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Abstract—Data prediction is proposed in wireless sensor networks (WSNs) to extend the system lifetime by enabling the sink to

determine the data sampled, within some accuracy bounds, with only minimal communication from source nodes. Several theoretical

studies clearly demonstrate the tremendous potential of this approach, able to suppress the vast majority of data reports at the source

nodes. Nevertheless, the techniques employed are relatively complex, and their feasibility on resource-scarce WSN devices is often

not ascertained. More generally, the literature lacks reports from real-world deployments, quantifying the overall system-wide lifetime

improvements determined by the interplay of data prediction with the underlying network. These two aspects, feasibility and

system-wide gains, are key in determining the practical usefulness of data prediction in real-world WSN applications. In this paper, we

describe derivative-based prediction (DBP), a novel data prediction technique much simpler than those found in the literature.

Evaluation with real data sets from diverse WSN deployments shows that DBP often performs better than the competition, with data

suppression rates up to 99 percent and good prediction accuracy. However, experiments with a real WSN in a road tunnel show that,

when the network stack is taken into consideration, DBP only triples lifetime—a remarkable result per se, but a far cry from the data

suppression rates above. To fully achieve the energy savings enabled by data prediction, the data and network layers must be jointly

optimized. In our testbed experiments, a simple tuning of the MAC and routing stack, taking into account the operation of DBP, yields a

remarkable seven-fold lifetime improvement w.r.t. the mainstream periodic reporting.

Index Terms—Wireless sensor networks, data prediction, time series forecasting, energy efficiency, network protocols

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) provide the flexibil-
ity of untethered sensing, but pose the challenge of

achieving long lifetime with a limited energy budget, often
provided by batteries. It is well-known that communication
is the primary energy drain, which is unfortunate, given
that the ability to report sensed data motivates the use of
WSNs in several pervasive computing applications.

An approach to reduce communication without com-
promising data quality is to predict the trend followed by
the data being sensed, an idea at the core of many tech-
niques [1]. This data prediction approach1 is applicable
when data is reported periodically—the common case
in many pervasive computing applications. In these cases,

a model of the data trend can be computed locally to a
node. This model constitutes the information being reported
to the data collection sink, replacing several raw samples.
As long as the locally-sensed data are compatible with the
model prediction, no further communication is needed:
only when the sensed data deviates from the model, must
the latter be updated and sent to the sink. Section 2 formu-
lates the data prediction problem in more detail.

The aforementioned approach is well-known, and has
been proposed by several works we concisely survey in
Section 6. Nevertheless, to the best of our knowledge
none of these works has been verified in practice, in a
real-world WSN deployment. On one hand, the techni-
ques employed are relatively complex, and their effective-
ness is typically evaluated based on implementations in
high-level languages (e.g., Java) on mainstream hardware
platforms. Therefore, their feasibility on resource-scarce
WSN devices remains unascertained. Moreover, the
works in the literature typically evaluate the gains only in
terms of messages suppressed w.r.t. a standard approach
sending all samples. This data-centric view, however,
is quite optimistic. WSNs consume energy not only
when transmitting and receiving data, but also in several
continuous control operations driven by the network layer
protocols, e.g., when maintaining a routing tree for data
collection, or probing for ongoing communication at the
MAC layer.

Therefore, the true question, currently unanswered by
the literature, is to what extent the theoretical savings
enabled by data prediction are actually observable in
practice, i.e., i) on the resource-scarce devices typical of
WSNs, and ii) when the application and network stacks are
combined in a single, deployed system. The goal of this

1. The techniques discussed here are known under various names,
including time-series forecasting, data modeling, prediction-based data collec-
tion, andmodel-driven data acquisition. Although in a preliminary version
of this paper [2] we used the last term, in this paper we resort to the
more intuitive data prediction.
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paper is to provide an answer to this question, through the
following contributions:

� We propose derivative-based prediction (DBP), a novel
data prediction technique compatible with app-
lications requiring hard guarantees on data quality.
DBP, described in Section 3, predicts the trend of data
measured by a sensor node, and is considerably sim-
pler than existing methods, making it amenable for
resource-scarce WSNs, as witnessed by our TinyOS
implementation for the popular TelosBmotes [3].

� We perform an extensive experimental evaluation of
DBP against state-of-the-art data prediction techni-
ques, based on seven diverse real-world data sets
with more than 13 million data points in total. The
results demonstrate the effectiveness of DBP, which
often performs better than the competition by sup-
pressing up to 99 percent of data transmissions while
maintaining data quality within the required appli-
cation tolerances.

� We describe the first2 study of the interaction of
data prediction with WSN network protocols,
directly comparing the theoretical application-level
gains against the practical, system-wide ones. We
evaluate the performance of a staple network stack
consisting of CTP [4] and Box-MAC [5], both in an
indoor testbed and a real application setting, a road
tunnel [6]. Our results show that the gains attained
in practice lead to three- to five-fold WSN lifetime
improvements, which is a significant achievement
in absolute terms, but dramatically lower than those
derived in theory.

� We explore the potential of cross-layer network stack
optimizations to further improve the lifetime of
WSN nodes running DBP. In our tunnel application,
we show how a careful, yet simple, joint parameter
tuning of the MAC and routing layers reduces the
network control overhead considerably, without
affecting the DBP operation, and yields a remarkable
seven-fold lifetime improvement w.r.t. the standard
periodic reporting.

The paper ends with the concluding remarks of Section 7,
underlining the further lifetime improvements and
enhanced reliability that can be attained by a WSN network
stack expressly designed to work in conjunction with data
prediction techniques.

2 PROBLEM FORMULATION

Data collection is a fundamental functionality of many WSN
applications, and is commonly implemented by nodes peri-
odically taking sensor measurements and reporting the cor-
responding samples to a data sink.

The premise of applying data prediction is that communi-
cation can be significantly reduced by avoiding transmission
of each raw sample to the sink. This is achieved by using a
model to estimate the sensed values, and by communicating
with the sink only when changes in the sampled data render
the model no longer able to accurately describe them.

The data prediction strategy, applied on each node,
involves the following general steps. The sensor node builds
a model of its data based on some initial, observed values,
and transmits the model to the sink. From that point on, the
sink operates on the assumption that the data observed by
the sensor node are within the value tolerance of the data
predicted by the model. At the same time, the node is also
using the model to predict its own sensor data, and com-
pares the predicted values with those actually observed. If
their difference is within the error tolerance, no further
action is required. Otherwise, the sensor node builds a new
model and transmits it to the sink.

