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A tutorial on property-based and contract-based 

design of system architectures 
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 Models used for system requirements, architectural design, 
analysis, validation and verification. 

 Different system-level analysis (safety, security, 
performance, …). 

 Top-down refinement process. 

 Software/hardware co-engineering. 

 Definition of the platform and deployment. 

 Applied to embedded systems: 

o Interaction with physical world (continuous time). 

o Real-time constraints. 

o Complex interaction of many components: 

• Sensors, actuators, monitors, communication links. 
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 Formal methods 
o Formal specification languages 

• Assign models a mathematical meaning 

• Different property languages for different model semantics 

o Formal verification to prove the properties on the models. 

 Verification flow: 
o Design models translated into input for verification engine: 

• Typically a (meaningful) subset is considered 

• Automatic translation preserving semantics of properties of interest 

o Requirements formalized into properties 
• This is typically a manual process. 

o Results mapped back to the design flow. 

 This tutorial will focus on:  
o Model checking [CGP99] techniques for a wide spectrum: 

• Finite states vs. infinite states 

• Discrete time vs. hybrid/continuous-time. 

o Properties languages in the different cases. 
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 A component is a unit of composition with contractually 

specified interfaces [Szy02]. 

 Components are the constituent parts of a system 

architecture. 

 Sub-components interact through connections. 

 They are seen as black box for proper  

o Compositional verification. 

o Reuse. 

o Structural/independent refinement. 
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 Compositional verification [RBH+01]: 

1. Prove properties of the components (for example, with model checking). 

2. Combine components’ properties to prove system’s property without  looking into 
the internals of the components (sometimes reduced to validity/satisfiability check 

for composition of properties). 

 Formally: 
𝑆1 ⊨ 𝑃1,  𝑆2 ⊨ 𝑃2, … , 𝑆𝑛 ⊨ 𝑃𝑛

𝛾𝑆(𝑆1, 𝑆2, … , 𝑆𝑛) ⊨ 𝛾𝑃(𝑃1, 𝑃2, … , 𝑃𝑛)
          𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 ⊨ 𝑃

𝛾𝑆 𝑆1, 𝑆2, … , 𝑆𝑛 ⊨ 𝑃
 

 

 𝛾𝑃 combines the properties depending on the connections used in 𝛾𝑆 

 E.g. synchronous case: 

𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 = 𝜌𝛾𝑆 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛  

      where 𝜌𝛾𝑆 is the renaming of symbols defined by the connections in 𝛾𝑆. 
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 Problem of checking if a system 
satisfies a property [CGP99]. 

 Algorithmic procedure to analyze 
Reactive Systems 
o systems with  

infinite behaviors 

o hardware, communication  
protocols, operating  
systems, controllers 

 30 years old 

 Turing Award 2007 (Clarke, 
Emerson, and Sifakis). 

 Tremendous Impact: 
o Routinely applied  

in hardware design. 

o Increasing use in the design of 
embedded systems. 

o Ideal for model-based system 
engineering. 
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 Symbolic variables 𝑉 = {𝑣1, … , 𝑣𝑛} to represent the state space. 

 Symbolic formulas used to represent: 

o Set of states: 𝜙 𝑉 ≡ 𝑠 𝑠 ⊨ 𝜙  

o Set of transitions: 𝑇 𝑉, 𝑉′ ≡ 𝑠, 𝑠′ 𝑠, 𝑠′ ⊨ 𝜙  

• Where the variables 𝑉′ = {𝑣′1, … , 𝑣′𝑛} represent next state variables. 

 A valuation s:VD used to build a formula true for exactly that 

valuation. 

o x1,y1,z5  we derive the formula x=1y=1z=5 

 Each complete assignment can be considered a state 

 A transition system is represented by: 

o The set of initial states represented by the formula 𝐼(𝑉) 

o The transition relation represented by the formula 𝑅(𝑉, 𝑉′) 
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 Symbolic algorithms search the state space 
manipulating formulas. 

 Main types of algorithms: 

o Based on fix-point: 

• Compute the pre/post-image of a set of states with quantifier 
elimination, e.g., 𝑝𝑟𝑒 𝜙 ≔ ∃𝑉′ 𝜙 ∧ 𝑇  

• Accumulate until at fix-point you get all reachable states. 

o Based on satisfiability: 

• Prove properties with a series of satisfiability checks (𝑠𝑎𝑡(𝜙) 
iff there exists 𝑠 such that 𝑠 ⊨ ϕ). 

o Based on abstraction: 

• E.g. predicate abstraction (partition states according to 
predicates). 

