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Abstract. Duty-cycling in wireless sensor networks (WSNs) has both beneficial
effects on network lifetime and negative effects on application performance due
to the inability of a sensor to perform while it is sleeping. In a typical scenario,
the active periods of nodes are randomly initialized, leading to unpredictable and
often sub-optimal performance. In this paper, we propose a fully decentralized
wake-up scattering algorithm that uniformly spreads wake-up times of nearby
sensors. Interestingly, our approach is complementary and dual to existing ap-
proaches that aim at synchronizing (instead of scattering) times, and to those that
focus on spatial (instead of temporal) coverage. Wake-up scattering is beneficial
in several application scenarios, three of which are considered here: responsive-
ness to one-hop queries from a mobile base station, sensing coverage for event
detection, and latency in multi-hop communication. Our evaluation shows that,
w.r.t. a random assignment of wake-up times, wake-up scattering brings improve-
ments in all these measures, along with a positive impact on the network lifetime.

1 Introduction

One of the primary challenges for wireless sensor network (WSN) applications is en-
ergy management. A common solution that dramatically increases sensor lifetime is
duty-cycling, i.e., periodically switching on and off communication and/or sensing ca-
pabilities. The major factors that affect lifetime are the length of the period (the epoch
period) and the duration of the on-time (the awake interval). However, another variable
critically affects the performance of the network, namely when in each period each node
activates. We refer to this as the wake-up time of the sensor node. Typically, the wake-up
time is randomly established, relating only to when the sensor is initially activated.

We first encountered the potential negative performance impact of wake-up times
during our work on TinyLIME [1], a middleware that allows applications running on
mobile bases stations to access the data (e.g., temperature) of nearby (one-hop) sensors
through a tuple space interface. The system is designed to account for sensors that
duty-cycle their communication components, therefore each time a base station needs
to contact a sensor, it repeats its request until a sensor wakes up, receives the request,
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and replies. In the best case, one of the sensors is awake when the first request is sent
and responds immediately. However, in the worst case, all sensors in range have just
cycled off and will not reactivate communication until the next epoch. Therefore, the
base station repeatedly sends the request until the sensors wake up and one replies. In a
system with an epoch of minutes, such delays in response time can be significant.

Our solution is to introduce a calibration phase to deliberately select the time within
the epoch in which each sensor wakes up. To improve performance, the wake-up times
should be scattered evenly throughout the epoch, minimizing the time that a base station
must wait before a sensor becomes active. Scattering is performed such that response
to a base station at any location in the system is minimized, thus avoiding the need to
track and adjust to a possibly rapidly moving base station.

We achieve this goal with a fully decentralized algorithm that incrementally im-
proves the scattering of wake-up times among neighboring nodes. Essentially, each
node periodically determines the wake-up times closest to its own among its one-hop
neighbors, then moves its own wake-up time so as to minimally overlap with others.
Because decisions are made entirely locally and independently, a single run of this
algorithm may result in poor scattering. However, the system quickly stabilizes to a
scattered network in very few repetitions.

Interestingly, this wake-up scattering approach can be naturally applied in many
other situations. For example, in contrast to the aforementioned scenario which duty-
cycles communication, consider a system that duty-cycles sensing activities. Scattering
the wake-up time for sensing allows the area to be more effectively covered at all times,
as opposed to activating all sensors in a given area at the same time. More importantly,
the guarantee of a better scattering in time enables one to design a network with shorter
awake intervals, therefore achieving a longer overall network lifetime. Another use is in
a system that exploits a tree for communication from sensors to a fixed, centralized sink.
To speed up communication from the edge of the network to the base station, parent
nodes should be active after their children. In this case, proper scattering of wake-up
times can decrease the average latency for data traveling on the network towards the
root, thus increasing network performance.

Finally, it is worth noting how the problem of wake-up scattering is complemen-
tary and dual to other problems in WSNs. For instance, the idea of controlling wake-up
times to enable communication has been studied in the context of MAC protocols, but
with the goal of synchronizing, instead of scattering, the wake-up times. Similarly, the
problem of covering an area to detect an event has been studied only for what con-
cerns spatial coverage of an area and not, to our knowledge, in terms of coverage in
time.

