the active graph, the channel

1The connectivity assumption we make here is that in the initial system state, before any agents migrate,
the node identified as the source of all messages must be connected to all nodes which can spontaneously
generate agents. Spontaneous generation of agents means that a node can create an agent without the prior
arrival of another agent.



51

is considered closed. Once the channel is active, if no messages have been received

from a particular node, the state of the element in the vector corresponding to that

node is set to open.

• Processing of each message is done with respect to the channel state associated with

the node where the message originated.

• Nodes can deliver n messages concurrently, at most one for each node. As before, if

a second message arrives from the same node, it is buffered until the prior message

completes its processing.

• An agent always carries a vector containing, for each message source, the identifier

of the last message received. Moreover, when an agent traverses a new outgoing

channel, it carries another vector that contains, for each message source, the identifier

of the last message processed by the source of the new channel right before the agent

departed.

• An incoming agent is held only as long as, for each message source, the identifier of

the last message received is greater than the corresponding holding value (if any) of

the channel the agent arrived through.

• To enable any node to originate a message, we must guarantee that the graph remains

connected. To maintain this property we make all links bidirectional. In the case

where an agent arrives and the channel in the opposite direction is not already an

outgoing channel, a fake agent message is sent to S with the state information of D.

This message effectively makes the reverse channel active.

Again, we must argue that detained agents are eventually released and that progress

is made with respect to the messages sent from each node. Assume that message i is the

smallest message identifier from any node which has not been delivered by all nodes. There

must exist a path from a copy of i to every node where i has not arrived, and every node on

this path is blocked until i arrives. By connectivity of the network graph, i will propagate

to every node along every channel and will complete delivery in the system. No node will

buffer i because it is the minimum message identifier which is being waited for. When i has

completed delivery, the next message is the new minimum and will make progress in a similar

manner. Because the buffering of messages is done with respect to the individual source

nodes and not for the channel as a whole, the messages from each node make independent

progress.

Holding agents requires coordination among the nodes. The j value with respect

to each node for which the channel is being held, e.g., holding(j), is fixed when the first

agent arrives. Because the messages are guaranteed to make progress, we are guaranteed

that eventually j will be processed and the detained agents will be released.



52

5.1.3 Multicast Message Delivery

In all the algorithms described so far, we exploited the fact that a distributed snapshot

records the state of each node exactly once, and modified the algorithm by substituting

message recording with message delivery to an agent. Hence, one could describe our algo-

rithm by saying that it attempts to deliver a message to every agent in the system, and only

the agents whose identifier match the message target actually accept the message. With

this view in mind, the solution presented can be adapted straightforwardly to support mul-

ticast. The only modification that must be introduced is the notion of a multicast address

that allows a group of agents to be specified as recipients of the message—no modification

to the algorithm is needed.

5.2 Discussion

In this section we analyze the impact of our communication mechanism on the underlying

mobile agent platform, argue about its applicability, discuss the current implementation

and comment on possible extensions and future work on the topic.

5.2.1 Implementation Issues

A fundamental network property that must be preserved in order for our communication

algorithms to function properly is the FIFO behavior of communication channels—a legacy

of the fact that the core of our schema is based on the Chandy-Lamport distributed global

snapshot. The FIFO property must be maintained for every piece of information traveling

through the channel, i.e., messages and agents. This is not necessarily a requirement for

mobile agent platforms. Rather, a common design is to map the operations that require

message or agent delivery on data transfers taking place on different data streams, typically

through sockets or some higher-level mechanism like remote method invocation. In the

case where these operations insist on the same destination, the FIFO property may not

be preserved, since a data item sent first through one stream can be received later than

another data item through another stream, depending on the architecture of the underlying

runtime support. Nevertheless, the FIFO property can be implemented straightforwardly in

a mobile agent server by associating a queue that contains messages and agents that must

be transmitted to a remote server. This way, the FIFO property is structurally enforced by

the server architecture, although this may require non-trivial modifications in the case of

an already existing platform.

Our mechanism assumes that the runtime support maintains some state about the

network graph and the messages being exchanged. In the static single message delivery

algorithm we present, this state is constituted only by the last message received. In a



53

Guaranteed Multicast Delivery Knowledge

Delivery Capable Overhead Maintained

Forwarding No No One indirection Agent location
Broadcast No Yes One msg. per Spanning tree

(no guarantees) spanning tree edge
Static Yes Yes One msg. Neighbors

Snapshot per edge (known in advance)
Dynamic Yes Yes One msg. per Neighbors
Snapshot traversed edge (discovered)

Figure 5.5: Tradeoffs when choosing a communication mechanism.

system with bidirectional channels, this message must be stored only for a time equal to

the maximum round trip delay between the node and its neighbors. At the other extreme,

in the dynamic variant of our algorithm with multiple message sources, each server must

maintain a vector of identifiers for the active (outgoing and incoming) channels and, for

each incoming channel, a vector containing the messages possibly being buffered. The size

of the latter is unbounded, but each message must be kept in the vector only for a time

proportional to the diameter of the network.

5.2.2 Applicability

It is evident that the algorithm presented in this work generates considerable overall traffic

overhead if compared, for instance, to a forwarding scheme. This is a consequence of the

fact that our technique involves contacting the nodes in the network that have been visited

by at least one agent in order to find the message recipient, and thus generates an amount of

traffic that is comparable to a broadcast. Unfortunately, this price must be paid when both

guaranteed delivery and frequent, unconstrained agent movement are part of the application

requirements, since simpler and more lightweight schemes do not provide these guarantees,

as discussed in Chapter 3.3. Hence, the question whether the communication mechanism

we propose is a useful addition to mobile agent platforms will be ultimately answered by

practical mobile agent applications, which are still largely missing and will determine the

requirements for communication.

In any case, we do not expect our mechanism to be the only one provided by the

runtime support. To make an analogy, one does not shout when the party is one step away;

one resorts to shouting under the exceptional condition that the party is not available, or

not where expected to be. Our algorithm provides a clever way to shout (i.e., to broadcast

a message) with precise guarantees and minimal constraints, and should be used only when

conventional mechanisms are not applicable. The runtime support should leave to the pro-

grammer the opportunity to choose different communication mechanisms, and even different

variants of our algorithm. For instance, the fully dynamic solution described in Section 5.1.2

is not necessarily the most convenient in all situations. In a network configuration such as



54

the one depicted in Figure 3.2, where the graph is structured in clusters of nodes, the best

tradeoff is probably achieved by using our fully dynamic algorithm only for the “gateway”

servers that sit at the border of each cluster, and a static algorithm within each cluster.

Such an approach leverages off of the knowledge of the internal network configuration and

the inherent network knowledge and broadcast capability of a local area network. Along

the same lines, it is possible to exploit hybrid schemes. For instance, in the common case

where the receipt of a message triggers a reply, bandwidth consumption can be reduced by

encoding the reply destination in the initial message and using a conventional mechanism,

as long as the sending agent is willing to remain stationary until the reply is received.

Figure 5.5 highlights some of the tradeoffs among our solutions and those discussed in

Chapter 3.3. A fully reliable communication can only be provided by the modified snapshot

delivery algorithms, but guaranteed delivery comes at the cost of increased traffic overhead

to deliver a single message, and additional network information that must be maintained at

each host. At the other extreme, forwarding exhibits a minimal traffic overhead for message

delivery, namely the path from the message source to the home node and from the home

node to the current location of the mobile unit, but the current location of each mobile unit

must be maintained. In the case of frequent movement and infrequent communication, the

cost of updating the location information may outweigh the limited overhead of delivery,

especially as far as the traffic around the home node is concerned.

We are currently investigating further the tradeoffs of the various communication

schemes by exploiting a communication package developed for the µCode [68] mobile code

toolkit. The package contains an implementation of the algorithms presented here, as well

as of broadcasting and forwarding schemes. Hence, the application programmer can choose

among the most appropriate message delivery schemes, and possibly different choices may

coexist in the same application. The implementation enabled us to validate the feasibility

of our approach, and will allow further exploration of its interplay with more conventional

mechanisms.

5.2.3 Enhancements

In Chapter 3, we argued that the problem of reliable message delivery is inherently compli-

cated by the presence of mobility even in the absence of faults in the links or nodes involved

in the communication. In practice, however, these faults do happen and, depending on the

execution context, they can be relevant. If this is the case, the techniques traditionally

proposed for coping with faults in a distributed snapshot can be applied to our mechanism.

For instance, a simple technique consists of periodically checkpointing the state of the sys-

tem, recording the state of links, keeping track of the last snapshot, and dumping an image

of the agents hosted. (Many systems already provide checkpointing mechanisms for mobile



55

agents.) This information can be used to reconcile the state of the faulty node with the

neighbors after a fault has occurred.

A related issue is the ability not only to dynamically add nodes to the graph, but also

to remove them. This could be used to model faults or to optimize the network to remove

hosts which are not active in hosting agents. Alternately a host may request to be removed

because it is no longer willing to host agents, e.g., because the mobile agent support is to

be intentionally shut down. A simple solution consists of “short circuiting” the node to be

removed, by setting the incoming channels of its outgoing neighbors to point to the node’s

incoming neighbors. However, this involves running a distributed transaction and thus

enforces an undesirable level of complexity. In this work, we disregarded the possibility for

a couple of reasons. First of all, while it is evident that the ability to add nodes dynamically

enables a better use of the communication resources by limiting communication to the areas

visited by agents, it is unclear whether a similar gain is obtained in the case of removing

nodes, especially considering the aforementioned implementation complexity. Second, very

few mobile agent systems provide the ability to start and stop dynamically the mobile agent

runtime support: most of them assume that the runtime is started offline and operates until

the mobile agent application terminates.

5.3 Concluding Remarks

This chapter demonstrated first how our design strategy of treating a mobile unit as a

message can be applied to snapshot algorithms and mobile agent to derive an algorithm

for reliably message delivery. The key contribution, however, lies in the extension of this

algorithm to meet the needs of the environment, demonstrating the power of our strategy to

guide the design of meaningful abstractions tailored to the needs of the mobile environment.



56

Chapter 6

Tracking Mobile Units for

Dependable Message Delivery

While the previous two chapters address reliable message delivery by developing algorithms

which search the entire network for the mobile unit, this chapter focuses on message de-

livery schemes based on tracking a mobile unit as it moves through the network. In this

chapter, we start with the idea of employing diffusing computations proposed by Dijkstra

and Scholten [23] and adapt it to message delivery applying the strategy of treating the

mobile unit as a message. By equating the root node of the computation to the concept of a

home agent from Mobile IP, and by replacing the messages of the computation with mobile

units, the result is an algorithm which, instead of tracking a computation as messages are

passed through a system of processing nodes, tracks the movement of a mobile unit as it

visits various base stations in the system. Essentially, the graph of the Dijkstra-Scholten

algorithm defines a region within which the mobile unit is always located. Although this is

not directly a message delivery algorithm, by propagating a message throughout this region,

we can achieve message delivery. The algorithm can be readily adapted for this purpose

and can be optimized for message delivery, e.g., our solution prunes unnecessary portions

of the graph reducing the area to which a message must be propagated.

The remainder of this chapter is organized as follows: Section 6.1 explores the de-

tails of a message delivery algorithm derived directly from the Dijkstra-Scholten model for

diffusing computations. Section 6.2 presents another algorithm inspired by the first, but

reduces the message delivery overhead. For this algorithm, we provide a formal verification

of its properties. Finally, Section 6.3 contains related work and analysis.



57

root

signal

(1)

message

(2)

Figure 6.1: Dijkstra-Scholten for detecting termination of a diffusing computation. Shaded
nodes are idle, white nodes are active.

6.1 Applying diffusing computations to mobile unit tracking

Diffusing computations have the property that the computation initiates at a single root

node while all other nodes are idle. The computation spreads as messages are sent from

active nodes. Dijkstra and Scholten [23] describe an algorithm for detecting termination of

such computations. The basic idea is that of maintaining a spanning tree that includes all

active nodes, as shown in Figure 6.1. A message sent from an active node to an idle node

(message (1) in Figure 6.1) adds the latter to the tree as a child of the former. Messages

sent among tree nodes have no effect on the structure but may activate idle nodes still in

the tree. An idle leaf node can leave the tree at any time by notifying its parent (signal (2)

in Figure 6.1). Termination is detected when an idle root is all that remains in the tree.

We adapt this tree maintenance algorithm to the mobile environment. A node is

seen as active when the mobile unit is present. The resulting algorithm maintains a tree

identical to Figure 6.1 with the mobile unit at an active node or on a channel leaving a

tree node. This enables us to guarantee the continued existence of a path from the root to

the mobile unit along tree edges. We use this property to develop a guaranteed message

delivery algorithm. The latter is superimposed on top of the graph maintenance algorithm.

To maintain the distinction between the data messages being delivered and any control

messages used to effect the delivery, we will refer to the data message as an announcement.

In this section, we first describe the details of the graph maintenance algorithm, then present

the guaranteed data message, i.e., announcement, delivery algorithm. A short discussion

and possible extensions follow.



58

State
MobileAtA boolean, trueif mobile unit at A, initially falseexcept at root
Parent(A) the parent of node A, initially null
Children(A) multiset of children of node A, initially ∅

Actions

MobileArrivesA(B) ;arrival at A from B
Effect:

MobileAtA:= true
if Parent(A) 6= NULL then

send signal(A) to B
else

Parent(A) := B

SignalArrivesA(B) ;arrival at A from B
Effect:

Children(A) := Children(A) − {B}

SendMobileA(B) ;mobile moves from A to B
Preconditions:

MobileAtA and channel (A,B) exists
Effect:

MobileAtA := false
Children(A) := Children(A) ∪ {B}

CleanUpA(B) ;remove node A from tree
Preconditions:

Children(A) = ∅ ∧ ¬MobileAtA
Parent(A) = B

Effect:
send signal(A) to B
Parent(A) := null

Figure 6.2: Diffusing computations adapted for tracking a mobile unit

6.1.1 Mobile tracking

Although the Dijkstra-Scholten algorithm can be easily described and understood, the dis-

tributed message passing nature of the algorithm leads to subtle complexities. The details

of the algorithm can be found in Figure 6.2. Each action is one atomic step and we assume

weak fairness in action selection. For the purposes of discussion, we assume that the mobile

unit is initially located at the root and moves nondeterministically throughout the graph

(Figure 6.2, operation MobileLeaves).

In the introduction of this section, we described an algorithm which maintains a tree

structure with edges from parent to child. By the distributed nature of the environment,

the sender of a message cannot know whether or not the destination node is already in

the tree, and cannot know whether or not to add the destination as a child. Therefore,

the tree structure is maintained with edges from child to parent (recorded in Parent(A) in

Figure 6.2).

For detecting termination and removing nodes from the tree, a node must be able

to detect when it is an idle leaf node. This is done by tracking each message sent by each

node. The Dijkstra-Scholten algorithm requires that every message be acknowledged by the

destination with a signal. If the message arrives and the destination node is already part

of the tree, the spanning tree topology does not change and the signal is sent immediately.

Otherwise the signal is delayed and sent when the destination node removes itself from the



59

tree. The source node tracks all messages by destination in a multiset or bag. Nodes in

this bag indicate children nodes of the spanning tree, nodes to which the message has not

arrived, or nodes from which the signal has been sent but not yet received. When the bag is

empty, the node has no children and can remove itself from the tree by signaling its parent.

For detecting termination of a diffusing computation, it is only necessary to keep a count of

the number of successors. Because we intend to use this information during announcement

delivery, we must maintain the bag of children.

Similar processing must occur in the mobile setting. Each movement of the mobile

unit is tracked in a multiset (e.g., Children(A)). An element is removed from this multiset

when the node receives a signal (Figure 6.2, operation SignalArrives). A signal is sent

immediately when the mobile unit arrives and the node is already part of the tree (Figure 6.2,

MobileArrives) and is delayed otherwise. A delayed signal is released when the node

becomes a leaf to be removed from the tree (Figure 6.2, CleanUp).

6.1.2 Superimposing announcement delivery

Having described the graph maintenance algorithm, we now present an algorithm to guar-

antee at-least-once delivery of an announcement. The details of this are shown in Figure 6.3

as actions superimposed on the graph maintenance actions of Figure 6.2. Actions with the

same label execute in parallel while new actions are fairly interleaved with the existing

actions.

For announcement delivery we assume that the announcement originates at the

root and we rely on the property that there is always a path from the root to the mobile

unit along edges in the tree. We note that the reverse edges of the tree (from parent

to child) are a subset of the edges from parent to child maintained as successors of the

parent (e.g., Children(A)). It is only necessary to send the announcement along edges in

the spanning tree. But, because this tree is maintained with pointers from child to parent,

the announcement must be propagated along the successor edges, from parent to child.

When an announcement arrives from a source other than the parent, the announcement is

rejected (Figure 6.3, AnnouncementArrives). In this manner, the announcement is only

processed along the tree paths. Effectively, a frontier of announcements sweeps through the

spanning tree. When the announcement and the mobile unit are co-located at a node, the

announcement is delivered (Figure 6.3, AnnouncementArrives, MobileArrives).

In a stable environment where the mobile unit does not move, this announcement

passing is sufficient to guarantee delivery. However if the mobile unit moves from a node in

the tree below the frontier to a node above the frontier, delivery may fail. Therefore, each

node stores a copy of the announcement until delivery is complete or the node is removed

from the tree (Figure 6.3, AnnouncementArrives). Storing the announcement in this

manner ensures that the mobile unit cannot move to a region above the frontier without



60

State
〈same as before〉
AnnouncementAtA boolean, true if announcement stored at A, initially false everywhere
started boolean, true if delivery has started, initially false

Actions

MobileArrivesA(B)
;arrival at A from B

Effect:
〈same as before〉
if AnnouncementAtA then

deliver announcement
send ack to Parent(A) and children(A)

SignalArrivesA(B)
;arrival at A from B

〈same as before〉

SendMobileA(B)
;moves from A to B

〈same as before〉

AnnouncementArrivesA(B)
;arrival at A from B

Effect:
if Parent(A) = B then

if MobileAtA then

deliver announcement
send ack to B

else

AnnouncementAtA := true ;save ann.
send announcements to children(A)

CleanUpA(B)
;remove node A from tree

Preconditions:
〈same as before〉

Effect:
〈same as before〉
AnnouncementAtA := false ;delete ann.

AckArrivesA(B) ;arrival at A from B
Effect:

if Parent(A)=B ∨ B ∈ Children(A)
if AnnouncementAtA then

AnnouncementAtA := false ;delete ann.
send acks to children(A) except B

AnnouncementStart
;root sends announcement

Preconditions:
started = false

Effect:
started := true
if MoibleAtroot = truethen

deliver announcement
else

AnnouncementAtroot := true
send announcement to children(root)

Figure 6.3: Announcement delivery on top of diffusing computations.



61

receiving a copy of the announcement. Because there is always a path from the root to the

mobile unit, there must be an announcement on the frontier traversing this path and the

announcement will eventually reach the mobile unit thus leading to delivery (Figure 6.3,

MobileArrives). This path may change as the mobile unit moves from one region of the

tree to another, however, the existence of a path is guaranteed by the graph maintenance

algorithm presented in the previous section and the existence of the announcement on this

path is guaranteed by the delivery algorithm of this section.

In the worst case, it is possible for the mobile unit to continuously travel with the

announcement on the channel exactly one step behind. Eventually the mobile unit must

either stop moving when the maximum length path is reached (equal to the number of nodes

in the system), or the mobile unit will return to a previously visited tree node. When the

mobile unit returns to a tree node, which, by the assumptions, must be above the frontier

of announcements, it will receive the announcement stored there.

Storing the announcement requires an additional cleanup phase to remove all copies.

When the mobile unit receives the announcement, an acknowledgement is generated and

sent along the successor and parent edges (Figure 6.3, AnnouncementArrives, Mo-

bileArrives). As before, the acknowledgment is rejected along paths which are not part

of the tree (Figure 6.3, AckArrives). The connectivity of the tree ensures that the ac-

knowledgement will propagate to all nodes holding copies of the announcement. Leaf nodes

being removed from the tree must also delete their copy of the announcement (Figure 6.3,

CleanUp).

This algorithm ensures at-least-once delivery of the announcement. Because the

announcement copies remain in the graph until an acknowledgment is received, it is possible

for the mobile unit to move from a region where the acknowledgments have propagated to

a region where they have not. When this occurs, the mobile unit will receive an additional

copy of the announcement, which it can reject based on sequence numbers. It is important

to note that each time delivery occurs, a new set of acknowledgments will be generated. It

can be shown that these acknowledgments do not inhibit the clean up process, but rather

lead to a faster clean up. Each set of acknowledgments spreads independently through the

tree removing announcement copies, but terminates when a region without announcement

copies is reached.

6.1.3 Discussion

By superimposing the delivery actions on top of the graph maintenance, the result is an

algorithm which guarantees at least once delivery of an announcement while actively main-

taining a graph of the system nodes where the mobile unit has recently traveled.

It is not necessary for the spanning tree be pruned as soon as an idle leaf node

exists. Instead this processing can be delayed until a period of low bandwidth utilization.



62

An application may benefit by allowing the construction of a wide spanning tree within

which the mobile units travels. Tradeoffs include shorter paths from the root to the mobile

unit versus an increase in the number of nodes involved in each announcement delivery.

By constructing the graph based on the movement of the mobile unit, the path from

the root to the mobile unit may not be optimal. Therefore, a possible extension is to run

an optimization protocol to reduce the length of this path. Such an optimization must take

into consideration the continued movement of the mobile unit as well as any announcement

deliveries in progress. The tradeoff with this approach is between the benefit of a shorter

route from the root to the mobile unit and the additional bandwidth and complexity required

to run the optimization.

Although in our algorithm only one mobile unit is present, the graph maintenance

algorithm requires no extensions to track a group of mobile units. The resulting spanning

tree can be used for unicast announcement delivery without any modifications and for mul-

ticast announcement delivery by changing only the announcement clean up mechanism. As

presented, the delivery of the announcement triggers the propagation of acknowledgments.

In the multicast case, it is possible for the announcement not to reach all mobile units

before the cleanup starts. One practical solution is to eliminate the cleanup rules entirely,

and assign a timeout to the announcement. This timeout should be proportional to the

time it takes for the announcement to traverse the diameter of the network.

6.2 Backbone

We now introduce a new tracking and delivery algorithm inspired by the previous investi-

gation with diffusing computations. Our goal is to reduce the number of nodes to which

the announcement propagates, and to accomplish this we note that only the path between

the root and mobile unit is necessary for delivery. In the previous approach, although the

parts of the graph not on the path from the root to the mobile unit can be eliminated with

remove messages, announcements still propagate unnecessarily down these subtrees before

the node deletion occurs. To avoid this, the algorithm presented in this section maintains

a graph with only one path leading away from the root and terminating at the mobile

unit. This path is referred to as the backbone. The nodes in the remainder of the graph

form structures referred to as tails and are actively removed from the graph, rather than

relying on idle leaf nodes to remove themselves. Maintenance of this new structure requires

additional information to be carried by the mobile unit regarding the path from the root,

as well as the addition of a delete message to remove tail nodes. The announcement deliv-

ery mechanism remains essentially the same as before, but the simpler graph reduces the

number of announcement copies stored during delivery.



63

root

A

B

C

D

B

C

D

root

A

del

A

B

C

D

root root

A

B

C

D

(a) Backbone (b) Backbone (c) Tail node (d) After movement
extended shortened added completes

Figure 6.4: The parent pointers of the backbone change as the mobile moves to (a) a node
not in the backbone, (b) a node higher in the backbone, and (c) a tail node. (d) shows the
state after all channels have been cleared.

To understand how the backbone is kept independent of the tails, we examine how

the graph changes as the mobile unit moves. It is important to note that by the definition

of the backbone, the mobile unit is always either at the last node of the backbone, or on a

channel leading away from it. In Figure 6.4a, the backbone is composed of nodes A, B, and

C and the dashed arrow shows the movement of the mobile unit from node C to D where

D is not part of the graph. This is the most straightforward case in which the backbone is

extended to include D by adding both the child pointer from C to D (not shown) and the

parent pointer in the reverse direction (solid arrow in Figure 6.4b).

In Figure 6.4b, the mobile moves to a node B, a node already in the backbone and

with a non-null parent pointer. It is clear from the figure that the backbone should be

shortened to only include A and B without changing any parent pointers, and that C and

D should be deleted. To explicitly remove the tail created by C and D, a delete message is

sent to the child of B. When C receives the delete from its parent, it will nullify its parent

pointer, propagate the delete to its child, and nullify its child pointer.

If at this point the mobile moves from B onto D before the arrival of the delete (See

Figure 6.4c), D still has a parent pointer (C) and we cannot distinguish this case from the

previous case (where B also had a non null parent pointer). In the previous case the parent

of the node the mobile unit arrived at did not change, but in this case, we wish to have

D’s parent set to B (the node the mobile unit is arriving from) so that the backbone is

maintained. To distinguish these two cases, we require the mobile unit to carry a sequence

of the identities of the nodes in the backbone. In the first case where the mobile unit arrives

at B, B is in the list of backbone nodes maintained by the mobile unit, therefore B keeps its

parent pointer unchanged, but prunes the backbone list to remove C and D. However, when



64

root

tail

backbone

home covered backbone

del

tail

del

(a) Sample diffusing computation (b) Modified graph showing new structure.

Figure 6.5: By adapting diffusing computations to mobility, we construct a graph reflecting
the movement of the mobile. In order to deliver an announcement, the only part of the
graph we need is the path from the root to the mobile, the backbone. Therefore we adapt the
Dijkstra-Scholten algorithm to maintain only this graph segment and delete all the others.

the mobile arrives at D, only A and B are in the backbone list, therefore the parent pointer

of D is changed to point to B. But, what happens to the delete message moving from C to

D? Because C is no longer D’s parent when the delete arrives, it is simply dropped and the

backbone is not affected.

The delivery algorithm is then superimposed on top of the generated graph. It is

not sufficient to send the announcement down the spanning tree created by the backbone

without keeping copies at all nodes along the path because the mobile is free to move

from a region below the announcement to one above it (as in Figure 6.4b, assuming the

announcement had propagated to C but not to D). Therefore, to guarantee delivery, as the

announcement propagates down the backbone, a copy is stored at each node until delivery

is complete. We refer to the portion of the backbone with an announcement as the covered

backbone, see Figure 6.5b. Delivery can occur by the mobile unit moving to a location in

the covered backbone, or the announcement catching up with the mobile unit at a node.

In either case, an acknowledgment is generated and sent via the parent pointers toward

the root. If the announcement is delivered by the mobile unit moving on to the covered

backbone, a delete is generated toward the child and an acknowledgment is generated toward

the parent. Therefore any extra copies of the announcement on the newly created tail will

be deleted with the nodes.



65

State
AnnouncementAtA boolean, true if announcement stored at A, initially false everywhere
MobileAtA boolean, true if mobile unit at A, initially false except at root
Parent(A) the parent of node A, initially null
Child(A) the child of node A, initially null
started boolean, true if delivery has started, initially false
MList list of nodes carried by the mobile, initially contains only the root

Actions

AnnouncementArrivesA(B)
;arrival at A from B

Effect:
if Parent(A)=B then

if MobileAtA then

deliver announcement
send ack to B

else

AnnouncementAtA:=true ;save ann.
send announcement to Child(A)

AckArrivesA(B)
;arrival at A from B

Effect:
if Child(A)=B ∧ AnnouncementAtA then

AnnouncementAtA:=false ;delete ann.
send ack to Parent(A)

DeleteArrivesA(B)
;arrival at A from B

Effect:
if Parent(A)=B then

if AnnouncementAtA then

AnnouncementAtA:=false ;delete ann.
send delete to Child(A)
Parent(A):=null
Child(A):=null

MobileArrivesA(B)
;arrival at A from B

Effect:
MobileAtA:=true
if A ∈ MList then

A keeps old parent
MList truncated after A to the end
if AnnouncementAtA then

deliver announcement
Send ack to Parent(A)
AnnouncementAtA:=false;delete ann.

else

Parent(A):=B
MList := MList ◦ A
AnnouncementAtA:=false ;delete ann.

send delete to Child(A)
Child(A):=null

SendMobileA(B)
;moves from A to B

Preconditions:
MobileAtA and channel (A,B) exists

Effect:
MobileAtA:=false
Child(A):=B

AnnouncementStart
;root initiates ann.

Preconditions:
started = false

Effect:
started:=true
if MoibleAtroot=truethen

deliver announcement
else

AnnouncementAtroot:=true
send announcement to Child(root)

Figure 6.6: Tracking and delivery algorithm derived using some initial ideas from termina-
tion detection



66

6.2.1 Details

The details for the tracking algorithm are shown in Figure 6.6. As before, we model arbitrary

movement of the mobile by an action, called SendMobileA(B), that allows a mobile at a

node to move non-deterministically onto any outgoing channel.

MobileArrives shows the bulk of the processing and relates closely to the actions

described in Figure 6.4. When the mobile unit arrives at a node, the changes to be backbone

must be determined. If the mobile is doubling back onto the backbone, the parent pointers

remain unchanged and the path carried by the mobile is shortened to reflect the new back-

bone (as in Figure 6.4b). If the node is not in the backbone (Figure 6.4a) or is part of a tail

(Figure 6.4c), then the parent pointers must change to add this node to the backbone, and

the node must be appended to the backbone list carried by the mobile. In any case, the

children of this node (if any) are no longer necessary for announcement delivery, therefore

a delete message is sent to the child, and the child pointer is cleared.

In addition to maintaining the graph, we must also address announcement deliv-

ery. As in the previous algorithms, when the mobile unit arrives at a node where the

announcement is stored, delivery occurs, yielding at-least-once semantics for delivery. In

this algorithm, we introduce a sequence number to ensure exactly-once delivery semantics.

Therefore, when the mobile arrives at a node with the announcement, delivery is attempted

if the sequence number of the last announcement received by the mobile is less than the

sequence number of the waiting announcement. In all cases (whether or not delivery was

just accomplished), at this point the announcement has been delivered to the mobile unit

and an acknowledgment is generated along the path toward the root to clean up the an-

nouncement copies. No acknowledgment needs to be generated toward the tails because any

announcement copies on tails will be removed at the same time the tail node is removed

from the graph.

When the propagating announcement arrives at a node, AnnouncementArrives,

it is either arriving from a parent or some other node. If the announcement arrives from

a node other than the parent, it should be discarded because to guarantee delivery the

announcement need only propagate along the backbone. However, when an announcement

arrives from the parent it must be processed. If the mobile is present, delivery is attempted

with the same restrictions as before with respect to the sequence number and the acknowl-

edgment is started toward the root. If the mobile is not present, the node stores a copy of the

announcement in case the mobile arrives at a later time. Additionally, the announcement

is propagated to the child link.

AckArrives enables the cleanup of the announcements by propagating acks along

the backbone toward the root via the parent pointers. Acks can also be present on tail links,

but these are essentially redundant to the delete messages and do not affect the correctness

of the algorithm.



67

The purpose of the delete messages is to remove the tail segments of the graph.

Recall that a tail is created by a backbone node sending a delete to its child. Therefore, a

delete should only arrive from a parent node. If we were to accept a delete from a non-parent

node, as in the delete from C to D in Figure 6.4c, we could destroy the backbone. However

if the delete arrives from the parent, we are assured that the node no longer resides on the

backbone and should be deleted. Therefore, the arrival of a delete from a parent triggers

the deletion of the stored announcement, the propagation of the delete to the child, and the

clearing of both child and parent pointers.

6.2.2 Discussion and Generalizations

Keeping the backbone sequence is a similar methodology to routing protocols passing com-

plete paths to the destination as in BGP [73] to avoid loops. It has been argued that

keeping such information in the packet greatly increases its size. However, in our case, the

information is being kept by the mobile unit and we assume there is sufficient storage on

such a device for this additional information.

A simple extension of this algorithm is to allow for multiple concurrent announce-

ment deliveries as in sliding window protocols. The announcements and all associated

acknowledgments would have to be marked by sequence numbers so that they do not inter-

fere, but the delivery mechanism uses the same graph. Therefore the rules governing the

expansion and shrinking of the graph are not affected but the proofs of garbage collection

and acknowledgment delivery are more delicate.

6.2.3 Correctness

Because this algorithm deviates significantly from the original Dijkstra-Scholten model of

diffusing computations, essential properties necessary for announcement delivery are proven

in this section: 1) announcement delivery is guaranteed, 2) after delivery announcement

copies are eventually removed from the system, and 3) any tail node is eventually cleared.

Although the third property is not essential to announcement delivery, it is necessary to

show announcement cleanup.

Before approaching the proof, we formalize several useful definitions in Figure 6.71.

