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Abstract—One of the most challenging goals of many wireless
sensor network (WSN) deployments is the reduction of energy
consumption to extend system lifetime. This paper considers a
novel combination of techniques that address energy savings at
the hardware and application levels: wake-up receivers and node-
level power management, plus prediction-based data collection.
Individually, each technique can achieve significant energy sav-
ings, but in combination, the results are impressive. This paper
presents a case study of these techniques as applied in a road
tunnel for light monitoring. Preliminary results show the potential
for two orders of magnitude reduction in power consumption.
This savings of 380 times allows the creation of an energetically
sustainable system by considering integration with a simple,
photovoltaic energy harvester.

I. INTRODUCTION

One of the main objectives in wireless sensor networking
(WSN) research over the past decade has been the reduction
of energy consumption to the point that, in combination with
energy harvesting, the resulting system is energy-sustainable.
Techniques to save energy range across the full stack from
the hardware to the application, offering novel designs and
tunable parameters to fit a variety of standard application
settings. This work considers three techniques from across this
spectrum, namely, a wake-up receiver and whole-node power
management at the hardware side, plus prediction-based data
collection at the application side. The first and third techniques
aim to decrease the cost of data collection by focusing on the
use of the radio, as it represents one of the most power hungry
components on the node, while the second technique achieves
further savings by exploiting the low-power modes of all node
components.

Although novel medium access control (MAC) techniques
such as low power listening (LPL) [1], [2] achieve significant
reductions in consumption by putting the radio to sleep for
extended periods, nodes still waste energy in two primary
ways. First, nodes must periodically wake up and listen to
the channel in case a node is attempting to transmit to it.
If there is nothing to receive, this energy spent listening is
wasted, leading to idle listening. On the other side, a sender
with data to communicate must transmit until the receiver
wakes up, often leading to long transmission times among
unsynchronized nodes. Wake-up receivers are a novel hardware

approach to eliminate these two main sources of overhead.
Specifically, they provide an ultra low power receiver which
is always on and listening to the channel, either the same
channel used for communication or a dedicated, out-of-band
channel. When a packet is to be transmitted, a preamble is
generated by the transmitter to trigger the wake-up of the data
radio on the receiving node. This eliminates the idle listening
by only turning on the main radio module when there is a
packet to be received. Further, it reduces the transmission time
by ensuring that the receiver is ready to receive immediately
after transmission of the preamble, thus avoiding the repeated
transmissions typical of duty cycling protocols.

While exploiting a wake-up receiver leads to significant
lifetime gains in many scenarios, applications that collect data
at high frequency still incur significant costs to transmit the raw
data. To ameliorate these costs, one technique is to develop a
model that predicts the application data. In this approach, each
node calculates a model for its data and communicates this
model to the sink. The sink then uses these models to predict
the data samples at each node. As long as the real samples
closely match the model, no data is communicated, however
as soon as the real data deviates significantly from the data
estimated by the model, a node generates a new model and
transmits it to the sink. Such approaches have the potential
to eliminate 90 to 99% of the transmissions, depending on the
type of data being sampled and the sophistication of the model.

In addition to controlling radio usage, the energy efficiency
of WSN nodes strongly depends on effective, dynamic man-
agement of the power modes of all hardware components.
Both the microcontroller unit (MCU) and the radio transceiver
usually offer multiple modes that provide different trade-offs
between time spent in an idle mode where power consumption
is well below µW for many state-of-the-art components, and
productive, awake time. In addition, most of the ancillary
components of ultra-low-power motes, such as flash memories
and real-time clocks, can be opportunistically turned on and
off to save power. The actual ability to exploit the low-power
modes depends on the node workload, which must be carefully
considered by the dynamic power manager.

By combining these three techniques, we exploit the
benefits of each to achieve significant savings. Intuitively,



prediction-based data collection reduces the radio traffic,
leading to long periods between transmissions. The wake-up
receiver significantly reduces the power consumption during
these idle periods. Finally, as the nodes are only infrequently
involved in data forwarding, they remain completely idle
between data samples, allowing the exploitation of the low
power hardware modes.

