An Efficient Implementation of Reinforcement
Learning Based Routing on Real WSN Hardware

Anna Forster! and Amy L. Murphy? and Jochen Schiller* and Kirsten Terfloth*
TUniversity of Lugano, Switzerland, anna.egorova.foerster@lu.unisi.ch
IFBK-IRST, Italy, murphy@fbk.eu
*Freie Universitit Berlin, Germany, {schiller,terfloth}@inf.fu-berlin.de

Abstract—Efficient multi-hop data dissemination is a crucial
building block to enable mature wireless sensor network (WSN)
applications. Exploiting machine learning for these routing prob-
lems has received increasing attention in recent years due to its
flexibility and localized mechanisms, however, with such an ap-
proach the resulting protocols often have increased memory and
processing time requirements. Nevertheless, these requirements
are within the reach of today’s WSN hardware, however few
substantial tests have been performed to clearly demonstrate this.
This paper evaluates and discusses the results and experiences
gained from implementing our reinforcement learning based
multicast routing protocol (FROMS) in a testbed of ScatterWeb
nodes. A comparison of our results is made to a well-known
WSN routing scheme, namely a multicast variation of Directed
Diffusion. Our evaluation includes several minor, but practical
modifications to both protocols such as transmission backoffs and
the use of acknowledgments.

This paper offers three main contributions. First, we demon-
strate that machine learning algorithms can be efficiently im-
plemented on resource restricted devices and that they perform
very well in multiple network scenarios. Second, we confirm the
validity of simulation results obtained in a previous evaluation
of FROMS, and at the same time gather delivery rates under
realistic settings. Finally, we offer some general observations
on properties and pitfalls of WSN implementations along with
potential solutions.

I. INTRODUCTION

Research during the past several years has yielded a large
number of WSN protocols and applications. Among them,
those based on machine learning techniques have increased
in significance because of their flexibility and performance
potential [1]. Nevertheless, most of these systems have only
been evaluated in simulations, often with unrealistic assump-
tions including perfect communication, unlimited memory and
processing resources, etc. As machine learning is known to
have higher memory and processing requirements, its actual
implementation on resource constrained sensing devices is
mandatory to not only confirm their applicability, but also to
warrant continued exploration and evaluation.

This is not to say that simulation-based evaluation is not
useful. In fact, there is no viable substitute to provide a
general proof of concept for a new protocol or to evaluate
the full parameter space in large, complex environments that
are simply impossible to recreate in a real testing environment.
Additionally, simulation studies provide valuable feedback for
selecting reasonable parameter settings. Nevertheless, for core
system software such as routing protocols, simulations must be

complimented with tests on real hardware. The step of porting
a protocol from simulation to real hardware reveals implicit
assumptions, which, when confronted, provide opportunities to
increase the robustness of even well-designed and thoroughly
simulated protocols.

This paper outlines in detail the successful implementation
of our reinforcement learning based multicast routing protocol
FROMS [2] on ScatterWeb sensor nodes, demonstrating both
the feasibility of implementing a machine learning based
protocol on real hardware as well as verifying its increased
performance in comparison to traditional approaches. These
results confirm our previous simulation results [2] and aug-
ment them with accurate measurements of delivery rate and
protocol overhead in a typical sensor network environment.
We also take a step back from the evaluation, reporting
challenges encountered during porting and their corresponding
workarounds, and pinpointing both the influence and utility of
straightforward techniques to improve network performance.

In the following, Section II reviews related work. Section III
provides a basic summary of the two routing protocols we
consider: FROMS and a variant of Directed Diffusion [3].
Implementation details are presented in Section IV, followed
by a study of the results gathered during our experiments
in Section V. Section VI offers lessons learned, before Sec-
tion VII concludes the paper with a brief summary and a
discussion of future research directions.

II. RELATED WORK

We consider three distinct areas of research as related to
this experimental study: multicast routing protocols for WSNss,
machine learning based algorithms for WSNs, and testbeds or
deployments utilizing genuine sensor network hardware.

The research community has proposed a large number
of routing protocols targeting various application scenarios.
Among them a few multicast algorithms have emerged to route
data from one or more sources to multiple, possibly mobile,
sinks. Some approaches such as MSTEAM [6] and GMR [7]
utilize geographic information, while others such as [8],
exploit hop-based metrics. An implementation of ADMR, a
protocol initially designed for MANETS, is available for the
MicaZ mote platform [9].

