
Balancing Energy Expenditure in WSNs through
Reinforcement Learning: A Study

Anna Förster
University of Lugano, Switzerland

Email: anna.egorova.foerster@lu.unisi.ch

Amy L. Murphy
FBK-IRST, Trento, Italy
Email: murphy@fbk.eu

Abstract—This work describes a study of applying reinforce-
ment learning to balance energy expenditure in wireless sensor
networks, contributing both with a protocol and a novel observa-
tion regarding exploration in reinforcement learning. Our start-
ing point is FROMS, our own multi-source multi-sink routing
protocol which exploits learning to identify the lowest cost paths
for data delivery. The primary modification here is an extension
of the cost function to consider node battery levels in addition
to our previous use of path length. The result is a dynamic
cost function that greatly affects the behavior of the underlying
reinforcement learning approach. This paper provides two main
contributions. First, it describes an extension to FROMS that
effectively balances the energy expenditure across all network
nodes. Second, and most importantly, it offers a study of the
effects of a dynamic cost function in a reinforcement learning
setting. Specifically, we show that explicit route exploration
becomes unnecessary, and instead the dynamic nature of the
cost function forces a new form of implicit exploration which
sufficiently and efficiently learns the best data paths for balancing
energy.

I. INTRODUCTION

One of the dominant features of wireless sensor network
nodes is their limited energy reserves, driving research into
energy efficient protocols, frameworks and approaches. Work
in this field concentrates either on a single network layer (e.g.,
MAC, network routing, or application) or exploits cross-layer
design. Multiple cost metrics measure energy expenditure,
either in terms of network lifetime or the balance of energy
usage across nodes over the network lifetime. Traditional ap-
proaches measure the latency of packet arrival, noting that low
latency implies few hops, which further implies low energy.
Alternately, some methods consider routes with the minimal
total energy expenditure per packet, considering nodes with
variable transmission distances and hence energy consumption.
However, such approaches tend to find a single best route and
then deplete its energy before searching for alternates. This is
addressed by newer approaches which include remaining node
battery in their cost metrics [1].

Recently, many researchers have turned their attention to
machine learning and its applicability in wireless ad hoc net-
works [2]. This family of algorithms enables autonomous and
flexible network behavior and is briefly surveyed in Section II.
To evaluate route effectiveness, these works typically use
traditional, simple cost measures such as aggregation rate [3]
or lowest latency [4]. Such cost metrics, however, are static;
they do not change significantly throughout the network life-

time. Instead, sink mobility, node and communication failures,
all dynamic cost metrics, greatly affect the behavior of the
traditional reinforcement learning mechanisms with unknown
practical significance. To the best of our knowledge, this
paper represents the first study of the properties and behavior
of reinforcement learning with changing costs in wireless
networks.

We approach this through a study of our own reinforce-
ment learning approach for multi-source, multi-sink routing,
FROMS [5], to which we introduce a dynamic cost metric.
Essential FROMS background is provided in Section III.
Section IV shows how to design and implement cost functions
based on a combination of the number of hops and remaining
battery power to achieve a variety of optimization goals such
as giving preference to overall network energy balance over
per-packet costs. Finally we evaluate four functions through
a simulation study in Section V. Our most important ob-
servation, and a key contribution of this paper, is that by
using a highly dynamic cost function, such as ours based
on constantly changing battery levels, the explicit exploration
typically found in reinforcement learning algorithms becomes
unnecessary. Instead, the dynamic nature of the function forces
a kind of implicit exploration, leading to a protocol which
is more energy-stable, predictable, and easier to understand
than a typical reinforcement learning based approach. This
key observation must be taken into consideration in the future
design and evaluation of new algorithms based on machine
learning for any environment with dynamic characteristics,
especially WSNs.

II. RELATED WORK

Here we consider two specific topics related to the main
contributions of this paper: energy-aware and reinforcement
learning-based routing protocols for WSNs. Also, relevant
metrics for energy expenditure and spreading and the design
of cost functions are discussed.