The most important of these are the backbone, covered backbone, and tails. Intuitively,

the backbone is the sequence of nodes starting at the root and terminating at either the

1The three-part notation used in the equations of the figure 〈op quantified-variables : range :: expression〉
used throughout the text is defined as follows: The variables from quantified-variables take on all possible
values permitted by range. If range is missing, the first colon is omitted and the domain of the variables
is restricted by context. Each such instantiation of the variables is substituted in expression producing a
multiset of values to which op is applied, yielding the value of the three-part expression. If no instantiation
of the variables satisfies range, the value of the three-part expression is the identity element for op, e.g., true
when op is ∀.



68

D.1
reachable(m,n) ≡ m = n

∨(n = Child(m) ∧m = Parent(n))
∨〈∃m′ ::reachable(m,m′)

∧reachable(m′, n)〉

Node n is reachable from node m if
there is a path from m to n where every
channel on the path has the parent and
child pointers of the channel endpoints
pointing toward one another.

D.2
path(p, n) ≡ n ∈ p

∧〈∀m : m ∈ p ::reachable(m,n)
∨reachable(n,m)〉

∧〈∀i, j : 1 ≤ i, j ≤ |p| ∧ i 6= j :: pi 6= pj〉

Path p includes node n and is an acyclic
sequence of reachable nodes.

D.3
maxpath(p, n,R) ≡ path(p, n)

∧〈∀m : path(m ◦ p, n) :: ¬R(m ◦ p)〉
∧〈∀m : path(p ◦m,n) :: ¬R(p ◦m)〉
∧R(p)

Path p is the maximal length path in-
cluding node n that satisfies the predi-
cate R. Extending p in either direction
through concatenation (◦) either vio-
lates the path relationship or the con-
dition R.

D.4
backbone(p) ≡ maxpath(p, root,

λq.〈∀m,n: m ∈ q
∧n ∈ q
∧n = Parent(m)

:: mob /∈ Chan(n,m)〉)

Path p is the backbone, i.e. the path of
maximal length which includes the root
and does not include the mobile unit on
any channel. The constant mob is used
to identify the mobile unit.

D.5
coveredBone(p) ≡ maxpath(p, root,

λq.〈∀m: m ∈ q
:: AnnouncementAt(m)〉)

Path p is the covered backbone, i.e.
the maximal length path including the
root (the backbone) where all nodes are
storing announcement copies.

D.6
tail(p, n) ≡ maxpath(p, n, λq.〈∀m : m ∈ q :: m 6= root〉)

The tail is the maximal length path of
any node n where no node on the path
is part of the backbone.

Figure 6.7: Useful definitions for proving Dijkstra-Scholten message delivery.

node holding the mobile unit or the node the mobile unit just left if it is on a channel. The

covered backbone is the sequence of backbone nodes with announcement copies. Tails are

any path segments not on the backbone.

Announcement Delivery Guarantee

Our overall goal is to show at-least-once delivery of an announcement to a mobile unit.

Therefore, the first property that we prove is (A) that from the state where no announcement

exists in the system (predelivery), eventually a state is reached where the mobile unit has a

copy of the announcement(postdelivery)2:

predelivery 7→ postdelivery (A)

2Progress properties are expressed using the UNITY relations 7→ (read leads-to) and ensures. Predicate
relation p 7→ q expresses progress by requiring that if, at any point during execution, the predicate p

is satisfied, then there is some later state where q is satisfied. Similarly, p ensures q states that if the
program is in a state satisfying p, it remains in that state unless q is established, and, in addition, it does
not remain forever in a state satisfying p but not q.



69

Although it is possible to make this transition in a single step (by executing Announce-

mentStart while the mobile unit is at the root) it is more common for the system to move

into an intermediate state where delivery is in progress (A.1). We must show that from

this state (delivery), either the announcement will be delivered, or, in the worst case, the

covered backbone will increase in length to include every node of the system (A.2). Once

this occurs, delivery is guaranteed to take place when the mobile unit arrives at any node

(A.3).

predelivery ensures delivery ∨ postdelivery (A.1)

delivery 7→ postdelivery ∨ (delivery∧

〈∃α :: coveredBone(α) ∧ 〈∀n : n ∈ N :: n ∈ α〉〉)
(A.2)

coveredBone(α) ∧ delivery ∧ 〈∀n : n ∈ N :: n ∈ α〉 ensures postdelivery (A.3)

We approach each of these properties in turn, first showing that from predelivery,

either delivery or postdelivery must follow (A.1). Until the action AnnouncementStart

fires, the system remains in predelivery and AnnouncementStart remains enabled. Triv-

ially, when it fires, either the announcement will be delivered (if the mobile unit is present

at the root) or the announcement will begin to propagate through the system.

Once the delivery state is reached, we must show that the covered backbone will

increase in length to include all nodes or the announcement will be delivered (A.2). To do

this, we strengthen the progress property A.2 to state that the covered backbone cannot

decrease in length.

delivery ∧ coveredBone(α) ∧ k = |α| < N

7→ (delivery ∧ coveredBone(α) ∧ |α| > k) ∨ postdelivery (A.2.1)

In order to formally make this assertion, we must first show that during deliv-

ery the covered backbone exists. Showing the existence of the covered backbone inde-

pendent from other system attributes is not possible. Therefore we prove a stronger

invariant that not only establishes the existence of the covered backbone, but also the

existence of the backbone and the relationship between the two. By definition, the cov-

ered backbone is a subset of the backbone. We further assert that if the covered back-

bone is shorter than the backbone, there is an announcement leaving the last node of

the covered backbone (where last(α) returns the final element of the path α). Alter-

nately, if the covered backbone and backbone are equivalent, the mobile unit must precede



70

the announcement (indicated by the constant ann) in the channel leaving the last node.

delivery⇒ 〈∃α, β, f : backbone(β) ∧ coveredBone(α) ∧ f = last(α) ::

(α ⊂ β ∧ ann ∈ Chan(f,Child(f)))

∨ (α = β ∧mobile.preceeds.ann(f,Child(f)))〉 (I.1)

This invariant is proven by showing that it holds initially as well as over all statements

of the program. Throughout this proof, we use several supporting properties which appear

in Appendix A. Specifically: Inv I.1.1 the integrity of the backbone, Inv I.1.2 that the

backbone always exists, Inv I.1.3 that there is at most one announcement in a channel,

Inv I.1.4 that there are no announcements during predelivery, and Inv I.1.5 that there are

no acknowledgments during delivery. We now show the proof of the top level property

concerning the existence of the covered backbone during delivery (I.1):

• It is trivial to show the initial conditions of I.1 because initially, delivery is false.

• MobileArrivesA(B): We assume the integrity of the backbone (Inv I.1.1). First

we consider the case where the system is in delivery and the right hand side of this

invariant (I.1) holds. The covered backbone is not affected if the mobile unit arrives

at a non-backbone node or a backbone node below the covered backbone. If the

mobile unit arrives at a covered backbone node, the announcement is delivered and

the invariant is trivially true by falsifying the left hand side.

Next we consider when the system is not in delivery. If the system is in predelivery and

we assume there are no announcements during predelivery (Inv I.1.4), the movement

of the mobile unit cannot affect the delivery status. Once the system is in postdelivery,

it cannot return to delivery, so the invariant remains true.

• AnnouncementArrivesA(B): We assume there is at most one announcement on

a channel in the system (Inv I.1.3). Therefore, if the system is in delivery and we

assume this invariant is true before the announcement arrives, the announcement

must be leaving the covered backbone. Further, since the announcement is at the

head of the channel, it cannot be the case that the mobile unit and announcement are

in the same channel, so the covered backbone must be a proper subsequence of the

backbone. Therefore, by the definitions of the covered backbone and backbone, the

node the announcement arrives at is on the backbone, and either the announcement

is delivered or is propagated.

If delivery occurs, this invariant is trivially satisfied by falsifying the delivery condition.



71

If the announcement is propagated into the next channel, then the covered backbone is

extended by one node which has already been shown to be part of the backbone. The

announcement is put onto the child link of this node, which by the backbone definition

must be a channel on the backbone or backbone extension. The announcement must

follow the mobile unit if the mobile unit is on the same channel.

As before, if the system is not in delivery, then the delivery status of the system

cannot change with the execution execution of this statement.

• SendMobileA(B): Before the statement executes, the mobile unit must be at a

node, otherwise the statement is a skip. Since we assume this invariant to be true, it

must be the case that the covered backbone is a proper subsequence of the backbone.

Therefore, when the mobile unit leaves the node, the backbone is only changed to

include the new backbone extension, the covered backbone is not affected, and the

invariant remains true.

• AnnouncementStart: We assume that if the system is in predelivery, there are

no announcements in the system (Inv I.1.4). Therefore after this statement executes,

either delivery occurs and Inv I.1 invariant is trivially true, or the announcement is

placed at the root and on the outgoing link, establishing the right hand side of the

invariant. If the system is in delivery or postdelivery, this statement is a skip.

• AckArrivesA(B): We assume there are no acknowledgments in the system during

delivery (Inv I.1.5), and therefore this statement is essentially a skip during deliv-

ery. This statement cannot change the delivery status, therefore, if the system is in

predelivery or postdelivery, the invariant is trivially true.

• DeleteArrivesA(B): We assume that delete messages do not affect the backbone

(Inv I.1.1), therefore they will not affect the covered backbone, and this invariant will

remain true. As before, this statement cannot change the delivery status.

This concludes the proof that during delivery, the covered backbone exists. We now

show that the covered backbone must grow, as defined by property A.2.1. We note two

specific cases that the system can be in with respect to the mobile unit and the announce-

ment and show how either the covered backbone must increase or delivery will occur. The

first case is where the mobile unit and announcement are not on the same channel. Since

the system is in delivery, there cannot be an acknowledgment on the channel (Inv I.1.5).

Since the announcement is on a backbone channel, there cannot be a delete on the channel

(Inv I.1.1). The assumption is that the mobile unit is not on the same channel. This covers

all possible message types that could precede the announcement on the channel, therefore

the announcement must be at the head of the channel. So, in this case, the progress prop-

erty A.2.1 which concerns the growth of the covered backbone becomes an ensures because



72

the announcement will remain at the head of the channel until processed, lengthening the

covered backbone, or the mobile unit will arrive at a node causing delivery. In either case,

the condition on right hand side becomes true.

In the second case, the mobile unit and announcement are on the same channel. By

Invariant I.1, the mobile unit precedes the announcement in this channel. We state a trivial

progress property that if the mobile unit is at the head of a channel, it is ensured to arrive

at the destination node:

mobile.at.head(m,n) ensures MobileAt(n) (A.2.1.1)

Because there is only one mobile unit, after the mobile unit is removed from the channel,

either the system is taken out of delivery by the mobile unit receiving the announcement,

or the system has been reduced to the first case where the mobile unit and announcement

are not on the same channel.

The previous discussion effectively shows property A.2.1, namely that the covered

backbone must grow until all nodes in the system are part of the covered backbone or

delivery has occurred. To complete the proof that delivery is guaranteed, we need to

show that when all nodes are part of the covered backbone, delivery must occur. By the

definitions of the covered backbone and backbone, when all nodes are part of the covered

backbone, the two are equivalent. The mobile unit must be on a channel because all

nodes have announcement copies and if the mobile unit is at a node, it must have received

the announcement copy (either when the mobile unit arrived or when the announcement

arrived). The destination of the channel the mobile unit is on must be part of the backbone

because all nodes are part of the backbone. If there is a delete in front of the mobile unit ,

it will not have any effect on the backbone (Inv I.1.1). There cannot be an acknowledgment

in the channel (Inv I.1.5). The announcement must be behind the mobile unit (Inv I.1.1).

Therefore, after the delete (if any) is processed, the mobile unit is at the head of the channel.

The MobileArrivesA(B) action will cause delivery. Therefore, announcement delivery is

guaranteed from the initial state of the system.

Backbone announcements cleaned up

Once the announcement has been delivered, we show that eventually all stored announce-

ment copies are removed. There are two cases to address: the announcements on nodes

on the backbone and those not on the backbone. In the next section, we will show how

all nodes which are not part of the backbone will be cleaned up, while this section focuses

on the cleanup of the backbone nodes. In particular, we wish to show that after the an-

nouncement has been delivered, eventually all announcement copies on the backbone will

be deleted.



73

postdelivery 7→ 〈∀m,β : backbone(β) ∧m ∈ β :: ¬AnnouncementAt(m)〉 (B)

We introduce a safety property describing the state of the backbone in postdelivery.

Namely, (a.) the backbone and covered backbone exist, (b.) there is an acknowledgment

in the channel heading toward the last node of the covered backbone, (c.) all nodes in the

backbone not in the covered backbone do not have announcement copies, (d.) there are no

announcement copies on any backbone channels or the backbone extension, and (e.) there

are no acknowledgments on the channels of the covered backbone. Intuitively, this invariant

shows that there is only one segment of the backbone with announcement copies and the

nodes on this segment are poised to receive an acknowledgment.

postdelivery⇒ 〈∃α, β : backbone(β) ∧ coveredBone(α) ∧ fα = last(α) ∧ fβ = last(β) ::

α ⊂ β ∧ ack ∈ Chan(Child(fα), fα)

∧ 〈∀m : m ∈ (β − α) :: ¬AnnouncementAt(m)〉

∧ 〈∀m,n : m,n ∈ β ∧m = Parent(n) :: ann /∈ Chan(m,n)〉〉

∧mob ∈ Chan(fβ ,Child(fβ))

⇒ ¬mobile.preceeds.ann(fβ ,Child(fβ))

∧ 〈∀m,n : m,n ∈ α ∧ n = Child(m) :: ¬ack ∈ Chan(n,m)〉 (I.2)

We now show the proof of this statement by showing that if it holds before the

execution of each statement, it must hold after the execution of the statement:

• MobileArrivesA(B): When the mobile unit arrives at a non-backbone node, the

backbone is extended to include this node. The channel just traversed will become

part of the backbone, but will not have an announcement on it by the last part of

this invariant. The covered backbone will not change. If there is an announcement at

this node, it will be removed so that there are still no announcement copies at nodes

other than the covered backbone.

If the mobile unit arrives at a backbone node that is not part of the covered backbone,

the covered backbone does not change. There are still no announcements at backbone

nodes other than the covered backbone, and because no new channels are added to the

backbone, there are no announcement copies on the channels of the covered backbone.

If the mobile unit arrives at a backbone node that is part of the covered backbone, the

covered backbone is shortened to be all nodes above this new location of the mobile

unit. Each of these nodes must have an announcement copy because they were part



74

of the covered backbone before the mobile unit arrived. Also, an acknowledgment is

generated in the channel heading toward the new covered backbone and this invariant

is established. As before, there are no new channels in the backbone, so there are still

no announcements on any backbone channels.

We must also consider the case where the postdelivery condition is established by the

arrival of the mobile unit. The components of this invariant are established because the

only announcement in the system was at the end of the covered backbone which must

be downstream from where the mobile unit arrived, so there are no announcements in

backbone channels. The remainder of the invariant is established in a manner similar

to the case where the system is in postdelivery and the mobile unit arrives at a covered

backbone node.

• AnnouncementArrivesA(B): If the system is in delivery, the arrival of the an-

nouncement could establish postdelivery. In this case, the components of this invari-

ant are established because all nodes above the mobile unit are part of the covered

backbone. The acknowledgment is put into the channel above the mobile unit, which

is the end of the covered backbone. The announcement copy at the node the mobile

unit is at is deleted.

If the system is in postdelivery and the announcement arrives, the announcement could

arrive at a backbone node only from a non-backbone channel and will be dropped.

Therefore, the invariant will not be affected because neither the backbone nodes nor

links are affected.

• SendMobileA(B): If the mobile unit leaves a node, the covered backbone does not

change. Also, the mobile unit is at the end of the channel, so any announcements in

the same channel must be before the mobile unit.

• DeleteArrivesA(B): The arrival of a delete at a backbone node will not affect the

backbone or the covered backbone. The arrival of a delete elsewhere in the system

will not affect this invariant.

• AckArrivesA(B): If an acknowledgment arrives at a covered backbone node, it must

be at the end of the covered backbone. Therefore, the processing of this acknowledg-

ment will shrink the covered backbone by one node and put the acknowledgment

farther up in the backbone. Alternately, the root could receive the acknowledgment

and there would no longer be a covered backbone.

If an acknowledgment arrives at a non-backbone node and is accepted, it will not be

put onto the backbone. If it is not accepted, nothing changes in the covered backbone

or backbone, therefore the invariant is maintained.



75

• AnnouncementStart: This statement has no effect during postdelivery. During

predelivery, this statement could establish this invariant by delivering the announce-

ment to a node at the root. In this case, the covered backbone does not exist, and

the invariant is true.

Our goal is to show progress in the cleanup of announcements on the covered back-

bone. To do this, we use a progress metric that measures the reduction in length of the

covered backbone. Because the only nodes on the backbone with announcement copies must

be on the covered backbone by Invariant I.2, once the covered backbone has length zero,

all announcements on the backbone have been deleted.

postdelivery ∧ coveredBone(α) ∧ |α| = k ≥ 1 7→ |α| < k (B.1)

To prove this statement, we note that by the previous invariants, it has been estab-

lished that there is an acknowledgment in the channel heading toward the covered backbone.

If the acknowledgment is not at the head of the channel, then there must be something else

in front of it. There cannot be a delete on the channel, because that would mean there is

a delete on the backbone which is not allowed by invariant I.1.1. An announcement would

have no effect because it is not arriving on a parent link. If the mobile unit were on the

channel, then the arrival of the mobile unit would cause delivery because the announcement

must be at the last node of the covered backbone, and the covered backbone would change.

So, either the mobile unit will arrive from the same channel as the acknowledgment

or on another channel and will cause the covered backbone to shrink, or the acknowledgment

will be processed and cause the covered backbone to shrink. Since there are only a finite

number of messages in the channel in front of the acknowledgment, these will be processed

and eventually either the acknowledgment will reach the head of the channel or the covered

backbone will shrink in another way (through the arrival of the mobile unit at a covered

backbone node).

When the covered backbone shrinks to zero length, there will be no more announce-

ment copies on any backbone nodes, accomplishing backbone cleanup.

Tail Cleanup

In addition to backbone cleanup, we must also ensure that any announcement copies not

on the backbone will eventually be deleted. More precisely, any node which is on a tail will

eventually be cleared or put on the backbone (C), where clear(n) indicates that n’s parent

and child pointers are null (which will be shown to imply the announcement is no longer

stored there). Since a node can only accept an announcement from a parent, this implies

that only nodes with non-null parent pointers could have announcement copies. Since a



76

node can only clear its pointers at the same time as it clears its storage, there is no way for

a node (other than the root) to have a copy of the announcement and non-null pointers.

We cannot guarantee that the mobile unit will eventually arrive at the node thereby

adding that node to the backbone, we must prove that there is a delete message that will

eventually arrive at the node if it remains on the tail. We show that every tail has a delete

message on the channel heading toward the first node of the tail (I.3), where the first node

of the tail is defined to be the node whose parent pointer points toward a node that does

not point toward it as the child. This delete message will eventually be processed, shrinking

the length of the tail (C.1). When the tail contains only node, the tail is guaranteed to be

cleared (C.2).

tail(τ, n) 7→ clear(n) ∨ 〈∃β : backbone(β) :: n ∈ β〉 (C)

〈∃τ : tail(τ, n) ∧ (n 6= first(τ)) ∧ (|τ | = k) ∧ (|τ | > 1)〉

7→ 〈∃τ : tail(τ, n) ∧ |τ | < k〉 ∨ 〈∃β : backbone(β) :: n ∈ β〉
(C.1)

〈∃τ : tail(τ, n) ∧ |τ | = 1〉 ensures clear(n) ∨ 〈∃β : backbone(β) :: n ∈ β〉 (C.2)

To show that the tail can shrink, we must guarantee the existence of the delete

message at the end of the tail. We do this by assuming the invariant before each statement

execution and showing it holds after statement execution.

〈∀n, τ : tail(τ, n) ∧ n = first(τ) :: del ∈ Chan(Parent(n), n)〉 (I.3)

• MobileArrivesA(B): If the mobile unit arrives at a backbone node, one or zero tails

are created. If no tails are created, the invariant trivially holds. If a tail is created, it

consists of the nodes that are removed from the backbone. These nodes by definition

point toward one another as parent and child, making them a tail. No other tails

are affected. The new tail by definition has a first node. The first node of the new

tail is the node formerly pointed to as the child of the node where the mobile unit is

currently at. A delete is put onto this channel, establishing this invariant.

If the mobile unit arrives at a node that is not on the backbone and not on a tail, no

new tails are created, no deletes are sent, and no old tails are affected.

If the mobile unit arrives at a tail node, the tail is cut into two segments around the

mobile unit. The nodes above the mobile unit are not affected because the first node

of the tail is still the same and the delete is not affected. The nodes below the mobile

unit are similar to the first case, and the delete generated down the old child pointer

establishes the invariant.



77

• DeleteArrivesA(B): If a delete arrives at any node on a link other than from the

parent, this delete could not be critical to any tail, and therefore dropping it has no

effect on the invariant.

If a delete arrives at the first node of a tail along the parent link, the delete is propa-

gated to the new first node of the tail and a node is removed from the tail.

• AnnouncementArrivesA(B): SendMobileA(B): AckArrivesA(B):

AnnouncementStart do not affect the invariant

With this invariant, it is clear that when the delete is processed, a node is removed

from the tail, and the tail shrinks (property C.1). If the delete is not at the head of the

channel, the messages ahead of it must be processed. Neither an acknowledgment nor

an announcement will affect progress. If a mobile unit arrives, the node is added to the

backbone, satisfying the progress condition.

Finally, we formally define clear (D.7), then show that if a node is clear, it has no

announcement copies (I.3.1):

clear(n) ≡ Parent(n) = Child(n) = null (D.7)

clear(n)⇒ ¬AnnouncementAt(n) (I.3.1)

This invariant is easily shown over every statement. Intuitively, when a node sets both its

parent and child pointers to null, as in DeleteArrivesA(B), the announcement copies

at the node are deleted. Since it is not possible to set the child and parent pointers to null

any other way, and an announcement is only accepted from a non-null parent link, there

cannot be an announcement at a node that has both null pointers.

Therefore, once a node is either clear or put back on the backbone, it will not have

an announcement copy. As the tails shrink, we are guaranteed that the announcements not

on the backbone will be removed from the system.

6.3 Discussion

We have described two algorithms to guarantee the delivery of an announcement to a mobile

unit with no assumptions regarding the speed of movement. In this section, we compare our

approach with other tracking based delivery schemes designed for the mobile environment

including Mobile IP, a scheme by Sony, another by Sanders et. al., and finally a multicast

scheme by Badrinath et. al.

Each of these algorithms uses the notion of a home node toward which the an-

nouncement is initially sent. In Mobile IP [65], the home node tracks as closely as possible

the current location of the mobile unit and all data is sent from the home directly to this



78

location. This information is updated each time the mobile unit moves, introducing a dis-

crepancy between the actual location and the stored location during movement. Any data

sent to the mobile unit during this update will be dropped. Mobile IP has no mechanism to

recover this data, but rather assumes that higher layer protocols such as TCP will handle

buffering and retransmitting lost data. One proposal within Mobile IP is to allow the pre-

vious location of the mobile unit to cache the new location and forward data rather than

dropping it. While this can reduce the number of dropped announcements, it still does not

guarantee delivery as the mobile unit can continue to move, always one step ahead of the

forwarded announcement.

One proposal is to increase the amount of correct location information in the system

by distributing this information to multiple routers, as in our tree and backbone mainte-

nance algorithms. The Sony [59] approach keeps the home node as up to date as possible,

but also makes the other system routers active components, caching mobile unit locations.

As the packet is forwarded, each router uses its own information to determine the next hop

for the packet. During movement and updating of routing information, the routers closer to

the mobile unit will have more up to date information, and fewer packets will be lost than in

the Mobile IP approach. This approach still does not provide delivery guarantees, and few

details are given concerning updates to router caches. One benefit is that announcements

need not be sent all the way to the home node before being forwarded toward the mobile

unit. Instead any intermediate router caching a location for the mobile unit can reroute the

packet toward the mobile unit.

The Sanders approach [78] has this same advantage, allowing intermediate routers

to forward the announcement. Sanders describes precisely how intermediate routers are

updated. A hop by hop path is kept from the home node to the last known location of

the mobile unit. When the mobile unit moves, the path is shortened one node at a time

until the common node between the shortest path to the old location and the shortest

path to the new location is reached, then the path is extended one node at a time. Any

announcements encountering the hop by hop path are forwarded toward the last node of

this path. During the updating of this path, announcements move with the update message

which are changing the path and will eventually reach the next known location of the mobile

unit. However, the mobile unit may have moved during the update, in which case, the data

messages will continue to travel with the next update message. Although no messages are

dropped, the slow update time and ability of the mobile unit to keep moving could prevent

delivery.

In each of these approaches, a single copy of the announcement is kept in the system,

while our approach stores multiple copies throughout the system until delivery is complete.

We believe that sacrificing this storage for the limited times that our algorithms require

is worthwhile to provide guaranteed delivery of the announcement. If we weaken these



79

requirements, our approaches can be modified to reduce storage. In the first algorithm, the

announcement can be sent down the spanning tree in a wave. When the announcement

arrives at a node, if the mobile unit is present, it is delivered, otherwise it is sent on all

outgoing spanning tree channels. Although multiple copies are generated, they will not

be stored, but simply passed to the next hop. When the announcement reaches a leaf

node it will be dropped. If the mobile unit remains in a region of the graph below the

announcement propagation, it will receive the message, however if it is in transit or moves

to a region above the message propagation, the announcement will not be delivered. In our

second approach, a single announcement copy can be sent down the backbone path. Even

if the announcement ends up on a tail, it will continue toward the mobile unit. Because

the path we define to the mobile unit is based on movement pattern rather than shortest

path as in the Sanders algorithm, there is only one pathological movement pattern (a figure

eight crossing the backbone) where the mobile unit can continue to avoid delivery.

Another approach which keeps multiple announcement copies is Badrinath’s guar-

anteed multicast algorithm [5] which stores announcement copies at all system nodes until

all mobile units in the multicast group have received the announcement. This informa-

tion is gathered by the announcement initiator from the nodes that actually delivered the

announcement. A disadvantage of this algorithm is that all recipients must be known in

advance, a property not always known in multicast. Our first algorithm can trivially be

extended to track the movement of multiple mobile units, and because it is based on the ac-

tual movement of the mobile units can reduce the number of nodes involved in the multicast

delivery with respect to the Badrinath approach.

6.4 Concluding Remarks

The primary contribution of this chapter is its application of the algorithm design strategy

of Chapter 3 using the Dijkstra-Scholten diffusing computations to develop two algorithms

for message delivery to mobile units. The first is a direct derivative of the diffusing compu-

tations distributed algorithm, and the second is an optimizing refinement of the first based

on careful study of the problem and the solution. Each algorithm is applicable in a variety

of settings where mobile computing components are used and reliable communication is

essential.



80

Chapter 7

Global Virtual Data Structures:

A design strategy for the

development of ad hoc mobility

abstractions

The previous chapters show how the development of abstractions in nomadic and logical

mobile computing can simplify programming in these environments by taking care of many

of the complexities of the environment on behalf of the programmer. The ad hoc com-

puting environment is another complex domain which can benefit from the development of

abstractions to simplify the programming task.

Ad hoc mobility distinguishes itself from base station mobility by completely remov-

ing the fixed infrastructure, leaving only direct communication among hosts. In a wireless

ad hoc network, the distance between components determines connectivity. As compo-

nents move, the system is continuously reshaped into multiple partitions, with connectivity

available within each partition but not across partitions.

Freeing mobile users from a fixed infrastructure makes the ad hoc network model

ideal for many scenarios such as systems of small components with limited resources to

spend on communication, situations in which the infrastructure has been destroyed such

as following a natural disaster, and for settings in which establishing an infrastructure is

impossible as in a battlefield environment or economically impractical as in a short duration

meeting or conference.

The application needs in these scenarios can be classified broadly by how they in-

teract with their changing environment, or context. The context of a mobile unit consists

of two primary components: system configuration and data. System configuration context



81

describes the knowledge about which mobile units are connected and possibly topology in-

formation concerning physical location in space or logical connectivity. This knowledge is

limited to the current partition of the network in which the mobile unit finds itself. We refer

to this as the current transient community. Because communication cannot extend beyond

the community, knowledge of configuration beyond the boundaries of the community is not

possible. Data context refers to the more passive data elements and resources which are

carried by the mobile components.

This view of context fosters two distinct programming styles: context aware pro-

gramming and context transparent programming. Context aware applications are those

which access both the system configuration context and the data context explicitly. For

example, a context aware application may store a piece of new data on a specific mobile

host, or retrieve a piece of data from a named mobile host. All operations must be carried

out within the current connectivity context, but this style is distinguished by the needs

of the application to be aware of the current context. In contrast, context transparent

applications can be developed without explicit knowledge of the current context. Data ac-

cess is performed on the data in the current context without regard to where it is located.

Such applications do not need to be aware of the details of the configuration changes, but

simply aware that they are occurring and that these changes affect the available resources.

Many applications require a combination of both context aware and context transparent

programming.

Our goal is to enable the rapid and dependable development of both styles of ap-

plication programs for the ad hoc mobile environment. Fundamentally our approach is to

design abstractions tailored to the ad hoc environment which hide many of the unnecessary

details, but give the programmer sufficient power to tailor the abstraction to their specific

needs. This involves providing both context aware and context dependent operations within

the same abstraction. At the same time, implementations of these abstractions must be

responsive to the technical challenges of the environment.

Section 7.1 presents a general model for ad hoc mobility abstractions we call global

virtual data structures. Section 7.2 discusses some of the technical challenges of the envi-

ronment and how global virtual data structures are affected by each. Finally, Section 7.3

poses several possible data structures, including one in particular which serves as a case

study for the remainder of this thesis.

7.1 Global Virtual Data Structures

Our approach to abstractions to simplify the programming task comes from a study of

coordination models for distributed computing which separate the computation, or the

task-specific programming, from the communication, or the interaction among processes.



82

�������
�������
�������
�������
�������

�������
�������
�������
�������
��������������

�������
�������
�������
�������

�������
�������
�������
�������
�������

��������������������������������������������������������

��������������������������������������������������������

�������
�������
�������
�������

�������
�������
�������
�������

ca
b d

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


��������������������������������������������������������

��������������������������������������������������������

����
����
����
����

���������
���������
���������
���������

���������
���������
���������
���������

�������
�������
�������
�������

c
db

a

(a) (b)

Figure 7.1: Transforming a matrix into a global virtual data structure by distributing it
among mobile units.

Distributed coordination models also consider the need to take local decisions while still

conceptualizing the effect of these actions on the global scale. Thus, our driving design

strategy can be summarized by the desire to coordinate ad hoc mobile applications by

thinking globally but acting locally.

One common coordination mechanism in distributed systems is shared memory, or

more structured shared data structures. Through this, the complexity of large systems

is managed by accessing a single, global data structure. An implementation may be dis-

tributed, but the user is not aware of this. The concept of shared memory is appealing in

the mobile environment, which is itself a distributed system, however disconnections and

the resulting inaccessibility of data make a direct application of shared memory to mobile

systems impossible.

By applying our design strategy to shared memory data structures the global data

structure emerges as the concept we wish to conceive of globally, but connectivity does not

allow this. The first step toward a mobility-viable global data structure is to make explicit

the distribution of data across the mobile components, or mobile hosts. For example,

Figure 7.1(a) shows how a large matrix can be evenly divided among four hosts. While all

mobile components are within communication range, the entire structure remains accessible

to all processes.

When mobile components move and connectivity changes, the available portions of

the data change to reflect only reachable data. In Figure 7.1(b) mobile components a and b

are each isolated from all other components, restricting access only to their local partitions

of the matrix. However, components c and d remain connected to one another and have

access to the combination of c’s and d’s data.

The global matrix data structure of Figure 7.1(a) can be visualized at any time from

outside the system by ignoring connectivity constraints and combining the data from all

mobile components. This is, however, only a virtual data structure because it cannot be



83

created in reality. Despite this it remains a powerful concept to the programmer to view

how local changes affect the entire system.

We have discussed how connectivity limits the availability of data, but we must also

consider how the operations which access the data structure change in response to this

accessibility constraint. Some operations must clearly be restricted if full connectivity is

not available. In the matrix example, computations such as matrix inversion require the

entire matrix and must be restricted. Many operations, however, require no changes and

can simply be evaluated over the current projection of the global virtual data structure.