Section II offers a brief overview of the related work in
each of these techniques while Section III offers a description
of how we apply them in this paper. The main contribution of
this paper is a proof-of-concept study of the advantages when
these techniques are combined in a concrete case study, namely
light monitoring in a road tunnel [3]. In this application,
light samples are taken from sensors spread along part of
a road tunnel. A centralized control system collects these
values to determine the light levels of the lamps along the
tunnel so that the legal lighting constraints are met. Additional
details of the scenario are provided in Section IV. The results,
presented in Section V, show savings of up to two orders of
magnitude, specifically 380 times, when the wake-up receiver,
prediction-based data collection, and node power management
are applied in this scenario. Notably, such results are sufficient
to enable an energetically sustainable system formed by a
simple, photovoltaic energy harvester. The paper concludes in
Section VI with a discussion and future directions for this
research.

II. RELATED WORK

As the radio represents the most power hungry compo-
nent on the node, many approaches reduce energy by saving
communication costs. We consider two approaches that com-
plement one another. First, prediction-based data collection is
a software solution that lowers the data rate of the application
without sacrificing data accuracy. Second, a wake-up receiver
is a hardware solution that consumes less energy than a
standard duty cycling protocol by avoiding the consumption
due to idle listening that would occur between the infrequent
transmissions generated by the first approach.

A. Prediction-based data collection

Prediction-based data collection maintains the original ap-
plication sampling frequency, but reduces energy consumption
by limiting the amount of data that must be transmitted [4].
This is accomplished by generating a model for the sensed
data. This model is used at the sink to approximate the sampled
data points. With each new sample, the node verifies that it
falls within the allowable error tolerances. If so, no action is
taken, but if not, a new model is generated and transmitted to
the sink. If the model closely approximates the data trend, the
network communication is significantly reduced, up to 99%
in some cases [5]–[7]. Various types of models have been
studied. Probabilistic models [8], [9] approximate data with a
user-specified confidence, but special data characteristics must
be encoded by domain experts. Alternate techniques employ
linear regression [10], autoregressive models [11] and Kalman
filters [12], but with sizeable memory and computational
requirements, making them difficult to implement on resource-
limited motes. A simpler, linear approach [5], detailed in
Section III-A, was recently proposed by some of the authors
of this paper, and is adopted for the case study here.

Additional classes of data reduction techniques include
data compression, in-network data processing and data aggre-
gation [4]. Although they can be used in conjunction with
prediction-based data collection, the additional complexity
outweighs the benefit for many WSN applications. Specifically,
in the tunnel case study explored here, prediction-based data
collection alone achieves sufficient savings, therefore we did
not consider the addition of these other techniques.

B. Wake-up Receiver

Wake-up receivers are a viable solution to achieve low-
power, asynchronous communication among nodes. The chal-
lenge of this approach is the availability of highly energy
efficient triggering systems [13]. Several wake-up solutions
have been recently developed [14]–[17] focusing on different
parameters, namely: working power, sensitivity, distance range,
latency, and operating frequency. In general, the adoption of
asynchronous wake-up schemes has been shown to be useful in
several application scenarios and is therefore deemed an inter-
esting paradigm for the design of energy-efficient WSNs [18].

While using radio waves is a natural solution for the design
of wake-up receivers for WSNs, out-of-band signaling solu-
tions also offer viable alternatives. Specifically, an ultrasonic
wake-up module for the VirtualSense platform has recently
been developed by some of the authors of this paper [19].
Notably, it outperforms state-of-the-art radio wake-up receivers
with a sub-µA quiescent current consumption. As a side
benefit, ultrasonic wake-up modules can be also exploited to
perform pairwise distance measurements [20], [21].

Asynchronous remote triggering is particularly effective for
applications with ultra-low traffic as it avoids the idle listening
incurred at routing nodes to periodically check for incoming
packets. The main contribution of this work is to show that
such ultra-low traffic conditions can be achieved in common
applications by means of prediction-based data collection, thus
enhancing the effectiveness of wake-up receivers.

III. SYSTEM ARCHITECTURE

The primary contributions of this paper are the novel com-
bination of technologies from hardware to software to achieve
an energetically sustainable system and the concrete evaluation
of several configurations of these technologies. Figure 1 offers
a very high level overview of the configurable components
we consider, dividing them between software and hardware
approaches, then further dividing the hardware among those
belonging to the VirtualSense platform (the microprocessor
control unit (MCU), the data transceiver, and the wake-up
receiver) and the energy harvester. This section outlines the
primary capabilities and options of each of these components
as we apply them in this case study. For simplicity we do not
show common components such as the operating system.