Traditional routing protocols essentially try to minimize
energy expenditure per packet. On one side this leads to
shorter, very energy-efficient routes. However, these routes are
quickly depleted and the network could become disconnected.
Therefore, other research efforts additionally take into account
the node’s residual energy. Such approaches work in one of
two ways: considering strictly localized information where
only the neighbors’ remaining energy is given [6]–[9] or full

global information where all remaining power levels for all
nodes are known at the base station [10].

GRE-DD [6] and LMMER [7] belong to the first class and
are both extensions of Directed Diffusion [11]. They consider
the remaining battery level of neighbors when selecting the
gradient to the sink. However, they do not dynamically change
the gradient, even if a node exhausts its energy. Instead, they
must wait until the subsequent sink flooding to update the
battery level and the route. A similar approach is described
in [1], where each node knows the “heights” of its neighbors
(number of hops to the sink). If the battery level of some
node drops, it increases its height and propagates this new
information to its neighbors. A similar idea of increasing the
routing costs through a node with a low battery level is used
for geographic routing in GEAR [8].

The clustering protocol in [10] is an extension of LEACH
and falls into the second category as it uses full topology and
battery information at the base station to compute the best
cluster heads. Nevertheless, centralized clustering approaches
are often costly and cannot adapt to rapid topology or network
changes.

A number of reinforcement learning based routing protocols
have emerged in recent years. Most (including FROMS) are
based on or inspired by Q-Routing [4], which uses Q-Learning
to find the minimum delay route between a sink and a
source in a wired network. Similar approaches use minimum-
delay or maximum aggregation rate as cost metrics and are
summarized in [2]. The main advantage of machine learning
based routing protocols is their ability to learn global values
by only exchanging local information.

To evaluate the behavior of our protocol, we adopted the
evaluation metrics presented in [1], namely considering first
node death for network lifetime and the remaining energy
histogram for evaluating energy expenditure spreading. Our
route cost functions, instead, are inspired by the analogous
functions in the LMMER extension of Directed Diffusion [7]
which computes the overall route cost given the number of
hops and the remaining energy. More information about our
evaluation techniques and metrics wil be given in Section V.

III. ROUTING FRAMEWORK
We carry out this study of the behavior of energy-based

cost functions by introducing them into the machine learning
framework of FROMS [5], our routing protocol for multi-
source, multi-sink data delivery. Its key feature is the ap-
plication of Q-learning, a reinforcement learning technique,
to identify the best data routes in terms of a user-defined
cost function. The protocol uses small amounts of information
exchanged among neighbors, called feedback, to evaluate the
cost of using a particular neighbor as the next hop for data on
the path to one or more sinks. This data is piggybacked on the
usual DATA packets [12], and thus does not incur additional
overhead.

A. FROMS overview
Figure 1 summarizes the key actions of FROMS. Fun-

damentally packets flow from the sinks to the sources to

1 : init:
2 : init_cost_function();

3 : on receive(SINK_ANNOUNCE):
4 : registerRoute(sinkID, neiID, hops,

neiBattery, dataType)

5 : on receive(DATA):
6 : registerFeedback(DATA.feedback)
7 : // route packet to next hop(s)
8 : if (!routes)
9 : init_routes();
10: estimate_routes(cost_function);
11: route = select_route(routes);
12: DATA.routing = route;
13: DATA.feedback = best_route_cost;
14: broadcast(DATA);

Fig. 1. The main FROMS algorithm

1 7 3

489

52

6

10
source

sink

sink

Fig. 2. The topology used in our experiments with two main routes to the
sinks.

announce their data requirements (SINK ANNOUNCE) and
from sources to sinks to deliver data (DATA).

Initialization: Sink announcements are used to fill the
routing tables on each node. The FROMS routing tables are
slightly different from traditional tables, as they maintain
information on all possible routes to the sinks, not only the
best. For example, for the sample topology of Figure 2, the
routing table at node 6 will contain three entries to reach sink
2: one through node 5 with cost 3, one through node 4 with
cost 4, and another through node 3 with cost 5. For the purpose
of this paper, we also store the remaining battery level of each
neighbor (lines 3-4).