These operations play an important role in implementing context-transparent applications

as they do not require the programmer to be aware of the details of the environment, but

simply aware that it is changing. Finally some operations can be extended to explicitly

address the distribution of data over the hosts. Consider an alternate division of the matrix

example that distributes data based on some aspect of the data other than its location in the

matrix. In this case, it may be meaningful to query the part of the distributed data located

at a specific agent. These operations are likely to play a role in context-aware applications.

For any global virtual data structure to be successful, its development cycle must

include not only the model definition, but also formal specification and implementation

to inform the model. The informal model presents the underlying data structure, how it

changes with respect to connectivity, what the primitives are, and how they are affected and

extended. Most importantly, the informal model also describes the abstraction provided to

the programmer and a way of thinking to effectively develop applications on top of the

model. Next, formal semantics force clear definitions of all model concepts and how they

are affected by mobility before beginning an implementation. The formal specification also

enables user applications to be formally specified and reasoned about, lending dependability

to the resulting system. Finally, the data structures must be implemented and applications

built. One mechanism to deliver the data structures is via a middleware which sits between

the application and the operating system, providing the abstractions defined by the model

and formal specification.

The key to development from these three key perspectives is to allow each step to

inform the others in an iterative fashion. By considering the needs of the applications, the

primitives of the model can be defined and extended to meet the demands of the application

programmer. A formal specification can reveal key parts in the model where restrictions

must be made to keep the operations computable in the presence of disconnections. The

formal specification also informs the implementation, showing where the complexity is in-

volved in the interactions of concurrent programs. A proper implementation must adhere

to the formal specification. The process of implementing may reveal atomicity assumptions

of the model which are either impossible or impractical to implement. This can lead to an

expansion of the model to include more elements of the environment, or to a weakening of



84

the model constructs to make them more practical. Complementary changes must also be

made to the formal specification.

7.2 Technical Challenges

While designing abstractions for the ad hoc mobile environment is difficult, the technical

challenges make implementation of the abstractions similarly challenging. In this section

we address the potentially open environment, unintentional disconnections, heterogeneous

components, and network level issues, and how each of these affect the implementation of

global virtual data structures.

By nature, ad hoc networks consist of transiently connected mobile components.

While it is possible that all components can be known in advance, it is more likely that

components must discover one another on the fly. This is similar to neighbor discovery

at the network level. The primary difference is that in ad hoc networks, propagating this

information up to the programmer is essential to allow context aware programming, and

thus must be available as part of the data structure abstraction.

Another challenge with respect to disconnection is intentionality. When a user in-

tentionally disconnects from the network for any reason, it is possible to use this advance

knowledge to put the system into a consistent state before the actual disconnection occurs.

We term this announced disconnection, because a user announces an intent to disconnect,

and then waits for acknowledgment before actually disconnecting. However, in a real net-

work, unintentional, or unannounced disconnection must be accounted for. For example,

when a user suddenly moves into a region where the radio transmission is lost, not only is

the user isolated from the rest of the network, but the status of any ongoing transmissions

is unknown. Neither the party that was disconnected, nor those it was disconnected from

know the status of the messages that were in transit. The problem is identical to that of

distributed consensus. In practice, the impossibility of distributed consensus is addressed

by using protocols such as two-phase commit, however these protocols rely on the fault

model that a dropped link will eventually be restored and any inconsistent state can be

reconciled at that time. In the model of ad hoc networks, this is not the case because a

mobile component can disconnect permanently or for a long period, leaving an inconsistent,

irreconcilable state. In the presence of unannounced disconnections, the consistency of a

global virtual data structure cannot be guaranteed. Therefore we must consider weaker

consistency models which can be tailored to application needs.

Another characteristic emphasized in the ad hoc environment is the heterogeneity

of components. Wireless networks can consist of small components with extremely limited

functionally such as wireless sensors. The same network may also need to support hand held

devices and full functionality laptop computers. Not only do processing and storage vary



85

across devices, but also reliability and range of communication. Thus a key characteristic

of any global virtual data structure implementation is to address the integration of this

variety of computing elements in a single abstraction. This necessitates a modular design

with components tailored to specific platforms. Possible changes may be needed at the

model level to provide appropriate restrictions on some components.

Finally, many network-level issues must be addressed, such as expensive and un-

reliable communication links. One common strategy employed by base station networks

to work around these concerns is to push the burden of computation and communication

onto the fixed network. This is not possible in an ad hoc network where no such infras-

tructure exists. Therefore, new, lightweight protocols and models that enable coordination

with limited communication must be developed. To aid in this, many cases can exploit the

natural broadcast nature of ratio communication to reach multiple hosts while expending

less energy than multiple point to point communications.

7.3 Sample Global Virtual Data Structures

Many standard distributed data structures have the potential to be converted into global

virtual data structures. For each structure, the fundamental issues to address as part of

the evaluation and development processes are similar: Does the data structure match the

basic needs of the underlying application? Is there a natural and useful partitioning of the

data structure across units in an ad hoc network? How is the data structure perceived by

the individual units as changes in connectivity occur?

A tree, as in Figure 7.2, could be partitioned among units with the nodes where a

cut occurs being replicated. A global naming convention would allow communicating units

to determine the relation between the tree fragments they carry and make content and

structural changes (e.g., swapping subtrees) as long as no disconnected units are affected.

In principle, certain operations (e.g., adding a leaf node) could be issued at any time with

their evaluation being delayed until such time that the affected units are within range.

Attempts to access nodes on disconnected units may result in blocking the respective agent.

The generalization to a directed graph is straightforward and can overcome the problems

caused by the possible loss of one of the units.

Other data structures may be devised to meet the needs of highly specialized appli-

cations. For instance, resource-limited units searching a physical space may appear logically

as ants crawling on a fixed network of passageways (Figure 7.3). Each unit’s knowledge

of the surrounding geography is enhanced by the knowledge of all the other units within

range. As the density of units decreases, each unit must maintain more and more informa-

tion. Finally, at a point when the unit’s memory is full, information needs to be dropped,

e.g., only the main passageways are kept. In an application involving the construction of



86

unit2unit1

Figure 7.2: A hierarchical data structure where units in range agree to transfer a subtree
which is under their jurisdiction even though parts of the global structure remain hidden.
Moving a subtree distributes data to a different location to satisfy changing access patterns.

Ant 1 Ant 2

A

Figure 7.3: Ant 1 learns from Ant 2 about landmark A when, by virtue of being in range,
the locally built maps are merged. Solid lines denote paths explored by Ants 1 and 2, and
dashed lines denote unexplored regions. After sharing, each ant has the same knowledge of
the global structure.

distributed predictive models of the changes taking place in a physical environment it is

conceivable to have the units tied together by a complex structure that combines informa-

tion about space and time. Each unit may be exploring and collecting data in the present

while simulating the future in order to build a predictive model. As units meet they may

exchange information about the present but also about various points in the future since

some units may be further ahead than others in their simulation.

In the field of parallel programming, tuple space communication à la Linda provides

a good example of how coordination can simplify the programming task. Tuple space coordi-

nation facilitates temporal and spatial decoupling among parallel programs. By limiting the

power of the tuple space access primitives, efficient implementation is achieved as well. The

programmer is presented with the appearance of a persistent global data structure which

can be readily understood and operated on: a set of tuples accessed by content. Applying

the concept of global virtual data structures to Linda yields a model which distributes the



87

fracture due
to disconnection

wireless

mobile

communication
barrior

link host
tuple spaces
combined into
one federated
tuple space

unit

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 7.4: Creating the illusion of a globally shared tuple space.

global tuple space among the mobile units and limits access to the confines of each ad hoc

network. For a programmer, mobility is perceived simply as an independently evolving

host tuple space, i.e., a continuously changing context. When the mobile components are

co-located, the tuple spaces are transiently shared and all tuple space accesses, including

pattern matching for reading and removing data, are done on the now shared data space

(see Figure 7.4). Additional primitives with extensions for location are straightforward to

access specific tuple spaces, however the presence of the specified tuple space is dependent

on connectivity. This data structure has been explored in detail and has resulted in the

Lime model, Linda in a Mobile Environment. In Chapters 8 to 11, the details of Lime are

presented. Lime serves as a proof of concept for the construction of global virtual data

structures.

7.4 Concluding Remarks

Ad hoc networks represent a complex technology which pose many challenges to application

development. By completely removing the traditional wired network, many assumptions

about the community of distributed components are fundamentally changed. In this chap-

ter, we have set forth the goal of developing a programming environment for the rapid

development of dependable applications in the ad hoc mobile environment. We present the

general concept of global virtual data structures which can be used to guide the development

of a variety of abstractions for mobility based on the shared memory concept from standard

distributed computing. The core idea is to move standard distributed data structures to

mobility by redefining the accessibility of and operations over data with respect to con-

nectivity. The development path of global virtual data structure should integrate model



88

development, formal specification, and implementation. In the remainder of this thesis, we

present the Lime system, showing how the Linda tuple space model has been extended into

the mobile environment. This serves as a positive proof of concept of the global virtual data

structure approach to abstractions for ad hoc mobile computing.



89

Chapter 8

Lime: Linda Meets Mobility

In this chapter we present the informal model for a system called Lime (Linda in a Mobile

environment) which is designed by with the concept of global virtual data structures. The

underlying assumption is that both physically mobile hosts and logically mobile agents can

be regarded as instances of a generic concept of mobile component, and coordination takes

place through the use of transiently shared tuple spaces accessed via the basic set of Linda

primitives [30].

In Linda, coordination is achieved through a tuple space globally shared among

components which, independent of their actual location, can access the tuple space by

inserting, reading, or withdrawing tuples containing information. The model provides both

spatial and temporal decoupling. The components do not need to co-exist in time for in

order to communicate and can reside anywhere in the distributed system. Since decoupling

is intrinsic to mobility, the Linda model is a natural choice for our system.

Lime retains the basic philosophy and goals of Linda while adapting them to mobil-

ity. Simple and rapid application development is facilitated by the same mechanisms which

made parallel programming in Linda attractive to implementors. Programs (written in a

variety of languages) view the world as a sea of tuples accessible by contents. Movement,

logical or physical, results in implicit changes of the tuple space accessible to the individ-

ual components. The system, not the application program, is responsible for managing

movement and the tuple space restructuring associated with connectivity changes.

The remainder of this chapter is organized as follows: Section 8.1 provides a brief

review of Linda. Section 8.2 motivates Lime and its design philosophy. Sections 8.3, 8.4,

and 8.5 present a set of coordination primitives supporting transiently shared tuple spaces,

location-aware computing, and reactive programming—the fundamental concepts underly-

ing Lime.



90

8.1 Linda

Linda has been proposed at the beginning of the past decade [30] as a new model of com-

munication among concurrent processes. The fundamental abstraction provided to each

process is a shared tuple space that acts as a repository of elementary data structures—the

tuples. Each tuple is a list of typed parameters, such as 〈“foo”, 9, 27.5〉, that contain the

actual information being communicated. A tuple space is a multiset of tuples that can be

accessed concurrently by several processes.

Tuples are added to a tuple space by performing an out(t) operation on it. After

its execution, the tuple t is available to any subsequent operation on the tuple space. The

update of the tuple space is performed atomically. Tuples can be removed from a tuple

space by executing in(p). Tuples are anonymous, thus their removal takes place through

pattern matching on the tuple contents. The argument p is often called a template, and its

fields contain either actuals or formals. Actuals are values; the parameters of the previous

tuple are all actuals, while the last two parameters of 〈“foo”, ?integer, ?long〉 are formals.

Formals are like “wild cards”, and are matched against actuals when selecting a tuple from

the tuple space. For instance, the template above matches the tuple defined earlier. (Tuples

can contain formals as well.) The matched tuple and the template must have the same arity.

If multiple tuples match a template, the one returned by in is selected non-deterministically

and without being subject to any fairness constraint. The in operation is blocking, i.e., if

no matching tuple is available in the tuple space the process performing the in is suspended

until a matching tuple becomes available. Tuples can also be read from the tuple space

using the rd operation. The execution of a rd(p) proceeds identically to in, except for the

fact that the tuple matched and delivered to the process that executes the operation is

copied rather than withdrawn from the tuple space. Similarly to the in operation, rd is

blocking. Linda implementations typically include also an eval operation which provides

dynamic process creation and enables deferred evaluation of tuple fields. For our purposes,

we use hereafter only out, in, and rd.

Communication in Linda is decoupled in time and space. Decoupling in time refers to

the fact that senders and receivers do not need to be in communication in order to exchange

information. Tuples are stored in the tuple space and can be retrieved later, even if the

process that produced the tuple terminated its execution already. Decoupling in space refers

to the fact that a tuple in the tuple space is available to processes dispersed on the nodes of

a distributed system—the actual location of a tuple is hidden from the tuple producer and

consumer. Decoupling is appealing, as it separates clearly the behavior of the individual

processes from the communication needed to coordinate their actions. The idea enjoys wide

acceptance in many scientific communities ranging from economics to artificial intelligence,

and is at the core of a new interdisciplinary research area that investigates technologies and

methodologies for the coordination of components in complex systems [43, 29]. Notably,



91

the decoupling between components and their coordination fostered by Linda has several

points of contact with the distinction between components and their interconnection that

constitutes the core of recent research on software architecture [81]. We chose the Linda

model as the basis for this work due to its minimality and decoupling in time and space.

8.2 Linda Extensions for a Mobile Environment

Linda provides coordination among concurrently executing components accessing a shared

tuple space that is persistent, globally accessible, and statically created. Maintaining these

properties in the presence of physical mobility is complicated, because connectivity can no

longer be taken for granted. Early research on fault-tolerant distributed implementations of

Linda [88] tackled the problem under the assumption that disconnection was just an unfor-

tunate accident, and employed replication schemes to increase tuple availability. However,

in physical mobility disconnection is often forced explicitly by the user, e.g., to save battery

power during movement or to reduce communication costs over expensive cellular phone

lines. To make matters worse, mobile hosts (and mobile agents) are completely indepen-

dent and controlled by users occasionally forming transient communities; thus, they may

come in contact once and never again. This makes unreasonable any assumptions about

eventual delivery of data. Finally, logical mobility complicates the implementation of a dis-

tributed tuple space even in the absence of any physical mobility. For instance, replication

schemes that rely on the locality of processes may no longer be applicable, because processes

can move freely around the network. The idea of a static, persistent, and globally visible

tuple space is then unreasonable. Mobility demands weaker constraints on the tuple space

and dynamic reconfiguration of its contents.

In the model underlying Lime, mobile agents are programs that can travel among

mobile hosts. They are “active” components of the system. Mobile hosts are roaming

containers for agents, to which they provide connectivity. The Linda model is adapted

by Lime through the notion of a transiently shared tuple space that ties together physical

and logical mobility. Tuple spaces are permanently bound to mobile agents and mobile

hosts. Transient sharing enables dynamic reconfiguration of their contents according to

agent migration or connectivity variations. At a high level of abstraction, mobile agents

interacting in the logical space provided by a single host are akin to mobile hosts interacting

in the physical space spanned by communication links. Hence, transiently shared tuple

spaces and the associated access primitives provide a single coordination toolkit for both

scenarios. In practice, however, distribution and mobility do complicate implementability.

As a result a more constrained use of the Lime primitives is allowed when physical mobility

is present.



92

Transiently Shared Tuple Space

Mobile Agents

ITS ITSITS

Figure 8.1: Transiently shared tuple spaces in Lime.

8.3 Transiently Shared Tuple Spaces

The fundamental abstraction provided by Lime is the notion of a transiently shared tuple

space. As summarized in Figure 8.1, in Lime each mobile agent has access to an interface

tuple space (its) that is permanently associated with that agent and transferred along

with it when movement occurs. Each its contains information that the mobile agent is

willing to share with others, and is accessed using the conventional Linda operations in,

rd, and out described in Section 8.1, whose semantics are unaffected. On the other hand,

the actual content of the its is determined differently from Linda. The set of tuples that

can be accessed through the its is dynamically recomputed in such a way that, for each

mobile agent, the content of its its gives the appearance of having been merged with those

of the other mobile agents which are currently co-located. This way, each mobile agent

“sees” through its own its the same transiently shared tuple space presented to the others.

Operations performed on the its are effectively performed on the contents of the transiently

shared tuple space; e.g., if agents A and B are co-located and A performs an out(t) on its

its, after the tuple t is inserted in A’s its it is available for retrieval with an in(t) by agent

B.

The tuple space that can be accessed through the its of an agent is shared by

construction and is transient because its content changes according to the migration of

agents. The action of making the contents of an its accessible to other agents through the

transiently shared tuple space takes place in reaction to changes in the set of co-located

agents. Upon arrival of a new mobile agent, the transiently shared tuple space is recomputed

by taking into account the its of the new agent. The result is made accessible to all the

agents currently co-located. This sequence of operations is called engagement of the tuple

spaces, and is performed as a single atomic transaction. Similar considerations hold for the

departure of a mobile agent, resulting in the disengagement of the corresponding its. Its

content is removed atomically from the transiently shared tuple space according to rules

that are discussed later.



93

Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Figure 8.2: Transiently shared tuple spaces to handle physical and logical mobility.

In Lime, agents may have multiple itss, and also private tuple spaces, i.e., not

subject to sharing. Tuple spaces are named; the name effectively defines a notion of typing

for the tuple space and, in the case of itss, determines the sharing rule. If an agent has

multiple itss, these are shared independently with the corresponding itss of other co-

located agents, if any. In other words, if agent A owns the itss named S, T , and U , while

agent B owns the itss named T , U , and V , only T and U will become transiently shared

between A and B. For instance, this enables an agent to exchange information with a

service broker about the available CD resellers by transiently sharing the corresponding

its, and then subsequently share information about a given title and the payment options

with the reseller selected through a different its, thus keeping separate the information

concerned with different tasks and different roles. By construction, all agents are bound to

a LimeSystem its whose tuples can be read but not withdrawn. This its contains system

information concerning the agent, e.g., its identifier, as well as information concerned with

the host, e.g., quality of service information. Transient sharing of LimeSystem enables co-

located agents to access global system information. We will detail the role of this tuple

space later on. To identify the tuple space on which a given operation is performed, we use

the dot notation, e.g., T.out(t). However, in this chapter we will focus on agents with a

single its, unless otherwise specified, and drop the name of the tuple space.

So far, the discussion has been focused on mobile agents. However, Lime applies

the notion of transiently shared tuple space to a generic mobile component regardless of

its nature—physical or logical. This relies on an extended notion of connectivity that en-

compasses both kinds of components. Mobile hosts are connected if a communication link

connecting them is available. Availability may depend on a variety of factors, including

quality of service, security considerations, or connection cost; in principle, all of these can

be represented in Lime. However, in this chapter we limit ourselves to a simple notion of

availability based on the presence of a functioning link. Because we assume bidirectional



94

links and the presence of routing capabilities in the physical network, our notion of connec-

tivity is commutative and transitive. Mobile agents are connected if they are co-located on

the same host or they reside on hosts that are connected. Changes in connectivity among

hosts depend only on changes in the physical communication link. Connectivity among

mobile agents may depend also on arrival and departure of agents with creation and termi-

nation of mobile agents being regarded as a special case of connection and disconnection,

respectively. Finally, we assume that both mobile agents and mobile hosts are given globally

unique identifiers. Figure 8.2 depicts the model adopted by Lime.

The content of the its of each mobile agent is determined by the presence of con-

nectivity, in the aforementioned extended meaning. By definition, agents co-located on the

same host are connected, and this creates a host-level tuple space that is transiently shared

among all such agents and accessible through each agent’s its. As evident in Figure 8.2,

the host-level tuple space can be regarded as the its of a mobile host, as it is permanently

associated with it; if no mobile agents are currently hosted, the host-level tuple space is

empty. Next, the mechanism of transient sharing is applied to the host-level tuple spaces.

Hosts that are connected merge their host-level tuple spaces into a federated tuple space

whose content is transiently shared across the network. A tuple in the its of an agent can

be either local and thus belonging to the local host-level tuple space, or remote and thus

belonging to the host-level tuple space of a mobile host that is currently accessible.

The notion of transiently shared tuple space is a natural adaptation of the Linda

tuple space to a mobile environment. When physical mobility is involved, there is no place to

store a persistent tuple space. Connection among machines comes and goes and the tuple

space must be partitioned in some way. In the scenario of logical mobility, maintaining

locality of tuples with respect to the agent they belong to may be complicated. Lime

enforces an a priori partitioning of the tuple space in subspaces that get transiently shared

according to precise rules, providing a tuple space abstraction that depends on connectivity.

In a sense, Lime takes the notion of decoupling proposed by Linda further, by effectively

decoupling the mobile components from the global tuple space used for coordination.

In this model physical and logical mobility are separated in two different tiers of

abstraction. It is worth noting, however, that many applications do not need both forms of

mobility, and straightforward adaptations of the model are possible. For instance, applica-

tions that do not exploit mobile agents but run on a mobile host can employ one or more

stationary agents, i.e., programs that do not contain migration operations. In this case,

the design of the application can be modeled in terms of mobile hosts whose its is a fixed

host-level tuple space. Applications that do not exploit physical mobility—and do not need

a federated tuple space spanning different hosts—can exploit a host-level tuple space as a

local communication mechanism among co-located agents.



95

t

out(t)

t

A

Mobile Agents

Transiently Shared Tuple Space

ITS ITS

BB

1.

2.

3.

Mobile Agents

Persistent Tuple Space

A

in(t)in(t)

t

B

B

t

A A

B

B

out(t)

t

Figure 8.3: Persistent vs. transiently shared tuple spaces.

8.4 Location-Aware Computing

The transient nature of the Lime shared tuple space poses some additional challenges, as

illustrated in Figure 8.3. Let us consider a simple system composed of two mobile agents,

A and B. A is initially co-located with B; before departing, A leaves some information

that is intended to be eventually processed by B. This simple scenario, depicted in the left

hand side of Figure 8.3, is represented straightforwardly in Linda. A performs out(t) and

deposits in the tuple space the tuple t containing the information to be communicated to

B (step 1). Thanks to the persistence and global availability of the tuple space, the tuple

t remains in the tuple space even after A departs (step 2), thus it is still available when B

eventually tries to withdraw it by performing in(t) (step 3). The situation with transiently

shared tuple spaces is depicted on the right hand side of the same figure. Since A and B

are initially co-located, when A performs out(t) the tuple t is inserted in the its of A and

becomes available to B thanks to the transient sharing of the agents’ itss (step 1). However,

when A departs, it takes along its own its (step 2). If B tries to pick up the tuple t after

A has already departed, the corresponding in(t) will be performed on a transiently shared

tuple space consisting of B’s its only, and thus may block since t is no longer present there

and there might not be any other tuple satisfying the match (step 3).

This problem is a consequence of the fact that in Lime there is no well-known

persistent tuple space that can be used as a global repository of tuples. The configuration of

the tuple space, i.e., its content, varies dynamically according to the location of components.

Still, it is desirable to retain the advantage provided by the decoupling in time and space



96

characterizing the Linda model of communication. In our example, from B’s perspective

it would be desirable for the withdrawal of t to be possible any time after A becomes co-

located with B. To accomplish this, A should be allowed to specify that the effect of an

out(t) on the transiently shared tuple is to place t in B’s its rather than keeping it in A’s

its as we assumed so far.

In Lime this is accomplished by exploiting the notion of location—central to mobility

in general. The location of a tuple is a tuple space. In the case of an its, the location of

a tuple is identified uniquely by the name of the tuple space and by the identifier of the

mobile agent owning the its, since the agent and its its are permanently bound. Given this

notion, in Lime a tuple can be placed into the its T of a mobile agent λ by simply using

T.out[λ](t), a version of out annotated with the tuple’s intended location. The semantics of

the out[λ] operation take into account the location of agents, and involve conceptually two

steps. The first step is equivalent to a conventional out(t), the tuple t is inserted in the its

of the agent calling the operation, say ω. At this point the tuple t has a current location ω,

and a destination location λ. If the agent λ is currently connected, i.e., either co-located or

located on a connected mobile host, the Lime system reacts to the out operation by moving

the tuple t to the destination location. The combination of the two actions—the insertion

of the tuple in the its of ω and its instantaneous migration to the its of λ—are performed

as a single atomic operation. On the other hand, if λ is not currently connected, the tuple

remains at the current location, the its of ω.

Thus, in our example, A could circumvent the problem described earlier by per-

forming out[B](t) on its its. Note that performing out[λ](t) does not necessarily imply

guaranteed delivery of t to λ; the rules for non-deterministic selection of tuples as defined

by Linda are still in place and the tuple t is always available in the transiently shared tuple

space, even when it is not yet within the intended its. Thus, it might be the case that

while waiting for λ to connect, or after it becomes connected and t is transferred to λ’s its,

some other agent may withdraw t from the tuple space before λ.

User-specified tuples are automatically augmented by the run-time support with

fields recording their current and destination locations. This information enables Lime to

detect the presence of “misplaced” tuples (i.e., tuples whose current location is different

from their intended destination) and facilitates state reconciliation upon engagement and

disengagement of tuple spaces. For instance, if t still belongs to the its of ω, and λ becomes

connected, the system detects the presence of the misplaced tuple t and migrates it to the

its of λ, also changing the current location of t to the value of its destination, λ. Since

this action is part of the engagement of tuple spaces, the actions of becoming connected,

merging of the its, and migrating misplaced tuples take place in a strictly sequential order

and are executed as if they were a single atomic operation.



97

���������������������������������������������������������������������������������������������������������������������������������������������� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �	 	 	 	 	 	 	 		 	 	 	 	 	 	 		 	 	 	 	 	 	 		 	 	 	 	 	 	 		 	 	 	 	 	 	 	 
�

�
������������������������������������

���������������
�����
���������
���
� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � � � � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �������������������������

1.

3.

2.

Mobile AgentsDisconnection

Federated Tuple Space

������������ �� ���������
���
��������������������������� �  � !"#�##�#$�$$�$%�%&'�'�''�'�'(�((�()�)�))�)�)

)�)�))�)�)*�**�**�*+�+�++�+�+,�,,�, -�--�--�--�-.�..�..�. /�//�//�//�/0�00�00�01�11�12�22�2345�55�56�66�6

ITS

7 7 7 77 7 7 77 7 7 78 8 88 8 88 8 89�9�99�9�9:�:�::�:�: ;<=�=�==�=�==�=�=>�>�>>�>�> ?@A A A AA A A AA A A AB B B BB B B BB B B BC�C�CC�C�CD�DD�D EFG�G�GG�G�GG�G�GH�HH�HI�I�II�I�IJ�J�JJ�J�JK�K�KK�K�KL�LL�L
MN

ITSITS

O�O�OO�O�OP�PP�P QRS S S SS S S SS S S ST T TT T TT T TU�UU�UV�VV�V WXY�YY�YY�YZ�ZZ�Z [\]�]]�]]�]^�^^�^_�_�__�_�_`�``�` abc�cc�cd�dd�d
Host-Level Tuple Space

e e e ee e e ee e e ef f ff f ff f fg g g gg g g gg g g gh h h hh h h hh h h hi�i�ii�i�ij�jj�j klm�m�mm�m�mm�m�mn�nn�no�o�oo�o�op�p�pp�p�p qrs s s ss s s ss s s st t t tt t t tt t t t u�u�uu�u�uv�vv�v wxy�y�yy�y�yy�y�yz�zz�z{�{�{{�{�{|�|�||�|�| }~

Figure 8.4: Recomputing transiently shared tuple spaces on disengagement.

Disengagement relies on the notion of location, as well. When an agent departs,

the transiently shared tuple space that is presented to mobile agents must be recomputed

accordingly. Conceptually, this process can be described as depicted in Figure 8.4. Initially

(step 1), the its of each mobile agent has access to the (bag) union of the tuples contained

in the physical its actually associated with the agent. This is represented by using different

fill patterns for the boxes representing the itss. Upon occurrence of a disconnection, be

it the departure of an agent or a physical disconnection like in Figure 8.4, the transiently

shared tuple spaces are partitioned into their constituents (step 2) such that the its of each

agent, say ω, contains only the portion of the shared tuple space it is responsible for, i.e.,

all the tuples whose current location is ω. This includes also misplaced tuples, whose final

destination is different from ω; if the destination is not present, placing these tuples with

the agent that generated them is the only meaningful solution. Thus, this step basically

partitions the contents of the transient tuple spaces back into the “concrete” itss that

are actually physically carried by each mobile agent. Finally, these its are merged again

according to the new configuration of the system, thus completing the tuple space update

process caused by disconnection (step 3).

The ability to abstract away the location of mobile agents and hosts as well as

to access their data seamlessly simplifies certain programming tasks. However, there are

situations where it may be desirable to limit access only to a portion of a transiently

shared tuple space, either for programming convenience or for performance reasons. For

instance, the programmer may be temporarily concerned only with the its of a given agent



98

or a particular host-level tuple space. These situations demand new forms of in and rd

annotated with locations, similar to out[λ]. In Lime, annotations for these operations come

in the form in[ω, λ] and rd[ω, λ], where the current and destination locations defined earlier

are used. Either of the two locations can be left unspecified, in which case the symbol “ ”

will be used. Different combinations of location parameters identify different projections

of the transiently shared tuple space. In the following, we review first the combinations

allowed in Lime when dealing with logical mobility on a single host. Later on, we show

what operations are permitted in the presence of physical mobility. The discussion focuses

on the in operation.

The operation in[ω, ] performs an in on the projection of the transient tuple space

whose tuples have current location equal to ω. This operation provides a means to restrict

the scope of the in operation to the its of a single agent, including misplaced tuples that

have been created by this agent. Lime allows one also to refer to tuples that are in a given

its but whose destination is actually another agent λ, in the form in[ω, λ]. The ability to

perform these operations can be useful, for instance, in a kind of tuple “garbage collection.”

If a garbage collector agent has some application knowledge that it will never meet the

agent λ again, then it can purge useless tuples from the its of ω. As a special case, in[ω, ω]

performs the in on the tuples in ω’s its that are not misplaced, i.e., whose destination is ω

and whose current location is ω as well. in[ , λ] restricts the scope of the in to the tuples in

the transiently shared tuple space whose final destination is λ. If λ is currently not present,

such tuples are currently misplaced in the its of some other agent. If λ is present, then

the operation becomes equivalent to in[λ, λ] because, according to semantics of transient

sharing, if λ is present all misplaced tuples directed to it migrate atomically to the correct

its at the time of engagement.

When physical mobility is present, Lime provides also the capability to restrict the

query performed by in to a specific host-level tuple space. This is achieved by specifying

the identifier Ω of a mobile host as the first parameter, e.g., in[Ω, ]. In general, the current

location can be specified either as the identifier of a mobile agent or of a mobile host. On

the other hand, the destination location must always be the identifier of a mobile agent.

This restriction holds also for the out[λ] operation whose λ parameter, representing the

destination location for t, cannot be a mobile host. If this were allowed, the tuple would

eventually belong to a host-level tuple space. However, we already discussed that this tuple

space is actually made of the concrete itss associated to mobile agents, they are the ones

physically holding tuples. According to our model, if no agent is specified as a destination

location for t, the tuple vanishes upon disconnection. Nevertheless, if in some applications

the host must own a tuple space, this can be realized in Lime by using a stationary and

persistent agent that is responsible for holding incoming tuples destined to that host and

for making them available to the agents located there.



99

8.5 Reactive Programming

In the rapidly changing environment that characterizes mobility, the ability to react to

events, and to do it as soon as possible, is of great importance. Events can be concerned

with the physical environment, like disconnection or changes in the quality of service, or

with the application, like the availability of data carried by other parties. A typical example

might be the arrival or departure of a mobile agent.

Events are naturally represented in the Linda model as tuples. This is actually the

solution exploited by Lime as well. It leverages off the LimeSystem its described earlier.

The run-time support, which can be modeled as a stationary agent, continuously monitors

the underlying layers of the virtual machine for system events. These events, that include

departure or arrival of mobile agents, changes in connectivity, and changes in the quality

of service, are transformed into event tuples and are inserted in the LimeSystem its of

the stationary agent. There, this information becomes available to all the agents connected

through the federated tuple space generated by transient sharing of all the LimeSystem itss.

In Linda, the in operation already provides a basic mechanism for coping with events.

Processes can suspend on the occurrence of an event, modeled by the appearance of the

corresponding tuple in the tuple space, and will take appropriate actions after the tuple is

retrieved by the in. However, this solution has some drawbacks. From a semantic point of

view, there is no guarantee that the event is actually caught by a process λ interested in it.