To enable this strategy, the application running at the
sink must allow for a small tolerance in the accuracy of
the reported data—an assumption that holds in the
majority of WSN applications. In contrast with the ideal
requirement of the sink obtaining exact values in all data
reports, the correctness of these applications is unaffected
as long as

1) the reported values match closely the exact ones;
2) inaccurate values occur only occasionally.
In other words, deviations from the exact reports are

acceptable, as long as their extent in terms of difference in
value and time interval during which the deviation occurs
are small enough. In this paper we only consider non-prob-
abilistic techniques that can provide hard guarantees on their
predictions, a requirement for several real-world applica-
tions. We capture these assumptions with the following
definitions:

� Let Vi be an exact measurement taken at time ti. The
value tolerance is defined by the maximum relative

and absolute errors acceptable, "V ¼ ð�rel; �absÞ. From
the application perspective, reading a value Vi

becomes equivalent to reading any value V̂i in the

range RV defined by the maximum error, V̂i 2 RV ¼
½Vi � �; Vi þ ��, where � ¼ maxf Vi

100 �
rel; �absg. In other

words, the application considers a value V̂i 2 RV as
correct.

� Let T ¼ jtj � tkj be a time interval, and V̂T ¼ fV̂j; . . . ;

V̂kg the set of values reported to the application dur-
ing T . The time tolerance "T is the maximum accept-
able value of T such that all the values reported in

this interval are incorrect, i.e., V̂i =2 RV , 8 V̂i 2 V̂T .
The intuition behind these is shown in Fig. 1. Data pre-

diction aims to suppress as many data reports from the
WSN nodes as possible, while ensuring that the data used
by the application at the sink is within the value and time
tolerances "V and "T specified as part of the requirements.

Fig. 1. Value and time tolerance.

2. A preliminary version of this paper appeared in [2].
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The use of both absolute and relative errors in the value tol-
erance is dictated by the requirements of many applications
in which values can be both very small and very large. Our
evaluation in Section 4 shows a concrete example, the TUN-

NEL application, where this problem is evident. If only the

absolute error �abs is used, it is difficult to set it in a way
meaningful for both very small and very large values. On

the other hand, a relative error �rel is often not very useful in
the case of very small values, when the quantities at stake
are negligible. Using the maximum between relative and
absolute error as the value tolerance allows one to specify
error in relative terms, and at the same time set an absolute
threshold beyond which variations can be ignored.

3 DERIVATIVE-BASED PREDICTION

With this general statement of the problem, we next turn to
the details of our solution as embodied in the novel data
prediction technique we refer to as derivative-based predic-
tion. We first discuss the rationale and offer the intuition
behind our algorithm, then present the technical details and
implementation considerations.

Goals and requirements. The idea behind DBP is to use a
simple model that can effectively capture the main data
trends, and to compute it in a way that is resilient to the
noise inherent in the data. DBP is based on the observation
that the trends of sensed values in short and medium time
intervals can be accurately approximated using a linear
model. Although this idea has already appeared in the liter-
ature, there is a key difference to our approach: previous
studies compute models that aim to reduce the approxima-
tion error (i.e., root mean squared error, RMSE) w.r.t. recent
data points, producing models that are accurate w.r.t. past
data. Instead, DBP computes models capturing the trends in
recently-observed data, producing models accurate w.r.t.
future data. Evidently, these trends are best modeled when
data exhibit short-term linear behavior. As we discuss in
the experimental evaluation, DBP can effectively describe
data with long-term non-linear trends, at the cost of more
frequent model updates.

Technical details. Fig. 2 provides an illustration of DBP.
The model is computed based on a learning window, contain-
ing m data points; the first and the last l we call edge points.
The model is linear, computed as the slope d of the segment
connecting the average values over the l edge points at the
beginning and end of the learning window. This computa-
tion resembles the calculation of the derivative, hence the
name derivative-based prediction. Involving only 2l points
makes DBP computationally efficient, and therefore appeal-
ing for implementation on resource-scarce nodes, but also

robust against noise and outliers present in the samples, as
shown in Section 4.2.

The first DBP model generated is sent to the sink. From
that time on, each node buffers a sliding window of the last
m data points (the learning window) sampled from its sen-
sor. Upon sampling a point, the “true” value sensed is com-
pared to the one “predicted” by DBP according to the
current model, i.e., following the slope d. If the sensor read-
ing is within the value tolerance "V w.r.t. the model, no
action is required: the sink automatically generates a new
value that is an acceptable approximation of the real one.
Otherwise, if the readings continuously deviate from the
model for more than "T time units, a new model must be
recomputed based on the m buffered data points. The
model is then sent to the sink.

Implementation considerations. As our final goal is to
deploy DBP on real WSN nodes, the complexity and
resource requirements (i.e., memory and CPU) of the imple-
mentation are very important, as these devices are typically
not equipped with large memory or powerful CPUs. For
instance, the popular TelosB motes used by the majority of
WSN deployments reported in the literature, including the
one about adaptive lighting in road tunnels [6] we illustrate
in the next section, are equipped with only 48 kB of code
memory, 10 kB of RAM, and an 8 MHz micro-controller
suited for integer operations only.

In this respect, DBP is very efficient, involving only one
subtraction, two summations, and two divisions to build
the model, and a single summation for predicting the next
value. Our DBP implementation in TinyOS requires only
50 lines of low-level code (equivalent to only eight lines of
Java code), without including any external libraries, or
using floating point arithmetic. As node memory is limited,
eliminating the floating point arithmetic module is highly
desirable. Further, our DBP implementation uses only 108 B
of RAM, leaving almost all of the data memory to the appli-
cation and the network stack.

In contrast, other state-of-the-art techniques (e.g., those
compared in Section 4) employ mathematical libraries for
solving linear equations with 2-3 unknowns to compute an
autoregressive model (SAF), and a linear (PLA and SAF)
and quadratic polynomial (POR) regression using least
squares minimization. Such requirements render these
approaches considerably more resource-intensive. At the
same time, DBP does not sacrifice accuracy, as shown in
Section 4.2.

4 APPLICATION-LEVEL EVALUATION

This section analyzes the ability of our data prediction tech-
nique, DBP, to reduce the amount of data that must be
transmitted to the sink. This is notably different from the
system-wide energy savings enabled by such data suppres-
sion, which we analyze in Section 5.

We evaluate and compare data prediction techniques
using the suppression ratio

SR ¼ 1� #messages generated with prediction

#messages generated without prediction

as our primary performance metric. SR directly measures
the fraction of application-layer messages whose reporting

Fig. 2. Derivative-based prediction.
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can be avoided: the higher the value of SR, the more effec-
tively a technique is performing.

4.1 Applications and Datasets

Our evaluation is based on seven datasets from four
applications, described next, covering a variety of data
variation patterns, sampling periods, and number of
nodes. Table 1 outlines the main features of the datasets.
Moreover, it reports the error tolerance we set as a
requirement, based on the real one used in the application
as defined by its designers or, in absence, by considering
the nature of the application. Finally, we report the learn-
ing window m, which is a characteristic not only of DBP
but of all approaches, and is set at the same value for the
sake of comparison.

These datasets contain real collected data, which was sub-
ject to losses on the wireless channel or to hardware failures
of some nodes. This is different from an online application
of data prediction, where each node has a perfect record of
the sensed values, as they are being sampled on the node
itself. Therefore, before running our evaluation, we recon-
struct a perfect data series for each node by removing dupli-
cates and interpolating for missing values, in line with
similar evaluations found in the literature [7].

