
University of Rochester Computer Systems (CSC2/456)

Midterm Exam
Amy Murphy
6 March 2002

Read before beginning: Please write clearly. Illegible answers cannot be graded. Be sure to identify
all of your answers in your blue book (e.g., 1a, 2b, etc). All questions are worth 10 points, numbers in
parenthesis indicate relative point values.

While I have tried to make the questions as unambiguous as possible, if you need to make any
assumptions in order to continue, state these as clearly as possible as part of your answer. In the name
of fairness, I would like to avoid answering questions during the exam.

CSC256: Students enrolled in 256 must choose 6 of the 8 questions to answer. For extra credit,
you may answer the other 2 questions, indicating clearly on the front of the bluebook which questions
are to be counted as extra credit. If you do not specify, I will assume the first 6 in your bluebook are
for normal credit and the remaining 2 (if any) are extra. Grades will be assigned 0-60.

CSC456: Students enrolled in 456 must choose 7 of the 8 questions to answer. For extra credit,
you may answer the 8th question, but you must clearly identify which question is to be counted as
extra. If you do not indicate any, I will assume the 8th answer (if any) is extra. Grades will be assigned
0-70.

1. Short answer. Your responses for each part should be at most 3-4 lines of text:

(a) (3) Operating systems make the distinction between between user level operations and kernel
level operations. Decide whether the following should be user or kernel, and briefly justify
your answer: (i) Disable all interrupts, (ii) read the time of day clock, (iii) set the time of
day clock, (iv) kill a process.

(b) (3) To a programmer, a system call looks like any other call to a library procedure. Is it
important that a programmer know which library procedures result in system calls? Why or
why not?

(c) (4) Polling a device for the completion of an operation is typically a bad idea because while
polling, the CPU is not doing useful work. Nonetheless, this is not always true. Describe a
circumstance when polling might be better than interrupts.

2. Processes and threads. Suppose that three processes exist in a system, as described table
below. Suppose that the system uses preemptive, round-robin scheduling, and that T11 is running
when the quantum expires.

Process Threads within the process
P1 T11, T12, T13

P2 T21, T22

P3 T31

(a) (4) If the threads are implemented entirely at the user level (with no support from the oper-
ating system), which threads might possibly execute at the beginning of the next quantum?

(b) (4) If threads are supported by the operating system (i.e., lightweight processes), which
threads might possibly execute at the beginning of the next quantum?

(c) (2) How does your answer change if the system has two processors?

1



3. Device management. Network cards are just one of the many devices which the operating
system must manage. For this problem ignore all other devices and assume infinite bus bandwidth.
Consider a video stream that sends a unicast, 100 MB/sec stream to as many machines as possible.
Under each of the following conditions, what is the maximum number of destinations that can
receive the stream? Explain your answer (this helps me give partial credit if you get the wrong
number).

(a) (3) Programmed I/O, 100MHz machine, 1GHz network.

(b) (3) Programmed I/O, 10GHz machine, 1GHz network.

(c) (4) DMA, 100MHz machine, 1GHz ntework.

4. Scheduling. Given the five processes below with their indicated number of run time units, answer
the questions that follow. Assume processes arrive in numerical order at time 0.

Process ID CPU requirements
P1 5
P2 4
P3 2
P4 1
P5 8

(a) (4) Show the scheduling order for these processes under first-come-first-served, shortest-job
first, and round-robin scheduling (quantum = 2).

(b) (4) For each process in each schedule above, indicate the wait time and turnaround time.

(c) (2) Briefly explain why these two values are meaningful criteria for evaluating scheduling
algorithms.

5. Fair Scheduling.

(a) (3) Assume that when a process is scheduled, it always uses the full quantum which is assigned
to it, and that the scheduler will only process interrupts at quantum boundaries. What
does it mean for a scheduler to be perfectly fair? What does it mean for a scheduler to be
probabilistically fair? (Caution: do not mix the terminology: probabilistic and proportional.)

(b) (3) Suppose we have a lottery scheduler which choose the next process to run with equal
probability (ignoring the number of tickets held by each process). However, instead of as-
signing all processes the same quantum size, the scheduler dynamically adjusts the quantum
size to be proportional to the number of tickets held by each process. Processes with more
tickets get longer quantums.
Is the resulting schedule still probabilistically fair? Why or why not?

(c) (4) Even if we relax the assumption made in part (a) to allow a process to yield the processor
when it does I/O operations in order to not waste idle CPU cycles, why is the modification
to the lottery scheduler in part (b) not always a good idea?

6. Synchronization. Tweedledum and Tweedledee are separate threads executing their respective
procedures. The code below is intended to cause them to forever take turns exchanging insults
through the shared variable X in strict alternation. The Sleep() and Wakeup() routines operate
as follows: Sleep blocks the calling thread, and Wakeup unblocks a specific thread if that thread
is blocked, otherwise it has no effect.

2



void Tweedledum() {
while(1) {

Sleep();
x = Quarrel(x);
Wakeup(Tweedledee thread);

}
}

void Tweedledee() {
while(1) {

x = Quarrel(x);
Wakeup(Tweedledum thread);
Sleep();

}
}

(a) (5) The code shown above exhibits a well-known synchronization flaw. Briefly outline a
scenario in which this code would fail, and the outcome of that scenario.

(b) (5) Show how to fix the problem by removing the Sleep and Wakeup calls and instead using
a binary semaphore.

7. Lock free synchronization. Suppose we want to use lock free synchronization mechanisms for
managing a FIFO queue. Graphically, the queue is as shown in the figure below (ignore q for
now). Basically, each node consists of some data and a next pointer. We also have global head
and tail pointers. For simplicity, assume that we will ALWAYS have at least two nodes in the
queue. In other words, head and tail will never be equal, and they will never be NULL.

head tail

NULL

NULL

next

q

dequeue()
repeat

p = head;
until (CAS (head, p, p→next));
return p;

(a) (3) The right hand side of the figure shows the lock-free dequeue operation which removes the
element pointed to by head, and updates the head pointer. (Note the use of CAS: compare
and swap. This atomic operation compares the first two parameters, if they are equal, it
swaps the value of the first parameter with the third parameter and returns true. If the
values are not equal, no swap is done, and false is returned.) What is lock-free about this
dequeue operation? In other words, give a definition of the lock free approach. It may help
to state one of the benefits of using lock-free synchronization mechanisms.

(b) (2) What happens to lock free synchronization mechanisms such as this one in environments
with heavy contention for the resource?

(c) (5) Write the enqueue operation to enqueue node q (shown in the figure) to the tail of the
queue. Hint: you need to update both the next pointer of the original tail node, as well as
the pointer to tail.

8. Deadlock prevention. Consider the following allocation of a resource. Assume that there are
a total of 10 instances of this resource.

Process Num Used Maximum
P1 1 6
P2 1 5
P3 2 4
P4 4 7

(a) (5) If P4 requests one more instance of the resource, does this lead to a safe or unsafe state?
Why?

3



(b) (5) What if the request for another resource comes from process P3 instead? Why?

4


