
A Feedback-Enhanced Learning Approach for
Routing in WSN

Anna Egorova-Förster1 and Amy L. Murphy1,2

1 University of Lugano, Switzerland,
{anna.egorova.foerster, amy.murphy}@lu.unisi.ch

2 IRST-ITC, Trento, Italy

Abstract. A new modality for sensor networks emerges when consid-
ering multiple, distributed base stations that collect data from sensors.
This scenario reverses the typical multiple-source, single-sink scenario,
and requires new techniques to efficiently send data from single-sources
to multiple-sinks. While an offline approach with full topology informa-
tion can build the optimal data forwarding tree, the challenge we address
here is to optimize data forwarding with only information exchanged
among one-hop neighbors. The novelty of our approach lies in the use
of an iterative learning technique that explores alternative routes by lo-
cally sharing feedback regarding route fitness. This paper presents our
approach as well as an evaluation showing that the learned paths lead
to increases in network lifetime of up to 50% over an approach without
learning.

1 Introduction

Technological advancements in hardware and wireless networking have recently
raised the potential for wireless sensor networks (WSN) with much effort concen-
trating on collecting vast amounts of sensed information at a single, powerful base
station. Although a variety of applications can exploit this setup, the network
algorithms developed for it have limited use in sensor-actuator networks that
exploit data inside the network. In such scenarios, actuator devices are phys-
ically dispersed beside the sensors where they collect and act on sensor data.
Exploiting a traditional, centralized approach requires collecting information at
a base station and re-sending it to the actuators. This, however, unnecessarily
increases both the amount of data transmitted and the latency between data
collection and actuation.

By taking this sensor/actuator scenario as our motivation, our work essen-
tially reverses typical WSN assumptions and instead of sending multiple pieces
of data to a single sink, we target sending a single piece of data to multiple sinks.
Our work trivially extends to support multiple data sources. Within this context,
our goal is to minimize the overall network cost, thus increasing its lifetime.

Recent research efforts have resulted in a wealth of routing protocols to dis-
cover energy-efficient paths between data sources and destinations. While they
are effective in connecting two points, the minimal tree connecting a source



and multiple sinks may not contain any of these pairwise routes. Our challenge,
therefore, is to discover this minimal tree of routes without requiring global
information about the network topology.

Our approach is an in-network protocol that incrementally learns about good
paths in the network. To achieve this, we assume that sink nodes advertise their
data needs with a simple broadcast protocol, establishing basic, sub-optimal
routing information. To find better paths, neighbors exchange information about
the fitness of various routes, using this information to incrementally improve
forwarding decisions and overall decrease the network cost for the data to reach
all sinks. During this process, each node actually learns multiple, equal cost
routes, which can be cycled through, thus further increasing the lifetime by
spreading the routing load across more nodes.

This paper continues in Section 2 presenting our routing protocol. Section 3
provides a discussion and simulation results demonstrating the effectiveness of
our approach. We then outline related work before Section 5 concludes the paper
with our future plans.

2 Approach

The goal of our protocol is to find the shortest possible path for data to follow
from its source to all interested sinks. One possible path, actually a tree, is
formed by the union of the individual paths from the source to each sink, however
a shorter path often exists. While the tree discovered by our approach may not
be the theoretical optimum, it is likely to be an improvement over the individual
paths. The challenge is to identify this tree without full topology information
and without exchanging global information. The main task of our protocol is to
update local information regarding “next-hops” to reach all sinks such that the
resulting forwarding tree is as small as possible.

We accomplish this with a three phase protocol. The first establishes basic
information at each node regarding the identity of the sinks and initial path
information to each sink. The second phase sends sensor data, explores routes,
and learns the accurate shared costs of these routes. The third phase is the
steady-state, in which sensor data packets are routed along the best available
routes without exploration. The sequence of phases is not strict, meaning that
if a new sink requests data, or if a new, shorter path is introduced, the system
will asynchronously return to the first and/or second phases.

It is worth noting that our routing protocol tolerates both node failure and
loss of data and feedback packets. Also, while the protocol does not prevent rout-
ing loops during the exploration phase, it still ensures that the packet eventually
reaches the destination, unless it is corrupted during transmission.