Adaptive lighting in road tunnels ( TUNNEL ). Our first case
study involves a real-world WSN application, deployed
in a road tunnel to acquire light readings [6]. The values
are relayed in multi-hop to a gateway, and from there to
a programmable logic controller (PLC) that closes the con-
trol loop by setting the intensity of the lamps inside the
tunnel. In contrast to the state of the art in tunnels, where
light intensity is pre-set based on the current date and
time, or at best determined by the external conditions,
this closed-loop adaptive lighting system maintains opti-
mal light levels by considering the actual conditions
inside the tunnel. This increases safety, and enables con-
siderable energy savings.

WSNs are an asset in this scenario, as nodes can be
placed anywhere along the tunnel, not only where power
and networking cables can reach. This drastically reduces
installation and maintenance costs, and makes WSNs partic-
ularly appealing for existing tunnels, where infrastructure
changes should be minimized. The downside to such flexi-
bility is reliance on an autonomous energy source. Never-
theless, battery costs are minimal and their replacement can
be combined with regularly-planned tunnel maintenance.

Fig. 3 shows the placement of WSN nodes inside our
260 m long, two-way, two-lane tunnel. Overall, 40 nodes are
split evenly between the tunnel walls and placed at a height
of 1.70 m, compatible with legal regulations. Their data
reports are collected by a gateway, installed 2 m from the
entrance. Each node is functionally equivalent to a TelosB
mote [3], augmented with a sensor board equipped with
four ISL29004 digital light (illuminance) sensors. This setup
is similar to the one reported in [6], where we detail and
evaluate the operational WSN-based, closed-loop adaptive
lighting system. In this paper we use a different application
and network stack, and compare data prediction techniques
against the baseline represented by the aforementioned
periodic reporting of all samples.

The dataset we use contains the light readings reported
every 30 s from each node for 47 days, for a total of
5,414,400 measurements—the largest among the datasets
we consider here. To offer an intuition of the data, the
dashed line in the top of Fig. 6b shows the raw sensor read-
ings at a single node near the entrance of the tunnel over a
one-day period. To establish the proper value and time tol-
erances, we consulted the lighting engineers who designed
the control algorithm that establishes the lamp levels. By
taking into consideration the inherent error of the illumi-
nance sensors, they determined a value tolerance
"V ¼ ð5; 25Þ, i.e., values generated by the model can differ
from the raw sensor reading by at most 5 percent or 25
counts, the latter corresponding approximately to 15 lx.

TABLE 1
Datasets Characteristics and Evaluation Parameters

Application Dataset Sampling
Period

Nodes Samples Error Tolerance Learning
Window (m)(�rel; �abs) "T

TUNNEL Light 30s 40 5,414,400 (5%, 25 counts) 2 20

SOIL
Air Temperature 10minutes 10 225,360 (5%, 0.5�C) 2 6
Soil Temperature 10minutes 4 77,904 (5%, 0.5�C) 2 6

INDOOR

Humidity 31s 54 2,303,255 (5%, 1%) 2 20
Light 31s 54 2,303,255 (5%, 15 lx) 2 20
Temperature 31s 54 2,303,255 (5%, 0.5�C) 2 20

WATER Chlorine 5minutes 166 715,460 (5%, 0.0001) 2 6

Fig. 3. Physical placement of WSN nodes in TUNNEL.
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Based on the application requirement that lamp levels must
be adjusted slowly to minimize the effects of changes on the
drivers, they also identified a time tolerance of one minute.
For convenience, we express "T in terms of the 30 s report-
ing intervals of the application; a one-minute time tolerance
corresponds to "T ¼ 2. We further establish the number of
values in the learning phase of data prediction techniques
to bem ¼ 20, corresponding to a period of 10 minutes.

Soil ecology (SOIL). Our second case study uses data origi-
nating in the Life Under Your Feet (LUYF) project [8].
LUYF brings biologists and WSN experts together to study
the soil micro-climate in different forests of Maryland. As
environmental conditions affect the activities and behavior
of plants, micro-organisms and insects in the soil, a large
WSN offers accurate, fine-grained spatial and temporal
data, collected without being intrusive to the living crea-
tures. Our study uses the soil and air temperature datasets
collected in an urban forest in Baltimore, over a period of
225 days between September 2005 and July 2006. The soil
and air temperatures are measured on the surface of the
earth and inside the box of the node, respectively. Despite
their commonalities such as the presence of a diurnal
cycle, the two temperature datasets exhibit distinctly dif-
ferent variation patterns. The soil temperature varies grad-
ually over time with changes lagging behind those of the
air temperature by several hours due to the large inertia
caused by the soil. We determined the value tolerance for
the temperature datasets in consultation with the soil sci-
entists of the LUYF project. Interestingly, the scientists are
not interested in the temperature itself, rather in the pro-
duction of CO2 due to the respiration of organisms and
plants in soil, which is affected by temperature. A signifi-
cant change in the concentration of CO2 occurs with tem-
perature changes of 0:5� C or 5 percent of the actual
temperature. Given the sampling period of 10 minutes, we
set the learning phase to 1 hour to accumulate m ¼ 6 sam-
ples before applying the prediction technique.

Indoor sensing ( INDOOR ). Our next application case study
is arguably one of the first publicly available datasets col-
lected from a WSN. As such it has been used by earlier data
prediction studies [7], [9], offering direct comparison
between our results and prior published results. In this
dataset, the light, temperature, humidity, and battery volt-
age of 54 nodes (Mica2Dot) deployed inside the Intel
Berkeley Research Lab are collected. The data trends are
dramatically different from those of outdoor WSNs, as the
indoor sensors are influenced by artificial factors such as
the heating ventilation and air conditioning (HVAC) system
and human-controlled lighting.

The dataset covers 36 days, in which the nodes
reported 2:3 million values for each of the aforementioned
physical quantities. In our experiments, we do not con-
sider voltage as it is highly correlated to temperature.
With this dataset, we set the tolerance parameters for
temperature as in SOIL, and those of the other two quanti-
ties as an estimate of the perceivable effect on the comfort
of the building occupants.

Water distribution (WATER). In our final case study we con-
sider a simulated sensor network monitoring hydraulic and
chemical phenomena in drinking water distribution piping
systems. The data comes from EPANET 2.0 [10], an accurate

modeling tool that tracks the water flow in each pipe, the
water height in each tank, the pressure at each node, and
the chlorine concentration throughout the network during a
specified simulation period. This dataset has been used in
several previous studies (e.g., in [11], [12], [13], [14]) and
thus offers a valuable point for comparative studies.

From this application, we consider a dataset containing
measurements of the chlorine concentration every 5’ at 166
junctions in the water distribution network for a 15-day
interval, for a total of 715;460 measurements. This dataset
exhibits a global, daily periodic pattern following residen-
tial demand, partly shown in Fig. 6a, with a slight time shift
across different junctions, due to the time it takes for fresh
water to flow down the pipes from the reservoirs. We
assume a value tolerance of (5, 0.0001), which allows sensors
measuring very low chlorine concentrations to report data.
In general, the data exhibits a periodic, quasi-sinusoidal pat-
tern whose frequency is higher than in our other datasets.
As such, it is more difficult to model with linear prediction
techniques, and thus constitutes a worst-case scenario for
our evaluation.