Summarizing, in this paper we put forth the following main contributions:

– we introduce for the first time the notion of wake-up scattering;
– we present a fully decentralized algorithm solving this problem;
– we evaluate this algorithm in three application scenarios common in WSNs.

These contributions are presented in Section 2, 3, and 4, respectively. The paper con-
cludes by reporting related work in Section 5, followed by a brief summary.
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Fig. 1. Key definitions illustrated with three nodes. Time increases left to right. E is the epoch
period, A the awake interval, Wi the wake-up time for node i, and diff(Wi, Wj) the length of
time between the wake-up times of nodes i and j.

2 Model and Motivation

Before presenting the details of our protocol, we briefly formulate the wake-up scatter-
ing problem and outline three reference scenarios that benefit from our approach.

2.1 Model

For the purposes of this work, we assume a straightforward network model in which
non-mobile sensor nodes with circular communication and sensing radii are deployed
in an unobstructed field. We further assume that all nodes have the same communi-
cation range. While these assumptions significantly simplify our analysis, they can be
altered without affecting the algorithm’s fundamental validity. Finally, we assume that
the topology is not known and nodes are only aware of the neighboring nodes they can
directly communicate with.

The primary premise of our work is that sensors operate in a duty-cycling manner,
turning on and off certain capabilities at regular intervals. The length of the interval is
the epoch period E, while the time during which a node is on is the awake interval A.
Although it is possible to allow both E and A to vary for each node, in this work we
assume they are system-wide, deployment-time parameters, equal for all nodes. These
parameters are illustrated in Figure 1. Although this figure shows that the epochs at all
three nodes are synchronized, this is not a requirement for our approach.

The figure also represents the wake-up time Wi, for each node i, and the interval
between wake-up times measured with diff(Wi, Wj). This operator accounts for the
fact that the wake-up patterns repeat across epochs, therefore it measures the difference
in the start of the awake intervals between any two nodes, even those waking up at the
beginning or end of an epoch.

2.2 Wake-Up Scattering: Objectives and Usage Scenarios

This work illustrates an approach to modify, in a decentralized fashion, the wake-up
time Wi of the nodes in a WSN such that they are scattered as much as possible. We
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(a) Before scattering. (b) After scattering.

Fig. 2. Three connected nodes before and after scattering. di shows the maximum delay for a base
station to wait for a response in each setting.

maintain that such wake-up scattering improves application performance in many sit-
uations. Here, we focus on three representative scenarios with different characteristics,
for which we detail the application functionality and goal as well as the improvement
expected from wake-up scattering. In Section 4 we use these same scenarios to evaluate
the effectiveness of our approach.

Responsiveness to Local Queries. As mentioned in the introduction, our first scenario
is motivated by our work on the TinyLIME middleware [1]. In TinyLIME applications,
sensor nodes are distributed through a region and a mobile base station queries for
sensor data close to it. The goals in this environment are two-fold. First, we wish to
minimize the time that a base station needs to wait to receive data. In other words, the
goal is to always have at least one node near the base station awake, or about to wake
up, in order to respond to queries. Second, we wish to minimize the maximum number
of nodes that are awake at the same time, therefore reducing the possibility of collisions
among query responses issued simultaneously by awake nodes.

Rather than trying to adapt to the possibly rapidly moving base station, our approach
yields a wake-up scattering solution that suffices for any location of the base station. We
accomplish this by considering the wake-up times among nearby nodes, motivated by
the fact that such nodes are likely to be in contact with the base station at the same time,
while those farther away will not. In this case the problem can be defined as the search
for a global configuration of wake-up times that maximizes the minimum difference in
wake-up times for any pair of nearby nodes. Put another way, our goal is that any pair of
nearby motes should have their wake-up times as far away from each other as possible.

Figure 2 intuitively demonstrates the benefits of wake-up scattering with three nodes
in a fully connected network (i.e., each pair can communicate) both before and after
scattering. It can clearly be seen that after scattering, fewer nodes are awake at any given
time, therefore reducing the possibility of communication interference. The figure also
shows the maximum time, di that an unlucky base station needs to wait before receiving
a response to a query, with the maximum delay d1 much larger than d2. On average,
a base station initiating a query at any point during the epoch will have less delay to
receive a response after scattering.