2.1 Phase I - Sink announcement

The first phase of our protocol requires each sink node to broadcast its request to
the entire network. As this packet propagates, nodes receive information about



DATA REQUEST
sinkID [int] A
time stamp [sec] 78
coordinates [x, y, r] [100, 45, 8]
expire after [sec] 1000
TTL [int] 10
hops [int] 1

DATA PACKET
Data: data . . .

sourceID [int] 20
time stamp [sec] 78

Feedback: forID 34
RLE [int] 12

Routing: neighborID 45 12 . . .
sinks(array) (B, C) (A, D) . . .
max cost 4 9 . . .

Fig. 1. Data request and data packet formats.

the cost along available paths to the sink nodes. The request message outlined
in Figure 1 is fairly straightforward. The most critical info it carries includes
the identifier of the sink node and the packet time to live (TTL), indicating the
limit of the dissemination of the request message. The hops entry, initialized to
1 at the sink, increments each time the request is forwarded.

When a node receives a request message, it consults its routing table, shown
in Figure 2 for the arbitrary node with identifier 20. If an entry already exists in
the table for this sink/neighbor combination with a smaller number of hops trav-
eled, the message is not processed. Otherwise, a new entry is added or an existing
one is updated and the message is re-broadcast with updated information.

2.2 Phase II - Exploration

Phase II represents the core of our protocol as it is during this phase that the
best route from the source to all sinks is discovered. The key points to our
approach are the fitness function that estimates the effectiveness of the route,
the data structures used to make routing decisions, and the exploration strategies
to determine which routes are taken.

To reduce data sending costs, all packets are sent in one-hop broadcast mode,
not unicast, to all neighbors. Therefore, if a packet should be processed by more
than one neighbor, a single packet is sent with information inside specifying
which nodes should receive it. In Figure 1, this information appears in the Rout-
ing section of the data packet.

Phase II initiates when a data packet is received at a node and it must make a
decision concerning how to route that packet. Each data packet carries Routing
information concerning which sinks it is expected to reach by going through
which nodes. For example, in Figure 1, the data packet has to reach sinks (B,C)
by going through node 45 and sinks (A,D) through node 12.

Fitness Function (Route Length Estimate). Given that the goal of our pro-
tocol is to find the best possible route to all sink nodes, we must define precisely
the metric for evaluating routes. By studying the environment, several proper-
ties emerge. For example, remaining battery power at the nodes or link quality
between nodes can affect the quality of the path. In general, the fitness function



Neighbor ID 45 54 12
Route to Sink ID A B C B A D
#Hops 1 3 2 2 6 4

Fig. 2. Routing information maintained by sensor node 20 with path lengths to all
known sinks obtained in Phase I.

can be calculated based on multiple variables related to the appropriateness of
the path for routing packets to a particular sink or set of sinks.

In the rest of this paper we use a simple, intuitive fitness function: Route
Length Estimate (RLE). This metric is the total number of hops that a message
is expected to travel to reach all sinks and generally corresponds to the energy
requirements to route the packet through the network.

After Phase I, all nodes know locally the cost to send to a given sink through
a given node. Based on this information, any node can estimate the cost to
send a packet to a set of sink nodes through some of its neighbors. However,
because the topology is not known, this cost is only an approximation, hence the
word estimate in our fitness metric. Using Figure 2 as an example, it is known
that from node 20, neighbor node 45 can be used to reach sinks (A,B, C) but
it is not known whether node 45 has an outgoing shared link to use for these
packets, or if it must split the packets to three different neighbors to reach all
of the sinks. Therefore, we estimate the worst case remaining cost to send a
packet to sinks (A,B, C) through node 45 as the cost to send the packet one
shared hop to node 45 and then to split the packet along three different paths
after node 45 for the remainder of its route to the sinks. Therefore the cost is
1 + (1− 1) + (3− 1) + (2− 1) = 4. This equation generalizes to:

RLE =

(∑
i

cost i

)
− (n− 1) (1)

where i is the set of sinks ((A,B, C) for this example), cost i is the path length to
send a packet through the selected neighbor for the i-th sink (1, 3, and 2 above)
and n is the number of sinks (3 above).