Another process µ could be interested in the same event and perform the in operation before

λ. To guarantee event delivery, more complex schemes must be used. They must involve a

priori knowledge about the number of processes interested in an event. From a performance

point of view, since in is blocking, listening to multiple events requires one thread of control

per event, which is often impractical. The fundamental problem rests with the fact that

Linda forces applications to “pull” out tuples, while reactive programming demands to have

tuples “pushed” to applications. Finally, it is desirable to encapsulate the reaction to an

event into its own definition, thus providing a higher level of abstraction to the programmer

who should be freed from the burden of dealing explicitly with synchronization issues.

Lime introduces the notion of a reactive statement having the form T.reactsTo(s, p)

where s is a code fragment containing non-reactive statements that is to be executed when

a tuple matching the pattern p is found in the tuple space T . T can be any tuple space.

However, in the next section, we will see that some additional constraints are necessary

to deal with remote tuple spaces. The execution of reactsTo “registers” the reaction with

T ; a complementary operation to “de-register” the reaction is also provided by Lime. The

semantics of the reactsTo statement are the same as those defined for Mobile UNITY

reactive statements, described in [50]. After each non-reactive statement, a reaction is

selected non-deterministically among those registered, and its guard is evaluated. If the

guard is true, the corresponding action is executed, otherwise the reaction is equivalent to



100

a skip. This selection and execution proceeds until there are no enabled reactions and the

normal execution of the non-reactive statements can resume. Thus, reactive statements are

executed as if they belong to a separate reactive program that is run to fixed point after

each non-reactive statement. These semantics offer an adequate level of reactivity, because

all the reactions registered are executed before any other statement of the co-located agents,

including the migration statements. Thus, the programmer’s effort in dealing with events

is minimized.

Although in principle s and p could have arbitrary forms, in practice their structure

is constrained by implementation considerations. For example, if the definition of p con-

tained arbitrary expressions in the host language—Java in the current implementation of

Lime—the truth of p would need to be evaluated after each statement. This would require

either access to the innards of the Java virtual machine or the development of a higher level

language built on top of Java whose run-time support manages arbitrary reactive state-

ments. For this reason, in the current implementation of Lime the specification of p is

reduced to a pattern that is matched against tuples in the tuple space on which the reactive

statement is executed. This way, the only statement that can trigger a reaction is the inser-

tion of a tuple in the tuple space, which is under the control of Lime. Similar issues relate

to s. Conceptually, s could be any code fragment containing non-reactive statements, thus

including tuple space operations. In practice, reactions are executed in a separate thread

of control belonging to the Lime system. Thus, blocking operations are forbidden in s,

as they would actually block the processing of all the reactions. In general, the presence

of tuple space operations in s complicates matters. From a performance point of view, s

should be kept as small as possible to allow fast processing of reactions; as execution of

tuple space operations is usually more demanding than conventional statements and they

should be used with much care. From a semantic point of view, if an out(t) operation is

allowed in s, t may match the pattern p specified by some other reaction and thus gener-

ate a potentially infinite reaction loop. Lime presently allows tuple space operations in s,

although subject to the constraints described below. Our rationale stems from the notion

that preventing the programmer from modifying reactively the tuple space is worse than

leaving up to the programmer the evaluation of the semantic and performance tradeoffs.

Application development with the Lime API will hopefully validate this hypothesis.

The actual form of the reactsTo operation is annotated with locations—this has been

omitted so far to keep the discussion simpler. A reaction assumes the form T.reactsTo[ω, λ]

(s, p), where the location parameters have the same meaning as discussed for in and rd.

However, reactive statements are not allowed on federated tuple spaces; in other words, the

current location field must always be specified, although it can be the identifier either of a

mobile agent or of a mobile host. The reason for this lies in the constraints introduced by

the presence of physical mobility. If a federated tuple space is present, its content, accessed



101

Transiently Shared Tuple Space

ETS

Mobile Agentλ

ITS

λ

reactsTo(s’,p)

t

µ

t’

t

reactsTo(s’,p)reactsTo(s’,p)

s’=out(t’)

µ

s
4.

3.

2.

1.

µ

t’

λ

t’

λ

t

µ

out(t)

reactsTo(s,p’)

Figure 8.5: Reacting to remote events in Lime. Thick solid lines represent reactions, while
the thick dotted line represents an asynchronous action.

through the its of a mobile agent, actually depends on the content of itss belonging to

remote agents. Thus, to maintain the requirements of atomicity and serialization imposed

by reactive statements would require a distributed transaction encompassing several hosts

for each tuple space operation on any its—very often, an impractical solution.

For these reasons, Lime offers the capability to react asynchronously to the avail-

ability of tuples in a remote its by providing an operation T.weakReactsTo(s, p) that has

weaker semantics than the reactsTo. Conceptually, it works as depicted in Figure 8.5,

where an additional, private tuple space associated with each mobile agent is shown. The

purpose of this event tuple space (ets) is to collect event tuples and is introduced here

only to simplify the presentation—it is not actually provided among Lime constructs. The

semantics of weakReactsTo can then be described as follows:

1. When weakReactsTo(s, p) is invoked on the its Tλ of a given agent λ, a strong

reaction reactsTo(s′, p) is registered on each its currently shared with Tλ. A strong

reaction reactsTo(s, p′) is also registered on λ’s ets, Eλ.

2. When an out(t) operation with t matching the pattern p is performed on the its Tµ

of a given agent µ, the reaction Tµ.reactsTo(s′, p) fires and s′ is executed. s′ performs

an Eµ.out(t′) where t′ is a copy of t augmented with information that enables the

system to bind an event tuple to the agent that is performing the weakReactsTo.

3. An asynchronous action moves the tuple from the Eµ to Eλ. There is no guarantee

that this action happens as soon as t′ shows up in Eµ, because this would require

starting a distributed transaction and suspending the execution of all the connected



102

agents. Instead, Lime guarantees eventual delivery of t′ to Eλ, if connectivity is

available.

4. When t′ reaches Eλ, the reaction Eλ.reactsTo(s, t′) fires, where s is actually the

statement specified originally in the weakReactsTo.

The operation weakReactsTo in Lime is similar to the notify operation provided by Sun’s

JavaSpace [53] and to the event registration mechanism provided by IBM’s T-Spaces [33].

The development of a richer event model, allowing reactions to arbitrary events other than

insertion of a new tuple, is the subject of on-going work.

8.6 Concluding Remarks

In this chapter we presented the design of Lime, a system that follows the design strategy

of global virtual data structures by adapting the Linda model of coordination to mobility,

introducing the notions of transiently shared tuple spaces, tuple location, and reactive

statement. The hypothesis behind our research is that the minimalist set of operations and

concepts provided by Lime, in particular the transient sharing of tuple spaces, enable rapid

and dependable development of applications which involve mobility.



103

Chapter 9

Formalizing Lime

The ultimate goal of our research is to develop dependable mobile applications. One way

to address dependability is the use of formal specifications to define precise semantics of

a system. In this chapter we present a formal specification of Lime for two main reasons.

First, the specification of the data structures and the constructs used to manipulate them

provide a foundation for implementation of the Lime middleware. Second, the specification

allows applications built on Lime to be formally specified and reasoned about.

Section 9.1 starts this chapter with a formal specification of the Linda model which

underlies Lime, introducing the constructs of the formal modeling language Unity as nec-

essary. Following this, Section 9.2 defines the Lime semantics using Mobile Unity, an

extension of Unity tailored to the specification of mobile systems. For simplicity of pre-

sentation, the informal definitions of both the Linda and Lime semantics are repeated from

the previous chapter and interleaved with the formal definitions. Section 9.3 shows how

parallelism can be exploited when implementing the model, and exposes other aspects of

the model which require system-wide coordination.

9.1 Formal Foundations: Unity and Linda

Linda fosters a programming style with a clear separation between communication and com-

putation and provides a clean, easy to comprehend model with a minimal set of primitives.

As shown in Figure 9.1, the model is defined as a shared memory tuple space, which is

accessible to multiple processes. Data is stored in the space as elementary data structures

called tuples. Processes coordinate through the tuple space by writing (out), removing (in)

and copying (rd) tuples. Typically these primitives are presented as a programming inter-

face from a specific host language such as Fortran or Java. However, in this chapter we

are interested in the Linda model and not the technicalities of a particular implementation.

Further we are interested in providing a precise semantic definition for the Linda operations

upon which we will eventually build the formal semantics of our mobile middleware.



104

Concurrent Processes

<A, 42>

Tuple Space

<B, 15>
<A, 9>

out(t)

in(p)

rd(p)

Figure 9.1: A simple Linda tuple space.

For these reasons, we present a formal model for Linda using Unity, a model put

forth by Chandy and Misra [19] to study the essential characteristics of distributed com-

puting and to aid in the development of reliable concurrent programs. The programming

language independent notation provides for the formal specification and verification of dis-

tributed systems, and the minimal nature of the constructs allows one to focus on the

essence of the problem being specified. The fundamental elements of the model are vari-

ables and conditional, multiple assignment statements. A program specification consists

of a set of assignment statements which execute atomically and are selected for execution

in a nondeterministic, weakly fair manner. Concurrent systems can be specified as a set

of programs, composed through program union (∪). Figure 9.2 shows two simple Unity

programs which together describe a producer/consumer system using the Linda abstraction

of a shared tuple space to share tasks to be completed. The producer randomly generates

jobs of different types, putting each job and its description into a tuple space called jobs.

The consumer removes jobs from the tuple space and performs the defined task. The details

of the Linda operations will be described in the second part of this section, for now we focus

on the main Unity concepts.

Every Unity program contains a declare section for naming variables and their

types, an initially section for defining the allowed initial conditions of the variables, and

an assign section for specifying the guarded assignments which define the state transitions

of the system. Statements are separated by the “[]” operator. The “‖” operator is used to

construct multiple assignments to be executed in a single atomic step. For example, the

consumer program contains two statements; the second simulates the performance of a task

by setting the value of curTask to ε and the first removes a task from the tuple space and

keeps a running count of the number of tasks to be performed.

Variables with the same name from different programs are the same variable after

composition through union. In the example, the tuple space jobs is shared between the



105

Program Producer
declare

jobs : TupleSpace
jobType : {A,B}

initially

jobs = ∅
assign

jobType := A
[] jobType := B
[] out(jobs,

createTuple(jobType, jobInfo()))
end

Program Consumer
declare

jobs : TupleSpace
curTask ,myJobPattern : Tuple
count : Integer

initially

myJobPattern = createTuple(A,String)
[] curTask = ε
[] count = 0

assign

(curTask := in(jobs ,myJobPattern)
‖ count := count + 1)
if curTask = ε

∧matchExists(jobs ,myJobPattern)
[] curTask := ε ‖ doJob(curtask)

end

Figure 9.2: A standard Unity specification with two component programs. Producer ∪
Consumer.

composed programs so that when the producer writes a tuple to its tuple space it is imme-

diately available in the consumer’s tuple space, they are actually the same data structure.

The assignment statements from the programs are combined by union to form a single set

of statements and the concurrent execution is modeled by the interleaved execution of these

statements. At each computation step, one statement is nondeterministically selected for

execution and the system state is atomically modified. Because Unity does not provide

any sequential constructs, guards are used in the consumer to prevent it from taking a new

task before the previous task has been completed (i.e., before curTask is reset to ε).

In this example, the Linda operations and data structures appear as elementary

Unity primitives, however their semantics have not been defined. They are more properly

regarded as macros defined for notational convenience, whose meaning is actually repre-

sented in terms of the basic Unity statements which as defined formally in the remainder

of this section.

Linda Tuple. The first concept to formalize is the Tuple. A tuple is the data structure

used to communicate information among processes, and is simply an ordered sequence

of typed fields generated with the createTuple() function. Parameters to this function can

include actual values, as in the producer, or any combination of actuals and formals (types),

as in the consumer, e.g., (String). A tuple with formal values is also known as a template

or pattern tuple.

Data is accessed from the tuple space based on content by specifying a pattern to

match against the data. Therefore it is important to define what it means for two tuples to

match. Following the standard Linda semantics, matching tuples must have the same arity,

and the corresponding fields of each tuple must match. Within a field, an actual matches



106

an actual of the same value, a formal matches an actual of the same type, but a formal does

not match a formal. In this way, a formal acts as a “wild card”, matching an actual of any

value. Thus the consumer in the example identifies a task of a specific type (A) but with

any description (String).

To formally express the fact that a tuple θ matches a template or pattern tuple p,

we use the notation M(θ, p). To add power to pattern matching beyond that of standard

Linda, we extend the formal field definition to allow the specification of subtypes. For

example, 〈“foo”, Integer i : 1 ≤ i ≤ 10〉 requires a matching tuple to have, in its second

field, an integer value between 1 and 10. While we do not use this function directly in our

example program, it is used in the definitions of several Lime constructs.

Linda Tuple space. The TupleSpace data structure can be conceptualized as a multiset

or bag of tuples. For the purpose of our formalism, we specify the tuple space as a set, but

we must still allow for multiple tuples with identical data to exist in the set. Therefore, we

associate a unique tuple identifier to each tuple in the tuple space. This is accomplished by

adding an identifier field to the beginning of every tuple. Because this field is introduced

only for the convenience of the formal specification, we wish to make it invisible to the

programmer who simply wants to use the Linda constructs. This is the primary motivation

for the createTuple() function which, as part of the tuple creation process, prepends a

formal field of type TupleID to every tuple to eventually contain the tuple identifier. The

management of this new field must be accounted for throughout the Linda specification,

but remains transparent at the user level.

For convenience we define a general notation for setting and accessing labeled tuple

fields. For example, we define the tuple identifier field to have the label id, and [id :

TupleID] ⊕ t sets the value of tuple t’s labeled field id to the formal TupleID. Alternately,

a value can replace the type in the previous formula, establishing the labeled field as an

actual. The notation t.id retrieves the value of the field with label id or undefined if the

field is formal.

In typical Linda applications, only a single, unique tuple space is available for process

coordination. By defining the tuple space as a regular Unity variable, it is possible for a

single process to define and access multiple, disjoint tuple spaces, each of which is identified

by the name of the tuple space variable. This gives applications another degree of freedom

to separate the different coordination concerns into multiple tuple spaces.

Basic Linda constructs. The operations over the tuple space as they appear in the

example programs are not Unity primitives, but rather represent the abstract Linda con-

structs. The precise semantics of these constructs are given below in the form of macro

definitions. In other words, when one of the Linda constructs appears in a Unity program,



107

Standard Linda operations out(T, t)
t := in(T, p) t := rd(T, p)

Probing operations t := inp(T, p) t := rdp(T, p)

Group operations s := ing(T, p) s := rdg(T, p)
s := ingp(T, p) s := rdgp(T, p)

Miscellaneous matchExists(T, p)
createTuple(. . .)

Figure 9.3: Summary of the Linda macros. T is a TupleSpace, t is a Tuple, p is a pattern
Tuple, and s is a set of tuples. The parameter of createTuple is a sequence of any number of
values (actuals) and types (formals).

its complete semantics can be extracted by doing a textual substitution of the appropri-

ate definition. A summary of the Linda constructs available to programmers appears in

Figure 9.3.

All process coordination in Linda-based applications takes place through access to

the shared tuple space. In our example, the producer process generates tasks and inserts

them as tuples into the tuple space, from which they are retrieved and processed by the

consumer. The required functionality is insertion into (out), removal from (in), and copying

(reading) from (rd) the tuple space. Typical Linda implementations also provide an eval

operation which provides dynamic process creation and enables delayed the evaluation of

tuple fields, but for our purposes we use only out, in, and rd.

The final assignment statement of the producer demonstrates the use of out(T, t)

to insert a tuple in to the tuple space. Because a process can access multiple tuple spaces,

the tuple space variable appears as a parameter of the operation. The formal semantics

defining the macro definition describe the change to the tuple space as a result of the out,

namely the addition of the tuple t.

out(T, t) , T := T ∪ {[id :newID()]⊕ t}

In addition to inserting the tuple into the tuple space, the formal definition establishes the

uniqueness of the tuple within the tuple space by setting the identifier field. The function

newID() returns a new, system-wide unique tuple identifier. It should also be noted that by

the assignment semantics of Unity, the value in braces is actually the value of the tuple,

and thus a copy of the tuple is effectively made and inserted into the tuple space.

Information from the tuple space is retrieved based on the content of the data by

specifying a tuple pattern to look for inside the tuple space. Removal of a tuple matching

a specific pattern is achieved with the in construct which identifies a tuple matching the

pattern p in the tuple space T and assigns it to the variable t. If more than one tuple



108

matches, one is chosen non-deterministically. Tuples can also be copied from the tuple

space using rd.

To simplify the formal definitions of these concepts, we introduce several helper

functions. We have already defined the matches function M which compares two tuples.

Here we define a predicate which identifies whether a tuple matching a pattern exists in a

given tuple space, and two macros which identify a matching tuple in a given space and

either remove or copy it1.

matchExists(T, p) ≡ 〈∃ θ : θ ∈ T ::M(θ, [id :TupleID]⊕ p)〉

t := remove(T, p) ,

〈‖ θ : θ = θ′.(M(θ′, [id :TupleID]⊕ p) ∧ θ′ ∈ T ) :: T, t := T − {θ}, θ〉

t := copy(T, p) , 〈‖ θ : θ = θ′.(M(θ′, [id :TupleID]⊕ p) ∧ θ′ ∈ T ) :: t := θ〉

We choose to model the non-deterministic tuple selection θ = θ′.(M(θ′, [id :TupleID]⊕ p) ∧

θ′ ∈ T ) in the remove and copy macros by means of non-deterministic assignment [7]. In

a non-deterministic assignment of the form x := x′.Q, the variable x is assigned a value

x′, selected non-deterministically among those satisfying condition Q. In our case, we use

a similar notation to select non-deterministically a single matching tuple θ′, bind it to the

tuple θ, and use it to quantify the three-part notation. Because a single tuple is selected

and bound, the parallel operator in the three-part notation serves the purpose of creating

a quantified statement, and does not express parallel execution of multiple statements.

With these helper functions, the definitions of the rd and in constructs follow natu-

rally.

t := in(T, p) , t := remove(T, p) if matchExists(T, p)

t := rd(T, p) , t := copy(T, p) if matchExists(T, p)

It is worth noting that our semantics differ from the original Linda definitions in one minor

way. The value of the returned tuple is not bound to the pattern. Instead, the constructs

defined here bind the value to the explicitly named tuple type variable on the left hand side

of the assignment statement.

1These statements use a three part notation of the form 〈 op quantifiedVariables : range :: expression 〉.
The variables from quantifiedVariables take on all possible values permitted by range. If range is missing,
the first colon is omitted and the domain of the variables is restricted by context. Each such instantiation
of the variables is substituted in expression producing a multiset of values to which op is applied, yielding
the value of the three-part expression. If no instantiation of the variables satisfies range, the value of the
three-part expression is the identity element for op, e.g., true when op is ∀. If the operator is + we generate
a summation

∑

, if the operator is ∧ we express universal quantification ∀.



109

The previous definitions describe the blocking form of the in and rd operations. In

standard Linda processing, a process which encounters a blocking operation will suspend

until a matching tuple is found. In Unity, however, there is no notion of process blocking,

but instead the statements are selected nondeterministically. Therefore, if these statements

are selected when no matching tuple exists in the tuple space, they are equivalent to a skip.

In other words, they have no effect and it is as if the statement to remove the tuple was

blocked waiting for a matching tuple. In the example, in the case where no tasks exist in

the tuple space, the consumer will be effectively blocked waiting for the in.

With this in mind, it is possible and meaningful to put these blocking operations in

parallel with other statements. For example:

t := in(T, p) ‖ count := count + 1

is expected to count the number of tuples removed by this statement. However, after the

macro expansion of the in, the semantics of this statement are such that each time it is

selected for execution, the counter increments even if no matching tuple is taken from the

tuple space. This is because only the assignment to the left of the parallel bar is inhibited

until a match is found.

In order to allow the more meaningful style of parallel assignment in which both

assignments are inhibited until a match is found, we expose the matchExists predicate to

the programmer, enabling the following assignment statement with the correct counting

semantics, similar to that shown in the consumer example:

t := in(T, p) ‖ count := count + 1 if matchExists(T, p)

It should be noted that the same parameters, namely (T, p), must be used for the in and

the matchExists in order to have the desired effect.

Extended constructs. While the above constructs define the basic Linda operations,

there are a number of extensions which have been shown to be useful when programming

with Linda. We define them here.

In contrast to the blocking version of the in and rd which have no effect until a

matching tuple is found, it is sometimes desirable to take action when no matching tuple

exists. Therefore, non-blocking or probing versions of both the in and rd have been intro-

duced to assign the value ε to the tuple if no tuple matching the specified pattern exists

in the tuple space at the moment when the operation is performed. The formal definitions



110

build upon the blocking operations.

t := inp(T, p) ,t := remove(T, p) if matchExists(T, p)

‖ t := ε if ¬matchExists(T, p)

The definition of the probing read, rdp, is identical to inp except the copy macro is used

in place of remove, leaving the tuple space unchanged after the execution of the operation

involving a successful match.

Another useful operation is to remove or copy all tuples matching a pattern from

the tuple space in either a blocking or non-blocking manner. For simplicity we introduce

another macro which creates a set containing all tuples that match a given pattern, p, in a

named tuple space, T :

matchingSet(T, p) ≡ 〈set θ :M(θ, [id :TupleID]⊕ p) ∧ θ ∈ T :: θ〉

Using this definition, we can easily define the blocking version of the removal construct

which simultaneously finds and removes all matching tuples in T . The result is bound to

a variable of the type set of tuples. Similarly, the non-blocking construct is extended to

return the emptyset if no matches are present in the tuple space.

s := ing(T, p) , s, T := matchingSet(T, p), T −matchingSet(T, p) if matchExists(T, p)

s := ingp(T, p) , s, T := matchingSet(T, p), T −matchingSet(T, p)

By removing the condition matchExists for the probing operation, the macro for ingp uncon-

ditionally returns the value returned from matchingSet. If no matches are found, matchingSet

returns the the empty set, ∅, which is exactly the desired functionality for the probing op-

eration. The corresponding rdg and rdgp can be constructed by removing the assignment

to the tuple space T in the above definitions.

9.2 Lime

The features provided by the core Linda model as presented in Section 9.1 already provide

for coordination among components that execute concurrently. However, the concept of

context as captured by the Linda tuple space is a static one. Even in a distributed setting,

Linda relies on the accessibility of a persistent, globally available tuple space that resides

permanently on a pool of constantly interconnected machines. The approach we describe

in this section makes different assumptions that are motivated by the unique characteristics

of mobility.



111

Transiently Shared Tuple Space

Mobile Agents

ITS ITSITS

Figure 9.4: Transiently shared tuple spaces associated with each agent.

The ability of Linda to decouple processes from one another continues to hold a

great deal of appeal in an open, mobile environment where components that have no a

priori knowledge of one another may come into contact and need to work together. Fur-

ther, the simplicity of the Linda model is attractive in the complex mobile environment.

These advantages have motivated the Lime model (Linda in a Mobile Environment) which

associates a tuple space, called the interface tuple space (its), with each mobile component.

Initially we will consider only one its, however this will be expanded in a later discussion.

This its is accessed by the component using the conventional Linda in, rd, and out opera-

tions as previously described. The semantics of these operations is conceptually unaltered;

simply, the tuple space they are evaluated over is the component’s its rather than a globally

known one. The mobile component and its corresponding its migrate as a unit.

To enable coordination through the interface tuple space when connectivity is avail-

able, Lime defines a dynamic composition of itss conditional on connectivity. Effectively

the accessible content of the its expands as more components are connected, and contracts

as components disconnect, as shown in Figure 9.4.

To this point we have been intentionally vague about the definition of the mobile

component. Conceptually either a physically mobile or logically mobile component can be

associated with an interface tuple space, but the process centered model of coordination in

Linda leads us to a two tiered model as shown in Figure 9.5 where logical processes, or mobile

agents, are the active components in the system. As such, each mobile agent is associated

with an its while the hosts on which these processes reside, the mobile hosts, are simply

containers. A host does not have its own tuple space. We assume that communication

exists among all agents on the same host. Therefore the composition of the tuple spaces

of the mobile agents executing on a host constitutes the first tier or host-level tuple space.

Host tuple spaces can be further composed among the mobile hosts that are directly or

transitively connected, providing the second tier of abstraction or the federated tuple space.

Each mobile agent accesses the current federated tuple space by issuing operations on its

own its. Thus an agent’s interaction with the data space remains consistent despite the

dynamic nature of the data.



112

Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Figure 9.5: Physical and logical mobility, a two tier structure.

Standard Lime operations out[d](T, t) t := in[x, y](T, p)
t := rd[x, y](T, p)

Probing operations t := inp[x, y](T, p) t := rdp[x, y](T, p)

Group operations s := ing[x, y](T, p) s := rdg[x, y](T, p)
s := ingp[x, y](T, p) s := rdgp[x, y](T, p)

Reactions ρ :: s(τ) reacts-to[x, y](T, p,mode)
enableReaction(ρ)
disableReaction(ρ)

Miscellaneous matchExists[x, y](T, p) createTuple(. . .)
isConnected(d)

Figure 9.6: Summary of the Lime macros. T is a TupleSpace, t is a Tuple, p is a pattern
Tuple, s is a set of tuples, x and y are formals of AgentID or AgentID subtypes, and ρ is a
unique statement label. The parameter of createTuple is a sequence of any number of values
(actuals) and types (formals).

Formalizing agent location and connectivity. As in the previous section, we are

concerned with providing formal semantics for our model. The independence of mobile

components and the transient connectivity based on location play central roles in the mobile

environment, and are the first concepts formalized in this section. A summary of all formal

Lime concepts appears in Figure 9.6

While regular Unity programs can be specified independently as in the producer/

consumer system of Figure 9.2, composition through union is static and all variables with

the same name are implicitly shared for the duration of the system execution. For mobility

we need a more dynamic composition to account for transient sharing. For this reason we

move to the Mobile Unity specification model in which the variables of each program are

considered unique, and no variables are implicitly shared. Instead, the rules for sharing

variables are made explicit in a new section of the specification called the Interactions

section. Figure 9.7 shows a mobile version of the producer/consumer example specified in



113

Mobile Unity and using Lime constructs defined in the remainder of this section. The

programs in the Mobile Unity specification are the active components of the system, and

therefore represent the mobile agents.

In Mobile Unity, each program component has a special location variable λ, which

we use to define the host upon which the mobile agent is executing. This can be considered

the IP address of a host. Agents migrate by assigning a new value to this location variable.

Connectivity among agents is formally expressed as a symmetric and transitive relation

κ. Agents are connected when they are on the same host, when the hosts they reside on

are directly connected, or when the hosts they reside on are transitively connected. When

an agent migrates, the κ relation changes to reflect the new configuration. Changes in

connectivity among hosts are intentionally left outside of the specification, but nevertheless

contribute to the κ relation. In a scenario where agents do not migrate, connectivity among

the agents defines the connectivity among hosts. This is merely a consequence of choosing

agents as the only active components in the system.

In many cases, both in physical and logical mobility, it is desirable for an application

to access the current connectivity of mobile components. Therefore, exposing the κ relation

to the programmer seems a natural course of action. However, directly exposing κ actually

gives the programmer more power than can be realized in the mobile environment.

Consider the case where agent programs can use κ directly, for example to query

whether agent b is connected to agent c with the predicate b κ c. If b and c are out of range

of a, there is no reasonable way for a to resolve the query about components it cannot

communicate with. However, it is both useful and reasonable, to allow queries about a’s

current connectivity state. Therefore, we allow restricted access to the κ relation through

a function isConnected(b) defined to return the result of a κ b when the query is issued by

agent a. This limits the range of the query to a’s current connectivity context.

In the remainder of this section we continue to describe the informal semantics of

the Lime model, interleaved with the formal semantics as defined in Mobile Unity.

9.2.1 Dynamic tuple space configuration

In Lime, no static, globally accessible tuple space exists a priori. Rather, the contents of each

component’s its is reconfigured dynamically and automatically by the system according to

the current composition of the community of mobile components. In a sense, Lime takes

the notion of decoupling proposed by Linda further, by effectively decoupling the mobile

components from the global tuple space coordinating them.

A question arises at this point about the criteria needed to rearrange the contents of

a mobile agent’s tuple space as connections come and go. Clearly when a new connection is

made, the tuples of all connected components should be visible to all connected components.

Disconnection is slightly more complex as one must decide which agents keep which tuples.



114

System Producer/Consumer

Program Producer at λ

declare

jobs : TupleSpace

jobType : {A,B}

initially

jobs = ∅

assign

jobType := A

[] jobType := B

[] out[Consumer ](jobs ,

createTuple(jobType, jobInfo()))

end

Program Consumer at λ

declare

jobs : TupleSpace

curTask ,myJobPattern : Tuple

count : Integer

initially

myJobPattern = createTuple(A,String)

[] curTask = ε

[] count = 0

assign

(curTask := in(jobs ,myJobPattern)

‖ count := count + 1)

if curTask = ε

∧ matchExists(jobs ,myJobPattern)

[] curTask := ε ‖ doJob(curTask)

end

Components

Producer []Consumer

Interactions

end

Figure 9.7: A mobile producer/consumer.



115

This tuple selection criteria is provided by introducing the notion of tuple location. The

location of a tuple is defined as the identifier of a mobile agent. In other words, when an

agent migrates (changes location), all tuples associated with that agent migrate with the

agent. By default, the location of a tuple is the agent which inserts it into the shared tuple

space.

An agent’s its always contains all the tuples which are the responsibility of that

agent. The its also contains the tuples which are the responsibility of other connected

agents, but no tuple can be in the its if its responsible agent is not connected. Because

tuples and agents migrate together, the agent’s its changes each time its connectivity

changes.

Formalizing tuple location. Similar to the tuple identifier field, tuple location is in-

troduced to aid in the specification but it is desirable for it to remain transparent to the

programmer. Therefore, we expand the createTuple() function to insert a new labeled field,

cur, of type AgentID as a formal. This field will be managed by the macro definitions

defined later in this section.

Formalizing tuple space reconfiguration. The definition of the changing content of

the shared tuple space is handled through the shared variables of Mobile Unity. Specifically,

the identically-named tuple space variables in multiple agents are transiently shared when

connectivity is available. The Mobile Unity model of shared variables is dynamic. By

default, no variables are shared across programs; the conditions for sharing are explicitly

defined by the programmer. To this end, Mobile Unity provides a construct which names

the variables to be shared, the value the shared variable assumes when the condition is

established (engage), and the value each variable takes when the condition is falsified

(disengage). Intuitively, the condition for sharing is the existence of connectivity, the

engagement value is the union of the tuple spaces and the disengagement values partition

the contents of the shared tuple space according to tuple location and the new connectivity.

For convenience we define an operator to generate a set containing all tuples from

a tuple space T with a specific responsible agent a. Intuitively, T ↓ a identifies all tuples

which a is responsible for.

T ↓ a , 〈set θ : θ ∈ T ∧ θ.cur = a :: θ〉



116

With this definition, the engagement and disengagement of tuple spaces is defined

as:

a.T ≈ b.T when a κ b

engage a.T ∪ b.T

disengage 〈∪ c : c κ a :: c.T ↓ c〉, 〈∪ c : c κ b :: c.T ↓ c〉

This expression describes the fact that the two variables corresponding to the tuple spaces

of agents: a and b are shared when connectivity exists between the agents, i.e., a κ b.

The now shared variable takes on a value representing the contents of the tuple spaces

of both agents calculated with set union. Correctness of the engagement clause relies on

the commutativity of the union operator to generate the same value whether a.T ≈ b.T or

b.T ≈ a.T , and on the fact that the tuple space is a set rather than a multiset, ensuring that

when a.T ≈ a.T , no tuple duplication takes place. On disengagement, or falsification of the

sharing condition aκb, the shared tuple space variable is partitioned such that the contents

of the tuples spaces of each agent reflect the tuples available in the new connectivity. In

other words, after a disconnection, the visible tuple are only those whose responsible agents

are still connected to one another.

By specifying the interface tuple space as a shared variable, whenever a tuple in

inserted or removed by one agent, the change in the tuple space is immediately visible to all

connected agents. This naturally reflects the standard Linda concept of a global tuple space,

while the reconfiguration due to mobility is transparently handled by the above expression.

9.2.2 Location Extended Constructs

The modifications to Linda mentioned thus far enable a style of mobile application develop-

ment we refer to as location transparent. Processes need not know the details of connectivity,

the identity of the other processes, or the distribution of data in order to successfully interact

with one another. Instead, applications use the standard content-based Linda operations

over a tuple space that changes by some mechanism which the programmer need not be

concerned with.