Event Coverage. Another popular use for sensor networks is detection of an event
occurring somewhere in the field covered by the sensors. In this scenario, the critical
parameters are the sensing range of the devices and the amount of time that the sensors
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are active. To detect an event, it must occur both spatially inside the sensing range of a
node and temporally during the awake time of the node.

Our goal in this scenario is to maximize the percentage of events detected. By treat-
ing sensing analogous to communication, we can reuse the previous wake-up scattering
technique to manage the wake-up times of sensing devices, thus guaranteeing that the
intervals of data acquisition are spread as evenly as possible throughout the epoch thus
improving event detection. Figure 2 can be used to visualize the concept, by defin-
ing the awake interval as the active time of the sensor devices. Although after scatter-
ing there are still gaps in the sensed time, these gaps are smaller than before scatter-
ing. To completely eliminate these breaks in sensing coverage, the awake interval of
the sensors should be modified dynamically. However, in this paper we do not con-
sider this additional optimization and limit ourselves to the management of wake-up
times.

Data Latency in Tree-Based Networks. The third scenario we consider is the con-
struction of a tree to funnel data from the edges of the network to a centralized base
station, a common approach for applications such as TinyDB [2]. When considering
nodes that duty-cycle their communication capabilities, we want to guarantee that when
a child has data to send, either its parent in the tree is immediately active or it will be
soon, thus minimizing the latency of a data packet on the path to the sink.

If we ignore propagation delays, the trivial solution is to force all nodes to turn on
their communication at the same time. Not only does this solution exhibit a high colli-
sion probability, if sensors are active only at the same time as communication, sensing
will also be synchronized and the potential benefits of scattering for event detection will
not be achieved. Therefore, our goal is to maintain good event coverage while simulta-
neously reducing data latency.

To achieve this, we require that all nodes keep track of which of their neighbors can
serve as parents towards the sink. We assume this is accomplished by broadcasting a
message from the sink, that allows nodes to know their distance from it, and to infer
that all neighbors with distances less than their own are potential parents.

When a node has a message to propagate to the sink (i.e., data collected from one of
its own sensors or a message from one of its children), it must forward this to one of its
(potential) parents, determined as above. We assume that the node tracks the wake-up
time of its parents, and thus knows which parent will be awake next. If one is currently
awake, the packet can be immediately sent; if not, the node must wait until a parent is
awake, then forward the message. If the parent’s wake-up time is much after the end of
the awake interval of the child, rather than stay awake waiting, energy-savings may be
achieved by putting the child to sleep and waking it up later when the parent is awake.

Intuitively, this gap between the readiness of the data at the child and the readiness
of the parent to receive the data is minimized if the parent node is the next node to wake
up in the sequence of wake-up times. If, instead, the next node is a sibling or child,
data cannot make quick progress. Therefore, our goal is to introduce into the scattering
algorithm the constraint that the next node should be a parent. Clearly this cannot be a
strict requirement, because a node that must serve as a parent for multiple children can
only have one previous to it in the wake-up order. However, we enforce the constraint
that every node has either a parent or a sibling next in the wake-up order.
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3 A Decentralized Wake-Up Scattering Algorithm

With the previous application targets in mind, we now present the details of our wake-
up scattering approach. The algorithm is designed to generate low communication over-
head and is easily implementable in a real WSN system. Our presentation first addresses
the general scattering necessary for the first two application scenarios, then introduces
extensions for multi-hop tree-based communication.

3.1 Overview

To simplify the explanation of the algorithm, we assume that the epoch starting times
are synchronized at all nodes and that all start the scattering algorithm at the same time.
Section 3.4 outlines the minimal changes required to remove these constraints.

Our wake-up scattering algorithm is inherently distributed among the sensor nodes,
with each node making decisions with information only about nodes it can directly
communicate with. Wake-up scattering iteratively refines the wake-up times of nodes
in a series of calibration rounds. Each calibration round lasts one epoch, after which
each node selects its new wake-up time. Our experiments, presented in the next section,
demonstrate that after few rounds (on the order of 3-5) the network stabilizes to a well-
scattered configuration.