Routing: When data arrives, it contains a set of des-
tination sinks, and FROMS must decide which neighboring
node(s) to use as the next hop(s) toward each sink (line
7). If this is the first time the node has forwarded packets,
the routing options are initialized (line 9) and their cost is
estimated (line 10). This cost, called the Q-value is based
on the routing table entries filled with information from the
SINK ANNOUNCE, and is typically a reasonable estimate of
the real route cost. Q-values are updated during the network
lifetime to reflect learned information. Note that because data
packets must reach multiple destinations, routes could be very
complex. For example, in Figure 2, the source node must
consider sending the data for both sinks through 5, 4, or 3
as the next hop, or splitting the packets for each sink, e.g.,

sending data through node 5 to reach sink 2 and through node
3 to reach sink 1. Additional details on how we manage this
complexity are available in [5].

Once routes have been initialized, FROMS selects a route
(line 11) either to exploit the best known routes or to explore
routes with non-optimal costs. The choice is based on an
exploration strategy that balances the often higher cost of
exploration with the probability of identifying a lower, best
cost route. Before broadcasting the data packet to the selected
next hop(s) (line 14), FROMS attaches the best available Q-
value as a feedback value (line 13).

Feedback: This piggybacked feedback represents the key
to learning in FROMS. Since all nodes overhear packets from
their neighbors, we assume each extracts the feedback from
them. This is then used to update the local Q-values for the
data packet source (line 6).

These three procedures, (1) sink announcements and initial
route cost estimates, (2) route selection to explore/exploit, and
(3) feedback delivery to update costs, function together to learn
the real costs of all routes in the network.

Parameters: FROMS is controlled by two key param-
eters: a learning parameter γ = [0, 1] and an exploration
parameter ε = [0, 1]. The first, γ, determines how the Q-
values are updated when feedback is received. Roughly, with
γ ≈ 0, learning is extremely slow and many feedback values
are required to learn the actual route costs. However, Q-
values change very little with each feedback, meaning that the
system behavior changes gradually and is more predictable.
Instead, with γ ≈ 1, learning is very fast and old Q-values
are essentially ignored and replaced directly by the feedback
values. With a static, hop-based cost function in FROMS [5],
we showed that a learning rate of 1 is the most appropriate to
quickly learn route costs.

The second parameter, ε, controls the exploration strategy
of FROMS, defining the exploration/exploitation ratio. For
example, with ε = 0.7, the best route will be chosen with
probability of 0.7 (exploitation) and a random route will be
chosen with probability 1− 0.7 = 0.3 (exploration).

Cost function: The cost function is used both to initialize
the Q-values with route estimates and to update the Q-
values during the learning process. Additional details on cost
functions and how to design them to meet certain optimization
goals are given in Section IV.

B. Key Properties of FROMS

There are some key FROMS properties worth mentioning.
In terms of implementation, the protocol requires memory
sufficient to store all possible routes. The size grows with
the number of possible combinations of next hops to reach
multiple destinations. We have evaluated several straightfor-
ward, effective heuristics that store only the most promising
routes. These allow the memory footprint to be reduced to
meet hardware limitations. Next, the processing requirements
for selecting routes and updating Q-values is negligible. More
significant processing is needed for route initialization, how-
ever this takes place only infrequently when a new sink joins.

In terms of optimality, in a perfect environment with reliable
communication, FROMS finds the optimal route from a source
to multiple destinations. In an unreliable environment, such
as an error-prone WSN, it finds semi-optimal routes through
exploration and learning, thus reducing energy expenditure in
terms of the number of broadcasts to deliver a data packet
(see [5]). Later in this paper we show how to use FROMS not
only to reduce the number of hops to reach multiple sinks in
a network, but also to spread the energy expenditure during
the network lifetime.

The most important property of FROMS and of any Q-
learning based routing approach is its adaptability to node
failures and mobility. These are, in fact, topology changes and
new route costs can be quickly re-learned by exploration and
Q-value updating. We exploit exactly this property of FROMS
in this paper, where the remaining battery level on the nodes
changes quickly and thus requires quick adaptation by the
routing protocol.