An alternate style of application development, location aware programming, takes

into account application knowledge of the changing connectivity, and allows a programmer

to have control both over where data resides and from where it is accessed. These extensions

are motivated by a fundamental difference between transiently shared tuple spaces and

persistent, global tuple spaces.

For example, consider a producer/consumer system where the producer only gen-

erates tasks for a specific, known consumer, and this consumer is the only process that

services these tasks. In the Linda model, as shown in Figure 9.8, this is straightforward,

even in the case where the producer terminates after producing the task. In the mobile



117

t

out(t)

t

A

Mobile Agents

Transiently Shared Tuple Space

ITS ITS

BB

1.

2.

3.

Mobile Agents

Persistent Tuple Space

A

in(t)in(t)

t

B

B

t

A A

B

B

out(t)

t

Figure 9.8: Persistent Linda tuple space vs. Lime transiently shared tuple Space.

setting, the produced data is visible to the consumer only while connected. If the consumer

requests the data at this time, it will be successful. However, if the consumer fails to issue

the request during connectivity, a later query will not succeed, but it will block instead.

This scenario suggests the need to allow an agent to specify an alternate location

(agent) for the tuple. This is straightforwardly accomplished by augmenting the output

operation with an agent identified as the intended destination location for the tuple, as in

out[d](T, t). In other words, whenever connectivity allows, the destination agent d should

be made the agent responsible for the tuple, thus migrating the tuple with the destination

rather than the source. In the producer/consumer example, the producer can output tasks

with the consumer as the destination, and after a disconnection, the tuples remain accessible

to the consumer. Thus, if the consumer requests a task after disconnection, as in the case

described in Figure 9.8, the task is accessible because it has migrated with the consumer.

It should be noted that if the destination agent is not connected when the tuple is

written, the writing agent must assume temporary responsibility for the tuple. If not, then

when the tuple space is partitioned due to disengagement, the tuple would simply disappear

because no agent was responsible for keeping it. A tuple whose destination is different from

its currently responsible agent is referred to as misplaced. When connectivity is established

between a and d, the responsibility for the tuple is transferred to d by a process we refer to

as tuple migration.



118

cur :x dest :y Defined projection

AgentID AgentID entire currently
shared tuple space

AgentID 〈AgentID i : i ∈ {c, d}〉 current shared tuple space,
destination of c or d

〈AgentID i : i ∈ {a, b}〉 AgentID a or b’s responsibility,
any destination

〈AgentID i : i ∈ {a, b}〉 〈AgentID i : i ∈ {c, d}〉 a or b’s responsibility,
destination of c or d

Figure 9.9: Summary of the meaning of several possible query projections.

It is important to note that specifying a destination location does not enforce a

notion of ownership. Misplaced tuples still belong conceptually to a shared tuple space,

and can be withdrawn or read by any connected process. Thus, it may be the case that

another agent can remove the tuple from the space before the intended destination agent

even has a chance to see it. This is consistent with the Linda model, where no notion of

ownership is associated with the tuples. Our notions of responsibility and destination are

only clues given to the system to relocate tuples to the best position according to some

application specific notion.

Just as it can be useful to write tuples to a specific location, it can be equally useful

to read or remove data from a specific location. Consider a consumer process only willing

to accept tasks from a specific producer. In this case, we allow the consumer to query a

projection of the tuple space, where the projection is defined through the responsibility

attributes of the tuple, or more specifically the current and destination agents. The op-

erations take the form in[x, y](T, p) and rd[x, y](T, p), where the values in square brackets

define the projection of the tuple space over which to resolve the query. Specifically x re-

stricts the value of the currently responsible agent and y restricts the intended destination

agent. When these queries are used, both x and y must be formal AgentID fields. To enable

a specific subset of agents to be matched for either x or y, we use the subtype definitions

that extend the power of the matches function as described in Section 9.1. For example, to

match either agent a or b, the subtype 〈AgentID i : i ∈ {a, b}〉 replaces x or y. To specify all

of the agents on the same host as agent a, the subtype definition is 〈AgentID i : i.λ = a.λ〉.

The formal AgentID matches any agent. A description of the projections defined by different

combinations of x and y values appears in Figure 9.9.

Mathematically, arbitrary subtypes can be defined, but not all combinations of cur-

rent and destination AgentID subtypes yield computable operations. Consider a system

as shown in Figure 9.10 of two disconnected hosts A and D. Agents a and b are on host

A while agents c and d are on host D. Agent d can write the query in[〈AgentID i : i.λ =



119

ba c d
Host DHost A

Figure 9.10: A sample Lime system with two disconnected mobile hosts, A and D, each
with two mobile agents. The inner dashed line indicates the host-level tuple space while
the outer dashed line indicates the federated tuple space.

a.λ〉,AgentID](T, p) to restrict the query to the projection of the tuple space to tuples whose

currently responsible agent are on the same host as agent a. Although the subtype cannot

be computed because d cannot access this information through the isConnected() function,

the query can still be correctly computed based on available information. Specifically, agent

d can discover that it is not connected to agent a because isConnected(a) is false. Therefore,

by the transitivity of the κ relation, d can deduce that it is not connected to any agents a is

connected to. Therefore, the projection defined by the operation is empty and the operation

blocks. If this had been a probing operation, the result should have been to return ε.

If d uses the same subtype to restrict the destination field of the tuples, the result of

the query can no longer be computed. Consider the same scenario where d issues the query

in[AgentID, 〈AgentID i : i.λ = a.λ〉](T, t) in which d asks for all tuples in the current tuple

space which are destined for agents on the same host as a. Unlike the previous case, there

is no relationship between the currently connected agents and the value of the destination

fields of the tuples, and the projection cannot be defined.

To prohibit such impossible queries, we restrict the subtype of the y projection

parameter to only contain explicit sets of agents as in 〈AgentID i : i ∈ {a, b}〉. Because

evaluation of this subtype does not involve the calculation connected agents, the query can

always be successfully performed.

In general, if the agents specified by the d parameter are not connected to the agent

issuing the query, a blocking operation will block and a probing operation will return ε. It

is important to note that the programmer cannot distinguish between a probe returning ε

for connectivity reasons versus the unavailability of a matching tuple.

To allow operations in parallel with the blocking query operations, the matchExists()

function is extended to include location parameters, as in matchExists[x, y](T, p).

Formalizing location specific output. As described earlier, the labeled tuple field cur

is used to specify the agent responsible for the tuple. To track the intended destination,

we introduced already a similar labeled field dest which is added by createTuple. When



120

an agent a performs out[d](T, t), the tuple t is written with a as the currently responsible

agent and d as the destination, even if d is connected. The atomic migration of the tuple

to d when connectivity exists is discussed shortly. As with the standard Linda constructs

of Section 9.1, the augmented constructs of Lime are specified as macro definitions, and in

fact, are built upon the Linda macros. The formal semantics for agent a inserting a tuple t

are:

out[d](T, t) , out(T, [cur :a,dest :d]⊕ t)

For notational convenience, programmers that wish to specify operations in a location trans-

parent mode are not forced to use the location augmented construct, but instead may con-

tinue to use the standard Linda out notation. In this case, when agent a issues out(T, t),

the operation is equivalent to out[a](T, t), as the default destination for tuples is to remain

with the agent that created them.

Formalizing tuple migration. It is the intent of the destination field to suggest an

agent to assume the responsibility for a tuple as soon as possible, but the formalism of

tuple output always places the tuple initially as the responsibility of the writing agent.

Therefore, we must construct an operation which is able to take advantage of a connection

as soon as it exists to migrate tuples to their destination. In the case where the writing

and the destination agents are connected, this tuple migration should be immediate. In the

case where connectivity does not immediately exist, the migration should occur as soon as

connectivity is available. This style of operation, namely taking an action opportunistically

when a condition is true, is described naturally using the reactions concept of Mobile Unity.

The reactive statement extends Unity with the capability to specify actions that

must be executed immediately after a given condition is established rather than eventually

as dictated by the fair interleaving semantics. For example, reactions can be used to model

interrupts or event driven computations. Reactive statements can appear with an individual

program specification or within the Interactions section. The reactive statements of the

entire system are logically combined to form a single reactive program that is executed to

fixed point after the execution of every conventional (non-reactive) statement. It is the

responsibility of the programmer to ensure fixed point is actually reached for the reactive

program. The syntax of a reactive statement, s reacts-to p, augments a conventional

statement, s, with a reactive clause that strengthens its guard, p. The introduction of

reactive statements affects the Unity logic, and proper inference rules are needed to prove

the correctness of reactive programs. The interested reader can find details about this

in [50].

For our purposes, the reactive statement is used to ensure that whenever connectivity

is available, misplaced tuples are migrated to their destinations. This is formally expressed



121

in the following where a tuple migrates from agent c to agent d:

〈‖ θ, c, d : θ = θ′.(θ′∈d.T ∧ θ′.cur=c ∧ θ′.dest=d) :: d.T = d.T − {θ}+ {[cur :d]⊕ θ}〉

reacts-to true

Although connectivity is not explicitly mentioned in this formula, it is implicit that tuples

can migrate only from c to d when connectivity is available. This can most easily be seen by

interpreting the above formula from the perspective of agent d. Agent d selects a misplaced

tuple from its tuple space, d.T . The tuple is migrated to d by removing the tuple and

reinserting it with the cur field properly reset. Because d.T is the shared tuple space, the

presence of a tuple belonging to c guarantees that c is connected because a tuple cannot

exist in a tuple space without the agent of its current field being connected.

The semantics of reactions, i.e., immediate execution after each non-reactive state-

ment, guarantee that tuples migrate atomically when connectivity is available. If a tuple is

written while the current and destination agents are connected, the reaction is fired immedi-

ately after the out operation, creating the appearance to the programmer of instantaneous

tuple migration to the destination. Alternately, when components come into range and have

misplaced tuples which can now be migrated to their destinations, the reaction executes in

the same atomic step that engages the previously disconnected tuple space variables, thus

migrating all misplaced tuples from the programmer’s perspective in one atomic step.

Formalizing location dependent queries. Although the existence and management

of the cur and dest fields are hidden from the programmer, the location extended Lime

construct provide limited access to tuple location information. When agent a issues a query,

the specifications are as follows:

t := in[x, y](T, p) , t := in(T, [cur :x,dest :y]⊕ p)

t := inp[x, y](T, p) , t := inp(T, [cur :x,dest :y]⊕ p)

As previously described, x and y can be either the formal AgentID or a subtype of the same

type, properly restricted for the destination field. These formal values become part of the

pattern tuple and the M function effectively accesses the defined projection.

Because the query is specified by agent a, the tuple space T is the shared tuple space

as perceived by agent a. Thus, if none of the agents specified by x are connected to a, there

will not be any tuples to match the current field. In this case, the blocking operations block

and the probing operations return ε.



122

As with the augmented output operation, we still allow the non-augmented versions

in a program with the meaning that x and y are both the formal AgentID, thereby evalu-

ating the operation over the currently shared tuple space. The augmented read and group

operations can be built in a similar manner.

9.2.3 Reactions

Linda presents a computational model in which data is pulled from the data space on

demand by a process by issuing one of the query operations. While this is a minimal model

to enable process coordination, the event model in which a process registers for specific

information and the environment pushes that information to the process when it becomes

available is a useful extension. This is especially true in the dynamic mobile environment

where taking advantage of a transient connection can be critical to enabling application

progress.

Both JavaSpaces [35] and T Spaces [33] provide event notification within the Linda

environment. In these systems, a programmer registers interest in the operations performed

over the tuple space. In other words, an application can listen for the writing or reading of

a tuple matching a specific pattern. When these operations are performed, the tuple space

implementation runs the programmer’s registered method.

Lime modifies this notion of event programming by focusing on the state of the

system rather than the performing of an action. Specifically, the programmer specifies an

action to be taken when a tuple matching a pattern is present in the currently shared tuple

space. With this model, any system property which can be represented as data can be

reacted to by adding it to the tuple space.

As mentioned in the tuple migration description of Section 9.2.2, Mobile Unity

provides the reacts-to primitive to specify an action to be taken when the system is in

a specified state. Lime reactions are similar to Mobile Unity reactions in both form and

function. The most fundamental difference between the two is that Lime reactions are

limited to reacting only to the presence of tuples in the tuple space and not to arbitrary

predicates. Second, for simplicity of discussion, we initially limit Lime reactions to firing

only one time. In other words, after the action is executed the first time, the Lime reaction

becomes a skip. We will later extend our model to allow a reaction to fire multiple times.

As with Mobile Unity reactions, a Lime programmer can specify multiple Lime

reactions, all of which are combined to form a single reactive program. This reactive program

is executed to fixed point after each change in the system state. Intuitively, the Lime reactive

program reaches fixed point when there are no more matching tuples in the tuple space or

all reactions are disabled.

The atomic execution of the reactive program is in contrast to the asynchronous

notion of event notification of JavaSpaces and T Spaces. In these systems, after an event



123

occurs the registered processes are eventually notified. In contrast, the Lime model atom-

ically executes the statement of the reaction in the same state that the matching tuple

is found in the tuple space. Therefore, the statements of a Lime reaction can make as-

sumptions about the state of the system when they are executing. Specifically, when the

statement is run, the tuple is guaranteed to be in the tuple space. With this execution

model, it is possible for one reaction to remove a tuple before all reactions have a chance

to see it. In other words, there are no guarantees that if a tuple matching a pattern p is

written that all reactive statements registered on that pattern will fire their actions.

Another important thing to note about reactions is that they fire only on the tuples

currently accessible to the interested agent. In other words, if agents a and b are connected

when b writes a matching tuple, a’s reaction fires. After a and b disconnect, if b writes and

immediately removes a tuple matching pattern p, a will never be notified of the existence

of this tuple because it never existed in a’s its.

To increase the flexibility of reactions beyond a single execution, we introduce the

mode parameter. The model described up to this point has only reactions with mode being

once, i.e., each reaction fires exactly one time. We also provide the oncepertuple mode

in which a reaction fires one time for each matching tuple in the tuple space.

Further, Lime allows the programmer to explicitly control the enabling and dis-

abling of reactions. When a reaction is disabled, it will not fire. When a reaction is

explicitly enabled, it is treated as a new reaction, with no state. In other words, an enabled

oncepertuple reaction which is disabled and then reenabled will react to any matching

tuples in the tuple space, whether or not it reacted on them before being disabled.

The specific form of a Lime reaction is ρ :: s(τ) reacts-to[x, y](T, p,mode) where s

is the statement to be performed when a tuple matching pattern p is found in the tuple

space T . As in the query operations, [x, y] indicates a projection of the tuple space to

evaluate the reaction over. The variable τ is a free variable which can appear within the

statement s and will be bound to the matched tuple when the action fires. The mode is

either once or oncepertuple. The label ρ uniquely identifies this reaction and can be

used as a parameter to the enabling and disabling functions as in enableReaction(ρ) and

disableReaction(ρ).

To make the use of reactions more concrete, we return to the producer/consumer

example and extend it to include high priority tasks generated by the producer. The idea is

that a high priority task should be performed as soon as possible by the consumer, where as

soon as possible is determined by connectivity. If the producer and consumer are connected

when the task is generated, then the consumer should immediately take and perform the

task. Alternately, if the components are not connected when the task is generated, as soon

as connectivity is available, the consumer should take and complete the task. The generation

of the high priority task is no different from the point of view of the consumer, simply the



124

task tuple is written with a different pattern indicating the increased priority, as shown

in the first statement below. The consumer program contains the corresponding reactive

statement with the pattern matching high priority tuples and the action (statement) that

performs the action, as shown in the second statement below.

out(jobs, createTuple(priority, jobInfo()))

doJob(τ) reacts-to[AgentID,AgentID]

(jobs, createTuple(priority, String),oncepertuple)

Formalizing reactions. Because the semantics of a Lime reactions closely match

those of a Mobile Unity reaction, the formalization if fairly straightforward, defining a

Lime reaction as a Mobile Unity reaction. Much of the complexity of the reaction macro

deals with the bookkeeping necessary to ensure the proper execution pattern with respect

to the mode. The details of the formalism are discussed below.

ρ :: s(τ) reacts-to[x, y](T, p,mode) ,

〈‖ θ : θ = θ′.(M(θ′, [id :TupleID,cur :x,dest :y]⊕ p)

∧ θ′ ∈ T ∧ θ′.id /∈ reactedSetρ

∧(mode = once⇒ reactedSetρ = {}))

:: s{τ/θ} ‖ reactedSetρ := reactedSetρ ∪ {θ.id}〉

reacts-to

matchExists(T, [id :TupleID,cur :x,dest :y]⊕ p) ∧ enabledρ

To keep track of the tuples which have been reacted to and whether the user has

enabled or disabled the reactions, two auxiliary variables indexed by ρ, namely reactedSet ρ

and enabledρ, are introduced. By subscripting these variables with the unique reaction

identifier ρ, we are guaranteed that reactions will not interfere with one another.

The selection of a matching tuple uses the same nondeterministic selection notation

as described in the Linda formalism for the copy function. The necessity to bind the matched

tuple to the free variable τ prohibits the use of the copy function here, but the semantics

are the same. A matching tuple is selected from the shared tuple space.

The condition for actually firing the reaction (executing the user action s) depends

on the contents of the reactedSet . This variable tracks the identity of the tuples that have

caused the user action to execute in the past. When s is executed, in parallel the unique

tuple identifier is written to the set. A oncepertuple reaction will only fire if the selected

tuple has not been recorded in this set. A once reaction will only fire if no tuples have

been reacted to.



125

The user action s(τ) can be any regular Unity statement except for a Mobile Unity

transaction. The reason for this exception comes directly from the Mobile Unity formalism.

For more details, see [50]. The Lime in operation can be used to remove the tuple from the

tuple space, or a reaction can be enabled using the macros below.

The matchExists function is necessary as a condition to the reaction because we must

guarantee that at least one tuple can be selected from the tuple space. Otherwise, the θ ′

variable cannot be bound and the formalism will be incorrect. The second condition for

the reaction, namely enabledρ tracks whether the user has explicitly enabled or disabled the

reaction with the following macros:

enableReaction(ρ) , enabledρ, reactedSetρ := true, {}

disableReaction(ρ) , enabledρ := false

By clearing the reactedSet when a reaction is reenabled, it is treated as a new reaction

which has not fired on any tuples in the tuple space. It is important to remember that

the reactive program is executed after every regular statement, including a statement that

enables a reaction. This means that a reaction may fire in the same atomic step as the

statement which enables it, assuming a matching tuple exists in the tuple space.

Initially, each reaction must either be disabled or enabled with an empty reacted

set. To easily allow the programmer to specify which state a reaction starts in, the always

section of a program can contain one of the following predicates for each reaction:

initEnable(ρ) , enabledρ = true ∧ reactedSetρ = {}

initDisable(ρ) , enabledρ = false

9.3 Practical Considerations in Implementing the Model

The model in the previous sections provides a clean abstraction for describing the transient

interactions of mobile components using tuple spaces. The formalism allows us to specify

and reason about the mobile systems and serves as a first step toward the development of

reliable mobile applications.

The next logical step is to actually implement these mobile systems in such a way

that their characteristics match those defined by the formal model. Rather than begin the

development process from scratch for each project, we choose to provide an implementation

of the Lime model as a middleware. Intuitively, the Lime middleware sits between the

operating system and the applications, completely hiding the details of the network com-

munication. Lime provides an interface for tuple space coordination which is very similar

to the abstractions described by the model.



126

The implementation is not identical to the model for several reasons. First, we

choose for the implementation Java, an object oriented, sequential language. This cannot

match exactly the properties of Mobile Unity, a programming notation with no sequential

constructs and transiently shared memory. Further, some of the constructs as previously

defined are often inefficient to implement in a distributed mobile environment and must be

weakened to define similar functionality at a lower cost.

Next, the mobile environment is by definition also a distributed environment where

parallel processing is possible. An efficient implementation should exploit parallelism when-

ever possible while maintaining the semantics of the model.

The remainder of this section describes how some of the constructs can be im-

plemented to exploit parallelism and how some constructs must be weakened to increase

parallelism.

9.3.1 Distribution and Parallelism

The implementation of the Lime model describes a distributed system with multiple active

processes (mobile agents), multiple processors (on each mobile host), and data stored in

multiple physical locations (in the memory of the hosts). The Lime model leads to a

natural distribution of the contents of the tuple space among the hosts according to the

location of the mobile agents and the agent currently responsible for the tuple. Recall that

we refer to the current tuple field as the location of the tuple. This relates directly to an

implementation in which a tuple resides in the memory of the host where the responsible

agent is executing. When a tuple is migrated in the model by changing the value of the

current field, the implementation physically moves the tuple to the host of the new current

agent. Therefore, if a host disconnects, no data needs to be moved because the tuples to

be migrated with the agents on that host have already been moved into the memory of the

host. The illusion of a transiently shared tuple space shared among connected components is

implemented using the message passing primitives of the runtime system to perform remote

queries and return results.

The implementation of the distributed tuple space model of Lime has many of the

characteristics of a distributed database. Parallel operations can be performed on the

data as long as they do not conflict. For example, multiple tuple space read operations

can be performed simultaneously because the contents of the tuple space are not affected

and the operations can be serialized in any order without affecting the correctness of the

system. Further, multiple tuples can be simultaneously removed as long as they are removed

from disjoint partitions of the tuple space. The physical distribution of tuples across hosts

defines a natural partitioning of the shared tuple space. Non-conflicting operations can be

performed independently on each of these partitions. Within a partition, the operations



127

themselves must be serialized. In other words, the operations of all local agents must be

coordinated. Fortunately, this kind of local control is inexpensive to implement.

9.3.2 Probing Operations

Other operations cannot be as easily parallelized. For example, consider the probing oper-

ation inp[AgentID,AgentID](T, p) which queries the entire tuple space for a tuple matching

the pattern p. The precise semantics of this operation as defined by our model requires that

ε be returned only if no tuple exists in the state when the operation is executed. To phrase

this another way, in a consistent snapshot of the distributed tuple space, no matching tuple

exists and ε should be returned. If a matching tuple does exist, the semantics do not require

a system-wide snapshot. The probing read and group operations have similar requirements.

While such a transaction can be implemented, the cost of this operation on the

overall system can be significant, both in terms of message overhead as well as with respect

to the time to perform the query in which all other processing is halted.

One way to eliminate the expense of system-wide transactions caused by probe

operations is to limit them to a partition of the tuple space over which a transaction is

more easily implementable. For example, within a host, transactions to coordinate agents

require little overhead. It should be noted that a probe query can be done on either the

local host or a remote host without a multi-host transaction. Only the host where the query

is actually performed needs to guarantee the atomicity of the operation.

While restricting a probing operation to a single host clearly limits its power, the

tradeoffs associated with system complexity, message overhead, and loss of parallelism must

be considered. In fact, it is reasonable to provide both restricted and unrestricted versions

of the operations, however the programmer must be aware of the impact on system perfor-

mance when strong forms are used.

9.3.3 Reactions

Just as the probing operations which specify a projection which includes multiple hosts

require a transaction, Lime reactions that respond to the presence of tuples located at

multiple hosts have similar requirements. A first step toward limiting the scope of a reaction

is to restrict the projection to a single agent or single host as was done for the probes,

however this is not sufficient to remove the need for a transaction.

As described in the model, the user action s can be any program statement, including

Lime operations which modify the tuple space. The implementation must guarantee that

these operations are performed atomically with the firing of the reaction. If any of these

operations involve queries of tuples on remote hosts, then a transaction is necessary to

guarantee atomicity. It should be noted that even the out operation which specifies a



128

remote destination introduces the need for a transaction. The migration of the tuple occurs

in the same atomic step as the writing of the tuple, which is in the same atomic step as

the firing of the reaction. For this reason, we restrict the strong reaction to fire only over

tuples on the same host as the agent that installed the reaction, and for the user action to

only access and affect the local projection of the tuple space.

Another natural line for parallelism is to separate the operations of the differently

named and therefore disjoint tuple spaces. Again, the user action is not restricted from

accessing other tuple spaces, and may require a transaction involving multiple tuple spaces.

The natural restriction in this case is to prohibit user actions from accessing any tuple space

except the one specified on the right hand side of the reactive statement.

Weakening the model. While these restrictions allow us to build reactive statements

that do not require unreasonable transactions involving multiple hosts, we have lost the

ability to proactively push information to an agent from a remote projection of the tuple

space. Clearly the above arguments show that the strong atomicity guarantees of the

reaction make the implementation costly.

We therefore propose to extend the model itself with a new construct that has similar

capabilities, but eliminates the tight coupling between the detection of the tuple and the

firing of the user action. To this end, we define a weak reaction which can be installed

on projections of the tuple space which span multiple hosts. By separating the execution

from the detection, transactions are no longer required, and the system performance can be

greatly enhanced.

Because this notion of weak reaction is radically different from that of strong reac-

tions, we take the extra step of providing the formal definition of the new construct below.

Syntactically, the specification of a weak reaction by the programmer includes the same

elements as the specification of a strong reaction, namely a unique reaction label, the user

action, the tuple space projection, the name of the tuple space, a pattern, and a mode.

ρ :: s(τ)weak-reacts-to[x, y](T, p,mode)

To specify the semantics of this operation, we take advantage to its similar function-

ality to strong reactions, but force an asynchronous step between the identification of the

tuple and the execution of the user reaction. To identify a tuple, we employ the Lime strong

reaction, but define our own system action which places the identified tuple into a special

variable called the events set, indexed by the reaction identifier. The events set serves as a

temporary holding place for all tuples which should be reacted to, but for whom the user

reaction has not fired. A second statement which executes in a different atomic step from

the reaction removes tuples from the event set and fires the user action.



129

ρ :: s(τ) weak-reacts-to[x, y](T, p,mode) ,

ρ :: eventsρ := eventsρ ∪ {τ} reacts-to[x, y](T, p,mode)

[] 〈‖ θ : θ = θ′.(θ′ ∈ eventsρ) :: eventsρ := eventsρ − {θ} ‖ s{τ/θ}〉

if eventsρ 6= ∅

One point to notice about this formula is the use of nondeterministic selection to

remove the tuple from the events set. Similar to the definition of remove definition of

Section 9.1, exactly one tuple will be selected, ensuring that only one user action s will fire

at a time.

As with strong reactions, only tuples in the currently shared tuple space will be

reacted to, meaning that after the hosts disconnect, any tuples written and removed from

the remote tuple space during the disconnection will not be reacted to, even in the weak

model.

9.3.4 Engagement and Disengagement

Two other points in the Lime model define atomic access to the distributed contents of the

shared tuple space and therefore require transactions in order to be properly implemented:

engagement and disengagement. On the engagement of tuple spaces, the sharing operation

defines that the tuple space now contains the union of all connected tuple spaces. When

combined with the reactive statement to migrates all misplaced tuples, a transaction is

needed to ensure all misplaced tuples are atomically transferred and that all connected

hosts have the same perception of which agents are accessible in the connectivity graph.

On disconnection, the tuple space is partitioned based on the current location field of

the tuples. Because the implementation guarantees that all tuples are physically transferred

to their destination as soon as connectivity is available, no tuples need to be migrated during

a disconnection. However, a transaction is still necessary to ensure that all agents have the

same view of the connectivity graph.

Although it is possible to weaken the engagement and disengagement semantics

such that a transaction is not necessary, for the initial implementation of the model, we

keep the strong semantics. By weakening the semantics of these actions, the consistency

model of the tuple space significantly changes because each agent can potentially have a

different perception of the contents of the tuple space at any given moment. To avoid

these confusions, the implementation employs a system-wide transaction each time the

connectivity graph changes.



130

9.4 Concluding Remarks

This chapter presented the formal model of Lime using constructs from Mobile Unity. We

then presented several implications of the model in a real implementation, showing where

the model can and cannot be parallelized and suggesting the weakening of some operations

to increase parallelism while remaining useful. The result is a complete specification of

Lime, including the data structures and the operations available to manipulate these data

structures.

The model serves two main purposes. First, an application programmer can build

a formal model of their system using these abstractions. Because the constructs of Lime

have been fully specified, the user specification can be formally reasoned about, and critical

properties can be proven. The second objective of this specification is to serve as the

complete definition of the concepts to be implemented in the middleware presented in the

next chapter. Because the middleware is implemented in Java, a language fundamentally

different from Mobile Unity, we must be careful to maintain the same semantics put forth

by this specification in the implementation.



131

Chapter 10

Implementing and Applying Lime

Middleware has emerged as a new development tool which can provide programmers with

the benefits of a powerful virtual machine specialized and optimized for tasks common in a

particular application setting without the major investments associated with the develop-

ment of application-specific languages and systems. The approach is intellectually attractive

and economical at the same time. For the programmer, middleware offers a clean model

that can be easily understood and readily adopted without the need to acquire a new set of

programming skills or to delve into the intricacies of a sophisticated formal model. For the

software engineer, middleware provides a vehicle by which new concepts and design strate-

gies may be packaged and disseminated without the high cost associated with complex tool

sets and compilers. For these reasons, middleware is enjoying growing popularity in the

distributed computing arena. Given the complexities associated with software involving

mobile hosts and agents, middleware is expected to establish itself as an important new

technology in mobility as well. This chapter presents a middleware which implements the

abstractions of Lime.

This chapter begins with a brief outline of the interface presented to the programmer,

followed by a description of the design and implementation of the middleware. Section 10.3

presents two specific applications built using Lime, and Section 10.4 provides reflections on

the development process of Lime.

10.1 Programming with Lime

We begin this presentation of the Lime model by briefly commenting upon the programming

interface that is currently provided in the implementation of Lime.

The class LimeTupleSpace, shown in Figure 10.11, embodies the concept of a tran-

siently shared tuple space. Objects of this class are created by specifying an instance of the

1Exceptions are not shown for the sake of readability.



132

public class LimeTupleSpace {

public LimeTupleSpace(Agent agent, String name);

public String getName();

public boolean isOwner();

public boolean setShared(boolean isShared);

public static boolean setShared(LimeTupleSpace[] lts,

boolean isShared);

public boolean isShared();

public void out(ITuple tuple);

public void out(AgentLocation destination, ITuple tuple);

public ITuple in(ITuple template);

public ITuple in(Location current, AgentLocation destination,

ITuple template);

public ITuple inp(Location current, AgentLocation destination,

ITuple template);

public ITuple rd(ITuple template);

public ITuple rd(Location current, AgentLocation destination,

ITuple template);

public ITuple rdp(Location current, AgentLocation destination,

ITuple template);

public RegisteredReaction[]

addStrongReaction(LocalizedReaction[] reactions);

public RegisteredReaction[] addWeakReaction(Reaction[] reactions);

public void removeReaction(RegisteredReaction[] reactions);

public RegisteredReaction[] getRegisteredReactions();

public boolean isRegisteredReaction(RegisteredReaction reaction);

}

Figure 10.1: The class LimeTupleSpace, representing a transiently shared tuple space.

Agent class, which essentially provides a means to uniquely identify a mobile agent. The

thread associated to such agent object will be the only one allowed to perform operations on

the LimeTupleSpace object; accesses by other threads will fail by returning an exception.

This represents the constraint that the its must be permanently and exclusively attached

to the corresponding mobile agent.

In Lime, agents may have multiple itss distinguished by a name, which is the second

parameter for the constructor of LimeTupleSpace. The name determines the sharing rule;

only tuple spaces with the same name are transiently shared. For instance, this enables

an agent to exchange information with a service broker about the available CD resellers by

transiently sharing the corresponding its, and then subsequently share information about

a given title and the payment options with the reseller selected through a different its, thus

keeping separate the information concerned with different tasks and different roles.

Agents may have also private tuple spaces, i.e., not subject to sharing. A private

LimeTupleSpace can be used as a stepping stone to a shared data space, allowing the agent

to populate it with data prior to making it publicly accessible, or it can turn out to be



133

useful just as a primitive data structure for local data storage. As a matter of fact, all tuple

spaces are initially created as private, and sharing must be explicitly enabled by calling the

instance method setShared. The method accepts a boolean parameter specifying whether

the transition is from private to shared or vice versa. Calling this method effectively triggers

engagement or disengagement of the corresponding tuple space. Sharing properties can also

be enabled in a single atomic step for multiple tuple spaces owned by the same agent by

using the class method setShared.