It is worth noting that calibration rounds need not occur in successive epochs, but
can be spread out over time, further limiting the already minimal impact of wake-up
scattering on the normal operation of the WSN. Furthermore, after calibration stabilizes,
it is meaningful to periodically repeat a calibration round to account for the insertion or
removal of sensors.

The processing on a node inside a calibration phase is as follows:

1. Each node must learn the wake-up times of some of its neighbors. In a synchronized
system, the nodes exchange their Wi values at the beginning of the calibration
epoch. Each node is only interested in the wake-up times of the neighbor that wakes
up immediately before it, prev, and immediately after it, next.

The computation of Wprev and Wnext must take into account the fact that the
scheduling of wake-up times is repeated across epochs. Therefore, if a mote is the
first to wake up in its neighborhood, Wprev = Wlast − E, i.e., the wake-up time
of the last node that wakes up in the epoch, minus the duration of the epoch E.
Similarly, if the node is the last to wake up in the epoch, Wnext = Wfirst + E.

2. Based on the collected information, each node selects a new wake-up time near
the center of the time interval between Wprev and Wnext. The motivations for
not moving to the precise center are discussed later. Also, the target is calculated
modulo E, forcing the wake-up time to fall inside the epoch.

Figure 3 shows a single calibration round for node 1 and the four nodes in commu-
nication with it. In this example, only nodes 1, 2, and 3 change their wake-up times, as
indicated by the shift from the light to dark wake-up intervals, while nodes 4 and 5 are
already well scattered w.r.t. all their neighbors and therefore do not adjust their wake-
up times. The figure shows the key control information for node 1, namely the wake-up
time of its prev (node 3) and next (node 2). Wtarget is the midpoint between these
values, although node 1 does not move exactly to this time.
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Fig. 3. A scenario with five nodes in the same 1-hop neighborhood, scattering their wake-up
times. Light shading indicates the old awake interval, and dark shading the new one. Arrows
indicate the Wprev, Wnext, and the computed target wake-up time for node 1, Wtarget.

Indeed, the actual new wake-up time is calculated as a weighted average of Wtarget

and the current wake-up time W1. This weight, 0 < α ≤ 1, is a parameter to the al-
gorithm whose primary effect is to regulate the speed at which the algorithm stabilizes,
i.e., the number of required calibration rounds. Small values reduce the convergence
speed, while larger values generally converge faster. However, if the value is too large,
the evolution to new configuration is not stable. Moreover, if we consider unreliable
communication in which packets containing information about Wnext and Wprev are
lost, a smaller α value improves robustness.

Finally, it is worth noting that each calibration phase requires only a single, one-hop
broadcast message from each node. Therefore, a calibration epoch can overlap with an
epoch in which data is also exchanged.

3.2 Extensions for Tree-Based Communication

As noted in Section 2.2, a good wake-up configuration for multi-hop tree-based com-
munication is one in which every node has either a sibling or a parent as its next in
the wake-up sequence. Further, latency can be reduced by moving the wake-up time
of the child close to the wake-up time of the parent. In this section we introduce two
extensions to achieve these goals, namely jumping and waving.

“Jumping” Wake-up Times to Allow a Parent to Follow a Child. While ideally a par-
ent should wake up after a child to forward data upstream as quickly as possible, the
previously presented scattering algorithm never changes the sequence that nodes wake
up inside an epoch. In other words, if a parent wakes up before its child, our scattering
algorithm will never swap this order. Therefore, to reach a better configuration for tree-
based communication, we introduce a new behavior in the scattering algorithm, namely
the ability to jump over a neighbor w.r.t. wake-up time.

Specifically, if a node detects that its next node is one of its children, it sets its
new wake-up time in the middle of the wake-up times of Wnext and Wafternext,
where Wafternext is the node to wake up immediately following next. To avoid
unstable behaviors such as nodes continuously jumping back and forth, jumping is
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applied only with a given probability β, a parameter of our algorithm. In experiments
with β = 0.6, shown in Section 4, all topologies converged quickly to “tree-friendly”
configurations. The time to convergence depends mainly on the depth of the tree. In
fact, a faster convergence could be achieved by using a high value of β for nodes close
to the sink, and decreasing it for nodes farther away. In this way, the nodes closer
to the root stabilize their configuration quickly, allowing incremental stabilization of
downstream nodes.