A. Derivative-Based Prediction (DBP)

When developing our data prediction technique, first de-
scribed in [5], we sought to identify a simple model that
effectively captures the data trends, thus reducing the amount
of data generated at each node and requiring few resources on
the constrained nodes. With DBP, we adopted a linear model
based on m data samples, the first and last l points we refer
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Fig. 1. High level system architecture showing the primary configurable
components and the options we consider.

to as edge points. The linear model is calculated as the slope
of the line connecting the average of the first l edge points
with the average of the last l edge points. This computation
resembles the calculation of the derivative, hence the name
Derivative-Based Prediction.

On system initialization, the first m points are collected,
after which the model is generated and sent to the sink.
Subsequently, each sensor sample is checked against the value
the model predicts. If the reading is within a given tolerance,
no action is taken as the sink will also use the model to approx-
imate the sensor sample. However, if the application tolerances
are exceeded, a new model is generated and transmitted to the
sink.

To offer a brief example, consider a light sensor. At
sunrise the linear, DBP model will be an upward sloping
line. At some point, however, the light levels will cease to
increase and the upward sloping model will be replaced with a
flatter model, corresponding to the daytime light levels. While
this explanation is over-simplified, it nevertheless offers the
intuition of DBP.

It is worth mentioning that we have applied DBP to
several real data sets ranging from soil temperature to indoor
temperature and light values [22]. In all cases, a reasonably
tuned DBP produces data reduction rates above 89% and in
most cases above 98%. These savings are sufficient to exploit
the combination of technologies explored in this paper.

B. VirtualSense

VirtualSense is an open-hardware ultra low-power sensor
node featuring a Java-compatible virtual runtime environment.
Full details of the node are available in [23] while only the
most relevant elements are detailed here. VirtualSense runs
the Contiki operating system (OS) [24] and the Darjeeling
Virtual Machine (VM) [25], suitably modified in order to make
it possible for a Java programmer to fully exploit the low-
power states of the underlying microcontroller unit, a Texas
Instruments MSP430F5418a.

MCU power management. VirtualSense features four cate-
gories of power states: active, standby, sleep, and hibernation.
In standby the CPU is not powered, but the clock system
is running and the unit is able to wake itself by means of
timer interrupts. In sleep both the CPU and the clock system
are turned off and the unit is woken up only by an external
interrupt. In hibernation even the memory system is switched

off and there is no data retention requiring a complete reboot
of the OS at wake-up, together with a restore of the VM heap.

Power consumption varies significantly across different
states of VirtualSense. In the active mode, the average power
consumption is approximately 13mW when processing and
66mW for transmitting, while the consumption reduces to
14.67µW in standby, 1.32µW in sleep, and 0.36µW in hiber-
nation. We also note that the time to transition from one state to
another is non-negligible. Specifically, the transition to active
is 25ms from standby and sleep, and 500ms from hibernation.
In case of memory-less applications, a lightweight hibernation
mode is also available to trade-off data retention for wake-up
time, which is consequently reduced to 27ms.

Data transceiver. In addition to the low-power modes of the
MCU, VirtualSense supports low-power communication by
exploiting the inactive modes of Texas Instruments CC2520
radio transceiver (LPM1, LPM2, and an extra low-current RX
mode), the hardware frame filtering (FF) capabilities that pre-
vent the reception of non-intended packets, and the ultrasonic
wake-up receiver, described next, which allows routing nodes
to be opportunistically triggered.

LPM2 is the lowest power consumption mode. In this state
no data is retained and power consumption is about 13.5mW,
in spite of the complete inactivity and of the need to reboot
the embedded controller at wake-up. In LPM1 all data and
configurations are retained and power consumption is about
3mW. During transmission, the power consumption of the en-
tire transceiver ranges from 48.6mW (at -18dBm output power)
to 100.8mW (at +5dBm output power), while in standard
receive mode the power consumption is 69.9mA. Using the
low-current RX mode reduces the power consumption in the
receiving phase down to 55.5mW at the expense of a decrease
in sensitivity from -98dBm to -50dBm.