4.2 Comparing DBP against the State of the Art

The goal of data prediction is to reduce the transmission
ratio without crossing the tolerated error values. To evalu-
ate this, we consider all the available data sets described
earlier and compare the suppression percentage of DBP to
several other techniques from the literature we concisely
describe here, and place in a wider context in Section 6:

� Piecewise linear approximation (PLA) is a popular tech-
nique that uses least square error linear segments to
approximate a set of values [9]. In our case, each
node uses a single segment to model sensed values.

� Similarity-based adaptable framework (SAF) [7] relies on
an autoregressive moving-average model of order 3
with a moving-average parameter of order 0. In SAF
a value Vi is predicted by a linear combination of the
last three: Vi ¼ li þ a1ðVi�1 � li�1Þ þ a2ðVi�2 � li�2Þ þ
a3ðVi�3 � li�3Þ, where a1, a2, a3 are constants the
model must estimate, and li models the linear trend
of data over time.

� Polynomial regression (POR). In contrast to DBP, POR
allows the use of non-linear models for prediction.
Intuitively, this may yield better performance
through a better fit to the data. Like PLA, POR uses
the least squares measure for selecting the most
appropriate coefficients for the polynomials, which
have the form y ¼ Pp

i¼0 aix
i. For this study, we eval-

uated polynomials of order p ¼ 2, 3, 4, but show
only p ¼ 2 as it provides the best results for POR.

We used the value and error tolerances matching each
target application as outlined in Table 1. The duration of the
learning window m is the same across all techniques, and is
also specified in Table 1. Finally, for DBP we used l ¼ 3
edge points; this value yields the best performance,
although its impact is nonetheless rather limited, as we
show in Section 4.4.

First we consider the error of predicted vs. actual sensor

values. Like other studies [9], [11], we use root mean squared

error as an indicator of the quality of the predicted time series
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at the sink. We define it as RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 ðVi � V̂iÞ2

q

where Vi and V̂i are the sensed and predicted values, respec-

tively, and N is the total number of values sensed. Table 2

shows the RMSE across all data sets. DBPminimizes the error

in four of seven datasets and is second best in the others, con-

firming its ability to accurately predict the sensed values.

This impressive result may be surprising, considering that

the approaches we compare against, unlike DBP, are

expressly designed to reduce RMSE. Note however, that

these techniques try to reduce the RMSE between the pro-

duced model and the past data values, while here we are

interested in measuring the RMSE between the model and

the future data values.
All approaches perform well in terms of data suppres-

sion, but DBP achieves the best results in five out seven
datasets. Table 2 shows that DBP suppresses 99:7 percent of
the message reports in TUNNEL, and 99:6 and 99:5 percent for
the temperature and humidity INDOOR datasets.

On the other hand, the WATER dataset is characterized by
non-linear periodic trends that are better approximated
by the polynomial regression function of POR rather than

by linear approximations as in DBP. Indeed, we chose this
dataset as a sort of stress test for our technique. Although
POR suppresses 2:77 percent more data reports than DBP,
the performance of the latter is still very good, considering
that: i) DBP still outperforms both PLA and SAF, ii) DBP’s
implementation is significantly easier and less memory-
hungry than the other techniques, and therefore easier to
integrate on resource-scarce WSN devices, and, iii) POR
exhibits the worst performance in all other datasets, up to
2:53 percent fewer reports are suppressed w.r.t. DBP in SOIL.

Table 2 shows the aggregate data suppression rate, but
different nodes enjoy different SR values, based on the
trends they observe in the sensed data. Fig. 4a provides a
concrete view of this statement in WATER, our worst-case
dataset, by showing SR for each node. Fig. 5 provides a
more intuitive view on the same dataset by plotting the
cumulative distribution function (CDF): a point on the curve
represents the number of nodes, on the x-axis, whose SR is
less than or equal to the one on the y-axis. The charts con-
firm the non-uniformity of data suppression, and show
again that POR is consistently more efficient at suppressing
reports than the other techniques, a consequence of the par-
ticular nature of the WATER dataset, as already mentioned.
The lack of detailed information about the deployment of
nodes and the trends of the physical phenomena observed,
and the inability to run specific tests, prevents us from pro-
viding more in-depth observations in WATER, as well as SOIL

and INDOOR.
On the contrary, in TUNNEL we do have all the information

above. Fig. 4b shows the data suppression rate for the indi-
vidual nodes in the tunnel. The chart is split in two to
remind the reader that the deployment is constituted by
two parallel lines of WSN devices, arranged as shown in
Fig. 3. Indeed, the node placement motivates the difference

TABLE 2
Root Mean Squared Error and Suppression Ratio

Application Dataset Root Mean Squared Error* Suppression Ratio(%)*

DBP PLA SAF POR DBP PLA SAF POR

TUNNEL Light 18.867 19.121 20.031 19.307 99.74 99.71 99.71 99.09

SOIL
Air Temperature 0.618 0.613 0.6196 0.794 91.83 91.77 91.79 89.30
Soil Temperature 0.352 0.352 0.3495 0.361 98.80 98.82 98.83 97.83

INDOOR

Humidity 4.494 4.540 4.528 4.513 99.50 99.47 99.48 98.59
Light 23.980 30.981 25.493 31.480 97.58 97.10 97.47 96.43
Temperature 1.972 2.130 1.972 2.336 99.60 99.58 99.59 98.95

WATER Chlorine 0.008 0.008 0.008 0.007 89.81 89.44 89.57 92.58

* Underlined bold-face numbers denote the lowest RMSE error or the highest suppression ratio.

Fig. 4. DBP vs. state-of-the-art techniques on individual nodes in WATER

and TUNNEL.
Fig. 5. A different view on Fig. 4a: CDF of suppression ratio for the indi-
vidual nodes in WATER.
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in performance among the various nodes. The nodes in the
tunnel interior are only marginally affected by the outside
lighting conditions; the light data they sense is determined
by the rather constant illumination provided by the tunnel
lamps. All data prediction techniques are very effective in
this case. On the other hand, the nodes near the entrance are
subject to variations in light that can be also quite abrupt
(e.g., upon sunrise) and that, contrary to the WATER dataset,
are consistently predicted less effectively by POR.

4.3 DBP in Action

In this section we take a closer look at the operation of DBP,
showing that our technique can satisfy the error and delay
tolerance requirements set by applications. We focus most
of our discussion on the TUNNEL dataset, as it is the one for
which we have most information, and occasionally compare
with the WATER dataset, which is the worst case for DBP.