“Waving” Wake-up Times to Reduce Latency. While jumping generally retains both
short intervals between wake-up times and good event detection, the latency for a mes-
sage to move from the edge of the network to the sink is not fully optimized. In fact,
the optimal wake-up configuration is achieved when the time between a node and its
parent’s wake-up time is fixed to the message passing time. Enforcing such a wake-up
schedule is relatively trivial and results in a wake-up pattern in which nodes one hop
from the sink wake up together, those two hops away wake up immediately before, and
so on to the edge of the network. The result is a “wave” of wake-up times originating
with nodes at the edges and ending at the sink. Any scattering away from this wave
pattern negatively affects the optimal latency for a packet traveling to the sink.

To counteract this, we introduce controlled waving, i.e., setting wake-up times to re-
duce the interval between a node’s wake-up time and Wnext. However, our goal is not
simply to form a tree, but also to retain the benefits of wake-up scattering, namely a
short time to communication and a good event coverage. Such a compromise is reached
by enforcing a maximum wake-up distance between a sensor and its next. This dis-
tance, γ, is another parameter of our protocol allowing the application to tune the trade-
off between a good scattering and the latency to reach the sink.

3.3 Pseudocode

Figure 4 shows the full pseudocode for a single calibration round of our scattering
algorithm, including the extensions for managing a tree. For convenience, we use the
notation W j

i to indicate the wake-up time of node i in calibration round j. Initially,
j = 0 and the wake-up time for each node, W 0

i , is assumed to be random. The key
parameters already mentioned are α, affecting the convergence speed, β, establishing
the jumping probability, and γ determining the waving behavior. When β = 0, no
jumping optimization is performed. The γ parameter has meaning only if jumping is
on, i.e., β �= 0. γ = 0 represents perfect synchronization of wake-up times; meaning all
nodes wake up at the same time.

Notably, the first steps of the algorithm establish the values of Wnext and Wprev by
assuming that all nodes receive the full configuration R of wake-up times before the
round starts. Next we consider an alternate approach that does not require synchroniza-
tion among the nodes.

3.4 Removing Synchronization Requirements

In some cases, it may not be reasonable to assume that nodes share a clock and therefore
that epochs are synchronized among the nodes. This makes a direct comparison among
the wake-up times impossible, and demands an alternate mechanism to learn Wprev,
Wnext and, if necessary, Wafternext.
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// Exchange wake-up times with neighbors
Broadcast W j

i

Receive R = {W j
n : n is a neighbor of i}

if R is empty then exit // i is alone

// Initialization of Wnext and Wprev

Wfirst ⇐ min(R)
Wlast ⇐ max(R)
if W j

i > Wlast then Wnext ⇐ Wfirst + E // i is the last
else Wnext ⇐ min(W j

n ∈ R : W j
n > W j

i )
if W j

i < Wfirst then Wprev ⇐ Wlast − E // i is the first
else Wprev ⇐ max(W j

n ∈ R : W j
n < W j

i )

// Scattering for next round
target ⇐ (Wprev + Wnext)/2
W j+1

i ⇐ (W j
i · (1 − α) + target · α) mod E

// Extensions for the tree scenario
if i belongs to a tree and is not the root then
// Waving
if W j+1

i < Wnext − γ then W j+1
i ⇐ Wnext − γ

// Jumping
if next is a child then
with probability (1 − β) exit // abort jumping
if i is the last or second to last then

Wafternext ⇐ min(W j
n ∈ R : W j

n + E > Wnext) + E

else Wafternext ⇐ min(W j
n ∈ R : W j

n > Wnext)
W j+1

i ⇐ ((Wnext + Wafternext)/2) mod E // jump

Fig. 4. A single calibration round j of the wake-up scattering for node i

A simple solution is to gather these wake-up times relative to a nodes own epoch.
This can be achieved by requiring each node to broadcast a message upon waking up,
and having all nodes listen for two epochs. The latter constraint ensures that a node
receives the wake-up time of nodes that were already awake when its epoch started. The
algorithm in Figure 4 remains fundamentally unchanged after the wake-up times are
collected. One additional advantage of this mechanism is that it reduces the probability
of collisions among calibration messages, as they are sent at the wake-up times of the
nodes and are naturally scattered.