IV. DESIGNING ROUTING COST FUNCTIONS
FROMS was originally developed and tested with a cost

function based only on hop count and the optimization ob-
jective to minimize the number of broadcasts per packet to
reach all destinations. This cost function takes advantage of
the broadcast nature of the wireless communication medium,
and assumes that a single broadcast transmission is sufficient
to send a packet from a node to multiple of its neighbors.
However, as FROMS has only a localized view of the network,
it can only estimate the real route cost. For each possible route
it computes this estimate, called the initial Q-value, based on
the information in the routing table obtained from the sink
announcements.

Given that each routing decision in FROMS consists of
possibly several next hops, e.g., through both nodes 3 and
5 in Figure 2, the initial estimate, Ehops, for a node to route
to some subset of all destinations Di ⊆ D through a single
neighbor, ni, is computed as follows:

Ehops(ni) =

(∑
d∈Di

hopsni

d

)
− 2(| Di | −1)

where neighbor ni has an estimate of hopsd hops to each of
the sinks d ∈ Di. To calculate the full cost to route to all
required destinations through possibly multiple neighbors, the
full estimated cost is:

Ehops(route) =

(
k∑

i=1

Ehops(ni)

)
− (k − 1)

where k is the number of neighbors selected to serve as the
next hop to reach all destinations.

Both formulas compute the sum of the number of hops over
all included neighbors to reach all destined sinks, taking into
account the broadcast advantage of the current hop and the
next hops. When using a hop-based cost function for FROMS,
the Q-value for each route is equivalent to the estimated hop
count:

Qhops(route) = Ehops(route)

In this paper, however, our goal is to study the behavior
of energy based cost functions. For this, we combine the hop-
based cost estimate with battery level information. Specifically,
to best spread the energy consumption throughout the network,
we consider the minimum battery level of all nodes on the
route Ebattery(route) = minni∈route battery. In terms of Q-
values, we still keep a single Q-value per route, however it is
based on two components, the estimated hop count cost and
the estimated minimum battery level:

Qcomb(route) = f(Ehops, Ebattery)

The function f that combines the two estimates into a single
Q-value is based on a simple and widely used function, as in:

f(Ehops, Ebattery) = hcm(Ebattery) ∗ Ehops

hcm is the hop-count-multiplier, a function that weights the
hop count estimate based on the remaining energy. For sim-
plicity we drop the “estimation” and denote the Q-value
components as hops and battery.

The following shows how to adapt FROMS to this new cost
function and how to design it to meet certain optimization
goals in the network.

A. FROMS adaptation to energy-based cost functions

FROMS is designed to accept any cost function that uses
information available in the initially constructed routing tables
(see Section III). Because our cost function is based on two
elements, hop count and battery, rather than the original single
element, slight modifications are required to FROMS:
• the feedback section of the DATA packet is extended to

carry both components of the Q-value
• the stored Q-value for each route is extended to store both

its components
Note that although for all routes we keep both components

of its Q-value, they are always considered together. In other
words, the feedback represents the battery level and hop count
for a single routing option, not the battery level for one route
and the hop count for another. Similarly, learning is done over
both values together, not individually. The separation of the
Q-value into two components is mainly used for evaluation
and administrative purposes.

B. Designing energy-based cost functions

We next show how to design an energy-based cost function
to meet two different optimization goals:

1) give preference to minimizing cost per packet, while
trying to spread the energy expenditure

2) give preference to energy spreading, while trying to
minimize the cost per packet

The key is the definition of the function discussed previously
f(hops, battery) = hcm(battery) ∗ hops, which multiplies
the hop count of a route by a hop-count multiplier (hcm),
which is itself a function of the battery meeting the opti-
mization goal. The purpose of hcm is to increase the cost of
some route when the nodes on it have depleted their batteries,

100 90 80 70 60 50 40 30 20 10 0

1

2

3

4

5

battery level [%]

ho
p

co
un

t m
ul

tip
lie

r (
hc

m
)

hop based
steep linear
linear
exponential

Fig. 3. Hop count multiplier (hcm) function for different optimization goals.

making that route less appealing in comparison to routes
composed of nodes with better battery levels.