Simultaneously, the relatively new idea of applying ma-
chine learning techniques to WSNs has received increased
attention. Some flexible, localized algorithms such as ant

colony optimization or reinforcement learning offer substantial
tools to e.g. efficiently implement self-organized behavior, as
summarized in [1]. Representative protocols that implement
machine learning techniques on WSN hardware include a
single source/single sink Q-routing protocol developed for
Crossbow motes [10] and an optimization for routing schemes
based on link quality estimates [11] on MicaZ motes.

Finally, various deployments and testbeds have been setup
and used for studies. General deployments, such as those
for habitat [12], [13] or environmental monitoring [14] have
been established to better understand natural processes by
continuously collecting data samples, but at the same time
to test sensor network hardware and software under harsh
environmental conditions. On the other hand, collections of
sensor nodes have also been used to evaluate isolated proto-
cols, including those for routing [9], [11], medium access [15],
[16], event-based information processing [5] or transport for
network reprogramming [17]. While the number of nodes
used in the deployments depends on the application scenario,
testbed sizes range from 2 to 60 nodes.

Our work relates to these topics as FROMS implements
a multicast routing protocol by enlisting machine learning
techniques. To the best of our knowledge, it is the first protocol
to combine these themes in the context of WSNs while at the
same time offering a validation in a mid-size testbed.

III. PROTOCOL BACKGROUND

Next we describe the implemented routing protocols,
namely FROMS [2] and Directed Diffusion [3], and the
application layer used to test them. This upper layer ensures
that the same traffic patterns are applied and offers functions
to issue sink announcements, called DATA_REQ messages,
to all nodes in the network via network-wide broadcast and
to send DATA messages from sources to sinks. Note that
DATA messages can be sent as multicast messages by both
protocols. The routing protocol selects one or more neighbors
for forwarding the packet to dedicated sinks, indicating this
information in the protocol header.

A. Directed Diffusion

We implemented the one-phase pull variation of Directed
Diffusion [3] (DD), a very simple but versatile protocol with
small maintenance costs. The original version DD is a multi-
source single sink routing protocol, where each of the nodes
in the network keeps a single gradient to the sink which
represents the best next hop. It consists of three phases: sink
announcement broadcast, a slow data delivery phase with
reinforcement, and finally a constant data delivery phase. In
the first, information about potential neighbors to forward data
to is gathered by each of the participating nodes to establish
gradients indicating the possible next hop. In the second, data
is sent infrequently to the sink utilizing all possible gradients,
while the sink itself reinforces the best path to each source.
Each node uses this reinforcement to identify a single gradient
to reach the sink. Eventually, the sources start sending data
using the selected gradients at the full data rate.

The one-phase pull version of DD used here skips the
second reinforcement phase and instead builds the gradients
in the initial phase by using the delay and number of hops to
the sinks of the sink announcement packets. One can argue
that the original version is more reliable, especially in the
presence of asymmetric links. However in reality the first
phase is sufficient to build good gradients. Additionally, the
one-phase pull version reacts faster to topology changes and
node failures, since the gradients are re-built every time a
new sink announcement arrives. Since FROMS is specifically
designed to address those problems, we decided from the very
beginning to evaluate FROMS against one-phase pull DD.

The application of DD in a multicast scenario requires only
minor modifications as opposed to the unicast use case: A
node has to simply keep one gradient per sink instead of one
application-level gradient. Additionally, multicast addressing
is applied to DATA packets where applicable, but without
any learning strategies as implemented by FROMS. Simply
speaking, DD does not explore the network to find shared next
hops to optimize for routing costs, but builds up gradients to
sinks independent from each other without neglecting obvious
shared paths to one-hop neighbors.

B. FROMS

FROMS is a multi-source multi-sink routing approach that
uses Q-learning to identify routes in the network that optimize
for the shortest path or the best energy efficiency [4]. A full
description is available in [2]. In contrast to DD, FROMS uses
the locally available data such as hop counts to the sinks and
a feedback exchange mechanism among neighbors to explore
the network and find the globally optimal path to all sinks.