It is important to emphasize that this is the worst case estimate for the
path fitness. It is entirely possible that the packet can continue to share a path
after the next hop, in which case the actual cost will be lower. To learn a more
accurate estimate of the cost, the estimates for the same routes on neighboring
nodes are conveyed back to the sending node, in our example from nodes 45 and
12 to node 20. This is done as feedback during the routing process, as described
later in this section.
Path Sharing Tree. When a node receives a data packet, it ensures that this
data packet will reach all of the sinks listed inside the data packet by delegating
responsibility for routing the data to one or more of its neighbors. If a packet
contains only one sink destination, the routing decision can be taken only by
looking at Figure 2, and selecting the entry with the shortest path to that sink.



However, if the data must reach several sinks, the decision is complex. Con-
sider example node 20 in Figure 2. If a data packet must reach all four sinks we
have at least the following distinct options: (i) 45 for (A,B, C), 12 for (D), (ii)

12 for (A,D), 45 for (B,C), or (iii) 45 for (A,C), 54 for (B), 12 for (D). This is
not a complete enumeration, but it gives only impression of the complexity.

To manage this complexity, we devised a data structure called the Path Shar-
ing Tree (PST) whose goal is to organize the available options for selecting the
next hops for a data packet to take. Here, we stress only the most important
properties of this data structure and, for space reasons, leave out the implemen-
tation details which are available in [5].

The data structure must (i) hold all possible route combinations through
all neighbors, (ii) update path fitness and (iii) return a desired route for a set
of sinks. The implementation of this data structure is important for the overall
scalability and performance of the protocol, as the number of combinations grows
with large number of neighbors and/or sinks. The PST is pruned to eliminate
duplicate routes and to ignore routes with very high costs.

Managing Loops. While the data packet is routed through the network, ev-
ery node is allowed to explore non-optimal routes, e.g. routes with higher costs
than absolutely necessary. This “freedom of choice” makes it possible to learn
about better routes in the network, but also opens the risk of routing loops.
Our solution allows data to travel in a loop, but prohibits infinite loops. This is
accomplished by guaranteeing that the max cost for routing allowed by the data
packet always decreases. If this cannot be met by a routing decision, the packet
is returned to the sender, who must choose a different path to the sink(s).

Feedback and Learning. While the PST estimates the network cost to all
sinks, its initial data is based only on information gathered during Phase I and
is therefore the worst-case estimate of the possible path sharing. It is necessary
for any downstream nodes to update route costs at its upstream nodes, providing
more accurate route length estimates. This information is shared in the form of
feedback, piggybacked when the packet is re-broadcast by the next hop. This
sending and receiving of the feedback information and the updating of the RLEs
throughout the network is our learning mechanism that results in improved
routing decisions over time.

Consider the example shown in the left of Figure 3 in which sender node 20
forwards a packet to nodes 45 and 12 for sinks (B,C) and (A,D) respectively.
When node 45 receives this packet, it must find a path for routing to sinks (B,C)
with cost less than 4. It identifies another neighbor, 5, as an appropriate next
hop for both sinks, with the cost of 2. Node 45 sets feedback information in the
packet that it forwards, indicating that the current estimate of the path known
at node 45 is 2. When node 20 receives this feedback, it updates the PST tree,
setting the cost for using node 45 as the next hop for (B,C) to the feedback
value and updating all other relevant costs and routes.