We begin by analyzing DBP in the small, dissecting the
operation of a single node over a single day of operation
for both these datasets, as shown in Fig. 6. In WATER, we
chose node 1 because it has an average suppression ratio
w.r.t. other nodes in the same deployment. In TUNNEL, we
choose node 1 because, as shown in Fig. 3, it is placed at
the tunnel entrance where, in comparison with nodes
in the interior, most of the changes in light readings
occur. The top charts in Fig. 6 show the values sensed by
these nodes both in the original case where data is
reported periodically (every 5’ for WATER and 30 s for
TUNNEL, according to Table 1) and when DBP is applied.
In the latter case, the cross points indicate the generation
of a new model, while the lines between the points show
the values automatically calculated at the sink from those
models. The two datasets exhibit different trends: while
the values in TUNNEL reflect the light changes induced by
sunrise and sunset, the values in WATER are affected only
by the concentration of chlorine, which is set arbitrarily
by the simulation from which the dataset is extracted.
Nevertheless, the charts show that DBP is able to predict
very closely the actual values in both cases, while sup-
pressing the majority of messages. For instance, in TUNNEL

2;880 messages are sent without DBP, against only 25
messages with DBP: a suppression ratio of 99:13 percent.

As expected, most DBP models are generated in corre-
spondence of slope changes in the value trends. Interest-
ingly, in TUNNEL these are almost all concentrated around
sunrise and sunset: the rest of the time, DBP generates very

few models. These observations are confirmed on a global
scale by Fig. 7, where we show the overall number of mod-
els generated by all the nodes in TUNNEL, over time. To mea-
sure this, we divide our 24-hour experiment into 5’ intervals
and count the number of models generated by all nodes in
each interval. The number of models in any 5’ interval
reaches a peak of 10 after sunrise, a second peak of 4 around
sunset, and remains well below this value during the rest of
the day. At night, many intervals generate no models.

Finally, the bottom charts in Fig. 6 focus again on indi-
vidual nodes as representative examples, analyzing the
error of the values provided by DBP to the application. The
solid line indicates the value tolerance set by our application
requirements—"V ¼ ð5; 0:0001Þ in WATER and "V ¼ ð5; 25Þ in
TUNNEL—while the lighter line shows the error of DBP as the
difference between the predicted value and the sensed
value. In most cases, the error falls below the value toler-
ance. Excursions above the value tolerance occur when data
predicted at the sink, albeit incorrect, are within the time
tolerance. In each of these cases, either subsequent values
fell back below value tolerance or a new model was gener-
ated after the maximum number of incorrect reports ("T ¼ 2
in our case) was exceeded. Interestingly, in many cases
(e.g., at night in TUNNEL) one can see the absolute error grow-
ing for a while, then dropping and growing again. The drop
in error corresponds to the generation of a new model, visi-
ble also in the top charts of Fig. 6. The growing error is
because the DBP model is linear with a small, but non-zero
slope, which is slightly off the measured light values that
remain mostly constant. It is also worth noting that, in
TUNNEL, the value tolerance at night is dominated by the

absolute error �abs, while during the day it is dominated by

the relative error �rel. Indeed, the light at the entrance of the
tunnel at night amounts to only a few lux, while during the
day it can easily exceed a thousand lux. This disparity moti-
vates the use of two different value tolerances.

Fig. 7. Total number of DBP model updates in TUNNEL over 5-minute inter-
vals, during a 24-hour experiment.

Fig. 6. Absolute values (top) and error (bottom), from the WATER and TUNNEL applications with DBP.
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4.4 Impact of Parameter Settings

The previous evaluation shows that DBP performs well on
our datasets, representative of real-world applications.
However, we want to explore the parameter space for DBP,
to understand the effect on the suppression ratio of changes
to the error tolerances "V and "T , learning window m, and
edge points l. Given the large number of combinations, we
restrict ourselves to TUNNEL because, as discussed earlier,
our direct knowledge of the application allows us to better
interpret the impact of parameter changes.

Error tolerance. Figs. 8a, 8b, and 8c show how SR changes
at individual tunnel nodes, for various parameter combina-
tions. Recall from Fig. 3 that nodes 1-20 are placed on the
same North wall, while nodes 21-40 are on the South wall.
We plot a line connecting the SR at each node, because this
best highlights the trends as one proceeds from the entrance
to the interior of the tunnel (e.g., from node 1 to 20 on the
North wall).

In Fig. 8a we vary the relative error �rel from 1 to

25 percent, keeping the absolute error constant �abs ¼ 25. By
setting the time tolerance to "T ¼ 0, we force all deviations
from the value tolerances to be reported. To put these values

in context, recall that the value tolerance "V is defined as the

maximum between the relative and absolute errors, �rel and

�abs. In Fig. 8b we fix �rel ¼ 5% and vary �abs between 0 and
50, keeping "T ¼ 0. In Fig. 8c, we use the value tolerance
"V ¼ ð5; 25Þ of our target application and vary "T between 0
and 4, i.e., from 0 to 2 minutes.

In all cases it is worth noting that, as expected, the big-
gest savings are seen at the nodes inside the tunnel, where
light variations are rare, and absolute illuminance values
are smaller. Under these conditions, the linear nature of
DBP accurately models the linear nature of the data.

Interestingly, the trends for nodes 21-24 in Fig. 8a are due
to the flickering of a lamp that introduced noise to the sen-
sor readings. Nevertheless, DBP achieved SR � 95% even
for these nodes. Further, in Fig. 8b, we clearly see the need
for both the absolute and relative value tolerances, as when

the error tolerances are very low, e.g., �abs 2 f0; 10g, SR is
off the bottom of the charts. This is because the light sensors
themselves have an error that often takes them outside the

small, fixed relative error �rel ¼ 5%, triggering unpredictable
model changes. Further, the flickering light introduces addi-
tional noise that DBP cannot compensate for with low error
thresholds.

For each of these parameter combinations we also show,
in Fig. 8d, the average SR over all nodes. An increase in the

value of �rel brings a near linear increase of SR. Instead, �abs

and "T both achieve the greatest benefit at small values,
with diminishing returns as the value increases. In the

former case, the increase in SR progresses rapidly as �abs

varies from 0 to 10, going from a suppression ratio of 88 to

98 percent; a further (and larger) �abs increase from 10 to
25 yields only an additional 2 percent increase of SR. Simi-
larly, time tolerance reflects the fact that changes in light
values are gradual, and thus introducing even a small delay
"T ¼ 1 achieves most of the possible gain.

In addition to the combinations in Fig. 8, we also com-
puted the SR achieved with the strictest combination of the

three parameters: �rel ¼ 1%, �abs ¼ 0, and "T ¼ 0. Even with
these worst-case requirements DBP still suppresses, on
average, 63 percent of the reports. More interesting is the

real combination of parameters (�rel ¼ 5%, �abs ¼ 25, and
"T ¼ 2) suggested by the TUNNEL engineers, and used in the
rest of our experiments. In this case, the average suppres-
sion rate is a staggering 99:7 percent—SR is increased by
almost two orders of magnitude w.r.t. reporting raw values.

Learning window and edge points. The learning window m
and the edge points set l, used to compute the derivative,
also have the potential to affect SR. Their value must be
chosen based on the data properties and on the sampling
interval. The intuition is that m should not be too big w.r.t.
the sampling interval, to avoid ignoring important data
trends. The number of edge points, l � m=2, should be small
if the learning window contains few data points, although a
value too small may increase the prediction error, especially
in the presence of noise.