Figure 3 shows four different hcm functions. If the battery
level is completely irrelevant, then hcm(battery) is a constant
and f(hops, battery) is reduced to a hop-based function only.
Instead, if the desired behavior is to linearly increase f as
the battery levels decrease, a linear hcm function should be
considered. Figure 3 shows two linear functions. The first
(labeled linear), has minimal effect on the routing behavior.
For example, a greedy protocol which always uses the best
(lowest) Q-values available, when faced with the following
two routes with f(1, 10%) = 1.9 and f(2, 100%) = 2, will
select the shorter route even though the battery is nearly
exhausted. Even when faced with longer routes of length 2
and 3 respectively, it will use the shorter route until its battery
drops to 40%. When their values become f(2, 40%) = 3.2
and f(3, 100%) = 3, the protocol will switch to the longer
route. Thus, this trade-off of weighing the hop count of routes
(their length) versus the remaining batteries must be taken
into account when defining hcm. In our case a steeper linear
function meets the first optimization goal.

The main drawback of linear hcm functions is that they
do not differentiate between battery levels in the low and
high power domain. For example, a difference of 10% battery
looks the same for 20 − 30% and for 80 − 90%. Thus, to
meet the second goal we require an exponential function that
starts by slowly increasing the value of hcm with decreasing
battery, initially giving preference to shorter routes. However,
as batteries start to deplete, it should more quickly increase
hcm in order to use other available routes, even if they are
much longer, thus maximizing the lifetime of individual nodes.
Of course, such a function that gives preference to longer
energy-rich routes will also increase the per packet costs in
the network.

V. SIMULATION AND EVALUATION

To test our hypothesis about the behavior of the energy-
based cost functions discussed in Section IV, we conducted
several simulations in Matlab, assuming reliable communica-
tion. For test purposes we used the network topology given
in Figure 2, as it illustrates an interesting case for routing to
two different sinks, in which different routes with different
costs exist and where the energy expenditure can be spread to

TABLE I
EVALUATION METRICS.

Metric Units Desired
First node death pkts high
Network disconnection pkts high
Living cost per packet transmissions low
Full cost per packet transmissions low
Living energy percent remaining one compact
histogram battery cluster

prolong network lifetime.
To measure the energy balancing features, we assigned each

node a “battery budget” of 100 broadcasts, except for the
source which has an infinite budget. This is required, because
if the source has limited energy, it will be the first network
node to die and no other behavior can be evaluated.

We show the behavior of FROMS for two different pa-
rameter sets, which we call greedy routing and proactive
learning. The first always selects the best available route(s)
(ε = 0, γ = 1), yielding a simple strategy with well-defined
non-probabilistic behavior. It is therefore easy to evaluate and
very well suited for initial comparisons of the cost functions.
The second uses various exploration rates and a learning rate
γ < 1, which smooths possible fluctuations of the learned
values. We determined experimentally that γ = 0.7 provides
a good trade-off between smooth Q-value updates and fast
learning.

A. Cost functions

As explained in Section IV we study the behavior of four
different routing cost functions, each based on a different hcm
function shown in Figure 3, and each designed to meet a
specific optimization goal.

B. Evaluation metrics

To evaluate the behavior and performance of the cost
functions we adopt the metrics summarized in Table I. In terms
of network lifetime, first node death is the most important.
Even in case data delivery can continue after the first node
fails, there is no guarantee that if the sources or sinks change,
e.g., due to mobility or random node failures, the network will
continue to function due to possible network disconnection.
Nevertheless, for comparison purposes, we provide also the
full network lifetime (network disconnection), which identifies
the point at which data no longer reaches all the sinks.