• Properties proved on abstract system hold also on the 
original system. 
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 Bounded Model Checking (BMC) [BCC+99] 
o Check 𝑠𝑎𝑡 𝜙𝑘  where ϕ𝑘 is sat iff there exists a path of 𝑀 of length up to 𝑘 

violating the property 𝑃.   

o Focused on finding errors. 

 Induction 
o Base case: check if the initial state satisfies 𝑃 (invariant) 

o Inductive case: check if the transitions preserve the invariant. 

 K-induction [SSS00] 
o Base case: check if all initial path satisfies 𝑃 (invariant) up to 𝑘 steps. 

o Inductive case: check if every path of 𝑘 + 1 steps preserve the invariant. 

 IC3 [Bra11] 
o Keeps sequence of relative inductive invariants (frames). 

o Use counterexamples to strengthen the frames. 

 Also combined with abstraction: 
o Interpolation-based abstraction [McM03] 

• Unsat BMC used to over-approximate reachable states.  

o Implicit abstraction [Ton09] 
• SAT-based algorithms on abstract state space (without computing explicitly it). 
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 Previous algorithms assume to have a solver for the 
satisfiability of formulas. 

 First developed for finite-state systems with the support of 
SAT solvers. 

 Satisfiability Modulo Theory (SMT): 

o Satisfiability for decidable fragments of first-order logic. 

o SAT solver used to enumerate Boolean models. 

o Integrated with decision procedure for specific theories, e.g., theory 
of real linear arithmetic. 

 SAT solvers substituted by SMT solvers. 

 Search algorithms applied to infinite-state systems 
(although in general undecidable). 
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 Hybrid systems encoded into symbolic transition systems 

with SMT constraints [CMT11,CMT13]. 

 Reals used to represent time and continuous variables. 

 Transitions are either  

o Discrete: time does not change, state variables change according to 

transition relation 𝜙 𝑉, 𝑉′  

o Timed: time elapses, discrete variables do not change, continuous 

variables evolve according to the flow law 

• E.g., the flow condition  𝑥 < 𝑎 is encoded into  

𝑥′ − 𝑥 < 𝑎 𝑡′ − 𝑡  where 𝑡 is the time variable. 
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 Properties are expressions in a mathematical logic using 

symbols of the system description. 

 Used to formalize requirements. 

 Also defined as assertions on the system’s behavior. 

 Problems: 

o Analysis: find the properties of a system. 

o Verification: check if the system satisfies the properties. 

o Validation: check if we are considering the right properties. 

o Synthesis: construct a system that satisfies the properties. 
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Requirement 1 Property ϕ1 Formalized into Semantics 

Requirement 2 Property ϕ2 Formalized into Semantics 
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(trace) 
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of both 
20 



 Conceived by Pnueli in 1977 [Pnu77] 

 Linear models 
o State sequences (traces). 

 Built over set of atomic propositions 
AP. 

 LTL formulas are the smallest set of 
formulas such that: 
o any atomic proposition p AP is an LTL 

formula; 

o if p and q are LTL formulas, then p, 
pq, pq are LTL formulas; 

o if p and q are LTL formulas, then X p, G 
p, F p, and [p U q] are LTL formulas. 

 Semantics defined for every trace, for 
every 𝑖 ∈ ℕ . 

  𝑀 ⊨ 𝜙 iff 𝑀,𝜎, 0 ⊨ 𝜙 for every trace 
𝜎 of 𝑀. 
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 𝐺𝑝 “always p” – invariant 

 𝐺(𝑝 → 𝐹𝑞) “p is always followed by q” - reaction 

 𝐺(𝑝 → 𝑋𝑞) “whenever p holds, q is set to true” – immediate 

reaction 

 𝐺𝐹𝑝 “infinitely many times p” – fairness 

 𝐹𝐺𝑝 “eventually permanently p” 

 𝐺(𝑝 → 𝑞𝑈𝑟 ) 
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 𝐺 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  

 𝐺 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 → 𝐹(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)  

