University of Rochester Computation and Formal Systems (CSC173)

Homework 4
Amy Murphy
31 Oct 2002

You will not hand in the answers to this homework assignment. Instead, at the beginning of class

on'7
quiz.

1.

November 2002 you will be asked to solve one of the problems as a closed notes, closed book
The question to be solved will be randomly selected.

Take the source code for Project 4 and compile it as is. Feed it a Java program as input. You will
notice in the output that the bodies of methods are indented one level (4 spaces). A little inspection
of the code will reveal that this is because the global variable indent_level is incremented and
decremented at the beginning and end of function parse_compound_stmt. Why doesn’t that
function automatically cause the bodies of while loops, if statements, etc. to be indented, too?

In Project 4, in function parse_field_tail in parser.c there is a comment noting a problem for
your formatting program: in a field of a class, if the first token after any modifiers is an identifier,
that identifier may name a type or it may be the name of a constructor. You need to print it in red
in the latter case, but not the former. Unfortunately, the code doesn’t know which case applies
at the time of the call to parse_qualified_name, so when that routine matches the identifier
it won’t know what to do. Discuss how you might solve this problem. (This answer should be
written in prose. Don’t send code.)

Identify the spot in the provided code of Project 4 (it’s a single line) where you will need to make
changes to control the spacing between tokens within a line of Java source.

Prove that the following CFG is ambiguous:

string — string string | 0 | 1

Write a CFG for strings containing 0 and 1 such that all strings generated by your grammar
contain the same number of 0’s and 1’s. Show parse trees for the strings 0001101 and 0110.

Informally FIRST(A) is defined to be the set of tokens that can begin some string of tokens derived
from A. Computer FIRST(stmt for the following grammar fragment:

stmt — labeldOpt loop

stmt — IDENT := expr

labeledOpt — NUMBER :

labeledOpt — €

loop — WHILE condition {stmtList}
loop — DO {stmtList} UNTIL condition