In terms of routing costs we consider the living cost per
packet, which denotes the costs per packet until the fist node
in the network dies and full cost per packet, which is the
accumulated cost per packet delivered to all sinks during the
full simulation run (until network disconnection). Both are
given in terms of the number of transmissions needed to
reach both sinks. Since we do not employ a low-level re-
transmission scheme for lost packets, this metric is the same
as ETX (Expected Number of Transmissions).

The last but very important metric is the energy spreading
histogram at first node death. We adopted this from [1], where
the desired scenario is that at any point during the lifetime of

TABLE II
GREEDY ROUTING STATISTICS FOR DIFFERENT COST FUNCTIONS.

Cost Living cost Full cost First node Network
function per pkt per pkt death discon.
Hop-based 5 pkts 4.5 pkts 100 pkts 200 pkts
Linear 4.33 pkts 4.5 pkts 150 pkts 200 pkts
Linear steep 4.38 pkts 4.5 pkts 160 pkts 200 pkts
Exponential 4.44 pkts 4.5 pkts 180 pkts 200 pkts

the network, the energy spreading histogram should exhibit a
compact cluster, with all nodes having more or less the same
remaining energy. We consider the energy spreading histogram
at only one point in time, namely first node death, and evaluate
the energy spreading yielded by the routing cost function.

C. Greedy routing

In greedy routing, we fix the learning rate of the algorithm
to 1 and the exploration rate to 0, thus forcing nodes to use
only the best available routes, those with the lowest Q-values.
Here we conducted several experiments with the different
cost functions, but ran the simulation exactly once with each
parameter setting, since there is no probabilistic behavior in
greedy routing.

Figure 4 shows the energy spreading histograms at first
node death for each of the cost functions. As expected, the
exponential cost function performs best and builds a compact
cluster around 10% remaining energy. The other two energy-
based functions build more scattered clusters and the hop-
based function quickly depletes the energy of the nodes on
the best route, leaving other nodes completely unused.

Table II summarizes the results of greedy routing in terms
of first node death, network disconnection and costs per
packet for the different cost functions. Again, as expected,
the exponential energy-based cost nearly doubles the network
lifetime until first node death, while the hop-based one com-
pletely depletes the nodes on the best route very quickly.
The network disconnection is the same for all cost functions
because the FROMS routing protocol switches automatically
to other available routes after node failure. For the same reason
the full costs per packet are also the same for all cost functions.

Table II also illustrates the exploratory nature of energy-
based cost functions. In the original FROMS algorithm the
greedy routing strategy enforces the use of only the best
available routes. Thus, other routes with unfavorable cost
estimates will never be used and their real costs will never be
learned. However, when using the energy-based cost functions
whose values change over time, even the greedy approach
applied in FROMS switches between routes with different hop
costs, because it depletes their energy thus changing their Q-
values. At the same time the protocol is able to learn also their
real hop-based costs. In other words, even if the exploration
rate is set to 0, FROMS is implicitly exploring the network
by using the dynamic cost function. The real power of this
property will be shown in the next section, where we use
proactive learning.

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4
Hop−based cost

Battery level [%]

N
um

be
r o

f n
od

es

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4
Linear cost

Battery level [%]
Nu

m
be

r o
f n

od
es

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4
Steep linear cost

Battery level [%]

Nu
m

be
r o

f n
od

es

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4
Exponential cost

Battery level [%]

Nu
m

be
r o

f n
od

es

Fig. 4. Energy histograms of nodes at first node death. Sinks and source are not included.

0 0.2 0.4 0.6 0.8
100

120

140

160

180

200

Si
m

ul
at

io
n

tim
e

[s
ec

]

First node death

0 0.2 0.4 0.6 0.8
100

120

140

160

180

200

Network disconnection

0 0.2 0.4 0.6 0.8
4

4.5

5

5.5

6

6.5

7

7.5

Co
st

s
pe

r p
ac

ke
t [

nu
m

. o
f b

ro
ad

ca
st

s]

Exploration rate

Living cost per packet

0 0.2 0.4 0.6 0.8
4

4.5

5

5.5

6

6.5

7

7.5

Exploration rate

Full cost per packet

Fig. 5. Exponential energy-based routing cost function with learning rate of
0.7 and different exploration rates. The box has lines at the lower quartile,
median, and upper quartile values. Whiskers extend from each end of the box
to the adjacent values in the data within 1.5 times the interquartile range from
the ends of the box. Outliers are displayed with a + sign

D. Routing with proactive learning

Next we consider FROMS with learning enabled, with γ =
0.7, and vary the exploration rate.