To verify the extent to which this intuition holds, we first
applied DBP to our TUNNEL dataset with m 2 f10; 15;
20; 25; 100g and a fixed l ¼ 3. In all cases, SR remains very
high, between 99:7 and 99:8 percent. This is due to the
nature of the TUNNEL dataset. The nodes at the entrance have

Fig. 8. TUNNEL, in-field: Impact of error tolerance parameters on suppres-
sion ratio.
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large light variations during sunrise and sunset, when
indeed larger m values yield a smaller SR. Interior nodes
see minimal light variations throughout the day; a larger m
yields a larger SR. The two effects cancel one another out,
resulting in a constant performance, irrespective ofm.

As this does not hold in general, we performed a similar
analysis in the other datasets. Based on the sampling period
(Table 1), we used the m values as in TUNNEL for the three
INDOOR datasets, and m 2 f6; 9; 12; 24; 48g for the others. In
all cases, we fixed l ¼ 3. The impact, while higher than in
TUNNEL, is still negligible; in most datasets, the change in SR
is < 0:19%. WATER confirms to be the worst case; SR drops
from 89:8 to 83:6 percent, showing that indeed too large of a
learning window may miss important data trends, reducing
the performance of DBP. Even in this case, however, the
impact is limited; an eight-fold increase of m causes only a
6:18 percent reduction in SR.

We similarly explored the impact of the number of edge
points, by applying DBP with l 2 f2; 3; 4; 5; 10g and m ¼ 20,
to all datasets. Results show that the sensitivity of DBP to l
is even lower. In TUNNEL, SR ¼ 99:7% and differences are
confined to the second decimal, due to the remarks above.
In all cases, the change in SR is always < 0:18%.

We conclude that, at least in our datasets, representative
of mainstream WSN applications, DBP is only marginally
sensitive to m and l, whose values must however be chosen
relative to the sampling period.

5 A SYSTEM-WIDE EVALUATION

We now shift our focus from the application layer to the
entire system, assessing the impact of data prediction with
the full WSN network stack. As observed in the previous
section, all the data prediction techniques studied achieve
good results with all data sets, resulting in extremely low,
aperiodic traffic. Therefore, here we focus our evaluation on
two applications and datasets, TUNNEL and INDOOR tempera-
ture, which represent two extremes w.r.t. the traffic induced
by DBP. In TUNNEL, model updates are concentrated at the
nodes near the tunnel entrance, while in INDOOR, updates are
more evenly distributed across all nodes. However, the
reporting period is similar (30 vs. 31 s; see Table 1) making
a comparison meaningful.

We consider a system where DBP runs atop the main-
stream WSN network stack composed of CTP [4], BoX-
MAC [5], and TinyOS v2.1.1, a common choice in many
WSN deployments, due its energy efficiency and relative
ease of use. To evaluate the WSN behavior under differ-
ent connectivity conditions, we perform experiments in

two settings: an operational road tunnel, representing the
real conditions of our target application, and an indoor
testbed.

Tunnels are complex environments where factors such as
road traffic affect network behavior. For example, we previ-
ously observed [15] that in the presence of high traffic,
nodes consistently select parents on their same side of the
tunnel, while at low traffic nodes across the tunnel are often
selected. This is due to the interference caused by vehicles,
which profoundly affects the shape and maintenance cost of
the routing tree. For the in-field experiments reported here,
we used the 40-node WSN shown in Fig. 3.

The testbed, instead, is composed of 50 TelosB nodes in a

60� 40 m2 office area, shown in Fig. 9. The INDOOR dataset
uses all 50 nodes. TUNNEL uses only the first 40 that, at the
�1 dBm power setting, yield a network topology forming
three segments that approximate the linear tunnel topology,
but with a larger diameter than our real tunnel.

To assess directly the impact of the network stack on
the improvements theoretically attainable by DBP, we
“replayed” the same data used in Section 4. As we could
not re-execute the entire multi-day datasets with multiple
parameter combinations, we selected a single 23-hour
period from TUNNEL, ensuring variability in the vehicular
traffic. Moreover, restrictions on the usage of the testbed
forced us to run experiments only for a few hours. There-
fore, when using TUNNEL data, we chose to focus on the sun-
rise period, the most challenging because values change
dramatically. Finally, for INDOOR, we identified an interval
for which the SR is close to the average one across the entire
data set. Fig. 10 shows the number of models generated by
each node in all cases. We begin the evaluation after DBP

Fig. 10. Number of model update messages.

Fig. 9. Map of our 50-node testbed, including connectivity among the 40
nodes used for the TUNNEL dataset.
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has been initialized, specifically after generation and trans-
mission of the first model.

We next consider how application data delivery, network
lifetime, and routing costs are affected by DBP, with the
goal of understanding if improvements can be achieved by
coordinating its functionality with the layers below it. All
these metrics are deeply affected by the operation of the
MAC layer, in particular the rate at which the radio duty
cycles, which therefore becomes a key parameter in our
experiments. At low sleep intervals, nodes frequently check
the channel but find no activity, increasing idle listening
costs. On the other hand, with long sleep intervals, the cost
to transmit a packet increases. Specifically in BoX-MAC,
transmission to a non-sink node takes on average half the
sleep interval, due to the fact that the sender must transmit
until the receiver wakes up, receives the packet, then
acknowledges its reception [5]. Long transmission times
also increase the probability of packet collisions among hid-
den terminals, further decreasing the delivery ratio and
increasing energy consumption. The ideal sleep interval bal-
ances idle listening and active transmission costs. To iden-
tify the best interval for our applications, we ran our
experiments with a range of values from 100 to 3000 ms.

5.1 Data Delivery

DBP greatly reduces the amount of data in the network w.r.t.
the baseline where all nodes send data periodically. The
reduction in data transmitted reduces the probability of col-
lisions, therefore increasing the delivery ratio. This is evi-
dent in Fig. 11, where the system with DBP loses fewer
messages than without DBP. The figure shows only the
results for TUNNEL; the testbed case is very similar to INDOOR.
In all cases the delivery is very good, above 97 percent, but
DBP actually always achieves 100 percent, except for the
maximum sleep interval of 3,000 ms in the testbed. In this
case, a single model message was lost; however, as the abso-
lute number of model changes is small, the total delivery

ratio drops by almost 3 percent. Although this loss rate may
be acceptable without DBP, losing a single DBP model has
the potential to introduce large errors at the sink, as the latter
will continue to predict sensor values with an out-of-date
model until the next one is received. This suggests that,
based on the target environment, dedicated mechanisms
may be required to ensure reliability of model transmissions.

5.2 Lifetime

As the radio is one of the most power-hungry components,
we use its duty cycle as a measure of system lifetime. Fig. 12
clearly shows that DBP enables significant savings at any
sleep interval. Without DBP, the optimal sleep interval
yielding the lowest duty cycle is 500 ms for INDOOR, and
1;500 ms for both TUNNEL cases. The shorter optimal sleep
interval of INDOOR is due to the extra data traffic from its
additional 10 nodes; with more nodes, larger sleep intervals
cause more collisions, resulting in a higher duty cycle.