In general, feedback updates information at the previous hop, however in
order to find the overall best routes, this information must propagate throughout
the network; our mechanism does precisely this. Observe that node 20 now has



forwarder
n45

sender
n20

broadcast
n12

n2

n3

forward 
data

forward 
data

n5

not for 
me

12
A,D
9

DATA
sourceID
time_stamp

Feedback
forID 
RLE 

Routing
neighborID:
sinks: 
max_cost: 

DATA PACKET

45
B,C
4

20
100

forwarder
n45

sender
n20

broadcast

n12

n2

n3

feedback 
for me

n5

forward 
data DATA

sourceID
time_stamp

Feedback
forID 
RLE 

Routing
neighborID:
sinks: 
max_cost: 

DATA PACKET

5
B,C
2

20
100

20
2

Fig. 3. Sample routing and feedback for a message traveling from node 20 to 45 and
from 45 to 5.

a better cost estimate that will affect its perception of the route fitness: it has
learned a new RLE for this route. Therefore, the next time it sends data along
this same route, it will forward the updated cost estimate to its predecessor
node. Thus, the information eventually propagates the full reverse path from
the sinks to the data senders. This means that for a route to some sink with n
hops, the same route must be used exactly (n − 1) times in order for all nodes
on the path from the source to the sink to have the most accurate information.
Exploration Strategies. While the PST information shows several possible
routes and combinations, it is the job of the routing protocol to decide which
route to use. We could simply choose the path with the minimum cost. However,
it may be that other routes have poor estimates and lower actual costs. Another
option is to cycle among all options, to receive feedback from the other nodes to
update the RLE. Yet a third option is to assign weights to the options, e.g. larger
weights to paths with lower cost. Using these weights, we can probabilistically
select a path to use, selecting low cost paths with higher probability. Other route
exploration strategies are possible, with the choice depending on application
requirements and network properties. The exploration strategy works together
with the loop management and ensures that only allowed routes are chosen, i.e.
their costs are strictly less than the maximum allowed cost.

Every exploration strategy must define the duration of the exploration phase.
Again, several options are available based on time, the received feedback, the
number of explored routes, etc. In our implementation, the exploration phase
ends after a given number of packets fail to trigger an update of the PST. With
a constant data rate, this is equivalent to a time-based approach, however it is
more flexible for varying data rate applications.

2.3 Phase III - Stable Data Gathering

After the exploration phase terminates, the PST is likely to have several routes
with the same, best, minimal cost. Alternating among these paths is likely to
spread out the load of data forwarding among the available network nodes,



therefore Phase III is characterized by randomly selecting one of the best paths
and sending the data packet along it.

It should be noted that if the PST changes for any reason, Phase II is re-
initiated. The protocol may exit the stable phase, but assuming the PST even-
tually stops changing, the system will spend most of its time in Phase III.

3 Discussion and Evaluation

Throughout this section, we examine the behavior of our protocol with two
different exploration strategies: randomExplore and noExplore. random-
Explore assigns probabilities to each route according to its total cost and
uses them when selecting randomly the route to be explored. It stops exploring,
when ten consecutive data packets receive no valuable feedback. noExplore
uses only the best found routes after Phase I, meaning no exploration of routes
with larger costs is ever performed. For comparison we use an implementation
of Directed Diffusion’s “one phase pull” protocol, directedDiffusion, as de-
scribed in [7, 9]. We selected this protocol as it is both similar to our approach
and has demonstrated good experimental results.

3.1 Discussion

The feedback-enhanced routing protocol presented thus far is based on non-
deterministic, probabilistic learning. As discussed in Section 2.2, it guarantees
data packets eventually reach the sinks in all phases, however, it does not guar-
antee to find the optimal route, as this has unrealistic requirements for on-line
implementation. Therefore, we apply a standard machine learning technique:
randomize and limit the exploration to all heuristically good routes.

The success of the exploration phase is dependent on the topology of the
network. With some topologies, e.g. that of Figure 4(a), the optimal route to all
sinks is the same as the individual routes to each sink separately, which is the
routing information collected in Phase I. In this case, termed best single routes,
neither randomExplore nor noExplore can find a better route because the
best single routes already use the optimal one. Nevertheless, in other cases,
benefits in network cost will be found in the exploration phase, as in Figure 4(b)
where the gain over the best single routes is 40%.

The topology in Figure 4(c) illustrates an important property of our explo-
ration mechanism: it is not guaranteed to find the optimal route. Because we
choose randomly among the available routes during exploration, it may happen
that the middle route is not explored before the end of the exploration phase.
In this case, the optimal route will never be found. This depends clearly on the
exploration strategy as it defines how the routes are explored.