The frame filtering function rejects non-intended frames
and it can be configured to reject frames not matching the
local address. When frame filtering is enabled it is possible to
shut down immediately the receiver in case of a non-intended
frame and to avoid processing the rest of the frame and waking
up the MCU [26]. Finally, the data radio transceiver runs a
standard ContikiMAC implementation.

Wake-up receiver. The ultrasonic wake-up module of Vir-
tualSense is composed of both transmitter and receiver units
whose main component is a piezolectric transducer working in
the 2KHz band centered around a 40KHz frequency. Triggering
of all nodes within the range of the transmitter is achieved
through the detection of the ultrasonic carrier signal (US).
Selective triggering of target nodes is optionally achieved by
means of an On-Off-Key (OOK) modulation of the carrier
to encode an 8 bit address (USa) [19]. On the receiver
side the overall power consumption, has been experimentally
measured at 1640nW in standby, while the power consumed
by the transmitter is around 40nW in standby and 37mW
during the transmission of the ultrasonic signal. These power
consumption values enable the wake-up of motes within a 14-
meter line-of-sight range. Such low power consumption values
are in stark contrast to the values of the data radio.



C. Energy Harvester

The tunnel case study we use in this paper has an unin-
terrupted light supply, which can be readily converted by a
photovoltaic cell into electrical energy to power the nodes.
With direct exposure to sunlight during the day, nodes near
the tunnel entrance can harvest a considerable amount of
energy. Nodes deeper in the tunnel have only exposure to
the artificial, fluorescent lamps, nevertheless with photovoltaic
cells optimized for high efficiency at low illuminance, even
these nodes have the ability to harvest energy. Therefore, for
this study, we consider the Panasonic AM-1816 [27], a cell
designed to self-sustain small electronics indoors, even under
low-intensity fluorescent lights.

IV. EXPERIMENTAL SETUP

Our unique combination of the technologies presented in
the previous section exploits the lowest consumption modes
of the VirtualSense platform for as much time as possible.
This is accomplished by moving to a low-power MCU state
between samples. Using DBP further decreases the costs in
multiple ways. Consider that in any system, a node transmits its
own data, forwards data from other nodes, and unnecessarily
overhears packets destined to other nodes. Each of these events
requires the node and the data radio to be switched to a high
power consumption mode. DBP reduces the total traffic in
the network, thus reducing the frequency of all these events,
and consequently increasing the time the node can remain in
the lowest power mode. Maximally, a node can remain idle
between samples.

The results presented in the next section come from a series
of simulations with DBP and VirtualSense, performed with
actual data collected from a road tunnel and based on the
real power consumption measurements of VirtualSense. This
section offers details on these measurements and concludes
with an estimation of energy harvested from photovoltaic cells.

A. Real-World Road Tunnel Data

The application case study we consider in this paper is
based on a pilot deployment in a real road tunnel in Trento,
Italy [3]. In this 260 m tunnel, a WSN of 40 nodes is
deployed to periodically measure the light levels. Some of
the nodes are exposed to sunlight, while nodes deep in the
tunnel only detect the artificial light from the lighting system.
In all cases, the light levels detected by the sensors every 30 s
are transmitted over a multi-hop collection tree to a gateway
at the entrance of the tunnel. The values are then used by a
control system to gradually adjust the intensity of the lamps
throughout the tunnel to meet the legislated light levels. The
control system was designed in collaboration with lighting
engineers to tolerate a limited amount of data loss and to
accommodate some degree of error in the quality of the sensed
values.

In this paper, we evaluate the system power consumption
with multiple different hardware and software configurations.
While the next section addresses the hardware configurations,
here we consider the application layer, as it is affected by the
case study itself. Specifically, we must consider the amount
of data reported by each node with and without the DBP
data prediction algorithm. For this, we used actual data traces
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Fig. 3. Reference functional state diagram of VitualSense.

collected from the tunnel over a 47-day period in winter 2010,
for a total of 5, 414, 400 samples. Without DBP, we assume
each sample is transmitted by each node immediately after
being measured. With DBP, instead, we assume each node
implements the DBP approach, transmitting only when the
model changes. For the purposes of this study, we configured
DBP to allow the predicted data values to deviate from the
actual light values by at most 15 lux. Further, at most two
consecutive samples can fall outside this error bound before
a new model generation is triggered. These settings allow
DBP to reduce the total sent traffic by 99% w.r.t. periodic
reporting [5].

