
University of Rochester Computer Systems (CSC2/456)

Midterm Exam
Amy Murphy
19 March 2003

Read before beginning: Please write clearly. Illegible answers cannot be graded. Be sure to identify
all of your answers in your blue book (e.g., 1a, 2b, etc). All questions are worth 10 points, numbers in
parenthesis indicate relative point values.

While I have tried to make the questions as unambiguous as possible, if you need to make any
assumptions in order to continue, state these as clearly as possible as part of your answer. In the name
of fairness, I would like to avoid answering questions during the exam.

CSC256: Students enrolled in 256 must choose 6 of the 8 questions to answer. For up to 10
extra credit points, you may answer one of the other 2 questions, indicating clearly on the front of the
bluebook which question is to be counted as extra credit. If you do not specify, I will assume the first 6
in your bluebook are for normal credit and the next one (if any) is extra. If you answer all 8 questions,
only 7 of them will be counted toward your grade. Grades will be assigned 0-60 (with 10 possible extra
credit).

CSC456: Students enrolled in 456 must choose 7 of the 8 questions to answer. For extra credit,
you may answer the 8th question, but you must clearly identify which question is to be counted as
extra. If you do not indicate any, I will assume the 8th answer (if any) is extra. Grades will be assigned
0-70 (with 10 possible extra credit)

1. Short answer. Your responses for each part should be at most 3-4 lines of text:

(a) (3) What is the difference between deadlock and starvation?

(b) (3) What is the difference between a process and a thread?

(c) (4) What are two types of low-level operations that higher-level synchronization operations
(e.g., semaphores and monitors) can be built upon?

2. Device management. You were just hired to work on a research project with a graphics
professor. He has a program that takes an input image and searches through a bunch of images in
a database in order to find matching images. It does not need to look at every image, but it must
look at a large percentage of the images. Further, not all of the images will fit into memory, so
the program spends most of its time doing disk read operations. You are given a single-threaded
version of this program that works and it is your job is to make it run faster.

(a) (5) Your first idea: arrange the images on the disk so that the ones that are queried tend to
be located together on the disk. This requires you to change the file management portion of
the OS in order to control the data layout, but you’re an intelligent OS student (who has
been all the way through the course, including the part on file management) and this is an
easy task. After the modifications, the program runs faster! Why?

(b) (5) Even though you achieved some speedup, the professor isn’t happy because you modified
the OS. This means that his program now runs fast only on specific machines, and he wants
it to run on any machine. So, back to the drawing board. Your second idea: add multiple
threads. Although all the machines you are working on are single-processor, you amazingly
still achieve a speedup. Why?

1



3. Processes lifetime. (10) The figure below shows a simple state transition diagram for sequential
processes. Suppose that the operating system wishes to implement the two system calls SUSPEND
and RESUME. The SUSPEND call can be used by one process to suspend the execution of another
process. (A process cannot SUSPEND itself.) The suspended process remains suspended until it
is RESUMEd by the process that originally suspended it. While a process is suspended it cannot
run. Redraw the figure in your bluebook, adding transitions and/or states to account for the
SUSPEND and RESUME system calls. Label any new transitions to indicate what caused the
transition to occur, much as the existing transitions are already labeled. Label any new states
you add and briefly describe their purpose.

RUN READY

quantum expires

scheduled

data or
resource

available

resource unavailable
data or

requested

BLOCKED

4. Scheduling. Suppose a processor uses a prioritized round robin scheduling policy. New processes
are assigned an initial quantum of length q. Whenever a process uses its entire quantum without
blocking, its new quantum is set to twice its current quantum. If a process blocks before its
quantum expires, its new quantum is reset to q. For the purposes of this question, assume that
every process requires a finite total amount of CPU time.

(a) (5) Suppose the scheduler gives higher priority to processes that have larger quanta. Is
starvation possible in this system? Why or why not?

(b) (5) Suppose instead that the scheduler gives higher priority to processes that have smaller
quanta. Is starvation possible in this system? Why or why not?

5. Nice. The other day I was using my Linux workstation in the CS department, and suddenly,
everything I was doing started to slow down. Sometimes it took several seconds to change from
an emacs window to a web browser, or even to a terminal window. When I finally ran top, I saw
that Myrosia (one of the graduate students in AI) was running an application on my machine,
and it was taking nearly 99% of the CPU. I could see that she had increased the nice value of
her process significantly, but my work was still being significantly slowed.

Another day, I was working, and for no particular reason, ran top and found that Grigoris (a
graduate student in systems) was using my machine. His process was also taking nearly 99% of
the CPU and he had increased the nice value of his process, but my work was not being affected.

(a) (6) What do you think was the difference between the two processes? In other words, how
could Myrosia’s process be affecting me while Grigoris’ did not? Justify your answer.

(b) (4) How can the situation be fixed? In other words, what mechanism can be used to still
allow Myrosia’s process to run without affecting me “as much”? You need only describe the
mechanism.

2



6. Synchronization. The following Java code samples describe two Lock classes with two methods
each: acquire() and release(). You can assume that the application calls lock.acquire()
before entering a critical section and lock.release() after exiting the critical section. For the
implementations that require a tid (i.e., thread id), you can assume that the tid of each thread is
either 0 or 1.
class LockA {
private int turn = 0;

public void acquire(int tid) {
while (turn == (1 - tid));

}
public void release(int tid) {

turn = (1 - tid);
}

}

class LockB {

public void acquire() {
disableInterrupts();

}
public void release() {

enableInterrupts();
}

}

(6) For each lock, answer the following three questions. Be sure that your answers clearly indicate
whether you are referring to LockA or LockB.

(a) Does the code guarantee mutual exclusion? (Simply answer yes or no)

(b) Does the code guarantee progress? (Simply answer yes or no)

(c) List all other limitations that exist for each implementation. Issues you might consider
include (but are not limited to) the following: generality, efficiency, and fairness. (Note: You
can skip this part of the question when the implementation fails to provide mutual exclusion
or progress.)

(4) Also answer the following general question: Locks are often implemented by maintaining a list
of processes (or threads) that are waiting to acquire the lock. What are all of the advantages of
this approach (compared to a correct implementation of a lock that does not use a list)?

7. Scheduling and Synchronization. Suppose two processes compete for access to a critical
section using simple spin locks. Prior to entering the critical section, the process executes the
following: while (TAS(t)); and after exiting the critical section it executes t=1.

(a) (5) Suppose a priority scheduler where high priority processes always execute before any
lower priority processes. Can the described scheme lead to deadlock? If no, why not. If yes,
describe a case.

(b) (5) Suppose a round robin scheduler. Can the described scheme lead to deadlock? If no, why
not. If yes, describe a case.

8. Deadlock prevention.

(a) (6) What are the necessary conditions for deadlock?

(b) (3) Fix the following code to avoid the possible deadlock:

acquire(L1) acquire(L2)
acquire(L2) acquire(L1)
release(L2) release(L1)
release(L1) release(L2)

(c) (1) What condition from (a) did you remove by making your change.

3