Despite the possibility that exploration may not find better routes, it provides
two main benefits. First, most of the time it does find routes with better fitness
through exploration (see the simulation results in the next section). Second, it



sink sink

source

DirectedDiffusion = 2
noExplore = 2
randomExplore = 2

(a)

sink sink

source

DirectedDiffusion = 5
noExplore = 3
randomExplore = 3

(b)

sink sink

source

DirectedDiffusion = 5
noExplore = 5
randomExplore = 4

(c)

Fig. 4. Various network topologies exhibit key properties of the routing protocol. The
gradients for directedDiffusion and the feedback-enhanced route are shown with
arrows and RLE values are shown for directedDiffusion, noExplore and random-
Explore (after stabilization).

typically finds many routes with the same minimum cost, which can be used for
managing network lifetime by sharing energy among forwarding nodes.

Extreme scenarios. It is worth abstractly considering some extreme scenarios
including both very few and very many sinks. With only one sink, the PST tree
will not be built at all because there are no shared routes and the best route to
this sink from the routing table will be used directly. The results will be exactly
the same as using directedDiffusion. With a large number of sinks, several
properties change. The exploration time increases because more shared routes
are possible through a single neighbor. The network cost savings also increase
for the same reason. On the negative side, the size of the PST also increases in
order to track all possible paths.

Multiple sources and data types. To this point we have only considered a sin-
gle source in the network. However, when the number of sources changes, neither
the protocol nor the properties of the exploration change. The feedback relates
to the sinks and not the sources or the data, therefore it remains unchanged.
Finally, only one PST is needed per node as this PST holds all possible routes.
The same holds for multiple data types.

Repair after failure. Our protocol is also tolerant to connection failures. If
some neighbor is no longer reachable, all corresponding routes are deleted from
the PST of the node that discovered the failure and the next best routes will be
used. If the cost of the new route is larger than before, this information is passed
as feedback to the neighbors, updating their PSTs, triggering a new exploration
phase, and causing new routes to be explored and used.

Bandwidth requirements. We have already shown that the protocol does not
increase network costs in the stable phase since feedback information is piggy-
backed on normal data packets. Although the exploration phase increases net-
work costs due to the exploration of non-optimal routes, this temporary increase
is compensated for in the stable phase, as seen in the simulation results.



0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

simulation time [sec]

n
e
tw

o
rk

 c
o

s
t 

o
f 

d
a
ta

 p
a
c
k
e
t 

s
e
n

t 
[R

L
E

]

231

exploration phase stable phase

average overall cost = 6.61

average stable cost = 4

simulation time [sec]

(a)

1 2 3 4 5 6
!5

0

5

10

15

20

25

30

35

40

Number of sinks

Pe
rc

en
t g

ai
n 

of
 n

et
w

or
k 

co
st

 o
ve

r D
D

 [%
]

 

 

average percent gain over DD
average percent gain over DD after stabilizing
percent gain no explore over DD

(b)

Fig. 5. (a) The network routing costs for data from a single source to all sinks in a
sample, random topology with 6 sinks. The two phases of randomExplore are shown:
exploration until time 231 followed by stable. (b) Percent gain over directedDiffu-
sion in network costs for randomExplore after stabilizing, randomExplore total
and noExplore.

3.2 Simulation setup and results

Our simulation study was conducted using OMNeT++ v3.2 and the Mobility
Framework v1.06 (http://mobility-fw.sourceforge.net/). Both results and simu-
lation code are available on our website (http://www.inf.unisi.ch/projects/mics).

Our evaluation compares two versions of our feedback-enhanced protocols
noExplore and randomExplore against an implementation of the “one
phase pull” directedDiffusion. All the experiments reported here consist of
500 runs over 125 different random topologies of 50 nodes with one single source
in the network. Each topology is guaranteed to be connected and is fixed at the
beginning of the simulation. To simulate lifetime, we assign each node an initial
energy quota and decrement this value when transmitting.

Before showing any comparisons, Figure 5(a) intuitively shows the behavior
of the protocol for a single run. Before stabilizing, the network costs are irregular
because packets are sent through different routes with varying costs. Once the
stable phase begins, only the best routes are used.