LimeTupleSpace contains also the Linda operations needed to access the tuple space,

as well as their variants annotated with location parameters. Tuple objects must imple-

ment the interface ITuple, defined in a separate package that provides a definition for

a Linda tuple space that is independent on the actual runtime support used. As for lo-

cation parameters, Lime provides two classes, AgentLocation and HostLocation, which

extend the common superclass Location by enabling the definition of globally unique lo-

cation identifiers for hosts and agents. Objects of these classes are used to specify dif-

ferent scopes for Lime operations. Thus, for instance, a probe inp(cur,dest,t) may

be restricted to the tuple space of a single agent if cur is of type AgentLocation, or it

may refer the whole host-level tuple space, if cur is of type HostLocation. The constant

Location.UNSPECIFIED is used to allow an unspecified location parameter. Thus, for in-

stance, in(cur,Location.UNSPECIFIED,t) returns a tuple contained in the tuple space

of cur, regardless of its final destination, thus including also misplaced tuples. Note how

typing rules allow to constrain properly the nature of the current and destination loca-

tion according to Lime rules. Thus, for instance, the destination parameter is always an

AgentLocation object, as agents are the only carriers of a “concrete” tuple space in Lime.

Specifying a HostLocation as a destination for a tuple would result in the impossibility

to assign a responsible for the tuple when the host-level tuple space becomes partitioned

due to disengagement. Note also how, in the current implementation of Lime, probe are

always restricted to a subset of the federated tuple space, as defined by the location pa-

rameters. An unconstrained definition, like the one provided for in and rd, would involve

a distributed transaction in order to preserve the semantics of the probe across the whole

transiently shared tuple space.

All the operations retain the same semantics on a private tuple space as on a shared

tuple space, except for blocking operations. Since the private tuple space is nonetheless

permanently and exclusively associated to an agent, the execution of a blocking operation

would immediately suspend the agent forever, waiting for tuples that no other agent is

allowed to insert. In this case, a run-time exception is thrown instead.

The remainder of the interface of LimeTupleSpace is devoted to managing reactions;

other relevant classes for this task are shown in Figure 10.2. Reactions can either be of type

LocalizedReaction, where the current and destination location restrict the scope of the



134

public abstract class Reaction {

public final static short ONCE;

public final static short ONCEPERTUPLE;

public ITuple getTemplate();

public ReactionListener getListener();

public short getMode();

public Location getCurrentLocation();

public AgentLocation getDestinationLocation();

}

public class UbiquitousReaction extends Reaction {

public UbiquitousReaction(ITuple template,

ReactionListener listener,

short mode);

}

public class LocalizedReaction extends Reaction {

public LocalizedReaction(Location current,

AgentLocation destination,

ITuple template,

ReactionListener listener,

short mode);

}

public class RegisteredReaction extends Reaction {

public String getTupleSpaceName();

public AgentID getSubscriber();

public boolean isWeakReaction();

}

public class ReactionEvent extends java.util.EventObject {

public ITuple getEventTuple();

public RegisteredReaction getReaction();

public AgentID getSourceAgent();

}

public interface ReactionListener extends java.util.EventListener {

public void reactsTo(ReactionEvent e);

}

Figure 10.2: The classes Reaction, RegisteredReaction, ReactionEvent, and the inter-
face ReactionListener, required for the definition of reactions on the tuple space.



135

tuple space scanned for matching, or UbiquitousReaction, that specify the whole federated

tuple space as a target for matching. The type of reactions is used to enforce the proper

constraints on the registration of reactions through type checking. These classes have the

abstract superclass Reaction in common, which defines a number of accessors for the prop-

erties set on the reaction at creation time. Creation of a reaction is performed by specifying

the template that needs to be matched in the tuple space, a ReactionListener object that

specifies the actions taken when the reaction fires, and a mode. The ReactionListener

interface requires the implementation of a single method reactsTo that is invoked by the

runtime support when the reaction actually fires. This method has access to the infor-

mation about the reaction carried by the ReactionEvent object passed as a parameter to

the method. The reaction mode can be either of the constants once and oncepertuple,

defined in Reaction. once specifies that the reaction is executed only once and then dereg-

istered automatically in the same atomic step. When oncepertuple is specified instead,

the reaction remains registered but it never executes twice for the same tuple.

Reactions are added to the its by calling either addStrongReaction or

addWeakReaction. Only LocalizedReaction can be passed to the former, as prescribed

by the Lime model. Due to the different semantics, this operation has different atomicity

guarantees. The former guarantees that all the reactions passed as a parameter are regis-

tered in a single atomic step, i.e., processing of reactions takes place only after all reactions

have been inserted in the LimeTupleSpace, and yet before any other operation takes place

on it. The latter does not provide such guarantee, as weak reactions could be spread on

multiple hosts and thus enforcing the property above would entail a distributed transaction

among all the nodes involved.

Registration of a reaction in any case returns an object RegisteredReaction, that

can be used to deregister a reaction with the method removeReaction.

RegisteredReaction basically acts as a “ticket stub” for the registration of the reaction,

and provides additional information about the registration process. The decoupling between

the reaction used for the registration and the RegisteredReaction object returned allows

for registration of the same reaction on different itss, or to register the same reaction with

a strong and then subsequently with a weak semantics.

10.2 Design and Implementation of Lime

In this section we look behind the scenes of the Lime programmer interface, by providing

some insights about the internal structure of the lime package and of the associated run-

time support. The presentation will proceed through increasing levels of complexity. We

first describe how the simple notion of a private, non-shared tuple space is made available

through the LimeTupleSpace class. Then, we move on to describe the components that



136

enable the local transient sharing that determines a host-level tuple space. Finally, we show

how the illusion of a federated tuple space enabling transient sharing across remote nodes

is provided.

Private Tuple Space A private tuple space essentially provides a Linda tuple space that

is permanently attached to an agent. It enjoys exclusive access to the tuple space and can

leverage off the strong reaction feature of Lime. Furthermore, since the private tuple space

can later be engaged through transient sharing, support for operations annotated with tuple

location parameters must be provided as well.

The core functionality above is supported by two objects that belong to every

LimeTupleSpace object. The first object has type ITupleSpace and provides exactly the

functionality of a plain Linda tuple space, including blocking operations. The second ob-

ject is of type Reactor and is in charge of running the reactive program constituted by the

reactions registered on the LimeTupleSpace object after each operation.

When designing Lime, we had to face the decision about how to implement the

core tuple space support. Analysis of available systems revealed that they provide a very

rich set of features, with big variations in terms of expressiveness, performance, and often

also semantics. The need for a simple, lightweight implementation, combined with the

desire to provide support and interoperability with industry-strength products, led us to

the development of an adaptation layer that hides from the rest of the Lime implementation

the nature of the underlying tuple space engine. This layer is provided by a separate

package called LighTS, developed by one of the authors. ITupleSpace, together with the

already mentioned ITuple, and IField, are the interfaces that provide access to the core

tuple space functionality. Adapter classes implementing this interfaces can be loaded at

startup time to translate these operations into those of the tuple space engines supported.

Currently, adapters are in place for our lightweight tuple space implementation and for

IBM’s TSpaces [33]. Short term activities include the development of an adapter for Sun’s

JavaSpaces [35].

Support for operations annotated with tuple locations relies on the ITupleSpace

object, although a change in the format of tuples is performed along the way. In fact, the

design choice we made was to represent tuple location parameters as tuple fields, in order to

simplify the implementation of the corresponding extended operations and, as we will see

later, to simplify the retrieval of misplaced tuples during engagement. Nevertheless, this

representation is hidden from the programmer, who is prevented from tampering directly

with the location fields (which would possibly lead to changes in the semantics) and can refer

to location fields only through the corresponding parameters in the operations provided by

LimeTupleSpace. Thus, upon insertion, a tuple specified by the programmer is augmented

with two location fields representing the current and destination location. These fields are



137

then stripped down when operations accessing the tuple space, like rd, are performed. As

it will be discussed in the remainder of this section, a third field containing a globally

unique tuple identifier is also added, and it is used exclusively to support reactions with a

oncepertuple mode.

The Reactor object is the other key component of the LimeTupleSpace. It contains

the list of registered reactions forming the reactive program, which gets changed through

the methods of the LimeTupleSpace that add and remove reactions. The current imple-

mentation supports only reactions to changes in state and not to the mere occurrence of

an operation. This means that execution of the reactive program must be triggered only

when the contents of the tuple space changes, i.e., as part of the execution of the out

method of the LimeTupleSpace. The requirement for the reactive program to run to fixed

point after every such change is achieved by cycling through the whole list of reactions in a

round robin fashion until no reaction is enabled to fire. A straightforward implementation

of this processing would probe the whole tuple space for a tuple matching the reaction’s

template every time a reaction is evaluated. Clearly, this would be quite highly inefficient

even for a small number of reactions and tuples, especially in the case of reaction listeners

that insert tuples of their own. For this reason, our Reactor adopts an optimized strategy

that mirrors and separates, during execution of the reactive program, the tuples written to

the tuple space as a consequence of the firing of a reaction from those that have already

been checked, thus avoiding looking at the same tuple more than once per evaluation of

a reaction. This complicates the management of the tuple space during the evaluation of

reactions because it must be kept consistent with the Reactor’s view. Nevertheless, in our

experience this added complexity is far outweighed by the advantages gained, especially

during the processing of oncepertuple reactions which, as we will discuss, represent a

major asset during development.

Host-Level Tuple Space Transient sharing of LimeTupleSpace objects is under the

explicit control of the respective agent. Once sharing is turned on, a host-level tuple space

is created. Implementation of this abstraction requires a host-wide, centralized management

of the access to the individual tuple space objects, in order to properly enforce the semantics

of transient sharing and to take into account engagement and disengagement of local tuple

spaces. This management is provided by instances of the class LimeTSMgr.

At run-time, there exist one LimeTSMgr per each named transiently shared tuple

space currently active. A LimeTSMgr object is created as soon as the first LimeTupleSpace

instance with a given name is engaged. Subsequent engagements of LimeTupleSpace objects

with the same name will refer to the same LimeTSMgr. Engagements of objects with a

different name will refer to a different LimeTSMgr.



138

Upon local engagement of a given tuple space, the LimeTupleSpace object surrenders

the control of its own ITupleSpace object. Thus, the implementation of the methods

providing access to the tuple space no longer operate directly on the ITupleSpace. Instead,

operation requests are forwarded to the corresponding LimeTSMgr, and the calling agent

is suspended, waiting for the result. Operation requests are enqueued by the LimeTSMgr,

which runs in a separate thread of control, and thus their execution is serialized. This way,

synchronization among concurrent accesses performed through different LimeTupleSpace

instances is obtained structurally, by confining concurrent accesses in a synchronized queue.

In our current implementation, not only the LimeTupleSpace surrenders control of

its tuple space, but the contents of the ITupleSpace object are physically merged upon

engagement in another ITupleSpace object associated with the LimeTSMgr. This latter

object becomes then a concrete representation of the host-level tuple space. Similarly, the

reactive statements of each LimeTupleSpace instance are all moved, upon engagement, into

a Reactor object associated to the LimeTSMgr. The rationale for this design decision lied in

the fact that this solution optimizes for tuple queries, especially if the underlying tuple space

engine adopts indexing mechanisms to provide faster access to tuples, like in the case of

T Spaces. Thus, this solution is appropriate in the case where changes in the configuration

are not very frequent. However, experience with applications and the development of our

own lightweight tuple space made us consider more carefully the alternate solution of keeping

tuples and reactions in the objects associated with the LimeTupleSpace, and simply allow

the LimeTSMgr to reference them. This latter solution, by eliminating the transfer of tuples

and reactions during engagement and disengagement, is likely to provide better performance

in the case of frequent mobility. In the short term, we will extend our run-time support to

let the choice of the more appropriate strategy to the designer, who will evaluate it against

application needs.

In contrast with LimeTupleSpace objects that are still private, when sharing is

enabled blocking operations are allowed as well because multiple agents can write tuples to

the host level tuple space. In the case where a matching tuple is found, no special processing

is necessary and the LimeTSMgr releases the agent with the appropriate result. However, if

no matching tuple exists, a mechanism must be established to detect when the tuple shows

up, and immediately to notify and release the waiting agent. The realization that this kind

of processing is somehow reactive led us to a design solution that exploits the notion of

reaction not only as part of the programming interface, but also as a core element of system

design.

For each blocking operation that does not find immediately a matching tuple, a

strong reaction with the specified template is created, together with a system-defined

ReactionListener. This listener will be called as any other Lime reaction listener, that is,

with a ReactionEvent parameter containing the matching tuple triggering the reaction. In



139

the case of a rd, the listener will simply return a copy of the tuple in the ReactionEvent

object to the suspended agent; in the case of an in, the listener will also first remove the

matching tuple from the host. Note that, in this latter case, the listener is guaranteed that

the tuple is still in the tuple space, because the reactive program runs as a single atomic

step.

Federated Tuple Space Creating the illusion of a transiently shared federation of tuple

spaces is the ultimate goal of the abstractions provided by Lime. This is accomplished by

building upon the choices and mechanisms discussed thus far. While, the ultimate target

environment for Lime is an ad hoc network where mobile hosts may move unconstrained

and mobile agents can roam among them, we recognize that such a task of monumental

proportions is likely to fail if not backed up by an initial evaluation of the primitives chosen.

For this reason, our first version of Lime is based on a more constrained scenario that

allows us to quickly develop a first implementation and gather feedback from applications,

as discussed in the next two sections. We assume that mobile units announce explicitly

their intentions to join and leave the Lime community, which determines the ability to

control programmatically in Lime the engagement and disengagement process. Also, the

scenario we assume involves a single community of mobile hosts, all in communication

range. This latter constraint will change as we integrate an ad hoc routing protocol within

our testbed network. Thus far, disengagement of a host always leaves the rest of the

community connected, and hosts are able to join the community only one at a time, i.e., we

do not yet support the engagement of two distinct Lime communities.

The management of changes in the configuration of the hosts is one of the key ad-

ditions needed to move from the host-level to the federated tuple space. The engagement

and disengagement protocols are implemented as community-wide transactions in order to

maintain a consistent view among all hosts. To coordinate change requests in the config-

uration of the community and to ensure a total ordering of transactions among all hosts,

the current version of our engagement protocol determines the presence of a leader in the

community, with an election mechanism in place to deal with leader departure. The details

of the protocols can be seen in Figure 10.3.

The first step of the protocol involves the engaging host, and presumes the availability

of multicast support, which is exploited by the host to send a first message requesting the

engagement. Upon receipt of the message, all hosts in the community prepare locally for

engagement and inform the leader that they are ready. When the leader knows that all

hosts are ready, the distributed transaction begins and the hosts in the community begin

to exchange any misplaced tuples and new weak reactions with the new host.

One critical aspect of engagement is the update of the LimeSystem tuple space. This

is accomplished in two steps. When a host first joins the Lime community, it sends a



140

join(lsts)

hosts1..nleader

disengaage()

hosts1..ndisengaging host

leave()

leave()join(lsts)

engage() disengage()

ready()

engaging host

data(t,r)

ready()

data(t,r,lsts)

data(t,r)

data(t,r)

leader

Figure 10.3: The engagement and disengagement protocols. Dashed lines indicate multicast
messages, heavy solid lines represent multiple unicast, and regular lines are unicast messages.
The data message from the leader may contain tuples (t), weak reactions (r), and all the
tuples in the LimeSystem tuple space (lsts).

copy of the content of its own LimeSystem in the multicast message sent to all the hosts.

This information is bound to contain only agents and tuple spaces present on that host,

since the engaging host is not part of any other community. The information distributed

to the members of the community serves to update their own LimeSystem in a way that is

consistent with the configuration the system will assume after engagement is completed. In

addition, when the leader sends its own tuple space information it will also send a copy of

its LimeSystem tuple space to the new host. This way, the engaging host will be able to

obtain a consistent view of the new configuration being built. Incidentally, this will also

allow the engaging host to determine when it has exchanged data with all the members of

the community, and thus it can resume regular processing. The disengagement protocol is

similar albeit notably shorter than engagement, as there is no need to exchange data. With

minor modification, these protocols are also used for the engagement and disengagement

of agents and tuple spaces, both when the host is and is not part of a Lime community,

although for simplicity, this was not discussed earlier.

Besides changes in the configuration, the very task of enforcing the semantics of

the operations we described in the previous section for the whole federated tuple space

is complicated by distribution. In particular, much of the complexity actually lies in the

mechanisms supporting weak reactions. These are based on the same idea exploited to

handle blocking operations on the host-level tuple space. When a weak reaction is regis-

tered, the ReactionListener object specified by the programmer is inserted in a separate

weakReactionMgr object, while a system-defined strong reaction is registered with the re-

actor associated with the LimeTSMgr of the hosts involved in the weak reaction. These



141

strong reactions guard the host-level tuple space (or a single agent tuple space, depending

on the value of its current location parameter). If the strong reaction is fired locally to the

subscribing agent, the listener simply looks into the local weakReactionMgr and the user

ReactionListener is executed. Alternately, if the reactor is remote, the listener sends a

message to the subscriber’s host with a ReactionEvent. When this message arrives, the

user’s ReactionListener is executed. In the case of a once reaction, we must be careful

to only execute the ReactionListener one time even though multiple matching tuples may

be returned from different hosts in the system.

Federation also has an impact on remote processing of basic tuple space operations.

Just as we were able to exploit the local reactor for the remote operations at the host level,

here we utilize the weak reaction structure. A remote blocking rd is identical to a once,

weak reaction with a system defined ReactionListener which releases the blocked agent.

A remote blocking in is slightly more complex as we may get responses back from multiple

hosts, must return to that host to actually retrieve the tuple (using an inp) before releasing

the agent.

Although the same Reactor serves both once and oncepertuple reactions, the

processing of matching tuples are tailored based on this mode. After a once reaction

fires, the reaction is removed from the reactive program because the user’s request has been

satisfied. Alternately, a oncepertuple reaction remains registered and must ensure that no

single tuple causes the reaction to fire more than once. This is accomplished by keeping a list

of the tuple identifiers which have already been reacted to within the RegisteredReaction

itself. Each time a matching tuple is found, this data structure is queried and updated

to determine if the ReactionListener should be executed. The implementation of the

Reactor which separates newly written tuples from those which were in the tuple space prior

to this round of the reactive program greatly improves the performance of oncepertuple

by not selecting a tuple more than once from a single local tuple space. However, because

tuples can migrate and weak reactions can be uninstalled and reinstalled as connectivity

changes, it is possible for a tuple to be selected more than one for a reaction, making the

list of tuple identifiers necessary. By passing a relevant subset of the list of tuples already

reacted to when an upon is reinstalled, additional duplication can be eliminated.

The uninstalling and reinstalling of weak reactions during disengagement and en-

gagement provides another opportunity for optimization. Consider the situation where two

hosts, A and B, connect while an agent on A has a ubiquitous reaction registered. All of

the matching tuples in B’s host level tuple space will be sent to A’s agent and the reaction

fired. If A and B disconnect and reconnect at a later time, all of the tuples previously

reacted to, need not be retransmitted. However, because the reaction is uninstalled during

disconnection, on reconnection B has no recollection of the tuples which it has already sent.

Therefore, as part of the reinstallation process, the list of tuples at B which have already



142

been reacted to are sent. Although this increases the amount of information exchanged

during engagement, this data can be greatly compressed and unnecessary traffic may be

eliminated.

Details about the Current Implementation Lime is currently implemented com-

pletely in Java, with support for version 1.1 and higher. Communication is completely han-

dled at the socket level—no support for RMI or other additional communication mechanisms

is needed or exploited in Lime. The lime package is about 5,000 non-commented source

statements, for about 100 Kbyte of jar file. The lighTS package providing a lightweight

implementation of a tuple space and the adapter layer integrating multiple tuple space en-

gine adds an additional 20 Kbyte of jar file. Thus far, it has been tested successfully on

PCs running various versions of Windows and using Lucent WaveLAN wireless technology.

10.3 Developing Mobile Applications with Lime

Application development is the last phase of our research strategy, and the one where the

abstractions inspired by formal modeling and embodied in the middleware are evaluated

against the real needs of practitioners.

In this section we present two applications that exploit the current implementation

of Lime in a setting where physical mobility of hosts is enabled. The two applications

are typical of the physical mobility domain. The first one involves the ability to perform

collaborative tasks in the presence of disconnection, while the second one revolves around

the ability to detect changes in the system configuration. In each case, we present the

corresponding application scenarios and a report about the way Lime has been exploited

during development. The lessons learned from these experiences and the results of our

empirical evaluation of Lime are presented in the next section.

10.3.1 RoamingJigsaw: Accessing Shared Data

Scenario Our first application, RoamingJigsaw as shown in Figure 10.4, is a multi-

player jigsaw assembly game. A group of players cooperate on the solution of the jigsaw

puzzle in a disconnected fashion. They construct assemblies independently, share interme-

diate results, and acquire pieces from each other when connected. Play begins with one

player loading the puzzle pieces to a shared tuple space. Any connected player sees the

puzzle pieces of the other connected players and can select pieces they wish to work with.

When a piece is selected, all connected players observe this as a change in the colored bor-

der of the piece, and within the system, the piece itself is moved to be co-located with the

selecting player. When a player disconnects, the workspace does not change, but the pieces

that have been selected by the departing player can no longer be selected and manipulated.



143

Figure 10.4: RoamingJigsaw. The left image shows the view of a disconnected player
which is able to assemble only pieces it selected. The right image shows the view after the
player re-engages with the other players, seeing assembly that occurred during disconnec-
tion.

From the perspective of the disconnected player, pieces whose border is tagged with the

player’s color can be assembled into clusters. Additionally, the player can connect to other

players to further redistribute the pieces, and to view the progress made by the other players

with respect to any clusters formed since last connected.

Play begins with one player loading the puzzle pieces to a shared tuple space. All

users connected see the puzzle pieces in the shared workspace displayed in the user interface.

Players can select pieces, resulting in a different color of the piece outline, and bring them

to their own workspace. When a piece is selected, moved, or otherwise manipulated, all

connected players see the change. When a player disconnects the workspace does not

change, but the pieces that have been selected by the player cannot be manipulated by

other players. While disconnected, the player may build assemblies by manipulating only

the pieces displayed with the player’s color. These changes will become available to the

other group of players only when they become in contact again. Of course, connectivity

may be restored only with some of the players initially belonging to the group, who can

share they intermediate results and manipulate each other’s pieces.

This application is based on a pattern of interaction where the shared workspace pro-

vides an accurate image of the global state of connected players but only weakly consistent

with the global state of the system as a whole. The user workspace contains the last known

information about each puzzle piece. It is interesting to observe that the globally set goal

of the distributed application, i.e., the solution of the puzzle, is built incrementally through

successive updates to the local state, distributed to all other players either immediately if

connected or in a “lazy” fashion if connectivity is not available at that time.

RoamingJigsaw is a simple game that exhibits the characteristics of a general

class of applications in which data sharing is the key element. The RoamingJigsaw design

strategy may be adapted easily to any applications found in which the data being shared may

change, e.g., sections of a document in a collaborative editing application, paper submissions

to be evaluated by a program committee, etc.



144

Design and Implementation The basic data element of RoamingJigsaw is the indi-

vidual puzzle piece. For efficiency purposes, each piece is stored as a pair of tuples. The

first contains the image of the piece which remains unchanged throughout the game. The

second contains a descriptor that includes information about a piece or the cluster that

includes it and the current owner of the cluster. When a player selects a piece or joins

together several pieces, a new tuple with the updated information is inserted, and the old

descriptor is removed.

The critical operations in the game are the detection of piece selection and clustering

actions, the reconciliation on reconnection, and the engagement of a new player. All are

handled by exploiting a single mechanism in Lime: a weak reaction with mode onceper-

tuple and type UbiquitousReaction, its scope is the whole federated tuple space. The

reaction is registered for tuples that match any cluster descriptor. The corresponding re-

action listener updates the user workspace with the information in the matched descriptor

and correctly maintains the weakly consistent view of the workspace. The amount of data

transmitted for each update is minimized, because the reaction looks for descriptors and not

for the individual piece images. However, in the case where a puzzle descriptor is received

for a piece which the player never encountered before, as is the case during the engagement

of a new player, the puzzle image is explicitly requested directly from the tuple space before

the workspace is updated. Since the reaction is registered on the federated tuple space, the

program receives updates about new descriptors without any need to be explicitly aware

of the arrival and departure of players. Thus, the programming effort can focus just on

handling data changes without worrying about the actual system configuration.

Although all processing described so far has operated on the federated tuple space,

fine-grained control over the location of tuples is critical in dealing with disconnections

caused by mobility. When a player selects a piece to work with, the piece must remain

part of the transiently shared tuple space, but its location is changed to that of the se-

lecting player in order to enable it to disconnect without losing access to the descriptor.

In addition, since we deal with a weakly consistent workspace, a player must be prevented

from selecting a piece that is currently not present in the federated tuple space. For these

reasons, our implementation of RoamingJigsaw responds to an attempt to select a piece

by first performing an inp operation on the tuple space of the player last known to have the

piece. If the piece is returned, it is properly rewritten to the local tuple space of the new

owner, and the selection is successful. If no tuple is returned, it means that the piece is

unavailable for selection because the corresponding player is currently disconnected. This

fact is communicated to the user by an audible beep.

We are presently developing a version of RoamingJigsaw that presents the user with

a workspace that represents the current state of the system in a fully consistent way, i.e.,

only pieces belonging to users that are currently connected are seen through the workspace.



145

Figure 10.5: RedRover. The main console of RedRover, and the most recent camera
image of a connected player.

All other pieces are removed from the workspace upon disconnection of the player that

owns them and are redisplayed as soon as the player becomes connected again. In other

words, the player sees exactly the pieces which are currently in the federated tuple space.

This version may be easily coded by utilizing the LimeSystemTupleSpace to react to player

arrivals and departures and by monitoring which puzzle pieces have been handed off to

other players.

10.3.2 RedRover: Detecting Changes in Context

Scenario Our second target application is a spatial game we refer to as RedRover in

which individuals equipped with small mobile devices form teams and interact in a physical

environment augmented with virtual elements. This forces the participants to rely to a

great extent on information provided by the mobile units and not solely on what is visible

to the naked eye.

RedRover is the initial step in the development of a suite of virtually augmented

games to be carried out in the real physical world. BodyWare will provide each player with

global positioning system access, audio and video communication, range finding capabilities,

and much more. For now, the game is limited to seeking and discovering the physical flag of

the other team and clustering around the player who finds the flag. Each player is equipped

with a digital camera which can be used to share a snapshot of the current environment

with team members who may be separated physically by walls or other barriers, but remain

within radio communication range. Finally, players know and share their precise location

in space so that all connected players can maintain an image of the playing field displaying

the relative location of all participants.



146

The user has several options available from the main display. The most dominant

display element is a view of the playing filed indicating the current position of all players

within range. Each player is equipped with a camera to share images of the surroundings

with team members. Also, players are expected to identify key elements of the physical

environment and share them with others. For example, a user may find the flag of another

team or some relevant clue about the environment. Another player can register interest in a

particular kind of information, and be notified when it has been found. For example, when

the flag has been captured, any connected, interested team members can be notified.

As with RoamingJigsaw, RedRover is a simple game but it has great potential to

be extended to real world scenarios such as the exploration of an unknown area by a group

of people or robots. Our current efforts include the incorporation of a mapping mechanism

which will allow users to define the elements of a region and share these results as they

meet other users. Finally, the current implementation employs an artificial notion of player

location, however, this can be trivially replaced with a global positioning system.

Design and Implementation in Lime The dominant feature of the user display is the

current location of each connected player within the playing field. This is maintained in

a strongly consistent manner, i.e., by displaying precisely the players which are connected

and their most recent location update. Each time a player moves, a tuple representing its

location is written to the federated tuple space. All players register a weak oncepertuple

ubiquitous reaction for these tuples and the screen is updated with each reaction.

To detect when a player disconnects, we make use of the LimeSystem tuple space

and register a reaction for the departure of a player (represented by a host). The listener

of this reaction changes the connected status of the player and the user display is updated

to replace the standard image of the player with a “ghost image” indicating that the player

was once present, but is no longer connected. Upon reconnection, once the player moves,

the oncepertuple reaction gets the new location for the player. However, if the player

stays put, the reaction on the location tuple will not fire. Nevertheless we can still update

the player’s status to connected by registering a reaction on the LimeSystem tuple space for

the arrival of a player (host).

To handle the notification of the flag capture, each player can register a once or

oncepertuple upon on the federated tuple space. When a player finds the flag it writes

a tuple to the tuple space indicating this fact, and all registered players receive notification

in the form of a dialog box indicating which player has the flag. To facilitate clustering

around this player, it is useful to request the camera image of the player in order to identify

obstacles not visible on the screen which must be maneuvered around. Because the image

is requested from a specific player, we simply use the rdp operation rather than incurring

of the overhead of the reaction.



147

Another feature of the implementation is the separation of data to be shared with

teammates versus information available to all game players. For example, it is desirable to

inform only team members of the flag capture. Therefore, this information is written to

a team-only tuple space, while general information. such as player location is written to

a game tuple space. The ability to have selective sharing of tuple spaces is an important

feature and the first step towards introducing security considerations in Lime.

10.4 Discussion

In this section we discuss our research contributions with an emphasis on lessons learned

from exploiting Lime in the mobile applications presented in the previous section. We also

compare Lime to similar projects found in literature and report about future work and

enhancements we plan for our middleware.

10.4.1 Reflections and Lessons Learned

The development of Lime is the result of a continuous interplay among the definition of the

underlying formal model, the design and implementation of the middleware, and its evalu-

ation on mobile applications. The development of a model for Lime, and its formalization,

favored a better understanding of the abstractions provided by the middleware. In partic-

ular, by keeping the programming interface as close as possible to the operations defined

in the formal model, we made it easy to communicate and reason about the functionality

of the system and its use in applications. In an incidental way, this task also provided an

evaluation of the applicability of Mobile Unity to the specification of a middleware for

mobility. The ability to think about abstractions in a setting unconstrained by implemen-

tation details favored a style of investigation characterized by a more radical perspective,

where the decisions driving the modeling and the definition of the main abstractions where

mostly determined by the need for expressiveness and completeness.

This view was greatly refined when we started the design and implementation of

the middleware. An example of refinements that took place is provided by the notion of

reaction. Reactions were motivated by an intuition of the importance of reacting to events

in a mobile environment and were inspired by the notion of reactive statements in Mobile

Unity. Nevertheless, reactions as defined in Mobile Unity imposed atomicity requirements

that are in general too strong to be practical in a distributed setting. This consideration

led to the notion of a weak reaction, which represents a seemingly reasonable compromise

between the loose guarantees provided by common event mechanisms like those found in

T Spaces and JavaSpaces and the full atomicity guarantees of strong reactions.

Other refinements were the result of unforeseen needs on the part of the applica-

tion programmer. This was the case with the reaction mode. In the reactive model of



148

Mobile Unity, reactions are permanently enabled and it is up to the designer to spec-

ify the conditions under which they become disabled. Nevertheless, programming practice

with the Lime model showed early on that some sort of automatic disabling of reactions is

needed. In particular, the oncepertuple mode turned out to be an important mechanism

in developing both applications discussed in this chapter.

The feedback coming from applications was not limited to the discovery of new prim-

itives. The use of Lime made it possible for us to evaluate the usefulness of its programming

abstractions and constructs. Experience with RoamingJigsaw and RedRover corrobo-

rated our hypothesis that the ability to register weak reactions on the whole transiently

shared tuple space provides the programmer with highly effective constructs that simplify

the programming task. The execution of a single operation is sufficient to guarantee future

notification of every event occurring over the whole federated tuple space, independently

of changes in the configuration. Interestingly, this power has a cost; the implementation of

weak reactions is probably the most complicated portion of the current Lime software—

this should be expected, since we are shifting a great deal of complexity away from the

programmer and into the run-time support.

Another interesting byproduct of these empirical evaluations is an understanding of

the programming and architectural styles fostered by Lime and recurring in mobile appli-

cations. A possible distinction can be made between applications whose main requirement

is to enable sharing of data despite mobility and those where most of the computation is

driven by reactions to changes in context, as is the case with the two applications we pre-

sented here. Interestingly, in one case the functionality of the application must be provided

despite mobility, while in the second case, the functionality exists because of mobility.

In this and other application typologies, a recurring dilemma is between an applica-

tion style that provides a weakly consistent view of the system in the presence of mobility,

and one that provides a fully consistent view that takes into account departure and arrival of

mobile units. Choosing one representation style or the other has non-trivial implications on

the complexity of the overall design and development task, and on the primitives that must

be used. If weak consistency is enough, the view can be built incrementally by exploiting the

notification mechanism provided by weak reactions, usually in the oncepertuple mode. If,

instead, a fully consistent view is required, additional, application specific machinery must

be added in addition to using the LimeSystem tuple space to react (immediately) to changes

in the system configuration. In our experience both styles are naturally accommodated

by the abstraction of a transiently shared tuple space. Our “developers”, mostly graduate

and undergraduate students, found it easy not only to program applications with Lime but,

most importantly, to think about the application in terms of the metaphors characteristic

of the underlying Lime model.