In both cases, increasing the sleep interval beyond the
optimal one decreases the idle listening cost, but corre-
spondingly increases the transmission cost as the average
transmission duration is half the sleep interval. This phe-
nomenon instead bears a negligible effect in DBP where
transmissions are greatly reduced. In this case, longer sleep
intervals can be used to increase lifetime without affecting
data delivery.

Focusing first on TUNNEL, Fig. 12b shows that in the
testbed, with a sleep interval of 1,500 ms (i.e., the best with-
out DBP), DBP yields more than twice the lifetime of the no-
DBP baseline—i.e., the WSN running DBP lasts twice as
long, with the same MAC settings. Using the best sleep
interval in both cases (i.e., 1,500 and 3,000 ms, respectively)
yields a three-fold lifetime improvement. The energy sav-
ings for the in-field case, in Fig. 12c, are less remarkable but
still significant. The network diameter of the real tunnel is
much smaller than the testbed due to the waveguide effect
[15]; many direct, one-hop links to the sink exist, leaving
less room for improvement.

This impact of direct links to the sink is notable. As the
sink is always on, it quickly receives and acknowledges
packets, making transmissions from its children fast and
low-energy. Fig. 13 shows this by separately plotting the
(lower) duty cycle for nodes that were always one-hop
away from the sink. The plot shows only the no-DBP case,
as with DBP all nodes reporting model changes were
in direct range of the sink. Interestingly, by placing
the gateway near the nodes with model changes, we
further reduced communication costs. While this was not

Fig. 12. Duty cycle. Note the varying y-axis scale.

Fig. 11. Delivery ratio for the TUNNEL dataset.
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intentional in our case, it hints at a strategy for gateway
placement to exploit a priori knowledge of data patterns.

Finally, when applied to INDOOR, DBP achieves a five-fold
lifetime improvement, larger than in TUNNEL. The reason can
be grasped by noting that the duty cycle with DBP is 	1:2
in both datasets; DBP is effective in pushing both systems to
their limit. Nevertheless, as noted earlier, INDOOR without
DBP generates more traffic; this results in a smaller sleep
interval for the optimal duty cycle, which is however higher
than in TUNNEL (5.55 vs. 3.99). This difference without DBP,
along with the similar duty cycle with DBP, determines the
larger improvement in INDOOR.

5.3 Routing Costs

A natural question arises at this point: if DBP suppresses
over 99 percent of the messages, why does the network life-
time increase “only” three-fold for TUNNEL and five-fold for
INDOOR? This is due to the costs of the network stack: the idle
listening and average transmission times of the MAC proto-
col, and the overhead of the routing protocol to build and
maintain the data collection tree. As we already have evalu-
ated the impact of the MAC, we now turn to routing.

To isolate the inherent costs (e.g., tree maintenance) of
CTP, we ran experiments with no application traffic. The
corresponding duty cycle is shown as Only CTP in Fig. 12;
interestingly, the DBP cost is very close to the cost of CTP
tree maintenance, regardless of the sleep interval. A finer-
grained view is provided by Fig. 14, where we analyze the
different components of traffic in the network, for both
INDOOR testbed and TUNNEL in-field experiments, which have
quite different topologies and durations. Without DBP, the
dominating component is message transmission and for-
warding; some nodes show several re-transmissions, while
the component ascribed to CTP (i.e., the beacons probing
for link quality) is negligible. When DBP is used, the num-
ber of CTP beacons remains basically unchanged. However,
because application-level traffic is dramatically reduced,
CTP beacons dominate the network traffic.

5.4 Cross-Layer Routing Optimizations

The routing cost analysis above reveals that beacons, not
application traffic, dominate the network traffic and there-
fore are the limiting factor for system lifetime. In CTP, the
number of beacons, and therefore the cost of beaconing, is
determined by an application of the Trickle algorithm [4],
which sends one beacon at a random moment in a given
time interval. This interval is initially small (0:125 s by
default) to allow CTP to obtain and rapidly propagate accu-
rate link cost estimates. However, to limit beaconing cost, if

no link variations are detected the interval doubles, eventu-
ally reaching a large maximum value, 500 s by default.
When beacons are triggered due to link cost variations, the
interval shrinks back to the minimum, then gradually
increases back to the maximum. In mainstream application
environments, CTP spends most of the time at the maxi-
mum beacon interval. Here, we investigate how to reduce
the beaconing cost, while still allowing CTP to function
properly in the presence of link variations. To this end, we
maintain the core Trickle mechanism but we experiment
with larger maximum beacon intervals of 1;000, 2;000, and
4;000 s. We hereafter refer to these values as 1x, 2x, 4x,
and 8x.

The experiments we report are performed in our testbed
for our main TUNNEL application, as results with the INDOOR

data set are similar. Notably, these tests are longer than
those reported earlier in this section, as CTP requires more
time to reach a larger maximum beacon interval, specifically
2 hours at 8x. The 4-hour experiment duration is deter-
mined by restrictions on the testbed usage, and the need to
keep the total experiment time manageable under the many
combinations of parameters under consideration. Further,
this set of experiments was also run at a later time w.r.t.
those we presented earlier, and originally in [2]. Since then,
the environment where the testbed is deployed underwent
changes (e.g., a few walls were moved) that, albeit minor,
affected connectivity.

The experiments we present here, therefore, are also the
opportunity to validate our earlier results on a slightly dif-
ferent WSN setup and longer experiment duration. Fig. 15
shows our results, with different combinations of maximum
beacon intervals and MAC-level sleep intervals. A compari-
son with Figs. 11 and 12 can be easily seen by focusing on
1x, the default maximum beacon interval. The trends are
very similar to those observed earlier, with two major differ-
ences. First, the optimal sleep intervals without and with
DBP are now 1,000 and 2,500 ms, respectively. Second, a

Fig. 13. TUNNEL, in-field: Duty cycle vs. sink distance, no DBP.

Fig. 14. Link-level transmissions with and without DBP for INDOOR,
testbed (2 h) and TUNNEL, in-field (23 h). Note the varying y-axis scale.
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comparison of the duty cycle for these optimal values shows
a four-fold improvement. The new setting is therefore more
advantageous for DBP than in Section 5.2, where we
obtained “only” a three-fold improvement. Interestingly,
our new setting is therefore a more challenging scenario for
our goal of exploiting cross-layer routing optimizations to
improve further over what DBP can achieve alone.

Looking at the rest of Fig. 15 we note that, as expected,
the total number of beacons decreases as we increase the
maximum beacon interval, yielding up to 70 percent fewer
beacons at 8x. The number of beacons remains essentially
the same with and without DBP, as shown in Figs. 15a and
15b. This is an expected consequence of this metric being
tied to the stability of the network rather than the data traf-
fic. Moreover, the impact of data delivery is dominated
more by the MAC sleep interval than the maximum beacon
interval, as shown in Figs. 15c and 15d. The trends are simi-
lar to those in Fig. 11a, where the DBP system remains at
100 percent except for two cases, each with a single packet
loss, while delivery without DBP degrades as the sleep
interval increases.