During the sink announcement broadcast, each node gener-
ates a full neighbor routing table listing all neighbors together
with their hop count to each individual sink. This is in contrast
to DD which keeps only the lowest hop count. When a DATA
packet arrives for routing, FROMS considers all possible
routes, specifically all possible combinations of neighbors to
send the packet to the desired sinks. Then, the cost of each
route is estimated using the routing information and/or the
node state and a dedicated cost function. Possible metrics for
cost evaluation include the sum of the hops to all sinks minus
the shared paths that can be saved from sending a multicast
message in a broadcast medium, or simply using remaining
battery level at the nodes [4].

The Q-learning protocol selects a route to use either to
exploit the best known route or to explore a non-optimal route.
Feedback values are piggybacked on all DATA packets and
deliver the best possible route costs to all listening neighbors,
which then update their own route costs. As such, exploration
enables nodes to learn the real costs of shared routes whose
estimates were initially too high. This exploration/exploitation
ratio is controlled by a tunable parameter, e. Our previous
work [2] considered multiple exploration/exploitation strate-
gies, however here we have implemented only e-greedy which
selects either the best route with probability 1 — e or a random
route with probability e.

TABLE I
CHARACTERISTICS OF THE SCATTERWEB MSB430 SENSOR NODES

MSB430
Provider ScatterWeb, Berlin, Germany
Processor MSP430
Frequency | 8MHz
Memory 5 KB RAM + 55 KB Flash
Radio ChipCon 1020
OS ScatterWeb Library, TinyOS, etc.
Other SD-card slot

Fig. 1. Topologies 1 (left) and 2 (right), sinks are shaded, source is node 6.

A good exploration/exploitation ratio ensures that routing
costs are kept low by often using the currently best available
route which corresponds to the local minimum. On the other
hand, it should infrequently use non-optimal routes to learn
their real costs, thus lowering route costs over time and
identifying the global minimum.

These three mechanisms, initial route cost estimates (Q-
value estimates), exploration/exploitation and feedback (learn-
ing) are the crucial building blocks of the FROMS protocol.
With them, FROMS not only finds the best shared route to
multiple sinks (the optimal multicast tree), but also copes
successfully with node failures and mobility. In the following,
we concentrate on substantiating the first claim.

IV. IMPLEMENTATION DETAILS

This section summarizes implementation and testbed details
and clarifies parameters and settings to allow for reproduction
of our results and/or comparison to other experiments. As pre-
viously stated, our platform consists of ScatterWeb MSB430
sensor nodes which offer typical RAM/ROM sizes, CPU and
transceiver capabilities, and a rich and freely available set of
software libraries (we relied on Version 1.1), as summarized
in Table I. Alternative platforms and their characteristic prop-
erties are discussed in [18] and are omitted here for brevity.

A. Network topologies and traffic model

Our tests ran on the two artificially enforced topologies (see
also Section VI) shown in Figure 1. For simplicity, sinks and
sources are assigned to specific node IDs at compile-time. In
our case, nodes 1 to 3 serve as sinks while node 6 is the data
source. The chosen topologies combine both densely deployed
areas, with nodes having up to six direct neighbors, as well
as border areas with low node density. They also allow for
multicast optimization. This way, we were able to observe
protocol behavior in different settings at the same time and

TABLE II
PARAMETERS FOR THE FROMS ROUTING DATA STRUCTURES AND
ROUTING STRATEGY. THE VALUE USED IN OUR EXPERIMENTS IS GIVEN IN
THE SECOND COLUMN.,

Parameter | Values | Description
num_sinks 3 The maximum number of sinks
num_neigh 4 The maximum number of neighbors
num_routes 50 The maximum number of
available routes at a single node
€ 0.3 The probability for exploration/
exploitation of routes

ensure a fair measurement of on-node protocol performance,
see Section V-B.

The application layer, common to both routing protocols,
controls the traffic injected in the network. Initially, sinks send
data requests every packet_interval seconds, and after the
first DATA packet arrives, either no additional requests are
sent (FROMS), or the request rate slows to one request every
10xpacket_interval seconds (DD). Data is generated and sent
by the source n times every packet_interval seconds. We set
packet_interval = 5s and route n = 100 packets from the
source to all designated sinks. This setting is considered high
for a WSN deployment, but it allows us to evaluate under
intense traffic and to minimize testing time.