Another important element of our case study is the physical
layout of the sensors, as this impacts the data collection tree.
The 40 nodes are divided evenly between the two tunnel walls,
and distributed unevenly along 130 m as shown in Figure 2.
Nodes at the entrance of the tunnel, where sunlight influences
the light levels, are more densely placed than nodes deeper
in the tunnel. Given a 14 m range of the ultrasound wake-
up receiver, we used a network simulator to form collection
trees based on simulated link quality. Figure 2 shows a sample
topology used in our simulations. As system performance is
affected by the properties of the collection tree, e.g., depth,
amount of data forwarded by a node, etc., we ran simulations
with multiple topologies.

B. Power Simulation

Our power simulations arise from the functional state
diagram shown in Figure 3, which captures the behavior of
a WSN node able to exploit the idle periods during its normal
workload to save power. The Wait state represents a family
of inactive modes exploitable by the dynamic power manager.
While waiting the node is sensitive to three types of events:
overhearing of an unintended packet, reception of an intended
packet, and a timed interrupt which wakes up the node for
periodic tasks (i.e., sampling in our case study). The Process
state represents activity such as sampling a physical quantity,
evaluating the need to transmit a sample according to the
prediction strategy, or routing an incoming packet toward the
sink. When the processing ends (EoP), the node transitions
back to the Idle state.

From this functional state diagram, we extract five, oper-
ating conditions that contribute to node power consumption:
i) Waiting, ii) Hearing an unintended packet, iii) Receiving
and routing a packet, iv) Waking up autonomously to sample
then transmit, and v) Waking up autonomously to sample but
not transmit thanks to DBP. The power consumption of the
VirtualSense nodes is detailed in [28]. The average power
consumption of each node is then computed by the simulator
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Fig. 2. Layout of nodes in the tunnel and a sample data collection tree with a depth of 15 hops.

as a weighted average, using as weights the actual occurrence
rate of each operating condition, as derived from real-world
traffic data.

The simulator provides power estimates for all the possible
configurations of the dynamic power management options of
VirtualSense. In particular, it allows us to: i) select the low-
power mode of the MCU, ii) select the low-power modes
of the data radio transceiver, iii) enable frame filtering, and
iv) make use of the ultrasonic wake-up receiver with or
without addressing capabilities. Further, the simulator provides
a configuration flag to turn on and off DBP.

C. Estimation of Harvestable Energy

To estimate the harvestable energy for our nodes, we
use light values collected from our 40-node WSN described
earlier. We assume a fluorescent light source. This choice
underestimates the amount of harvestable energy for nodes
near the entrance that receive sunlight, but is accurate for
nodes deep in the tunnel. From the total harvestable energy,
the amount of energy successfully delivered to a node depends
on harvester efficiency and battery leakage. For this initial case
study, we assume a harvester efficiency of 79% [29] and zero
battery leakage.

V. EXPERIMENTAL RESULTS

This section reports the experimental results obtained on
the case study according to the described setup. In contrast
to previous studies [5], [6] that only consider the cost of
radio communication as a proxy for overall node power
consumption, thus under-estimating the total cost, the analysis
here takes into account the contribution of all hardware com-
ponents of VirtualSense plus the software overhead, carefully
characterized for each operating mode.

A. Energy Savings

Our goal is to evaluate the system power consumption with
multiple different configurations of the hardware and software,
the options of which are outlined in Figure 1. Table I shows
nine different configurations, each of which corresponds to a
hardware state previously studied in detail in [28]. The first
row shows a standard node configuration that uses the standby
mode of MCU and the LPM1 mode of the data transceiver.
We consider this hardware configuration, in combination with
a software layer that does not use the DBP prediction scheme
on top of the ContikiMAC protocol with a 100ms wake-up
interval, as the baseline for evaluating the power consumption
reductions of all other configurations, shown in the columns
labeled “Ratio”. The power consumption values, shown in
µW, are computed as averages over all 40 nodes and multiple
collection tree topologies.

