%M Outline

¢ Introduction and Major Issues

¢ Commercial Mobile Middleware

+ Next-Generation Mobile Middleware

¢ Case Study — Lime

+ Middleware for Wireless Sensor Networks
¢ Open Issues and Future Directions

99

ﬁm Case Study: LIME + other GVDS

¢ LimMe
¢ Applications
+ Model
+ Extensions
¢ Summary
¢ LIME is an example of a Global Virtual Data
Structure. Two other examples are
+ XMIDDLE
¢ PeerWare

100

%M REDROVER:
| virtual games in physical space

+ Distinguishing characteristic: An application where
transient interactions among mobile users are central
(similar to disaster recovery or robot environment
discovery)

+ Maintains a consistent
view of the current system
configuration: who else is around

+ Players request information on
demand from specific connected
players, as well as register interest
for special data from any player

ﬁm ROAMINGJIGSAW:

a multi-player puzzle

+ Distinguishing characteristic: a mobile application
where the limited availability of shared information due
to mobility is central (similar to CSCW scenarios)

+ Allows players to work while disconnected to assemble
parts of the puzzle

+ Maintains a weakly consistent view of global progress
toward the overall puzzle solution

102

%M Enabling the Rapid Development
¢ of Mobile Applications

¢+ Embody a conceptual model to facilitate
the design of mobile applications

¢ Functional characteristics to consider
+ Disconnected operation
+ Context awareness (data and system)
+ Context transparency (data and system)
+ Reactive programming

¢ Provide coordination constructs to
achieve rapid development of mobile
applications through middleware

103

I Linda

¢ Tuple-based model of coordination
¢ The tuple space is global and persistent
¢ Communication is
+ decoupled in time and space
+ implicit
+ content-based

Agents

in(p)
< USA, Rochester > rd(p) out(t)

< USA, St. Louis > <ltaly, Milan >
Tuple Space

104

%M LIME:

Linda in @ Mobile Environment

+ Maintain simple DSM
programming model

¢ LIME = Linda +

+ Transiently Shared
Tuple Spaces

¢ Tuple Location
¢ Reactions
+ System Configuration
Tuple Space
+ Result: rapid
application
development

Disconnection
105

q Transiently Shared
%llﬁ&, Tuple Spaces

+ Mobile agents are the only active components in the
system and are permanently associated with an
interface tuple space (ITS)

+ Mobile hosts are just “roaming containers” for mobile agents

+ Through the ITS, the mobile agent perceive a context
that may change dynamically

+ The shared context, as determined by mobility, is
determined through transient sharing of the ITSs

+ Mobility (agent migration and/or changes in connectivity)
triggers engagement and disengagement of the tuple
spaces, and dynamic reconfiguration of the contents perceived
by each agent

¢ The ITS is accessed using Linda operations

106

aﬂﬂm Context Transparency:
Transiently Shared Tuple Spaces

Federated
Tuple Space

107

%UBES., Degrees of Context Awareness

¢ Thus far, distribution and mobility are hidden in
what is perceived as a local tuple space (the ITS)
+ Programming is simplified
¢ But, this view may hide too much from some
applications which may need to:

+ limit the scope of query operations to a part of the
context

+ output tuples that are meant to stay with a host
different from the producer

108

%]m Persistent vs.Transiently Shared
Tuple Spaces

Transiently Shared
Tuple Space

out(t)

Persistent
Tuple Space

aﬂﬂfﬁ. Binding Tuples to Locations

¢ A tuple’s location is the 1Ts of an agent
¢ out[A](?)
¢ the tuple tis inserted in the caller’s ts
¢ if A is connected, ¢ migrates to A's ts; insertion and
migration constitute a single atomic step
+ if A is not connected, ¢stays in the caller’s ts and is marked as
“misplaced”

+ Query operations are also extended to access a projection
of the federated tuple space

110

.%llﬂﬁi More on Tuple Location

+ Upon insertion in a tuple space, a user tuple tis
augmented with two fields, yielding a new
tuple (¢ d,t):
¢ ¢ current. the identifier of the agent whose tuple space is
hosting the tuple
¢ d, destination:. the identifier of the agent that is the
Intended recipient of the tuple