We see again that the implicit exploratory behavior of
energy-based cost functions makes explicit exploration un-
necessary. With proactive learning, FROMS uses non-optimal
routes with some probability 1 − ε and learns their real hop-
based and battery-based costs. On the other hand, it also
benefits from the implicit exploration provided by the dynamic
energy-based function. As we can see from Figure 5, FROMS
without exploration (exploration rate ε = 0) achieves the best
results in terms of all evaluation metrics. With exploration
rate ε > 0, all evaluation metrics drop because of the double
exploration behavior. Thus, explicit exploration is clearly not

0 0.2 0.4 0.6 0.8

80

100

120

140

160

180

200

Si
m

ul
at

io
n

tim
e

[s
ec

]

First node death

0 0.2 0.4 0.6 0.8

80

100

120

140

160

180

200

Network disconnection

0 0.2 0.4 0.6 0.8
4

4.5

5

5.5

6

6.5

7

7.5

C
os

ts
 p

er
 p

ac
ke

t [
nu

m
. o

f b
ro

ad
ca

st
s]

Exploration rate

Living cost per packet

0 0.2 0.4 0.6 0.8
4

4.5

5

5.5

6

6.5

7

7.5

Exploration rate

Full packet cost

Fig. 6. Hop-based routing cost function with learning rate of 0.7 and varying
exploration rates. Figure 5 explains the graph format.

desirable in such an environment.
Figure 6 shows the results from the hop-based cost function

with a learning rate of 0.7 and varying exploration rates. First
we can see that the overall results compared to the exponen-
tial energy-based function are worse, exactly as predicted in
Section IV. Second, we see that exploration does make sense
here, since the results actually improve through exploration.
For example, the time to first node death is prolonged from
100 to 110 packets (Figure 6 top left) because exploration
also uses non-optimal routes, thus spreading the load of the
nodes. With higher exploration rates, the protocol uses more
non-optimal routes, increasing the per-packet costs.

VI. DISCUSSION

Next we offer a brief summary of the combined results from
the theoretical analysis in Section IV and the experimental

evaluation in Section V.
First, we have shown that an energy-based cost function can

achieve reasonable energy consumption balance in a WSN
when used within a reinforcement learning based routing
protocol like FROMS. Variants of these cost functions achieve
different optimization goals in the network and must be
carefully designed, as outlined in Section IV.

The more important result, however, is the outcome of the
analysis of the behavior of FROMS with these dynamic cost
functions. Fundamentally, we observed that such a reinforce-
ment learning based routing approach requires exploration to
discover new lower-cost routes in the network, however, this
exploration can be done either in the traditional way with
explicit exploration or in a new way by using a dynamic
cost function whose evaluation changes over time. Such cost
functions force the learning algorithm to switch between avail-
able routes, thus also learning the real hop costs of initially
unfavorable routes. It should be noted that this behavior is
also partly due to our good initial estimation of routes. If
this were not the case the routes selected at the beginning of
the network lifetime would be highly unfavorable, negatively
affecting network lifetime.

This is a new result in the sensor network environment,
which stands somewhat in contrast to the expectations of
applying reinforcement learning to routing. It is widely ac-
cepted that in general such algorithms are costly because of
the explicit exploration; that they are slow and uncertain to
converge, again due to exploration; that dynamic cost functions
will further slower them down and make them even more
costly; and that they are complicated to implement because
of the many parameters for exploration/exploitation etc.

Here, instead, we clearly demonstrated that such a scheme
not only works well with dynamic cost functions, but that
it actually makes the explicit, possibly costly, exploration re-
dundant. Thus reinforcement learning based protocols actually
become easier to implement, convergence is no longer relevant
and their behavior is flexible to dynamic scenarios.