149

Actually, the particular programming style induced by Lime, albeit biased by the

limited range of applications considered thus far, is quite different from what we initially

expected. This is especially true in the case of weak reactions and the LimeSystem tuple

space. Reactive programming was not part of the initial core of Lime was envisioned to be

a coordination framework founded on the idea of transiently shared tuple spaces accessible

exclusively through Linda operations. Similar circumstances surrounded the LimeSystem.

It was initially thought of as an add-on to support very specific needs. Instead, these

abstractions turned out to play a key role in the design of both RoamingJigsaw and

RedRover. We already reported about the use of weak reactions and oncepertuple

and we noted that the LimeSystem tuple space provides full context awareness by exposing

changes in the configuration of the system. Although we initially thought this explicit

knowledge could be bypassed by the observation of changes in the data context, experience

with our applications (especially with RedRover), showed that this hypothesis does not

hold in general. The developer must resort to the LimeSystem tuple space. This causes

no difficulties since the LimeSystem tuple space is perceived by the user as just another

transiently shared tuple space with a different name and restricted access.

Finally, an issue that deserves careful evaluation is the extent to which the program-

mer is induced to duplicate the data present in the tuple space into some other run-time

data structure, for performance reasons. For instance, in RoamingJigsaw the re-paint of

the workspace would involve retrieving from the federated tuple space all the pieces present

at that moment. Clearly that is impractical, and the content of the tuple space is mirrored

in a data structure that is kept consistent as changes are notified through reactions. In

RoamingJigsaw, such a mirroring is necessary in order to preserve weak consistency of

the workspace, and to keep track of pieces that are no longer available. Nevertheless, this

issue has more profound implications that have to do with the way the tuple space is actu-

ally used (i.e., as a coordination means or as a data repository). A comparative evaluation

of the Lime programming style relative to the programming style induced by other middle-

ware based on tuple spaces, like T Spaces [33] or JavaSpaces [35] remains to be carried out

in the future.

10.4.2 Related Projects

Lime is not alone in its exploitation of the decoupled nature of tuple spaces for the coor-

dination of mobile components. The Limbo platform [13] builds the notion of a quality of

service aware tuple space which resides on mobile hosts. The quality of service information

itself is stored in the tuple spaces and can be made accessible to agents on remote hosts.

There is no notion of sharing data among the tuple spaces, however a bridge agent can be

built which has references to multiple tuple spaces and can monitor and copy information

among the spaces. Agents must also know explicitly which tuple space they wish to connect



150

to. A universal tuple space exists which registers all tuple spaces and can be used to locate

a space. This notion is similar to the LimeSystem tuple space. Limbo does not provide any

mechanisms beyond the regular Linda operations to react to changes in the tuple space.

In contrast, the main focus in the TuCSoN coordination model [62] is a reactive

mechanism which is used to create programmable tuple spaces which respond to the queries

of mobile agents. When an agent poses a query to the tuple space, the registered event which

matches the operation and template fires, and an action is atomically performed. Another

feature of TuCSoN is the ability to either fully qualify a tuple space name, identifying the

specific host where the tuple space relies, or providing a partial name and gaining access

to a local version of the tuple space. There is no coordination between tuple spaces, and

mobile agents only have access to the tuple spaces fixed at the hosts.

It is interesting to note how the notion of reaction put forth in Lime is profoundly

different from similar extensions that allow notification of events in the tuple space, such as

those provided by TuCSoN, T Spaces [33], and Javaspaces [35]. In these systems, the events

that are detected are the actual operations performed by the accessing processes, while in

Lime, reactions fire based on the state of the tuple space itself. One common application

task we discovered early is the need to look for a tuple, and, if it is not present, and then

wait for its appearance. Without transactions, this is complicated by the possibility for the

tuple to be written in between the initial query and the installation of the event listener.

However, transactions are complex and expensive. In Lime, a single reaction accomplishes

the desired task. Furthermore, the atomicity guarantees of the local reactions are relatively

powerful. For example, with a localized reaction, the execution of the listener is guaranteed

to fire in the same state in which the matching tuple was found. No such guarantee can be

given with an event model where the events are asynchronously delivered.

10.5 Concluding Remarks

Lime is our first attempt at designing middleware for mobile systems based on the strat-

egy of global virtual data structures. The ease of implementation of the two applications

presented in this chapter demonstrates both the flexibility of the Lime abstraction to ac-

commodate different application needs and the viability of the middleware approach to

make the abstractions available to application programmers.



151

Chapter 11

Extending Lime

The current implementation of Lime serves as a proof of concept that the global virtual data

structure style of abstraction is useful in aiding in the development of applications in the ad

hoc mobile environment. However, the current assumptions of Lime are not reasonable in

all mobile environments. In this chapter, we explore three specific enhancements to Lime,

namely removing the assumption of announced disconnection (Section 11.1), weakening

the engagement and disengagement transactions (Section 11.2), and limiting the scope of

engagement to include more than the presence of connectivity (Section 11.3).

11.1 Unannounced Disconnection

In an ad hoc mobile environment, the ability of hosts to communicate is related to the

distance between them. If a host suddenly moves out of range, any ongoing transmissions

are terminated before they can be gracefully closed. We refer to this as unannounced dis-

connection because a host terminated communication without first announcing its intention

to disconnect. Some work has been done in this area to try to predict when disconnection is

likely, and intentionally disconnect before the actual disconnection is necessary [74]. While

this has potential to reduce the number of unnannounced disconnections, it cannot elimi-

nate them entirely. For example, a mobile host may suddenly lose power when a battery

dies, or move into an anomalous dead done where interference prohibits communication.

Within Lime, unannounced disconnection has two main effects. First, if a component

moves out of range without going through the disengagement protocol, the LimeSystem tuple

space, which is intended to reflect current connectivity, is inconsistent with respect to reality.

Second, if a communication was in progress between two Lime servers to transfer a piece of

data from one host to another (e.g., during a tuple migration or in response to a remote in

or inp query) the data being transferred may be corrupted or lost entirely, leaving the tuple

space in an inconsistent state. This section presents several mechanisms for deciding what

action to take in response to an unannounced disconnection. The options place varying



152

A B

data transfer

setup

success

discrepancy success

failurefailure

disconnection

Figure 11.1: TCP data transmission.

demands on the system and thus can be selected and tuned by the programmer according

to the demands of the application. We independently address the loss of communication

during a data transfer and the loss of communication during an idle period in communication

(e.g., when no remote tuple space operations are being executed by the Lime servers).

11.1.1 Disconnection during Data Transfer.

To provide solutions to unannounced disconnection during tuple transfers, we must first

understand the underlying protocol and what error states are possible. For communication

between two hosts, Lime employs TCP to ensure reliable transfer. In normal operation,

as shown in Figure 11.1, a transfer goes through a setup phase to establish the connec-

tion, a data transfer phase, and finally a cleanup phase to terminate the connection. A

temporary loss of communication will readily be handled by retransmission of lost packets,

but unannounced disconnection arbitrarily terminates all communication from the instant

disconnection occurs onward. In other words, if a host moves out of range in the middle of

the data transfer, any messages sent by either side will be lost.

For simplicity, we treat the notification of the end of data with the beginning of the

disconnection phase. At the moment when the receiver is notified that no more data will be

sent, the receiver reports a successful data transmission, passing the data to the application

and returning and acknowledgment to the sender. On the sender side, success is reported

when this acknowledgment is received. If an unannounced disconnection happens at any

time above these points, failed transmission is reported by TCP.



153

Sender Receiver Conservative Liberal Liberal
Perceives Perceives Loss Duplication

success success

failure success none none duplication

failure failure protected loss none

Figure 11.2: Possible states for a transmission to terminate and the consequences of the
unannounced disconnection policies.

In any data transfer, only the states shown in the first two columns of Figure 11.2 are

possible. If the sender reports success, it is guaranteed that the receiver also reports success.

However, if the receiver reports failure, it is provably impossible for the sender to know

whether the receiver successfully received the data (and the disconnection acknowledgement

was lost, abbreviated failure-success) or reported failure (because the disconnection message

was lost, failure-failure). Success-failure is not possible because of the TCP model that we

choose.

Whenever failure is reported, we must take a decision about what action to take

and the possible consequences of those actions. Consider the failure-failure state. If no

additional processing is taken at the sender, the data being transferred would be lost. One

possible action is for the sender to reverse the action that was in progress (e.g., write a

misplaced tuple locally or put the tuple which was in response to the remote in or inp back

into the local tuple space). This guarantees that data will not be lost. However, consider the

failure-success case. If we follow the previous course of action, the data will be duplicated

at both the sender and receiver. Rather than make an arbitrary decision mandated to

all applications built on Lime, we introduce several policies and allow the programmer to

decide which applies best to their application.

Conservative policy. In some cases, the possibility of duplication is not acceptable, nor

is the possibility of permanent loss of data. Therefore we define a conservative policy which

under no circumstances duplicates data but may make it temporarily unavailable to regular

tuple space operations. When the sender reports failure, a copy of the data being transferred

is held in a special, inconsistent state. Data in this state is not accessible to regular queries

over the tuple space, but may be accessed by new administrative operations. If a connection

is reestablished between the sender and receiver, a reconciliation protocol must be executed

to determine whether the receiver did or did not complete the transfer (reported success or

failure). The receiver always remembers the identity of the last piece of data successfully

received with respect to each sender. In the reconciliation protocol, if this value matches



154

the value held at the sender, the transfer was successful and the sender’s copy is removed.

If it does not match, the sender must retransmit the data.

This conservative policy guarantees that data is never duplicated, but in the failure-

failure case, data is inaccessible between the failed transmission and the reconciliation. If

a connection is never reestablished, the data will forever remain in the inconsistent state.

Operations on the inconsistent data allow application administration over this information.

Liberal policy. One of the disadvantages of the conservative policy is the overhead,

including storage of inconsistent data at the sender, storage of the identity of the last

received data at the receiver, time to execute the reconciliation protocol, and the possible

administration of the inconsistent data. In some cases, this strong policy is not required by

the application and loss or duplication can be tolerated. For this reason, we introduce two

more liberal policies in which the programmer can choose to accept either loss or duplication

without the expense of the bookkeeping necessary for reconciliation.

If the programmer selects the loss mode, when a transfer fails, the receiver does

nothing. If the user chooses duplication, the sender reverses the operation in progress,

writing the data back to its local tuple space. At the receiver, no special processing occurs

and there is no reconciliation if the connection is reestablished.

In the failure-success case, loss has no effect on the data consistency, while du-

plication creates multiple copies. Oppositely, in failure-failure, loss mode creates an

inconsistency while duplication does not.

11.1.2 Duplication during Idle Communication

The previous discussion addressed inconsistency in the data as a result of loss of communi-

cation. This subsection deals with inconsistencies in the LimeSystem tuple space that arise

when a disconnection occurs and is not immediately detected (i.e., there is no communica-

tion in progress between the Lime servers).

The best way to detect this type of disconnection is by introducing a passive mech-

anism, namely a periodic hello and a timeout. The hello is a short message containing the

host’s identify which is sent on a well-known broadcast address. Upon receipt of a hello,

the local entry in the LimeSystem tuple space is updated with the time the message arrived.

Periodically the LimeSystem tuple space is checked for the presence of hosts that it has not

recently received a hello from, where recently is defined by the timeout period. When one

is identified, we assume that an unannounced disconnection occurred and the LimeSystem

tuple space is updated. We need not be concerned with the consistency of the tuple space.

It is possible that an inconsistent LimeSystem tuple space could be detected in an-

other way. Consider an agent on host A that writes a tuple destined for an agent on host

B. If B has moved out of range, but its timeout has not expired in A’s LimeSystem tuple



155

space, when A attempts to establish a connection to send the misplaced tuple, it will fail.

In this case, A detects the unannounced disconnection and original operation is executed as

if B was not present. This is different from a failure during transmission because A knows

definitively that this is equivalent failure-failure because B was never contacted.

11.2 Weakening Engagement and Disengagement

The current model of Lime assumes a system-wide transaction every time the system con-

figuration changes. As was shown in the previous section, in the presence of unannounced

disconnection, a host may leave the network without running the disengagement protocol.

Alternately, the cost of running the transaction may be higher than an application is willing

to tolerate simply to achieve the level of consistency that it provides. For these reasons,

this section presents alternatives to the system-wide transactions which focuses only on the

pairwise interactions between hosts.

Before launching into the details of the engagement protocol, it is important to

remember what processing is done on disconnection. The most critical operation to consis-

tency is the updating of the LimeSystem tuple space to remove the hosts that are no longer

reachable. In addition, any weak reactions installed by these hosts are uninstalled. This pro-

cessing occurs both during announced disconnection and when unannounced disconnection

is detected.

The protocol we propose for engagement makes no consistency guarantees with re-

spect to the LimeSystem tuple spaces of all connected components, but instead considers

only pairwise interactions among hosts. We assume that the periodic broadcast messages

described in Section 11.1 exist and can be used to trigger an engagement. Due to the pos-

sibility of unannounced disconnections, we must be careful to consider the various states

that the hosts may be in and what operations can actually trigger the engagement.

The usual case is that neither host will know of the other. Therefore when B’s hello

arrives at A, A sends an engagementRequest to B. It is possible that B will simultaneously

send an engagementRequest to A, otherwise upon receipt of A’s engagementRequest , B

will send its own engagementRequest , ensuring that the engagement always takes place

both from A to B and from B to A. To prevent an infinite chain of engagementRequest

messages, a source host only allows one outstanding engagementRequest per destination

host. To process an engagementRequest , a host sends any misplaced tuples or remote weak

reactions. The arrival of this data message updates both the LimeSystem tuple space and

the data tuple space, concluding the engagement.

Although it is unlikely, it is possible that A thinks it is engaged with B, but B

determined an unannounced disconnection took place. In this case the arrival of any regular

messages from A’s Lime server or A’s hello will trigger an engagementRequest from B.



156

As previously mentioned the arrival of an engagementRequest always triggers a reciprocal

engagementRequest (unless one is already underway), so A will send an engagementRequest

to B. At first this seems unnecessary because A already thought that it was engaged

with B. However, when B detected the unannounced disconnection, it removed all weak

reactions from A, requiring engagement data to be sent from A to B, and any misplaced

tuples destined for agents on A were written locally to B, requiring engagement data to be

sent from B to A.

By assuming the timeouts can be used to detect disconnection, there is no need to

specify a separate pairwise disengagement protocol. If desired, a simple announcement can

be made to gracefully clean up the LimeSystem information.

With this pairwise model for engagement and disengagement, there is no longer any

guaranteed consistency between the perception that each host has concerning the connec-

tivity of the network. In the previous model, if A, B, and C were connected, they all shared

the identical view of the tuple space, which was modeled in Mobile Unity as a shared

variable. With pairwise engagement and disengagement, it is possible for A’s view to be

{A,B}, B’s view to be {A,B,C} and C’s view to be {B,C}. This changes the semantics

of the operations because connectivity is no longer transitive. One way to model this is to

keep the same model of a single transitively shared tuple space, but restrict the operations

of each agent to a projection that matches the set of hosts it has completed the engagement

process with. This includes both regular operations as well as the reaction for migrating

misplaced tuples.

11.3 Limiting the Scope of Engagement

Under the current Lime model, the scope of a Lime network is limited only by the ability

to communicate, which is related to the distance between hosts. However, this model does

not scale as the density of hosts increases and the stress on the Lime system increases. In

extreme conditions, the increased stress on Lime can lead to a point where the network

becomes unreasonably inefficient, motivating a mechanism to restrict the scope of Lime

operations.

This section proposes one solution to the scoping problem in Lime. The general

idea is to use an additional, host specific parameter in addition to connectivity to determine

optimal groupings in an ad hoc network. Various algorithms are presented that demonstrate

how this parameter can be used to create groups of a manageable size.

11.3.1 Problem Statement

It is apparent that some method is desired to manage growth in a Lime-based network. On

the surface, a variety of simple solutions exist to this problem, however a naive solution could



157

cause more harm than good. For example, consider an algorithm that creates arbitrary

groupings that are restricted to a maximum size. While this solution prevents growth

problems, it may fail to create groups that allow desired host coordination. Any reasonable

method for managing network growth must fulfill the criteria outlined below.

Best Mutual Arrangement The solution should achieve a grouping that maximizes

desired coordination between hosts. This means that if there are two hosts that desire to

communicate with each other, there should be a high probability that they will be placed

in the same group.

Minimize Complexity Ad hoc networks are constantly changing, which means that the

groupings will need to be reevaluated frequently to ensure that the best mutual arrangement

is achieved. Therefore, each reevaluation needs to occur quickly. In general, this means that

the overall complexity of the solution should be minimized. The complexity has several

components including the computation time on a single host, the overall computation time

on all hosts and the network utilization. It is important to minimize the complexity on both

a per host basis and a per network basis because an algorithm should not have to leverage

a large network to complete its computations efficiently.

Adapt Dynamically Over time the hosts present in an ad hoc network will change, thus

changing the connectivity of the network. The solution should accommodate for this change

by ensuring that the current grouping is always optimal with respect to the hosts that are

currently connected. Failure to do this could lead to a network with suboptimal groups

that are based on an outdated optimality model.

An ideal solution will balance each of these properties to create a grouping that is

equally and maximally beneficial to each host on the network. Specifically, the solution

described below will sacrifice optimality in host groupings to minimize the algorithm’s

complexity.

11.3.2 Creating Groups Dynamically

As stated above, each grouping should create the best mutual arrangement of hosts on the

network. This implies that the groupings will be deliberately chosen, which is beneficial

to both Lime and the application-level program. In the case of Lime, properly chosen

groups will allow maximal scalability along with a minimization of network traffic. At

the application-level, groups provide a greater abstraction of the network, which increases

Lime’s utility to a programmer.

The term group has been used casually up to this point. However, for the rest of the

section it is important to clarify the distinction between a group and a Lime network. A



158

group is a set of one or more hosts that transiently share their tuple spaces. On the other

hand, a Lime network is a set of groups that are connected by the underlying network (e.g.,

a wireless network). On a standard Lime system, the group and the Lime network are

equivalent. The algorithms described in the following sections break the Lime network into

multiple groups.

The process of creating groups is best understood by breaking it down into several

logical components. First, we define the concept of happiness between hosts, which allows

us to distinguish the optimality of a given grouping of hosts. Next, we discuss the general

protocol used by arriving hosts to request permission to join a group. Finally, we explain

the decision-making algorithms. The first algorithm determines which hosts are allowed

to join a group and the second determines when groups should be split in order to create

smaller, more optimal groups.

Defining Host Preferences and Happiness

In order to create a meaningful grouping of hosts, each host must have some mechanism to

describe the characteristics of groups it would prefer join. For example, an ad hoc network

at a university could have a group of professors and a group of students. A host arriving

at this ad hoc network would need to indicate which group it would prefer to join. This

is accomplished with a vector of preferences for each host. The preference vector, p for a

given host, i, is of the form

pi = {〈l0, v0〉, . . . , 〈lk, vk〉, . . . , 〈ln, vn〉}

where each lk is a unique label for a component of happiness with a corresponding

vk ∈ <, which is the relative importance of that component to host i. Practically speaking,

each label will be a unique string used to identify the meaning of its associated value.

Each preference vector can be viewed as a vector in <n. Therefore, a convenient

method to determine the similarity between two hosts’ preferences is to determine the

angle between their preference vectors. This can be done using the inner product, resulting

in the angle, q, between pi and pj being defined as

θij = cos−1
(

pi · pj
‖pi‖‖pj‖

)

(11.1)

Notice that as θ → 0 the vectors pi and pj are increasingly similar. Therefore, θ determines

the happiness between two hosts such that happiness is inversely proportional to θ. The

happiness between two hosts is a measure of how strongly the hosts desire to be grouped

together.



159

Using this concept of happiness, the overall happiness of a host, i, within its group,

G, is defined as

hi =
i

|G| − 1

∑

(∀j 6=i)∈G

∣

∣

∣

∣

1

θij

∣

∣

∣

∣

(11.2)

We have already discussed the reason for using the inverse of θ in this equation. The

other portion of the equation divides the summation by |G| − 1, which is done to allow

the happiness of hosts from different size groups to be easily compared. This definition

of happiness is integral to a grouping algorithm because it provides a simple metric to

determine the relative optimality of different groupings. Based on the definition, greater

happiness indicates a more desirable grouping and 0 ≤ hi <∞.

Group Decision and Engagement Protocols

When a host first enters a Lime network, it will need to join a group in order to coordinate

with the group through transiently shared tuple spaces. Typically, multiple Lime groups

will already exist. Therefore, the entering host will desire to join a group that maximizes the

overall happiness of the network. To achieve this goal, before joining a group (i.e., before

initiating a Lime engagement) a host must decide which group to join. This is achieved

through a group decision protocol which is described by the following basic steps:

1. The arriving host applies to several groups by passing each group leader its preference

vector. The application requests permission to join the group.

2. Each group replies to the arriving host with a binding decision represented as a single

bit indicating that the arriving host is or is not allowed to enter the group. If the

decision is affirmative, then an offer estimating how the addition of the arriving host

will increase the overall happiness of the network is also sent along with the decision.

3. After receiving each decision, the arriving host must choose which group to join.

Typically, the host chooses the group offering maximal happiness.

4. The arriving host sends a message to each group that made it an offer to accept or

decline the offer.

In the application stage (step 1), the arriving host sends a group join request to

the multicast address. The request is a single message with the arriving host’s preference

vector. This request is received by the leader of the Lime network and the leader of each

group. Upon receiving this request, the leader of the Lime network will reply to the arriving

host to give the number of group leaders on the network. Using this number, the arriving

host ensures that it receives replies from each of the group leaders.

The group decision stage (step 2) is a computational step that occurs at the leader

of each group. Each leader will run an algorithm to determine if it would be advantageous



160

to allow the arriving host to enter the group. Practically speaking, the arriving host will be

allowed to enter the group if it would increase the happiness of that group. If the results

of the algorithm indicate that the arriving host may join the group, then the leader replies

with an offer including the estimated amount of happiness that the arriving host would add

to the group. After receiving replies back from each leader, the host should join the group

that it would add the most happiness to. This ensures that the overall happiness of the

network is maximized instead of attempting to just make the arriving host happy. If the

results of the algorithm indicate that the arriving host may not join the group, then the

leader replies by declining the join request. The details of the decision-making algorithm

are explained next under the heading Building a Single Group.

The host choice stage (step 3) begins after the arriving host receives a reply from

every group that was sent a join request. At this stage, the arriving host simply decides

which group to join. Since the goal is to maximize happiness, the decision will be made

such that the arriving host is happiest.

Finally, in the host decision stage (step 4) the arriving host sends its decision back

to each group. From this point forward, the arriving host will only need to communicate

with the group that it decided to join. The next step is for the arriving host to engage with

its new group.

The engagement protocol only requires slight modifications from its current state in

Lime. Specifically, every host in the group needs to know the preference vectors of every

other host in the group. This ensures that each host can become a leader without requiring

the old leader to pass the group’s preference vectors when changing leaders. To achieve this

functionality, the preference vectors are exchanged during the engagement protocol at the

same time as the misplaced tuples and the remote weak reactions.

After engagement, the leader reevaluates its group by deciding if it would be more

optimal by splitting into two or more groups. This decision is made by the algorithm

described under the heading Deciding When to Split a Group.

Building a Single Group

Before building a group, we choose to establish a maximum group size, τ . This value is

chosen such that each group is never larger than the maximum manageable size of a group

in a Lime-based network. Until the current number of hosts in a group, η, equals τ the

group will simply accept hosts into the group as group join requests are made because you

can never decrease a group’s happiness by adding another host. However, a decision must

be made if η = τ and another host requests to join.



161

The decision making process attempts to choose group members that create the

greatest happiness for the group, where the group happiness is defined as

HG =
∑

∀i∈G

hi (11.3)

Achieving the greatest group happiness may require that a current host be removed

to allow the arriving host to join the group. Unfortunately, the complexity for calculating

the optimal HG for the addition of one host is O(τ 2) when η = τ . As τ grows the amount

of computation required would be unreasonable, however, it is possible to achieve a close

approximation to the quantity of happiness that will be added by a single host with less

computation.

The approximation algorithm follows the steps below:

1. Calculate the happiness, hη+1, for the arriving host saving each of the intermediate

values from the summation.

2. Find the smallest intermediate value from step 1 and subtract its value from hη+1.

3. Find the host with the smallest intermediate value from step 1. Compare the happiness

of that host in the current group with the value for hη+1. If hη+1 is greater, then add

the arriving host to the group and remove the other host. Otherwise, do not allow

the arriving host to enter the group.

To illustrate the algorithm, consider the following example. The preference vectors

given below are for four participants at a conference. Each participant has preferences

regarding whom he or she talks to at the conference. For example, person A prefers to

talk with people involved in security research, who have PhDs and who are affiliated with

Washington University. The numbers indicate the relative importance of this person’s

preferences for each category. It is important to notice that magnitude of each number

is only relevant within the same preference vector. This is because all of the vectors are

normalized during the computation.

PersonA = {〈Security, 7〉, 〈PhD, 2〉, 〈Washington University, 1〉}

PersonB = {〈Security, 20〉, 〈Mobility, 5〉, 〈Masters, 1〉, 〈MIT, 4〉}

PersonC = {〈PhD, 1〉}

PersonD = {〈Mobility, 9〉, 〈Security, 2〉}

In this example we let τ = 3, so the addition of the first three hosts proceeds without

any computation. However, the addition of the fourth host uses the algorithm given above

to determine which host, if any, should leave the group to make room for the new host. In



162

this case, the decision is to admit host D and remove host C. To understand this decision

we need to look at the algorithm one step at a time. All of the calculations in this algorithm

are performed by the leader of the Lime group.

The first step is to calculate the happiness for the new host with all of the hosts

currently in the group. Using equation 11.1 we get the following θ values:

θad = 78.07◦

θbd = 63.99◦

θcd = 90.00◦

Next, we convert these values to the corresponding happiness values by taking the inverse of

each number. (The notation below indicates the host’s happiness values along with which

hosts were considered in the calculation. For example, ha,cd would represent a’s happiness

when placed in a group with c and d.)

ha,d = 1.28× 10−2

hb,d = 1.56× 10−2

hc,d = 1.11× 10−2

To complete the first step we find the estimated happiness of host D by using equation 11.2.

To simplify calculations we drop the 10−2 on each term from this point forward.

hd,abc = (1.28 + 1.56 + 1.11)/3 = 1.32

For the second step we need to remove the smallest intermediate value from hd,abc. Looking

at the values for ha,d, hb,d and hc,d we see that the smallest value is hc,d = 1.11. Therefore,

we subtract this value from hd,abc.

hd,ab = (1.28 + 1.56)/2 = 1.42.

To complete the third step we must have the happiness values of each host in the current

group. Normally these values would already be known and stored with the group leader.

The happiness values for the current group, G = {a, b, c}, are given below.

ha,bc = 2.68

hb,ac = 2.56

hc,ab = 1.23



163

The host with the smallest happiness value from our calculations in the first step was host

C. Therefore, we need to compare the happiness of host C in the current group with our

newly calculated value for hd,ab. The comparison shows that hd,ab is bigger, so we allow

host D to enter the group and remove host C.

Looking at this example, we can see that the decision to remove host C was a

good decision by looking at the group’s happiness from before and after the decision. It is

important to remember that the goal is to maximize the overall happiness of all hosts on the

network. Therefore, even though host C will lose happiness from this decision, the overall

happiness on the network has still increased and thus we view this as a good decision. The

happiness values for before and after the decision are given in the table below.

Grouping HG

Before adding D A,B,C 6.46

After adding D A,B,C 7.56

Examining all possible groups with these four hosts shows that the group G = {a, b, d} is

optimal. However, it is important to understand that this algorithm is not guaranteed to

find the optimal grouping.

To evaluate the expected accuracy of this algorithm, a test program was written to

create random preference vectors and use them as input to the approximation algorithm

described above. Each preference vector contained five random values. In addition, τ ranged

from three to five hosts and there were nine hosts on the network. Each approximation was

compared to the exact optimal result and on average was within five percent.

The complexity of the approximation algorithm is O(τ) when η = τ , which allows it

to make fast decisions even when τ becomes large. However, this algorithm is only effective

for building a single group. The next step is to determine when it is advantageous to split

a group into two or more smaller groups.

Deciding when to Split a Group

When hosts join or leave a group, the group should reevaluate itself to verify that it is still

in an optimal grouping. This reevaluation involves judging if the group is most optimal

in its current configuration or if the group would be more optimal after splitting into two

or more smaller groups. Unfortunately, the complexity of finding an optimal split for the

grouping is very large because one would need to calculate the happiness for every possible

grouping of τ hosts. This works out to

τ−1
∑

r=1

τ !

r!(τ − r)!



164

Grouping

Group average

Preferences vector

Figure 11.3: A visual interpretation of the grouping algorithm with seven hosts divided into
two groups.

possible groups, which grows very rapidly with τ . Therefore, it is desirable to have an

approximation algorithm to obtain near-optimal groupings with considerably less compu-

tation.

The approximation algorithm leverages the geometric interpretation of the preference

vectors to find vectors that are close to one another (i.e., have a relatively small angle

between them). Before examining the algorithm in detail, it is important to get a visual

understanding of what the algorithm is doing. Figure 11.3 gives an example of seven

preference vectors that each have only two values, which means that the vectors are in <2.

The algorithm uses these preference vectors as input and returns the group average and the

groupings. The group average is a vector for each group that is located at the center of the

group (shown as a dashed line in Figure11.3). The groupings are simply the algorithm’s

approximation of an optimal set of groups for the given preference vectors.

The approximation algorithm is surprisingly simple. It is a recursive algorithm with

the following steps:

1. Choose two arbitrary vectors, q1 and q2, from the input preference vectors.

2. Create two groups, Q1 and Q2, such that Q1 contains all of the preference vectors

closer to q1 than q2 and Q2 contains all of the other preference vectors.

3. Let q′1 be a vector located in the middle of Q1 and let q′2 be a vector located in the

middle of Q2. Note that a vector is located in the middle of a group when it satisfies

q =
1

|Q|

∑

∀p∈Q

p

‖p‖



165

for each component i in q. This means that q represents that average all the vectors

in its group.

4. If the new groups, Q1 and Q2, contain different vectors than they did in the previous

iteration, then let q1 = q′1 and q2 = q′2 and go to step 2. Otherwise, continue to step

5.

5. Return the average vectors (q1 and q2) and the groupings (Q1 and Q2).

If desired, this algorithm can be run successive times adding additional arbitrary vectors to

the first step and making the appropriate changes throughout the rest of the algorithm to

accommodate the extra vectors. Note that the algorithm always creates a number of groups

equal to the number of arbitrary vectors in the first step.

After running the algorithm, one must determine if the suggested grouping returned

from the algorithm is more optimal than the existing single group. This is quickly and easily

determined using equation 11.3. However, to make the happiness values consistent among

groupings of different sizes, HG should be normalized by dividing by the number of hosts in

G. This normalization allows a comparison of the happiness per host in each grouping. The

grouping with the highest happiness per host is the desired grouping because it maximizes

the overall happiness of the network.

As a demonstration of this algorithm, we use the preference vectors given under the

title Building a Single Group, however, for this example we will assume that τ = 4, which

enables the current group to contain all four hosts. The question is: “Would this set of

hosts be more optimal if they were split into multiple groups?”

First, notice that the only type of split that we should consider is to split the hosts

into two groups. Anything beyond that would lead to a degenerate problem that is obviously

not optimal (i.e., a single host always has a happiness of zero). Therefore, for this example

we find an approximation for the best groupings when dividing this set of hosts into two

groups. We then compare the happiness per host for the two groups with the happiness per

host for the original single group. Whichever grouping offers the maximal happiness is the

desired grouping.

The algorithm takes the four preference vectors as input and arbitrarily chooses to

let q1 = PersonA and q2 = PersonB. The next step is to find the hosts that are closer to

q1 than q2. For this step, we list the relative angles in the table below. Note that it is not

necessary to calculate the angles between q1 and q2 since they will not be grouped together

for this iteration.



166

θq1,host θq2,host

PersonA 0.0 —

PersonB — 0.0

PersonC 74.21 90.0

PersonD 78.07 63.99

Inspection of the data indicates that for this iteration we should let Q1 = {q1,PersonC}

and Q2 = {q2,PersonD}.