B. Routing table requirements

The DD routing table contains a single entry for each sink
in the network, identifying the best available next hop to a
sink inferred from incoming DATA_REQ messages.

To allow FROMS to identify routes that have low shared
cost to multiple sinks, even if the route costs to each individual
sink are not the minimal, it must store multiple options to
choose the next hop(s) from. Further, because FROMS learns
the costs of shared routes to multiple sinks, not to the individ-
ual sinks as in the DD routing table, we maintain a separate
data structure for shared routes to multiple sinks and update it
as feedback arrives. In our previous work, we used a dynami-
cally allocated tree-based data structure referred to as the path
sharing tree, PST. In order to minimize storage of all available
routes, the PST makes intensive use of dynamic memory
alocation/deallocation. However, since dynamic memory al-
location is problematic in embedded programming for several
reasons, see also Section VI, we utilized a fixed size statically
allocated table bounded by the num_routes parameter given
in Table II. A number of heuristics that can be used to limit
PST size, as well as a description of their effect on protocol
performance are outlined in [2].

V. RESULTS

The experiments and results are divided into three classes:
on-node characteristics such as memory and processing time;
in-network protocol performance in terms of delivery rate and
routing costs; and in-network performance of routing protocol
enhancements such as transmission backoff and acknowledg-
ments in terms of delivery rate and routing costs.

TABLE III
MEMORY USAGE AT COMPILE TIME. THE SCATTERWEB LIBRARY ALONE
IS GIVEN FOR COMPARISON.

Memory | FROMS FROMS DD DD ScatterWeb
usage + ACKs + ACKs Library
ROM 33610 31986 29648 28024 19628

(bytes)
RAM 3345 3326 2952 2932 1476
(bytes)

A. Evaluation metrics

Comparison of the two protocols requires a set of per-
formance metrics that accurately represents the key protocol
behavior in a real hardware environment. Therefore we chose
to measure the delivery rate to the sinks, the routing costs and
memory and processing requirements.

In terms of routing costs, we consider two metrics: cost per
generated packet and cost per delivered packet (both in terms
of the number of transmissions, ETX, which is the same as
number of hops because packets are always sent in broadcast).
The first is the total number of DATA packet transmissions in
the network divided by generated DATA packets. The second
metric divides by the number of actually received DATA
packets. We include both because the first considers cost per
generated packet, which could be very low not only because
the routing protocol uses a short route, but also because many
packets get lost. The second cost, instead, could be very high
not only because the routing protocol uses a very long route,
but also because packets could get lost and their already made
transmissions increase the overall cost. In case of very high
delivery rate both costs are the same. However, we believe the
second metric, cost per received data packet, is more reliable
and realistic since it naturally integrates also the delivery rate.

Note that both routing cost metrics include only DATA
packets, ignoring DATA_REQ packets. Thus, we compare only
real DATA routing cost, ignoring the overhead of collecting
routing information at the nodes. Because of our manual ex-
perimental setup (see Section VI) we could not fairly measure
this overhead, and instead rely on simulation for such data.

In terms of memory and processing requirements, we con-
sider the memory footprint and processing time for certain
critical functions such as selecting a route for a packet.

B. On-node performance of DD and FROMS

Memory usage: Table III presents the memory footprints
at compile-time for DD and FROMS together with the appli-
cation layer. It shows the memory reserved for the flash ROM
and the RAM. The footprint of the ScatterWeb Library alone
is given as point of comparison. The vanilla implementation
of DD on top of ScatterWeb e.g. consumes roughly 3KB of
RAM at compile time, leaving 2KB for stack allocation and
application-level protocols.

Note that the data structures of both protocols are static and
are thus already included in the memory footprints. Despite
the much more complex and large data structures of FROMS,
its memory requirements are not significantly higher. DD has a

msec

46+

45

T

44

a3+

F +F

4 f { f f
DD DD FROMS FROMS
2 sinks 3 sinks 2 sinks 3 sinks

42

Fig. 2. Processing time to find a route in milliseconds for DD and FROMS.