In all configurations, adding DBP results in lower power
consumption, in line with our previous results [5]. Addition-
ally, as expected, increasing the use of low-power modes also
reduces consumption. Without the wake-up receiver, power
consumption reductions are modest, up to eight times, even
when considering a configuration that exploits the sleep mode
of the MCU and avoids unnecessary overhearing with the data
radio (FF).

Intuitively the addition of the wake-up receiver should have
a significant impact by reducing idle listening in an application
such as the tunnel where data is generated only two times
per minute. Nevertheless, we see only a small improvement
without DBP, specifically between configurations 5 and 6 in
the no-DBP case we see only a 0.6 improvement in the power
consumption. This is due to the fact that nodes must frequently
transition out of the low power state to forward the traffic of
other nodes. In other words, while idle listening does occur,
the cost is insignificant with respect to the cost to transmit the
large amount of traffic in the system.

Instead, combining the wake-up receiver with the extremely
low data rate of DBP (configuration 6, DBP) results in a
significant 380 times improvement, a result that is much
larger than the improvements attainable by each technique
in isolation. Specifically, dynamic power management alone
achieves at most 2.6 times power consumption improvement
and DBP alone obtains at most 7.9 times the baseline. This
remarkable result of 380 times is a concrete demonstration of
the benefits of eliminating idle listening with the very low
transmission rates achieved with DBP. Additionally, as the
node no longer needs to forward data on behalf of other nodes,
it can spend more time between light samples in the low power
mode of the MCU.

Notably, hibernation is not effective in our scenario. With-
out DBP, the time required to wake-up and restore the state
of the node is not compatible with the high packet rate
experienced by the nodes close to the sink, which both transmit
their own packets and forward those of many other nodes.
Fundamentally, a node does not have time to transition to
and from the hibernation state. For this reason, we do not
report consumption for configurations without DBP. Adding
DBP increases the interval between transmissions, allowing all
nodes to exploit the hibernation state. Nevertheless, they must
still wake up to sample the light level every 30 seconds. The
extra energy required to wake up each node from hibernation
takes a toll on the power consumption improvements, with
the system reaching only 3.5 times the baseline. From these
results we infer that with DBP in conjunction with the wake-up
receiver, communication is no longer the most power-hungry
task.

Finally, we note that the lightweight hibernation mentioned



Configuration ID Hardware Configuration no-DBP DBP
MCU Data Transceiver Wake-Up [µW] Ratio [µW] Ratio

1 Standby LPM1 none 5891 1.0x 3460 1.7x
2 Standby LPM2 none 3423 1.7x 758 7.8x
3 Standby LPM2+FF none 2905 2.0x 758 7.8x
4 Sleep LPM2 none 3411 1.7x 745 7.9x
5 Sleep LPM2+FF none 2893 2.0x 745 7.9x
6 Sleep LPM2 US 2257 2.6x 15.0 380x
7 Sleep LPM2 USa 2750 2.1x 15.2 373x
8 Hibernation LPM2 US - - 1665 3.5x
9 Hibernation LPM2 USa - - 1617 3.6x

TABLE I. SYSTEM-WIDE ENERGY SAVINGS IN THE TUNNEL CASE STUDY. THE GRAY CELLS INDICATE THE BASELINE FOR CALCULATING THE POWER
CONSUMPTION IMPROVEMENT RATIO OF ALL OTHER CONFIGURATIONS.

earlier, which does not restore the system memory, is not
compatible with DBP. Specifically, with DBP, the application
on the node uses the system memory to check if the sensed
value fits the model and generate a new model based on the
previous samples when the model does not fit. To avoid the
full restoration of the system heap, one could consider storing
and restoring only this application data to the flash memory,
incurring less time and cost. To get an idea of how this kind
of memory-less application with 30s sampling would perform,
we considered a combination of hibernation mode, LPM2, and
US wake-up. Without DBP, we achieved 2.5 times reduction
in power consumption and with DBP we reached a remarkable
367 times reduction.

In summary, these numerical results bolster our argument
that the individual techniques of prediction-based data col-
lection and wake-up receivers, while capable of achieving
improvements alone, are even more powerful when combined
into a single system.