Another practical concern is the initiation of the calibration round. While we have
so far considered that all nodes are aware of the calibration at the same moment, it
is trivial to extend the algorithm to allow a node to start a calibration round when
it receives a calibration message from one of its neighbors. In this manner, knowl-
edge of calibration will propagate to the whole system regardless of the node where it
originates.

4 Evaluation

Our wake-up scattering algorithm potentially supports many applications. Our eval-
uation shows the achievable benefits for three, distinct scenarios as we vary the key
parameters. Table 1 shows the most important parameters along with the default values
used during simulation.
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Table 1. Key simulation parameters and their default values. Those in italics remain constant
throughout the evaluation.

Parameter Value
Number of Nodes 200

Size of area 1000 x 660
Epoch period 1

Parameter Value
Awake interval 0.25

Radio range 70
Sensing range 70

Parameter Value
α, scattering weight 0.5

β, jumping probability 0
γ, maximum waving distance –

The evaluation was performed with a custom Java simulator.1 As previously men-
tioned, the simulator assumes a straightforward communication model where nodes
have configurable, circular communication and sensing ranges. The results presented
here assume messages are never lost, although we also performed experiments (not
presented here for space reasons) showing that even with up to 10% loss, the system is
still able to quickly converge to a good wake-up configuration.

Most of the reported results are calculated as averages over 10 different random
topologies, each with 5 different initial wake-up configurations. Our baseline for com-
parison are the initial, random configurations.

Responsiveness to Local Queries. In our scenario with a mobile base station and many
scattered sensors, the primary goal to minimize the time that the base station waits for
a query response. This corresponds to the average response delay between when a base
station first requests data, until a sensor in range is awake and sends the data. To measure
this quantitatively, we use a Monte-Carlo sampling technique that randomly selects and
point (x, y) and time t such that (x, y) is within communication range of at least one
sensor and t is inside the epoch. The response delay is 0 if at least one sensor in radio
range is awake at t, otherwise it is calculated as the difference between t and the closest
wake-up time of an in-range sensor. Thousands of samples are taken and averaged to
compute the overall average response delay.

One of the major factors affecting radio responsiveness is the duration of the awake
interval for each of the nodes. The longer the nodes are active, the greater the chance
that a node will be available to respond immediately. In our default setting with 200
nodes and radio range of 70, a node has on average 4.2 neighbors. Therefore, with a
wake-up time near to 1/4 of the epoch, we expect very short response delays, as it is
likely that at least one node is awake when a query is made. However, as the awake
interval shrinks, the probability of finding a gap between the query and the first wake-
up time increases. Figure 5 shows the average response delay in both absolute (left) and
relative (right) terms. The absolute response delay is in terms of the fraction of an epoch
while the relative is in percentage improvement over the initial wake-up configuration.
From the left side of the figure, it is important to notice that in all cases, our scattering
approach converges in few configuration rounds, with most improvements taking place
in the first three rounds.

Figure 5 also evidences that our wake-up scattering approach can be used to dramat-
ically improve the lifetime of the network. Consider that a randomly initialized network

1 An online demo is available to test and visualize the effect of wake-up scattering on custom
configurations: http://www.elet.polimi.it/upload/giusti/scattering/

http://www.elet.polimi.it/upload/giusti/scattering/
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Fig. 5. Response delay with various awake intervals

Fig. 6. Response delay with various communication ranges. The three lines correspond to net-
works with on average 4.3, 8.4 and 10.1 neighbors.

with an awake interval of 0.15 has an initial average response delay of 0.110, labeled
a in the figure. A similar response delay of 0.106, b in the figure, can be achieved after
wake-up scattering with a shorter awake interval of 0.10. This means that by applying
wake-up scattering, the awake interval can be decreased by 33% while the application
performance is preserved at what can, on average, be achieved with a random initial
configuration. Similar significant results can be observed by comparing the initial re-
sponse delay with a given awake interval compared to similar response delays achieved
after scattering, but with shorter awake intervals.