100 %

§
[
28
T 50 %]
10T [] cost per received packet
9 1 I:l cost per generated packet

> - optimal cost

F 8L

]

£ L

= 7

S 6T

8

= 5 T

Q

o

o 4T

[73

83T

DD FROMS DD FROMS DD FROMS DD FROMS
topo 1, sinks 2 topo 1, sinks 3 topo 2, sinks 2 topo 2, sinks 3

Fig. 3. Routing costs and delivery rates for FROMS and DD in various

network scenarios.

very tiny data structure and despite this its implementation size
is not negligible. In fact, the majority of its memory is used
for the functionality of the protocol, not for data structures.
Processing time: We measured the time needed to find
a route for each packet in the network at every node in mil-
liseconds. Basically, we discovered that it takes slightly longer
to find a route to more sinks but the difference between the
protocols is negligible. The results in Figure 2 are summarized
based on the number of sinks in the network. They are obtained
from experiments with topology 2 only, with 2 or 3 sinks.

C. In-network performance of DD and FROMS

Next, we compare the performance of both protocols in
terms of delivery rate and routing costs. Figure 3 summarizes
the results for several network configurations. As expected
from our simulation experiments and theoretical analysis,
FROMS achieves lower routing costs. This can be attributed
to its learning algorithm which actively explores the network
for optimal routes. We also compare the performance against
the theoretically optimal cost.

In simulation we were unable to evaluate an accurate
delivery rate since transmission failures cannot be reliably
simulated. Here, instead, we confirm our theoretical expec-
tation that FROMS is able to achieve higher delivery rate
in any network scenario. Data is lost in DD mainly due to
the higher in-network communication caused by the periodic
sink announcements. As explained in Section III-A, every sink
periodically sends sink announcements via a network wide
broadcast, causing high traffic and thus collisions. A second
factor is the increased number of forwarding nodes selected
by DD compared to FROMS. This increases the traffic and

LIE

1]

no 1ms 100 ms

DD, 2 sinks

Fig. 4. In-network performance when applying transmission backoff, results
from topology 1.

[cost per received packet
|:| cost per generated packet

costs per packet in ETX

DD FROMS DD FROMS
no acks, no backoff acks, no backoff

DD FROMS
acks, backoff 1ms

Fig. 5. In-network performance when using acknowledgments, results from
topology 2.

collision probability leading to packet losses. Figure 3 supports
these observations, showing that the delivery rate of both
protocols clearly drops in networks with larger numbers of
participating nodes and sinks.

D. In-network performance of routing enhancements

The main goal of enhancing the routing protocols is to
improve the delivery rate. In our experimental setups, we study
the effect of transmission backoff and as well as application-
level acknowledgments on DD and FROMS.

Figure 4 presents the results when using transmission back-
off, clearly showing that the technique is highly effective at
improving delivery rates. We implemented a simple algorithm
in which a parameter (in our case 0, 1 or 100 ms) is multiplied
with the node’s ID and this delay is applied before forwarding
any packet. This backoff reduces packet collisions and thus
increases successful delivery.

Another common mechanism to increase the delivery rate
is to force packet acknowledgments. We use overhearing of
DATA packets as implicit acknowledgments, avoiding addi-
tional costs. The incurred overhead stems from re-sending
unacknowledged packets. Figure 5 shows how routing costs
skyrocket, while the delivery rate also increase. Communica-
tion failures cause not only data loss, but also acknowledgment
loss. This results in resending packets which were actually

received, but not acknowledged. Consequently, the communi-
cation traffic explodes, leading to even higher loss rates.

VI. LESSONS LEARNED

While implementing and deploying FROMS and DD on
the ScatterWeb platform we encountered several challenging
problems. This section steps through these, ordered by their
importance. We describe each problem and our solution,
discussing alternatives where applicable. Although the ex-
periences shared here have more the character of practical
guidance than of algorithmic facts, we believe that especially
those working on embedded programming and sensor network
testing for the first time will benefit from it.

A. Multi-hop topologies do not necessarily come naturally

Since both of the implemented protocols are designed for
multi-hop data dissemination, one of the first things explored
was how to build different network topologies for real-world
testing. Unfortunately, we discovered that constructing real
multi-hop networks within our building is impossible due to
the thin walls and the good communication quality between
nodes. Even with minimal transmission power, we measured
a maximum distance allowing direct communication between
two nodes to be more than 50 meters in an indoor setting, a
value that, due to less obstructions, is even bigger in outdoor
areas. For gaining insights on the impact of the proposed
reinforcement learning strategy, we needed at least a network
diameter of 3-4 hops, a distance we were not able to achieve
with a pure physical distribution of nodes. This has been
observed in prior deployments, such as the fence monitoring
experiment [5].