The next step is to find q′1 and q′2 such that they each represent the middle of their

respective groups. Geometrically speaking, this means that q′1 and q′2 are the average of all

vectors in Q1 and Q2, respectively. Therefore, we let

q′1 = {〈Security, 0.476〉, 〈PhD, 0.636〉, 〈Washington University, 0.068〉}

q′2 = {〈Security, 0.584〉, 〈Mobility, 0.607〉, 〈Masters, 0.024〉, 〈MIT, 0.095〉}.

We have now completed one iteration of the algorithm. Next we let q1 = q′1 and q2 = q′2
and repeat the above steps with these new values.

Given the new values for q1 and q2, we recalculate the angle table to get the values

below.

θq1,host θq2,host

PersonA 37.103 48.998

PersonB 55.381 31.995

PersonC 37.103 90.000

PersonD 82.556 31.995

Looking at the data we see that PersonA and PersonC are closer to q1 than q2 so they will be

placed in Q1. Likewise, PersonB and PersonD are closer to q2 than q1 so they will be placed

in Q2. Now, comparing the vectors in each group for this iteration with the vectors in each

group for the previous iteration, we see that the groups have not changed. Therefore, the

algorithm has converged on a particular grouping and terminates.

The output from the algorithm is the final groupings, Q1 and Q2, along with the

average vectors, q1 and q2. Using this information we calculate the average happiness per

host below (as before, the 10−2 is dropped from all numbers in the calculation).

Q1 Happiness Q2 Happiness

PersonA 1.35 —

PersonB — 1.56

PersonC 1.35 —

PersonD — 1.56

HG 2.70 3.12

Happiness per host 1.35 1.56

Average Happiness 1.455



167

Next, we need to calculate the average happiness per host for the original grouping,

which had all hosts in the same group.

Happiness

PersonA 2.21

PersonB 2.22

PersonC 1.19

PersonD 1.32

HG 6.94

Average Happiness 1.735

Now we simply compare the average happiness values for the two potential groupings.

The comparison shows that it is more optimal to keep all of the hosts in a single group

because 1.735 > 1.455.

Notice that if the group in this example were larger, then we could run the approx-

imation algorithm additional times to find the average happiness per host with more than

two groups. After collecting all of the average happiness values for each grouping, the final

decision would still be made by choosing the grouping with the highest average happiness

per host.

11.3.3 Putting it all Together

Having seen the various approximation algorithms for building groups, we now shown an

example of the entire process. We start with the arrival of the first host, host 1. Since there

are no other hosts present, no computation is necessary and host 1 becomes the leader and

only member of a group.

Next, the second host, host2, arrives. At this point, host2 determines that there

is only one group on the network and requests to join it by sending a join request to

host1. Assuming that τ > 1, host2 is automatically allowed to join the group. Since the

group changed with the addition of host2, the group leader should run the approximation

algorithm to determine if splitting the group is a good idea.

As additional hosts arrive, they will continue to be automatically accepted as de-

scribed in paragraph above. After each host is accepted into the group, the group leader

will once again run the approximation algorithm to determine if splitting the group is a

good idea.

Once the group reaches its maximal size, η = τ , a decision must be made with the

arrival of each new host. This decision is determined by the results of the approximation

algorithm described in Building a Single Group. If this decision is positive and the arriving

host decides to join the group, then the group leader will remove another host from the

group to make room for the arriving host. After the arriving host engages with the group,



168

the group leader will once again run the approximation algorithm to determine if splitting

the group is a good idea.

This process will continue as new hosts arrive on the network. Furthermore, if

multiple groups develop on the network, then each arriving host will submit join requests

to each group and choose the group that maximizes the overall happiness of the Lime

network.

11.3.4 Discussion

Using the approximation algorithms as described in the previous subsection achieves a close

approximation to the optimal groupings on a network. In addition, the methods used to

build groups provide a high degree of flexibility in how groups are created. For example,

the elements in the preference vectors can be changed to suit many different applications.

The example used throughout this section showed how preference vectors could be used to

connect hosts at a conference. Some additional ideas are given in the table below.

Setting Elements in Preference Vectors

University students, professors, classes, departments, clubs

Business projects, management,

Highway destination, next planned stop, average traveling speed

Military rank, mission, classification level

Building Lime Groups in a ”Real World” Setting

A few important details should be addressed when implementing the protocol and algo-

rithms discussed in Section 11.3.2. These details help to bridge the gap between the theo-

retical algorithms and the potential “real world” problems that may be encountered from

using these algorithms.

First, we will look at step 1 from the group decision protocol. In this step, the

arriving host is supposed to communicate with the leader of the Lime network to find

out how many group leaders are on the Lime network. This solution is very good in

that it guarantees that the arriving host will wait to receive a response from all of the

groups. However, by having a leader for the Lime network there is a potential for scalability

problems. To solve the scalability problem we need to eliminate the Lime network leader.

This means that the arriving host will no longer be able to know the number of group

leaders on the Lime network. Instead, the arriving host can use a timeout value to estimate

whether it has received replies back from every group leader. For example, after sending

the group join request the arriving host would wait for a specified amount of time before

assuming that it has heard back from all group leaders. The assumption is that if the

timeout value is chosen properly, then the arriving host will most likely receive a response



169

from every group leader before moving on. Naturally, there is the potential for the arriving

host to inadvertently exclude a group, however for this price we have made the algorithm

more scalable.

Next, we consider the final steps of the group decision protocol. On a busy network

it is possible for a group leader to receive join requests from multiple hosts at the same time.

Unfortunately, it is difficult for the group leader to give accurate estimates of how each host

will affect the happiness of the group because the leader does not know which, if any, of the

hosts will ultimately join the group. The only way to solve this problem would be to allow

the group leaders to handle requests from only one arriving host at a time. The problem

with this idea is that it would require a leader for the Lime network to coordinate the group

join requests between the group leaders. For reasons discussed above, this solution suffers

from scalability problems. Therefore, we suggest a different, yet conservative approach.

This approach is for the group leader to calculate the estimated happiness of the arriving

host only with the hosts that have already joined the group. This seems reasonable because

as the number of groups on a Lime network increases, the chances that an arriving host

will join any particular group decreases.

Finally, we consider what happens to hosts after they are removed from a group.

When a host is removed from a group, the group leader should ignore all join requests

received from the host until another host joins or leaves the group. This will ensure that

the protocol is not stuck in a cycle where it continuously allows a host to join and then

removes that host from the group immediately. However, a removed host should be free to

send join requests to any other group leader in the Lime network. This allows a removed

host to quickly find a new group to join.

11.4 Concluding Remarks

This chapter presented several extensions to Lime to increase its applicability to a variety

of different mobility scenario. First we considered the effects of sudden loss of connection on

the consistency of the data tuple space and on the connectivity information stored on each

host in the LimeSystem tuple space. Next we proposed an alternative engagement protocol

that does not require a system-wide transaction. The final section described an approach

for limiting the scope of the engaging hosts to keep the operations on the shared tuple space

more reasonable in systems with a large number of hosts.



170

Chapter 12

Conclusions

Mobility is emerging as an important area for computing research, posing many challenges

which must be overcome in a society which is increasingly placing demands on computing

technology. Research in mobility is being approached from a variety of angles which can

broadly be categorized by applications, algorithms, models, and middleware.

This thesis describes contributions in each of these areas. We have developed several

testbed applications which embody many important characteristics of the mobile application

domain. We have designed several algorithms for reliable message delivery in the base

station mobility environment by relying on algorithms from standard distributed computing.

We introduced the notion of global virtual data structures as a novel abstract model for

coordination among ad hoc mobile components. Finally, we have developed the Lime

middleware as proof of concept of the global virtual data structure design strategy. Together,

these research contributions accomplished our stated goal of exploring ways to enable rapid

development of dependable applications in the mobile environment.

In the area of algorithm development, we have presented a new design strategy to

apply established algorithms from traditional distributed computing to the mobile envi-

ronment. Future work in this area will be two-fold. First new algorithms implementing

different abstractions can be built using the same approach. Second, new strategies can

be developed for algorithm development based on other techniques from distributed com-

puting. For example, randomized algorithms may provide a convenient mechanism for

describing probabilistic guarantees. Also, as non-determinism proved to be a useful model

in defining parallelism, randomness may prove to be a useful tool for modeling arbitrary

movement of mobile units. Self-stabilization algorithms in distributed computing provide

guarantees conditional on the relative stability of the network. Such guarantees are directly

translatable to the mobile environment when considering automatic reconfiguration after

mobile unit movement. Finally, epidemic algorithms may provide insight into mechanisms

to spread information from one mobile unit to another as connections change.



171

At the higher level of abstraction, other global virtual data structures can be devel-

oped following the same strategy as that used in the development of Lime. Our experiences

with Lime have shown that the idea of middleware has great potential in mobility as it

can be tailored to access low level details of the environment while still providing high level

abstractions to the programmer. Lime showed how a single abstraction, namely transiently

shared tuple spaces, can be implemented as a middleware. We believe that the notion

of middleware can be broadened to define a layer of abstraction which itself is a layered

composition of abstractions. This composition should be dynamic and configurable by the

application programmer. For example, at the lowest level, middleware can be developed

to utilize different protocols based on the characteristics of the communication media. For

example, in radio communication, broadcast protocols have no more overhead than unicast

and when possible should be exploited in protocols for this environment. Above this, algo-

rithms can be developed to report, with varying degrees of guarantees, current connectivity

information. In a logical mobility only setting or a physically mobile setting with restricted

mobility where disconnections are always announced, tight guarantees can be made such

that at all times, all nodes in the network are guaranteed to have the same view of the

network. This of course comes at the cost of system-wide synchronization protocols, there-

fore such strong guarantees may not be desired and options for this layer of the middleware

should include weaker notions of system configuration. At a yet higher level, different de-

vices may have varying resource configurations. Middleware should accommodate this in

two ways, first by allowing only the essential modules of the middleware to be installed on

the device, and second by implementing the same high level abstractions with different func-

tionality depending on the capabilities of the device on which it is executing. The driving

theme is adaptability realized through modular middleware which can be pieced together

for the specific needs of the application and the environment the application is running in.



172

Appendix A

Supporting Invariants of Chapter 6

This appendix proves several supporting invariants needed to prove the existence of the

covered backbone (Inv I.1):

delivery⇒ 〈∃α, β, f : backbone(β) ∧ coveredBone(α) ∧ f = last(α) ::

(α ⊂ β ∧ ann ∈ Chan(f,Child(f)))

∨ (α = β ∧mobile.preceeds.ann(f,Child(f)))〉 (I.1)

A.1 Integrity of the Backbone

The first supporting invariant addresses the integrity of the backbone, stating that if

the backbone exists, it must have the following properties: (a.) the sequence of nodes in

the backbone must be the same as the list of nodes carried by the mobile unit (program

variable MList), (b.) if the mobile unit is on a channel, that channel must be the backbone

extension (defined as the channel segment between the last node of the backbone and the

mobile unit), (c.) if the mobile unit is at a node (program variable MobileAt), that node

must be the last node of the backbone sequence, (d.) there are no delete messages (indicated

with the constant del) in any backbone channels, and (e.) there are no delete messages on

the backbone extension.



173

backbone(β) ∧ last(β) = f ⇒MList = β

∧mob ∈ Chan(m,n)⇒ m = f ∧ Child(m) = n

∧MobileAt(m)⇒ m = f

∧ 〈∀m,n : m,n ∈ β ∧ n = Child(m) :: del /∈ Chan(m,n)〉

∧ ¬mobile.preceeds.delete(f,Child(f)) (I.1.1)

Again, this invariant is proven over each of the program statements.

• MobileArrivesA(B): If A is on the backbone, the MList is truncated after this

node, none of the pointers change, and the backbone is maintained and matches the

MList.

If A is not on the backbone, A is appended to MList. The last node of the backbone

is pointing toward A as its child by this invariant, therefore when A sets its parent

pointer, the backbone is extended because the maximal length path now includes the

link just traversed by the mobile unit.

Since there were no delete messages on the backbone and the mobile unit was processed

from the head of the channel, after this statement executes, there are still no delete

messages on any channels. However, a delete is generated leaving A. Since the child

of A is null, this channel cannot be part of the backbone because there is no path

that includes it. Therefore the generated delete does not violate the invariant.

• DeleteArrivesA(B): If the delete is accepted, A is not on the backbone because by

this invariant, there are no delete messages that will affect backbone nodes. Therefore,

changing the pointers of A does not affect the backbone or backbone extension. After

the statement executes, A is still not part of the backbone, therefore the outgoing

channel of A that now has a delete message is not part of the backbone.

If the delete is not accepted, the statement is essentially a skip, which trivially main-

tains the invariant.

• MobileLeaves: The nodes of the backbone do not change, however the mobile unit

is no longer on the node. Therefore the backbone extension is created and the last

node of the backbone does point toward the mobile unit. Also, it is not possible for

the mobile unit to precede a delete because the mobile unit is put onto the end of

the channel, and by the FIFO assumption with the channels, the mobile unit follows

everything that was in the channel.

• AnnouncementArrivesA(B), AckArrivesA(B), and AnnouncementStart do

not affect any of the variables of this invariant.



174

A.2 Backbone always exists

To be able to assert the previous invariant at any point, we must show that the backbone

always exists.

〈∃β :: backbone(β)〉 (I.1.2)

Because the root is a constant, the backbone can always be constructed. Note, this invariant

does not say anything about the structure of the backbone, only that one can always be

constructed. The structure invariant is found in I.1.1.

A.3 A most one announcement

At any time during program execution, there is at most one announcement in the system

which is on a channel. There might be multiple copies of the announcement in the system,

but these copies are at nodes.

〈
∑

m,n : ann ∈ Chan(m,n) :: 1〉 ≤ 1 (I.1.3)

The intuition behind proof of this property is that during predelivery, there are no announce-

ments in the system (on either nodes or channels) (Inv I.1.4). Once AnnouncementStart

fires, either one announcement is put on a channel, or none (in the case where delivery occurs

immediately). Since AnnouncementStart acts as a skip from this point forward, and no

other statement can generate an announcement without consuming an announcement from

a channel, there will never be more than one announcement on any channel.

A.4 No announcements during predelivery

To support the previous argument, we need the fact that there are no announcements

in the system during predelivery.

predelivery⇒ 〈∀m,n :: ann /∈ Chan(m,n) ∧ ¬AnnouncementAt(m)〉 (I.1.4)

By the initial conditions, there are no announcements in the system. The only statement

which can generate an announcement is AnnouncementStart and after this statement

fires, the system is no longer in predelivery. The system cannot enter predelivery again

because there is no statement to set predelivery to true.



175

A.5 No acknowledgements during delivery

We must also show that there are no acknowledgments during delivery (where the

constant ack indicates an acknowledgment).

delivery⇒ 〈∀m,n :: ¬ack ∈ Chan(m,n)〉 (I.1.5)

It is trivial to show that there are no acknowledgments initially, and none are generated

during predelivery. the first acknowledgment is generated when the mobile unit receives the

announcement, which by definition takes the system out of into postdelivery, making this

invariant trivially true.



176

References

[1] 3Com. Palm VII Connected Organizer web page. http://www.palm.com/products/

palmvii/index.html/, 2000.

[2] 3G.IP. 3G.IP Web Page. http://www.3gip.org/, 2000.

[3] A. Acharya and B.R. Badrinath. A framework for delivering multicast messages in

networks with mobile hosts. Journal of Special Topics in Mobile Networks and Appli-

cations (MONET), 1(2):199–219, October 1996.

[4] A. Acharya, B.R. Badrinath, and T. Imielinski. Checkpointing distributed applications

on mobile computers. In Proceedings of the Third International Conference on Parallel

and Distributed Information Systems, October 1994.

[5] A. Acharya, A. Bakre, and B.R. Badrinath. IP multicast extensions for mobile inter-

networking. Technical Report LCSR-TR-243, Rutgers University, 1995.

[6] R.M. Amadio. An asynchronous model of locality, failure, and process mobility. In

Proceedings of COORDINATION 97. Second International Conference on Coordina-

tion Models and Languages, LNCS 1282, pages 374–391, Berlin, Germany, September

1997. Springer-Verlag.

[7] R.J.R. Back and K. Sere. Stepwise Refinement of Parallel Algorithms. Science of

Computer Programming, 13(2-3):133–180, May 1990.

[8] B.R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed algorithms for

mobile hosts. In Proceedings of the Fourteenth International Conference on Distributed

Computing Systems, pages 21–28, Poznan, Poland, 1994.

[9] B.R. Badrinath, A. Acharya, and T. Imielinski. Designing distributed algorithms for

mobile computing networks. Computer Communications, 19(4):309–320, April 1996.

[10] M. Baldi and G.P. Picco. Evaluating the Tradeoffs of Mobile Code Design Paradigms

in Network Management Applications. In Proc. of the 20th Int. Conf. on Software

Engineering, 1998.



177

[11] J. Baumann et al. Communication Concepts for Mobile Agent Systems. In K. Rother-

mel and R. Zeletin, editors, Mobile Agents: 1st Int. Workshop MA’97, LNCS 1219,

pages 123–135. Springer, April 1997.

[12] J. Baumann and K. Rothermel. The shadow approach: An orphan detection protocol

for mobile agents. In Mobile Agents: Second International Workshop MA ’98, LNCS

1477, pages 2–13, Stuttgart, Germany, September 1998. Springer-Verlag.

[13] G. Blair, N. Davies, A. Friday, and S. Wade. Quality of Service Support in a Mobile

Environment: An Approach Based on Tuple Spaces . In Proc. of the 5th IFIP Int.

Wkshp. on Quality of Service (IWQoS ’97)—Building QoS into Distributed Systems,

pages 37–48, May 1997.

[14] J. Bradshaw, editor. Software Agents. AAAI Press/MIT Press, 1996.

[15] J. Broch, D.B. Johnson, and D.A. Maltz. The Dynamic Source Routing Protocol

for Mobile Ad Hoc Networks . Internet Draft, October 1999. IETF Mobile Ad Hoc

Networking Working Group.

[16] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent

Coordination. In [77], pages 237–248.

[17] L. Cardelli and A. Gordon. Mobile Ambients. Theoretical Computer Science, 240(1),

2000. To appear.

[18] K.M. Chandy and L. Lamport. Distributed snapshots: Determining global states of

distributed systems. ACM Transactions on Computing Systems, 3(1):63–75, 1985.

[19] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,

NY, USA, 1988.

[20] D. Coore, R. Nagpal, and R. Weiss. Paradigms for structure in an amorphous computer.

A.I. Memo No. 1614, Massachusetts Institute of Technology Artificial Intelligence Lab-

oratory, October 1997.

[21] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and

its application to the development of the OPSS WFMS. IEEE Trans. on Software

Engineering. To appear.

[22] S.E. Deering and D.R. Cheriton. Multicast routing in datagram internetworks and

extended lans. ACM Transactions on Computer Systems, 8(2):85–110, 1990.

[23] E.W. Dijkstra and C. Scholten. Termination detection for diffusing computations.

Information Processing Letters, 11(1), 1980.



178

[24] M. Dunham, A. Helal, and S. Balakrsihnan. A Mobile Transaction Model that Captures

both the Data and Movement Behavior. ACM-Baltzer Journal on Mobile Networks and

Applications (MONET), 2(2):149–162, October 1997.

[25] Ericsson, IBM, Intel, Nokia, and Toshiba. Bluetooth. http://www.bluetooth.com,

2000.

[26] H. Eriksson. Mbone: The multicast backbone. Communications of the ACM, 37(8):54–

60, 1994.

[27] C. Fournet, G. Gonthier, J.-J. Lévy, and L. Maranget. A calculus of mobile agents.

In Proceedings of the International Conference on Concurrency Theory, LNCS 1119,

pages 406–421, Berlin, Germany, 1996. Springer-Verlag.

[28] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding code mobility. IEEE Transac-

tions on Software Engineering, 24(5):342–361, 1998.

[29] D. Garlan and D. Le Métayer, editors. Proc. of the 2nd Int. Conf. on Coordination

Models and Languages (COORDINATION ’97), volume 1282 of LNCS. Springer, Sept.

1997.

[30] D. Gelernter. Generative Communication in Linda. ACM Computing Surveys, 7(1):80–

112, Jan. 1985.

[31] R. Gray, D. Kotz, S. Nog, D. Rus, and G. George. Mobile agents for mobile computing.

Technical Report PCS0TR96-285, Dartmouth College, May 1996.

[32] R.S. Gray, G. Cybenko, D. Kotz, and D. Rus. Agent Tcl. In Itinerant Agents: Expla-

nations and Examples with CDROM. Manning, 1996.

[33] IBM. T Spaces. http://www.almaden.ibm.com/cs/TSpaces/, 2000.

[34] V. Jacobson and S. McCanne. Visual audio tool.

[35] JavaSpaces. The JavaSpaces Specification web page. http://www.sun.com/jini/

specs/js-spec.html, 2000.

[36] D.B. Johnson. Scalable support for transparent mobile host internetworking. In H. Ko-

rth and T. Imielinski, editors, Mobile Computing, pages 103–128. Kluwer Academic

Publishers, 1996.

[37] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained Mobility in the Emerald

System. ACM Trans. on Computer Systems, 6(2):109–133, February 1988.



179

[38] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Mobile Networking for Smart Dust. In

Proc. of the 5th Annual ACM/IEEE Int. Conf. on Mobile Computing and Networking,

Seattle, WA, USA, August 1999. ACM.

[39] J. Kiniry and D. Zimmerman. A Hands-On Look at Java Mobile Agents. IEEE Internet

Computing, 1(4), 1997.

[40] J.J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.

ACM Trans. on Computer Systems, 10(1):3–25, 1992.

[41] F.C. Knabe. Language Support for Mobile Agents. PhD thesis, Carnegie Mellon Univ.,

Pittsburgh, PA, USA, December 1995.

[42] D. Lange and M. Oshima. Programming and Deploying Mobile Agents with Aglets.

Addison-Wesley, 1998.

[43] T.M. Malone and K. Crowston. The interdisciplinary study of coordination. ACM

Computing Surveys, 26(1):87–119, Mar. 1994.

[44] manet. IETF Mobile Ad-hoc Networks Working Group. http://www.ietf.org/

html.charters/manet-charter.html, 2000.

[45] C. Mascolo. MobiS: A Specification Language for Mobile Systems. In P. Ciancarini

and A. Wolf, editors, Proceedings of the 3rd Int. Conf. on Coordination Languages

and Models (COORDINATION), volume 1594 of LNCS, pages 37–52. Springer, April

1999.

[46] C. Mascolo, G.P. Picco, and G.-C. Roman. A Fine-Grained Model for Code Mobility.

In Proc. of the 7th European Software Engineering Conf. held jointly with the 7th ACM

SIGSOFT Symp. on the Foundations of Software Engineering (ESEC/FSE ’99), LNCS,

Toulouse (France), September 1999. Springer.

[47] J. Matocha. Distributed termination detection in a mobile wireless network. In 36th

Annual ACM Southeast Conference, Marietta, GA, April 1998.

[48] Lucent Technologies. Orinoco. http://www.wavelan.com, 2000.

[49] Sun Microsystems. Jini connection technology. http://www.sun.com/jini, 2000.

[50] P.J. McCann and G.-C. Roman. Compositional Programming Abstractions for Mobile

Computing. IEEE Trans. on Software Engineering, 24(2), 1998.

[51] S. McCanne and V. Jacobson. vic: A flexible framework for packet video. In ACM

Multimedia ’95, pages 511–522, San Francisco, CA, USA, 1995.



180

[52] J. McLurkin. Using cooperative robots for explosive ordnance disposal. Massachusetts

Institute of Technology Artificial Intelligence Laboratory.

[53] Sun Microsystems. JavaSpace Specification, March 1998. http://java.sun.com/

products/jini/specs.

[54] R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University

Press, 1999.

[55] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,

D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF—

The OMG Mobile Agent System Interoperability Facility. Journal of Personal Tech-

nologies, 2(2), June 1998.

[56] N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes. Hive: Distributed Agents for

Networking Things. In Proc. of the 1st Int. Symp. on Agent Systems and Applications

and 3rd Int. Symp. on Mobile Agents (ASA/MA ’99), pages 118–129, Palm Springs,

CA, USA, October 1999. IEEE Computer Society.

[57] J. Moy. OSPF version 2. Internet draft, Internet Engineering Task Force, March 1994

1994.

[58] A.L. Murphy, G.-C. Roman, and G. Varghese. An exercise in formal reasoning about

mobile computations. In Proceedings Ninth International Workshop on Software Spec-

ification and Design, pages 25–33, Ise-Shima, Japan, 1998. IEEE Computer Society

Press.

[59] A. Myles and D. Skellern. Comparing four IP based mobile host protocols. Computer

Networks and ISDN Systems, 26(3):349–355, 1993.

[60] R. De Nicola, G.L. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents

interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–330,

May 1998.

[61] ObjectSpace Inc. Voyager ORB 3.0—Developer Guide, 1999. www.objectspace.com.

[62] A. Omicini and F. Zambonelli. Tuple Centres for the Coordination of Internet Agents.

In Proc. of the 1999 ACM Symp. on Applied Computing (SAC’00), February 1999.

[63] Oracle. Oracle 8i Lite web page. http://www.oracle.com/, 2000.

[64] V. Park and S. Corson. Temporally-Ordered Routing Algorithm (TORA) Version 1

Functional Specification. Internet Draft, October 1999. IETF Mobile Ad Hoc Net-

working Working Group.



181

[65] C.E. Perkins. IP mobility support. Technical Report RFC 2002, IETF Network Work-

ing Group, October 1996.

[66] C.E. Perkins and D.B. Johnson. Mobility support in IPv6. In Proceedings of the

Second Annual International Conference on Mobile Computing and Networking (Mo-

biCom’96), Rye, NY, USA, November 1996. ACM Press.

[67] C.E. Perkins, E.M. Royer, and S.R. Das. Ad Hoc On Demand Distance Vector (AODV)

Routing. Internet Draft, October 1999. IETF Mobile Ad Hoc Networking Working

Group.

[68] G.P. Picco. µCode: A lightweight and flexible mobile code toolkit. In Mobile Agents:

Second International Workshop MA ’98, LNCS 1477, pages 160–171, Stuttgart, Ger-

many, September 1998. Springer-Verlag.

[69] G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda meets mobility. In ac-

cepted for publication in Proceedings of the 21st International Conference on Software

Engineering (ICSE’99), Los Angeles (USA), May 1999.

[70] R. Prakash, M. Raynal, and M. Singhal. An Adaptive Causal Ordering Algorithm

Suited to Mobile Computing Environments. Journal of Parallel and Distributed Com-

puting, pages 190–204, March 1997.

[71] R. Prakash and M. Singhal. A Dynamic Approach to Location Management in Mo-

bile Computing Systems. In Proc. of the 8th Int. Conf. on Software Engineering and

Knowledge Engineering (SEKE’96), pages 488–495, June 1996.

[72] M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz. Network-aware mobile pro-

grams. Technical Report CS-TR-3659, University of Maryland, College Park, 1997.

[73] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, March 1995.

[74] G.-C. Roman, Q. Huang, and A. Hazemi. On Maintaining Group Membership Data

in Ad Hoc Networks. Wucs-00-09, Washington University in St. Louis, Department of

Computer Science, April 2000.

[75] G.-C. Roman, P.J. McCann, and J.Y. Plun. Mobile UNITY: Reasoning and specifica-

tion in mobile computing. ACM Transactions on Software Engineering and Methodol-

ogy, 6(3):250–282, 1997.

[76] D.S. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale Event Obser-

vation and Notification. In Proc. of the 6th European Software Engineering Conf. held



182

jointly with the 5th ACM SIGSOFT Symp. on the Foundations of Software Engineer-

ing (ESEC/FSE97), number 1301 in LNCS, Zurich (Switzerland), September 1997.

Springer.

[77] K. Rothermel and F. Hohl, editors. Mobile Agents: 2nd Int. Workshop MA’98, LNCS

1477. Springer, September 1998.

[78] B. Sanders, B. Massingill, and S. Kryukova. Derivation of an algorithm for location

management for mobile communication devices. Parallel Processing Letters, 8(4):473–

488, December 1998.

[79] D. Sangiorgi. Expressing Mobility in Process Algebras: First Order and Higher Order

Paradigms. PhD thesis, Computer Science Dept., Univ. of Edinburgh, 1993.

[80] M. Satyanarayanan. Mobile information access. IEEE Personal Communications, 3(1),

February 1996.

[81] M. Shaw and D. Garlan. Software Architecture: Perspective on an Emerging Discipline.

Prentice Hall, 1996.

[82] J.W. Stamos and D.K. Gifford. Remote Evaluation. ACM Trans. on Programming

Languages and Systems, 12(4):537–565, October 1990.

[83] M. Steenstrup. Routing in Communication Networks, chapter 10. Prentice-Hall, 1995.

[84] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Managing

update conflicts in Bayou, a weakly connected replicated storage system. Operating

Systems Review, 29(5):172–183, 1995.

[85] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location System.

ACM Trans. on Information Systems, 10(1):91–102, January 1992.

[86] M. Weiser. The computer for the 21st century. Scientific American, 265(3):94–104,

1991.

[87] J.E. White. Telescript Technology: Mobile Agents. In [14].

[88] A. Xu and B. Liskov. A design for a fault-tolerant, distributed implementation of

Linda. In Digest of Papers of the 19th Int. Symp. on Fault-Tolerant Computing, pages

199–206, June 1989.

[89] H. Zimmerman. OSI reference model – The ISO model of architecture for open systems

interconnection. IEEE Transactions on Communication, 28:425–432, 1980.



183

Vita

Amy L. Murphy

PERSONAL

DATA

Date of Birth: August 6, 1973

Place of Birth: Rochester, Minnesota, USA

Citizenship: USA

EDUCATION Degree granted: D.Sc. in Computer Science.

August 2000 Washington University, St. Louis, MO

Enabling the Rapid Development of

Dependable Applications in the

Mobile Environment.

Advisor: Dr. Gruia-Catalin Roman

Degree granted: M.S. in Computer Science.

May 1997 Washington University, St. Louis, MO.

Degree granted: B.S. in Computer Science.

May 1995 University of Tulsa, OK. magna cum laude.

A Formally Specified Negotiation Strategy

for the Feature Interaction Problem.

Advisor: Dr. R.F. Gamble

PROFESSIONAL

SOCIETIES

Association for Computing Machinery

IEEE Computer Society

PUBLICATIONS G.P. Picco, A.L. Murphy, and G.-C. Roman. Developing Mobile

Computing Applications with Lime. In Proceedings of the 22nd

International Conference on Software Engineering (ICSE’00), Lim-

erick, Ireland, June 2000. (Demonstration).

A.L. Murphy and G.P. Picco. Reliable communication for highly

mobile agents. In Proceedings of the 1st International Symposium

on Agent Systems and Applications and 3rd International Sym-

posium on Mobile Agents (ASA/MA ’99), pages 141–150, Palm

Springs, CA, USA, October 1999.

G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda meets

mobility. In Proceedings of the 21st International Conference on



184

Software Engineering (ICSE’99), pages 368–377, Los Angeles, CA,

USA, May 1999.

A.L. Murphy. Algorithm development in the mobile environment.

In Proceedings of the 21st International Conference on Software

Engineering (ICSE’99), Doctoral Workshop, pages 728–729, Los

Angeles, CA, USA, May 1999. (Abstract).

A.L. Murphy, G.-C. Roman, and G. Varghese. An exercise in

formal reasoning about mobile computations. In Proceedings of the

9th International Workshop on Software Specification and Design,

pages 25–33, Ise-Shima, Japan, 1998.

A.L. Murphy, G.-C. Roman, and G. Varghese. An algorithm

for message delivery to mobile units. In Proceedings of the 16th

Annual ACM Symposium on Principles of Distributed Computing

(PODC ’97), Santa Barbara, CA, USA, 1997. (Abstract).

D. Baughman, R.F. Gamble, and A.L. Murphy. Using formal

specification to design verifiable hybrid knowledge based dystems.

In Proceedings of the 7th AAAI Workshop of Verification and Val-

idation of Knowledge Based Systems, Seattle, WA, USA, August

1994.

INVITED PUBLICATIONS

G.-C. Roman, A.L. Murphy, and G.P. Picco. Software engineering

for mobility: A roadmap. In A. Finkelstein, editor, Future of

Software Engineering. June 2000.

A.L. Murphy and G.P. Picco. Reliable communication for highly

mobile agents. Autonomous Agents and Multi-Agent Systems

Journal, special issue on Mobile Agent Technology. In Press

(2000).

G.-C. Roman, A.L. Murphy and G.P. Picco. Coordination and

mobility. In A. Omicini, F. Zambonelli, M. Klusch, and R. Tolks-

dorf, editors, Coordination of Internet Agents. Springer. In press

(2000).

August 2000