We also analyzed our approach for different network densities, observing from Fig-
ure 6 that with less dense networks, the percentage improvement after scattering tends
to be larger. Also, a similar lifetime argument can be made by observing that with a
radio range of 100, after scattering, b in the figure, the response delay achieved is that
of randomly initialized network with a range of 110, a in the figure. Because higher
transmission ranges require more energy, again, wake-up scattering can be exploited to
improve network lifetime.

Event Coverage. When applying wake-up scattering to sensor activation, as opposed
to communication activation, we consider the probability that an event occurring in the
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Fig. 7. Sensing coverage for various awake intervals

sensed region is detected. To measure this, we use a sampling technique similar to that
used for response delay, selecting a point (x, y) that is covered by at least one sensor,
and a time in the epoch t. If a sensor covering this point is active at time t, then the
event is detected, otherwise it is not. As before, several thousand samples are taken
and the results averaged. It should be noted that perfect event detection is unlikely
to be attained, except with contrived topologies. Consider a simple setting with two
sensors, each awake half of the epoch, and located just within communication range.
Even with perfect scattering, only the events located in the overlapping area will be
reliably detected. Instead, those in regions covered only by one sensor will be detected
half the time, leading to an average event coverage much less than 1.

In contrast to the scattering for response delay discussed previously, event coverage
scenarios are heavily dependent on the length of the awake intervals. With response de-
lay, if a node is inactive when a query is made, the base station simply waits. Instead, if
an event occurs and no sensor is active, the event is not detected. Therefore, in Figure 7
we show the effect of awake intervals on the sensing coverage. Although the percentage
improvement in the probability of detecting an event is small, less than 15%, we can
make similar network lifetime arguments as before by comparing the achieved coverage
of a network with an awake interval of 0.20 (0.671, b in the figure) in comparison to
the initial coverage of a network with 20% more awake time (0.667, a in the figure). In
other words, the lifetime of the network can be increased by 20% while achieving the
same coverage as a random initialization with a longer awake interval.

Another important consideration is the relationship between the communication ra-
dius and the sensing range. Our wake-up scattering is based only on the ability of two
nodes to communicate with one another, ignoring any difference between sensing and
communication ranges, however such differences are possible with real sensing devices.
Figure 8 shows that if the communication radius remains fixed while the sensing range
varies, wake-up scattering still achieves gains.

Data Latency in Tree-Based Networks. When considering a tree, the primary factor to
improve is the time it takes a message to reach the collection point, the root. Therefore,
we consider the time-to-root averaged over all sensors, assuming the message is sent just
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Fig. 8. Effect of sensing range on wake-up scattering

before the end of the sender’s awake interval. If the parent is not immediately awake,
the sending node wakes up outside of its normal awake interval to forward the message.

The top of Figure 9 gives a first impression of the effect of wake-up scattering on
time-to-root, and the tradeoffs introduced with jumping and waving. The chart shows
how time-to-root changes from the initial random configuration (labeled init), after the
basic wake-up scattering stabilizes (scattering), after the application and stabilization
of jumping (jumping), and after applying waving with various γ parameters. It should
be noted that this plot represents the independent effects of the scattering, jumping, and
waving techniques, not a progression of time-to-root values over time.

The first observation is that time-to-root is only marginally worse after scattering.
This is because, except with long awake times, scattering removes any overlap of awake
intervals between parents and children that occurred in the random initialization. Sec-
ond, the addition of jumping significantly improves time-to-root, reducing the latency
by approximately one third of the total time. Finally, as expected, waving further re-
duces time-to-root with smaller values of the waving factor, γ, leading to greater im-
provements because of the reduction of the required gap between the wake-up times of
the child and parent.