Our solution was to manually control the topology by
artificially limiting the nodes’ communication. Specifically, we
established tables at each node that contain pre-defined IDs of
neighbors whose packets a node is allowed to process. Packets
received from other nodes are dropped. The main disadvantage
of this approach is the additional interference on the wireless
medium as compared to real multi-hop networks, a fact that
may contribute to higher packet loss ratios and which makes
transmission backoff even more important.

Another solution could be a quality-driven approach for
topology control where a threshold is used to evaluate the
link quality between nodes based on received signal strength
(RSSI). Only a subset of neighbors with high reliability will be
chosen for communication. The main advantage compared to
static neighbor tables as described above is that this approach
allows for changing topologies at runtime.

B. Dynamic memory allocation can fail unexpectedly

When porting FROMS to the ScatterWeb platform, we
naturally started from the simulation code. However, we soon
discovered that dynamic memory allocation and deallocation
do not work properly on the nodes, a mechanism that the
central PST data structure [2] heavily relies on. Since the
ScatterWeb firmware does not support dynamic memory itself,

one can rely on a library available from Texas Instruments,
which, however, is reported to contain several known bugs.

We decided to re-use most of our data structure but to
implement it with the help of static arrays. As a result, an
upper bound for memory utilization must be specified at
compile-time, a disadvantage since this requires a programmer
to specify the maximum possible number of sinks as well
as neighbors per node a priori. Additionally, this part of the
memory cannot be utilized for other things at runtime, even if
it is not fully used. However, for our tests the usage of static
memory was sufficient (see Section V).

C. Gathering statistical data needs to be planned

While running simulations, statistical data such as the deliv-
ery rate, costs per packet etc. is gathered from the simulation
kernel itself and then presented en-block to the user. In our
experimental setting, we need to log and reacquire this data
explicitly on the nodes, which in turn blocks additional RAM
at runtime.

Two distinct methods for logging were explored: a simple
utilization of runtime variables holding the necessary infor-
mation, and persistent storage of log data onto SD cards
which can be used with the ScatterWeb nodes. In the first
case, data is transient, thus node failures naturally lead to
their complete erasure. The prime advantage is however that
memory consumption can be planned at a fine granularity as
opposed to an SD-card based solution in which only blocks of
a minimum 512 byte can be written due to write asymmetry
of flash memory. Notably, a cache this size needs to be
exclusively allocated in advance, and the driver itself consumes
additional resources. In compensation, data is persistently
logged for multiple test runs before extracting it via debug
commands and serial communication.

D. Handling lost or corrupted packets

As expected, some packets got lost or corrupted during
transmission. However, this is not a major challenge to our
experiments, since it is expected in any wireless scenario and
the protocols do not rely on perfect communication. To cope
with corrupted packets we implemented a CRC sum test.

VII. SUMMARY AND FUTURE WORK

This paper presented our experiences and results from
implementing and deploying two routing protocols on a real
hardware testbed. One of these is based on machine learning
techniques, thus clearly demonstrating that such an approach
is feasible within the constraints of real hardware. The ex-
perimental results confirmed those of our prior simulations
and revealed common implementation challenges. Among
our numerical results, we found out that using transmission
backoff is always a good idea as it improves the delivery rate
in any network scenario. In contrast, using acknowledgments
unnecessarily increases the routing cost without significantly
affecting the delivery rate. As a general take-away lesson it
can be noted that routing costs are closely related to the
delivery rate and thus the developers of sensor networks must

try to minimize total communication traffic in the network to
improve delivery rate and thus also routing costs.

In the future we will extend our testbed to 30 nodes
and increase the experimental scenarios to include changing
topologies, mobile sinks, and new cost functions, such as those
based on remaining energy.

REFERENCES

—

[1] A. Forster, “Machine Learning Techniques Applied to Wireless Ad-Hoc
Networks: Guide and Survey,” in Proc. of the 3rd Int. Conf. on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP), 2007.

[2] A. Forster and A. L. Murphy, “FROMS: Feedback Routing for Optimizing
Multiple Sinks in WSN with Reinforcement Learning,” in Proc. of the
3rd Int. Conf. on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2007.