B. Energetic Sustainability

We next turn our attention to understand if DBP, wake-
up receivers, and dynamic power management, when applied
together, make VirtualSense motes energetically sustainable
using a photovoltaic cell in our tunnel environment. To this
end, the harvestable power at each node in the tunnel must
be compared with its average power consumption when the
most effective configuration is used, namely configuration 6.
We consider both with and without DBP.

The shaded region in Figure 4 shows the amount of power
that can be harvested, on average, at each node. Nodes close to
the entrance (e.g., nodes 1 and 21) harvest more energy due to
their exposure to natural sunlight at the tunnel entrance, while
nodes deep inside the tunnel (e.g., nodes 20 and 40) receive
light only from the fluorescent lamps. Values are represented
in log scale, with approximately two orders of magnitude
difference between the power available at the two ends of the
WSNs.

The power needs of each node, operating in configuration
6 (Sleep, LPM2, US), are reported in the bar graph of Figure 4
both with DBP (dark bars) and without DBP (light bars).
As expected, the power consumption at each node is much
lower when DBP is applied. Also, DBP reduces the link
between power consumption and node position in the tunnel.
In fact, variation in consumption is mainly due to the data
collection tree that produces higher traffic volumes at some
nodes, e.g., nodes 2, 23 and 24 in Figure 2. Without DBP
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Fig. 4. Comparison of energy consumed and harvested, plotted on a
logarithmic scale. Node labels correspond to those in Figure 2.

the effect of traffic forwarding is particularly evident because
communication is responsible for the majority of the power
budget, while it becomes almost negligible with DBP because
it reduces the overall impact of communication on the power
budget.

In an energetically sustainable system, the average power
demand at each node must be met by the corresponding
energy harvester. From Figure 4 it is clear that without DBP
the consumption at nearly all nodes exceeds the renewable
energy available by more than two orders of magnitude in
some cases, resulting in a system that is not energetically
sustainable. In contrast, with DBP the peaks of consumption
due to data relaying are flattened and the average power
consumption reduces to 15µW, a point where a photovoltaic
energy harvester can meet the needs of all nodes, even those
deep inside the tunnel.

In this analysis we considered only the best configurations
with and without DBP. From this it is clear that only the com-
bination of the wake-up receiver, dynamic power management
and DBP can result in an energetically sustainable system.

VI. DISCUSSION AND FUTURE DIRECTIONS

As shown in Section V, the extremely low packet rates
achievable through the application of prediction-based data
collection techniques such as DBP combine effectively with
advanced dynamic power management techniques that exploit
wake-up receivers and the hardware support provided by ultra-
low-power motes. Simulations results show that it is possible to
decrease power consumption by two orders of magnitude, thus
greatly extending the lifetime of battery operated WSNs and
enabling energetic sustainability of the workload with energy-
harvesting motes. Although this is only a single case study,



it is representative of typical WSN applications and provides
hints on the potential of the techniques under study.

Nevertheless, our conclusions come with some caveats.
First, the ultrasonic wake-up receiver makes use of directional
capsules, implying that the topology of the collection tree can-
not vary dynamically over time. While this may be reasonable
for a static system such as the road tunnel, the implications for
long-term reliability under changing environmental conditions
must be studied and discussed. Alternate solutions for omni-
directional wake-up receivers offer tremendous opportunities,
but current costs and range limitations of such devices make
them inapplicable in our scenario.

Additional restrictions come from the range of the ultra-
sonic wake-up receiver of VirtualSense (about 14m). In a later
deployment by our group, distances between nodes in the
tunnel reached up to 30m, a value that makes this particular
wake-up receiver inapplicable.

To the best of our knowledge, the development of an omni-
directional wake-up receiver covering a range of tens of meters
with sub-µW idle power is still an open issue and forms
part of our plans for future work. The modular structure of
the VirtualSense platform allows us to work on the wake-up
receiver without impacting any other layer.

Also, we plan recreate part of the tunnel deployment
with real hardware, directly measuring consumption to further
validate the experiments presented here.

The enormous potential demonstrated here of the hardware-
software co-design of WSN motes with energy harvesting,
dynamic power management, and prediction-based data col-
lection motivates further research efforts in this direction.
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