VII. CONCLUSION AND FUTURE WORK

The contribution of this work is two-fold: first, it presents
an extension of our machine learning based protocol to use a
dynamic energy-based cost function, thus effectively balanc-
ing energy consumption in the network over time. Second,
our study of the behavior of this protocol reveals that the
explicit exploration found in traditional reinforcement learning
approaches becomes redundant due to the implicit learning
caused by the dynamic cost function. This is a particularly
important result, as the exploration process can be costly,
wasting energy in the resource constrained environment of
WSNs. Here, instead, we showed that even with a greedy
exploitation strategy, the implicit exploration is sufficient to
effectively use the system resources.

This work represents only the beginning of our energy-
based study. Our next step is to move into a more realistic
simulation environment, namely Omnet++, in order to fully
test the behavior of the energy-based functions for FROMS.

Specifically, we will consider multiple, larger, random network
topologies, increase the traffic loads by varying the number
of sources, and introduce sink mobility and node failure.
We will also include more sophisticated energy consumption
models, including message reception cost. Further work will
involve the evaluation of FROMS on top of realistic, energy-
efficient MAC protocols employing sleep cycles, as these
will challenge the feedback process of FROMS and thus
its learning. Additionally, we will continue our theoretical
study to analyze machine learning algorithms for the general
wireless ad hoc scenario, developing protocols which are even
more flexible, cost-effective and stable than existing ones.

ACKNOWLEDGMENT

The work described in this paper is supported by the
National Competence Center in Research on Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under
grant number 5005-67322.

REFERENCES

[1] C. Schurgers and M. B. Srivastava, “Energy efficient routing in wireless
sensor networks,” in Proceedings of the IEEE Military Communications
Conference, vol. 1, 2001, pp. 357–361.

[2] A. Förster, “Machine Learning Techniques Applied to Wireless Ad-Hoc
Networks: Guide and Survey,” in Proceedings of the 3rd International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2007.

[3] P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe, “Routing with
Compression in Wireless Sensor Networks: A Q-Learning approach,”
in Proceedings of the 5th European Workshop on Adaptive Agents and
Multi-Agent Systems (AAMAS), 2005.

[4] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” Advances in Neural
Information Processing Systems, vol. 6, 1994.

[5] A. Förster and A. L. Murphy, “FROMS: Feedback Routing for Op-
timizing Multiple Sinks in WSN with Reinforcement Learning,” in
Proceedings of the 3rd International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), 2007.

[6] Z. Li and H. Shi, “Design of gradient and node remaining energy
constrained directed diffusion routing for wsn,” in Proceedings of the
International Conference on Wireless Communications, Networking and
Mobile Computing, 2007, pp. 2600–2603.

[7] A. Bachir and D. Barthel, “Localized max-min remaining energy routing
for wsn using delay control,” in Proceedings of IEEE International
Conference on Communications, vol. 5, 2005, pp. 3302–3306.

[8] Y. Yu, R. Govindan, and D. Estrin, “Geographical and Energy Aware
Routing: A Recursive Data Dissemination Protocol for Wireless Sen-
sor Networks,” UCLA Computer Science Department, Tech. Rep.
UCLA/CSD-TR-01-0023, 2001.

[9] I. Stojmenovic and X. Lin, “Power-aware localized routing in wireless
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 11, pp. 1122–1133, 2001.

[10] K. Y. Jang, K. T. Kim, and H. Y. Youn, “An energy efficient routing
scheme for wireless sensor networks,” in Proceedings of the Interna-
tional Conference on Computational Science and its Applications, 2007,
pp. 399–404.

[11] F. Silva, J. Heidemann, R. Govindan, and D. Estrin, Frontiers in
Distributed Sensor Networks. CRC Press, Inc., 2003, ch. Directed
Diffusion.

[12] A. Egorova-Förster and A. L. Murphy, “Exploiting Reinforcement
Learning for Multiple Sink Routing in WSNs,” in Proceedings of the 4th
IEEE International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS), 2007.