[3] F Silva, J. Heidemann, R. Govindan, and D. Estrin, Frontiers in Dis-
tributed Sensor Networks. CRC Press, Inc., 2003, ch. Directed Diffusion.

[4] A. Forster and A. L. Murphy, “Balancing Energy Expenditure in WSNs
through Reinforcement Learning: A Study,” in Proc. of the 1st Int. Wrkshp
on Energy in Wireless Sensor Networks (WEWSN), 2008.

[5] G. Wittenburg, K. Terfloth, F. Lépez Villafuerte, T. Naumowicz, H. Ritter,
and J. Schiller, “Fence monitoring — experimental evaluation of a use case
for wireless sensor networks,” in Proc. of the 4th Eur. Conf. on Wireless
Sensor Networks (EWSN), 2007.

[6] H. Frey, F. Ingelrest, and D. Simplot-Ryl, “Localized minimum spanning
tree based multicast routing with energy-efficient guaranteed delivery in
ad hoc and sensor networks,” in Proc. of the 9th IEEE Int. Symp. on a
World of Wireless, Mobile and Multimedia Networks (WOWMOM), 2008.

[7]1 J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic, “GMR: Geographic
multicast routing for wireless sensor networks,” in Proc. of the 3rd An.
IEEE Conf.e on Sensor and Ad Hoc Communications and Networks
(SECON), vol. 1, 2006, pp. 20-29.

[8] P. Ciciriello, L. Mottola, and G. Picco, “Efficient routing from multiple
sources to multiple sinks in wireless sensor networks,” in Proc. of the 4th
Eur. Conf. on Wireless Sensor Networks (EWSN), 2007.

[9] B.-R. Chen, K.-K. Muniswamy-Reddy, and M. Welsh, “Ad-hoc multicast
routing on resource-limited sensor nodes,” in Proceedings of the 2nd
International Workshop on Multi-hop ad hoc networks: from theory to
reality . New York, NY, USA: ACM Press, 2006, pp. 87-94.

[10] M. Dela Cruz, M. Whyte, Z. Yu, and T. Hanselmann, “Q learning
routing protocol,” Display demonstration of real hardware implementation
at the Int. Conf. on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), Melbourne, Australia, 2007.

[11] Y. Wang, M. Martonosi, and L.-S. Peh, “A supervised learning approach
for routing optimizations in wireless sensor networks,” in Proc. of the
2nd Int. Wkshp on Multi-hop ad hoc networks: from theory to reality
(REALMAN). New York, NY, USA: ACM Press, 2006.

[12] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons From
a Sensor Network Expedition,” in Proc. of the Ist Eur. Wrksp on Sensor
Networks (EWSN), Berlin, Germany, Jan. 2004.

[13] T. Naumowicz, R. Freeman, A. Heil, M. Calsyn, E. Hellmich, A. Braen-
dle, T. Guilford, and J. Schiller, “Autonomous monitoring of vulnerable
habitats using a wireless sensor network,” in Proceedings of the 3rd
Workshop on Real-World Wireless Sensor Networks, 2008.

[14] K. Martinez, P. Padhy, A. Riddoch, R. Ong, and J. Hart, “Glacial
Environment Monitoring using Sensor Networks,” in Proc. of the Ist
Wrksh on Real-World Wireless Sensor Networks (REALWSN), Stockholm,
Sweden, June 2005.

[15] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks,” in
Proc. of the the 4th ACM Conf. on Embedded Networked Sensor Systems
(SenSys), 2006, pp. 307-320.

[16] G. Halkes and K. Langendoen, “Crankshaft: An energy-efficient MAC-
protocol for dense wireless sensor networks,” in Proc. of 4th Eur. Conf.
on Wireless Sensor Networks (EWSN), Delft, The Netherlands, Jan. 2007.

[17] A. Hagedorn, D. Starobinski, and A. Trachtenberg, ‘“Rateless deluge:
Over-the-air programming of wireless sensor networks using random
linear codes,” in Proc. of the 7th Int. Conf. on Information Processing in
Sensor Networks (IPSN), 2008.

[18] J. Beutel J. “Metrics for Sensor Network Platforms, ”in Proc. ACM

Workshop on Real-World Wireless Sensor Networks (REALWSN’06), June

2006.