While the previous plot shows that both jumping and waving have significant, pos-
itive impacts on time-to-root, it is reasonable to consider combining the tree scenario
with event coverage, for example to send notifications of detected events to a central-
ized sink. Therefore, the bottom of Figure 9 shows the effect of jumping and waving
on the coverage achieved with scattering alone. Most importantly this plot shows that
jumping does not significantly affect sensing coverage, however waving does. This is to
be expected because jumping maintains the scattering properties while simply chang-
ing the order of awake intervals, instead waving causes the wake-up intervals to overlap.
Such overlapping intervals lead to an increase in missed events because the nodes tend
to be active for event detection at the same times when γ is small. Put another way,
when a sensor node is used for event detection where the results are sent to a central-
ized root, wake-up scattering and jumping provide a solution that has good coverage
and time-to-root values. To our knowledge, our work is the first to consider such a
combination.
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Fig. 9. Average time-to-root and sensing coverage for various awake intervals after enabling the
various scattering, jumping, and waving phases of the algorithm. The results are averaged over
50 random topologies, each tested with a single initialization of wake-up times.

We ran similar experiments to evaluate the effects of jumping and waving on re-
sponse delays in the first scenario. The results are similar to those for coverage, showing
that jumping has minimal effect, while waving has negative effects.

5 Related Work

To the best of our knowledge, our approach to scatter the wake-up times of nearby
sensors is novel. Nevertheless, it is related to several other directions in the literature,
investigated here from the bottom (MAC) up (applications).

Many MAC layer protocols explicitly introduce their own duty cycling as a means to
save energy, thus on the surface the two approaches are similar. However, it is important
to note that the duration of duty cycles at the MAC-layer and those we consider are
orders of magnitude different.

As our approach focuses on assigning wake-up times to nodes, it is interesting to
compare the wake-up scattering assignments to those of MAC protocols. For example,
SMAC [3] and TMAC [4] attempt to synchronize all nodes to a single awake inter-
val, allowing communication during a short interval, then putting the whole network to
sleep for an extended time. While this has the same lifetime extension potential as our
approach, it cannot achieve the benefits for average response delay or sensor coverage.
In contrast to the whole-network synchronization of SMAC and TMAC, LMAC [5] and
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ZMAC [6] are TDMA-like approaches that divide and assign a set of communication
slots among all nodes, eliminating overlap as much as possible. While this is related to
wake-up scattering as the assigned slots are spread over time, these systems work with
an assumption of a fixed number of time slots, eliminating all possible overlapping.
Wake-up scattering, on the other hand, scatters as much as possible without discrete,
fixed time intervals, allowing overlap if the awake interval is long, but still spreading
out over the full epoch even if awake intervals are short.

Finally, DMAC [7] is designed to allow efficient communication along a tree, termed
convergecast communication. It performs synchronization similar to SMAC/TMAC,
then staggers the wake-up such that messages are forwarded without delay. This spread-
ing of wake-up intervals is analogous to our waving approach that moves wake-up in-
tervals closer together, similarly reducing latency. However, as observed in Section 4,
placing wake-up times close together negatively affects all benefits to coverage that can
be achieved with scattering.

Above the MAC layer, extensive work exists on managing sensor coverage by in-
tentionally setting the physical sensor locations, as opposed to our approach which
deals with temporal coverage. In fact, this field has been studied since the early 1990’s
in the context of the cellular network. More recent work approaches the same issues
in WSNs [8] with a variety of techniques such as Integer Programming [9], greedy
heuristics [10,11,12] and Virtual Force Methods [13]. Interestingly, [14] studies sensor
placement in combination with varying the ratio of sensing and communication range,
supporting our desire to present the evaluation of the same ratio when studying sensing
coverage. These spatial techniques can be applied in parallel to our approach, however,
it is worth noting that our study measured only the coverage that could be achieved with
random placement, ignoring any areas of the field not covered by the sensors.

6 Conclusions

In this paper we presented and evaluated a fully decentralized wake-up scattering algo-
rithm whose goal is to spread uniformly the wake-up times of the nodes in a WSN. We
illustrated common application scenarios where this functionality is beneficial, and ver-
ified through simulation that indeed our algorithm provides improvements in the WSN
performance and lifetime over a random assignment of wake-up times. The algorithm
is very simple, and therefore not only is easily implementable on resource-scarce WSN
devices, but it also introduces a negligible communication and computational overhead.
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