¢ If c# d, the tuple is “"misplaced”

¢ This information is used during 1Ts engagement and
disengagement

111

%M, Exploiting Tuple Location

¢ LIME extends Linda operations with location parameters, which are
the only means by which the user can modify or refer to the
location fields of a tuple

+ out[r](9)

+ the tuple tis inserted in the caller's ITS, with its destination location set
to A

« if & is connected, ¢migrates to A's ITS; insertion and migration
constitute a single atomic step

« if A is not connected, ¢stays in the caller’s ITS as misplaced
+ out(f) is equivalent to out[1](#) where A is the caller
¢ in[o, A](p) and rd[o, 1](p)
+ The query for a matching tuple is restricted to a projection of the tuple

space, namely to all the tuples whose current location is o and
destination is Ao

112

éllﬁﬁ& Tuple Space Engagement

¢ Engagement is triggered by
the arrival of a new mobile
unit (physical or logical)

+ The contents of the ITSs are
merged

+ Misplaced tuples are migrated
to destination

+ Engagement operations are
perceived as a single, atomic
step

113

%ﬂﬁﬂ& Tuple Space Disengagement

+ Disengagement also relies on tuple location

+ Transiently shared tuple space are separated as if each
mobile agent were alone

+ Separate federated tuple spaces are computed based on
the system configuration after disconnection

+ In practice, all the tuples are already with the right agent,
and no tuple movement is necessary

4

114

%M Awareness of
) System Configuration

+ Details of the system configuration context remain
partially hidden

+ If a probe inp[o, A](p) fails, it may be that » is around and
does not have tuples matching p, or that o is not around

¢ Only awareness of the data context is provided
+ Many applications require knowledge of the context
determined by the system configuration

¢ This is presented to the user in a read-only tuple space named
LimeSystem is provided

+ The same abstraction is used to represent both data and
system configuration context awareness

115

%M Reacting to
¢ Changes in Context

+ Mobility is a highly dynamic environment,
where reacting to changes is fundamental
¢ Linda provides a pull/ mechanism;

with LiIMe we want to push data to
applications:

o, 2 Rl
-

o o 5

- a e

-

reactsTo (s,p)

¢ Strong and weak reactions provide different
atomicity guarantees

116

%M Strong Reactions

¢ Strong reactions derived directly from Mobile UNITY
reactive statements
+ after each non-reactive statement, a reaction is selected non-
deterministically and its guard evaluated
+ if the guard is true, the action is executed, otherwise the
reaction is a skip
+ the process continues until there are no enabled reactions

+ The state change and the corresponding action are
tightly coupled

+ Implementing strong reactions in a distributed system involves
a distributed transaction

+ Strong reactions are mostly exploited within a single host,
typically to support logical mobility

117

QM Weak Reactions

+ A much looser coupling is provided between
the state change and the action s
¢ The action sis guaranteed eventually to execute
+ Implementation does not require a distributed
transaction
+ Similar to event-based systems, or notification
mechanisms for tuple spaces (e.g., TSpaces’
eventRegister, OF JavaSpaces’ notify)

¢ ... but a Live reaction is triggered by the state of the
system, not by the occurrence of an event

118

%M Reacting to
) System Configuration

¢ System configuration is another component
of mobile context
¢ Present "who is around”as a tuple space
called LIMESYSTEM
+ Accessed with same primitives as data context
+ Read only by user, updated by system

¢ Augmented with system information,
e.g., host configuration, link state (QoS)

119

QM The Making of LiME

¢ LiME is the result of a development process integrating
formal modeling, implementation, and application
development

Transiently Shared Tuple Spaces

Context Awareness
Tuple location
Location aware ops

Context Transparency
Tuple migration
Location transparent ops

Reactivity System Configuration
Strong Access
Weak

ONCE/ONCEPERTUPLE LIMESYSTEM tuple space

120