Based on these observations, we define two metrics for comparison: overall
cost and stable cost. The first denotes the average network cost during the whole
run (both phases), 6.61 in this case. The stable cost averages only the cost during
the stable phase, 4 in this case. While clearly the additional costs during the
exploration phase are important as they are part of the total energy expended
by the system, this value becomes less relevant with long simulation runs. The
second metric, on the other hand, shows clearly the gains that our approach can
achieve after short, shared routes are identified.

Figure 5(b) shows the improvements of our protocols compared to directed-
Diffusion, reporting the percentage in performance gain on the same topology
for each protocol. This metric eliminates differences among random topologies,
such as the actual length (number of hops) of the paths between source and sinks.



1 2 3 4 5 6
0

50

100

150

200

250

300

Number of sinks in the network

Pe
rc

en
t g

ai
n 

of
 n

et
w

or
k 

lif
et

im
e

 

 

explore over no!explore
explore over best single

up to 53%

up to 283%

(a)

1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

Number of sinks

Ti
m

e 
to

 s
ta

bi
liz

e 
[s

ec
]

(b)

Fig. 6. (a) Network lifetime of our protocols compared to directedDiffusion. (b)
Duration of the exploration phase for randomExplore.

The stable cost of our protocol achieves significant gains, up to 35% for 5 sinks.
Much of the gain comes simply by exploiting the PST to find shared routes but
in most cases, additional gains are achieved by the exploration. However, when
considering the overall cost, our gains are not as significant over directedDif-
fusion. In fact, the last data point for the overall cost with 6 sinks is below
that of directedDiffusion. Because the overall cost depends heavily on the
length of the simulation run, over time these additional costs are amortized by
the gains achieved with shorter routes discovered during exploration.

At the measurement for two sinks, randomExplore is unlikely to find a
better route than noExplore because of the limited number of alternate routes
that exist. As the number of sinks increases and the number of available routes
correspondingly increases, the potential improvements due to exploration grow.
Also the slight decrease in the trend at the last data point is most likely due to
the random behavior of our protocol and noise in the network and we do not
expect it to continue.

Next we consider the potential gains in network lifetime by exploiting multi-
ple identical cost links. Again our hypothesis holds: alternating among the equal
cost paths increases network lifetime, as measured by the time to the first node
failure. Figure 6(a) shows that when comparing the stable phase after random-
Explore against directedDiffusion, our approach can achieve up to 283%
longer lifetime than directedDiffusion. Compared to noExplore, our ap-
proach still shows up to 53% improvement, demonstrating that learning and
exploration can achieve significant benefits.

We also note the average time to stabilization for various numbers of sink
nodes, as this affects the overall cost. Figure 6(b) shows an increase in stabiliza-
tion time with more sinks because it takes more time to receive all the feedback.
Nonetheless, considering that many real applications gather data for weeks or
months, such an increase in exploration time is acceptable.

In addition to the presented results, we ran simulations with dense topologies,
increasing connectivity among the nodes. This increase implies two trends: first,



routes to the sinks are shorter reducing the exploration phase; and second, there
are more neighbors, implying the number of routes available to explore increases.
As confirmed by simulations, these two changes compensate for one another,
yielding no measurable difference for any experiments.

Additionally, we gathered information about the data delivery rates at the
sinks, for setups with 1 to 6 sinks. We achieved results varying from 97% to 99%,
which we expected since the data rate in the network is relatively low (once per
second). With increasing data rates, we expect it to decrease.

4 Related Work

In this section, we compare our approach to content based routing in sensor net-
works and the application of learning techniques in networking. The presentation
is not exhaustive, but is intended to put our work in context.