On the other hand, increasing the maximum beacon
interval bears a dramatic effect on lifetime. Without DBP,
beacons are a small percentage of the overall network traf-
fic. Therefore, as Fig. 15e shows, the effect of increasing the
beacon interval does not bear a definite effect on duty cycle.
Instead, with DBP this always provides a benefit. In particu-
lar, the duty cycle at the optimal sleep interval of 2;500 ms

is reduced by 40 percent when moving from 1x to 8x. If we
compare this optimal DBP configuration (2,500 ms, 8x) to
the optimal configuration without DBP (1,000 ms, 1x), the
lifetime of the former is seven times higher than the latter.
These results confirm that cross-layer tuning of the MAC-
layer sleep interval and the routing layer beacon interval
can lead to significant improvements.

Finally, we note that even with 4-hour experiments, the
time for CTP to ramp up to the longest beacon interval is
a significant fraction of the total experiment time, from
17 minutes at 1x to 135 minutes at 8x. Therefore, we
expect the positive results shown here to be a conserva-
tive measure of the gains that can be attained in real
deployments, where the effect of infrequent beacons dom-
inate in the long term.

6 RELATED WORK

The limited resources, variable connectivity, and spatio-
temporal correlation among sensed values make efficiently
collecting, processing and analyzing WSN data challenging.
Early approaches use in-network aggregation to reduce the
transmitted data, with later approaches addressing missing
values, outliers, and intermittent connections [16], [17], [18].

Data prediction has been extensively studied, resulting
in different techniques based on constant, linear [2], [9],
[19], [20], non-linear [7] and correlation models [21]. Hung
et al. [22] compare representative techniques from each
category according to data reduction and prediction accu-
racy. The study concludes that constant and linear models
outperform the others in the presence of small variations
in the data. In line with these results, DBP uses a linear
model. The other techniques based on probabilistic models
[23], [24] approximate data with a user-specified confi-
dence, but special data characteristics, such as periodic
drifts, must be explicitly encoded by domain experts. In a
similar parametric approximation technique [25], nodes
collaborate to fit a global function to local measurements,
but this requires an assumption about the number of esti-
mators required to fit the data. In contrast, DBP requires
neither expert domain knowledge nor lengthy training,
but provides hard accuracy guarantees on the collected
data. PAQ [20], SAF [7], and DKF [26] employ linear
regression, autoregressive models, and Kalman filters
respectively for modeling sensor measurements, with SAF
performing best.

As an alternative to data modeling, some solutions seek
to suppress reporting at the source by using spatio-temporal
knowledge of data [27] or by identifying a set of representa-
tive nodes and restricting data collection to it [28], [29], [30],
[31], [32]. Others take the remaining energy of individual
nodes [33] into account. These approaches further reduce
communication costs and can be applied in combination
with DBP. Work on continuous queries for data streams
studies the tradeoff between precision and performance
when querying replicated, cached data [34]. Finally, several
studies focus on summarizing streaming time series, show-
ing that the choice of the summarization method does not
greatly affect the accuracy of the summary [9]. In our experi-
ments, we compared against PLA, as it can be efficiently
computed.

Fig. 15. TUNNEL, testbed (4 h): beacon transmissions, delivery ratio, and
duty cycle for different combinations of sleep intervals and beacon inter-
vals. Note the different scale in the bottom charts for duty cycle.
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Another technique that has recently become popular in
WSN is compressive sensing (CS), e.g., [35], [36]. CS aims to
compress a data sequence, regardless of the nature of the data,
while DBP and existing data prediction techniques suppress
data transmissions based on the nature of the data. However,
the applications we target require hard error bounds (value
and time tolerance). CS can only provide these guarantees
for signals that are sparse in some space [37]; an a priori anal-
ysis of the data traces is required to verify this precondition
for applying CS, and can be difficult to achieve for streaming
data. DBP has no such assumption; further, as shown in Sec-
tion 4.4, even a non-optimal configuration of m and l bears
little effect on efficiency, while always guaranteeing accu-
racy within the required error tolerance. Finally, CS typically
requires computation over a long data window (e.g., 200
samples) introducing a significant latency, problematic for
several applications (e.g., including the control loop in our
real-world TUNNEL application). Reducing the sample size is
possible; this, however, increases packet transmissions and
therefore reduces the attainable gains. DBP has no such limi-
tations. Further, CS computation consists of multiplication/
summation with a matrix (e.g., 10� 10) whose storage indu-
ces amemory consumption higher thanDBP.

The above data driven approaches have been evaluated
theoretically, but no prior work explores the real effect of
the network stack on energy savings. Network-level energy
savings approaches can be classified into MAC level, cross-
layer, or traffic-aware.

Low power MAC protocols [38] reduce overhead by lim-
iting idle listening, overhearing, collisions and protocol
overhead. Low-power listening protocols, e.g., BoX-MAC
[5], dominate real deployments due to their availability,
simplicity and effectiveness. However, as we have shown,
the sleep interval must be carefully tuned.

Vertical solutions crossing network layers achieve
extremely low duty cycles. Dozer [39] achieves permille
(0.1 percent) duty cycle by taking a TDMA-like approach
with scheduled transmissions. Unfortunately, Dozer does
not scale well and is prone to choose poor quality parents.
Koala [40] achieves similar low duty cycles, but by explicitly
accepting delays between data generation and delivery.
Koala is characterized by long periods of very low-power
local data sampling followed by brief, high-consumption
data collection intervals. While the energy savings are sig-
nificant, the delays are not acceptable for closed-loop sys-
tems like our tunnel.

Other techniques [41], [42] adapt sleep schedules accord-
ing to traffic statistics. Unfortunately, the data modeling
approaches outlined above, of which DBP is an example,
are difficult to predict due to the variability of the applica-
tion data itself and the interaction with the modeling
technique.

7 CONCLUSIONS

Data prediction exploits the fact that many applications can
operate with approximate data, as long as it is ensured to be
within certain limits of the actual data. This allows huge
reductions in communication.

We applied our novel technique, DBP, to over 13 million
data points from 4 real-world applications, showing that it

suppresses up to 99 percent of the application data, a per-
formance often better than other approaches despite that
DBP is simpler and places minimal demands on resource-
scarce WSN devices. The practical usefulness of DBP is
reinforced by our system-wide evaluation, showing that
with a properly tuned network stack, DBP can improve
system lifetime seven-fold w.r.t. mainstream periodic
reporting.

Our results suggest that further reductions in data traffic
would have little impact on lifetime, as network costs are
dominated by control operations. Therefore, improvements
must directly address the extremely low data rates of DBP,
e.g., by considering radically different network stacks.
Further, data loss in prediction-based systems has the
potential to significantly increase application errors. There-
fore, reliable transport mechanisms must be revisited to
ensure application-level quality.
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