One way to view our approach is as an implementation of content-based
networking [3], a routing framework where data is sent from the source to the
destinations based on data interests expressed by the destinations. Such an ap-
proach is relevant for sensor networks as they are data driven as opposed to
address driven [6]. A well known instantiation of content-based networking for
sensor networks is Directed Diffusion [7, 9] where routes from the source to the
destinations are established on-demand based on interests flooded through the
network. The best paths from the sources to the sinks are reinforced as data flows
through the network. Although these protocols support multiple sinks, they do
not identify path sharing nor do they optimize routes for multiple sinks. While
the option of using a multicast tree has been discussed in [9], it assumes the
network is IP-based and the multicast tree is built with off-line tools. Our most
significant deviation from these works is our explicit exploration and learning
mechanisms, allowing us to learn the parameters of the network with limited
local exchange of information.

One WSN protocol for routing from multiple sources to multiple sinks re-
cently appeared [10], however it merges initial local paths rather than searching
for best paths in the network. It also assumes a perfect aggregation of packets
from different sources. Subject-based networking in the mobile ad hoc domain
is also related, e.g., MAODV [8]. While such an approach can be applied in sen-
sor networks, the network properties and protocol requirements are significantly
different.

The cornerstone of our protocol is its ability to learn better paths over time.
It was partially inspired by AntHocNet [4], an approach for learning routes in
wireless ad hoc networks based on ant colony optimization. In our case, however,
the overhead of sending ants through the whole network would be considered a
waste of energy. Second, and more significant, finding shorter routes to multiple
sinks would imply the cloning of the ant to follow multiple paths, an option that
would break the analogy and change the properties of AntHocNet.

A different form of learning, namely Reinforcement Learning, has been ap-
plied to different routing problems in networks [1, 2]. These works, however, ei-



ther assume global topology knowledge, or do not provide sufficient information
regarding the communication protocol or how data should be exchanged.

5 Conclusion and Future Work

The concept of learning through feedback piggybacked on data packets is a pow-
erful tool in WSNs as it requires limited local knowledge and achieves significant
results. In this paper we presented the new concept of using feedback informa-
tion to incrementally learn the routing properties of the network. The result is
a new, efficient routing protocol that learns the best routes to multiple sinks.

Our future plans include further experimentation with new fitness functions
and exploration strategies, and examining opportunities to exploit learning in
different layers of the protocol stack as well as new domains including our work
on non-uniform information dissemination.

References

1. P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe, “Routing with compression in
wireless sensor networks: a q-learning approach,” in Proceedings of the 5th European
Workshop on Adaptive Agents and Multi-Agent Systems, Paris, France, 2005.

2. J. Boyan and M. Littman, “Packet routing in dynamically changing networks: A
reinforcement learning approach,” in Advances in Neural Information Processing
Systems, volume 6, 1994, pp.671–678.

3. A. Carzaniga and A. L. Wolf, “Content-based networking: A new communication
infrastructure,” in Proceedings of the NSF Workshop on an Infrastructure for Mobile
and Wireless Systems, Scottsdale, AZ, USA, 2001, pp. 59–68.

4. G. Di Caro, F. Ducatelle, and L. Gambardella, “AntHocNet: An ant-based hybrid
routing algorithm for mobile adhoc networks,” in Proceedings of the 8th Interna-
tional Conference on Parallel Problem Solving from Nature, Birmingham, UK, 2004,
pp. 461–470.

5. A. Egorova-Foerster, and A. Murphy, “A Feedback-Enhanced Learning Approach
for Routing in WSN”, Faculty of Informatics, University of Lugano, TR 2006/03,
May 2006.

6. C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf, “A content-based networking
protocol for sensor networks,” Department of Computer Science, University of Col-
orado, Tech. Rep. CU-CS-979-04, August 2004.

7. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed
diffusion for wireless sensor networking,” in Transactions on Networking, volume
11, 2003, pp.2–16.

8. C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in
Proceedings of the 2nd IEEE Workshop on Mobile Computer Systems and Applica-
tions, Washington, DC, USA, 1999.

9. F. Silva, J. Heidemann, R. Govindan, and D. Estrin, “Directed diffusion,” Chapter
in Frontiers in Distributed Sensor Networks, 2003, pp. 573–596.

10. P. Ciciriello, L. Mottola, and G. Picco, “Efficient routing from multiple sources
to multiple sinks in wireless sensor networks,” in Proceedings of the 4th European
Conference on Wireless Sensor Networks (EWSN), 2007, to appear.