 𝐺 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 → 𝑋 𝑔𝑟𝑎𝑛𝑡  

From which we can entail 

 𝐺(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑔𝑟𝑎𝑛𝑡 ) 
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 Past operators 

o 𝑌𝜙, in the previous state 𝜙, dual of 𝑋 

o 𝑂𝜙, in the past once 𝜙, dual of 𝐹 

o 𝐻𝜙, in the past always 𝜙, dual of 𝐺 

o 𝜙1𝑆𝜙2, in the past 𝜙1 since 𝜙2, dual of 𝑈 
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 RELTL enriches LTL with regular expressions: 

o Suffix implication: 𝑟 ∣→ 𝜙 means that every finite sequence 

matching 𝑟 is followed by a suffix satisfying 𝜙. 

o Suffix conjunction: 𝑟 ⋄→ 𝜙 means that there exists a finite 

sequence matching 𝑟 and followed by a suffix satisfying 𝜙. 

 Example: 

o ¬𝑝 ∗ ; 𝑝 ∗ 3 → 𝐹𝑞 

o 𝐺( 𝑟𝑒𝑞𝑢𝑒𝑠𝑡; 𝑏𝑢𝑠𝑦 ∗ ; 𝑔𝑟𝑎𝑛𝑡 → 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 
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 Rich language to specify assertions on hardware design. 

 Include RELTL. 

 Increase usability with 

o Syntactic sugar 

o English words instead of math symbols: 

• “always” (𝐺) 

• “never” (𝐺¬) 

• “eventually” (𝐹) 

• “next” (𝑋)  
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 Use first-order predicates instead of propositions: 

o 𝐺 𝑥 ≥ 𝑎 ∧ 𝑥 ≤ 𝑏  

o 𝐺𝐹 𝑥 = 𝑎 ∧ 𝐺𝐹 𝑥 = 𝑏  

 Predicates interpreted according to specific theory T 

(henceforth, only used reals). 

 “next” to express changes/transitions: 

o 𝐺 𝑛𝑒𝑥𝑡 𝑥 = 𝑥 + 1  

o 𝐺(𝑛𝑒𝑥𝑡 𝑎 − 𝑎 ≤ 𝑏) 
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 𝐺(𝑝 → 𝐹≤3𝑞) “p is followed by q within 3 time units” 

 𝐺(𝑝 → 𝐺≤2𝑞) “Whenever p holds, q holds in the following 

two time units” 

 𝐺(𝑝 → ¬𝑞𝑈≥1𝑞 ) “p is followed by q but only after 1 time 

unit” 
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 𝐺(𝑑𝑒𝑟 𝑥 < 2) “The derivative of x is always less than 2” 

 𝐺(𝑎 → 𝑑𝑒𝑟 𝑥 = 0) “Whenever a holds, the derivative of x 

is zero” 

 𝐺 𝑎 → 𝑏𝑈𝑑𝑒𝑟 𝑥 ≤ 5  “Whenever a holds, b remain true 

until the derivative of x is less or equal to 5”. 
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𝐺(𝑠𝑝𝑒𝑒𝑑 > 𝑙𝑖𝑚𝑖𝑡 → 
𝐹(𝑤𝑎𝑟𝑛𝑖𝑛𝑔)) 
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 Human-readable language for HRELTL. 

 Controlled natural language expressions. Examples: 

o “always” (𝐺) 

o “in the future” (𝐹) 

o “and” (∧) 

 Validated in the EuRailCheck project focus on the 
formalization and validation of ETCS requirements. 

o Example: “The train trip shall issue an emergency brake command, 
which shall not be revoked until the train has reached standstill and 
the driver has acknowledged the trip.“ 

o Formalized into: “always (train_trip implies 
(emergency_brake_command until (der(train_location)=0 and 
driver_acknowledges_trip)))” 
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 A component has 

o A syntactic interface 

o Optionally, an internal structure. 

o A behavior. 

o An environment. 

o Properties. 
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 A component interface defines boundary of the interaction 

between the component and its environment. 

 Consists of: 

o Set of input and output ports (syntax) 

• Ports represent visible data and events exchanged with environment. 

o Set of traces (semantics) 

• Traces represent the behavior, history of events and values on data ports. 
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Component 

 A component has an internal structure. 

 Architecture view: 
o Subcomponents 

o Inter-connections 

o Delegations 

 State-machine view: 
o Internal state 

o Internal transitions 

o Language over the ports 
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 𝐼𝑆: input ports of component 𝑆 

 𝑂𝑆: output ports of 𝑆 

 𝑉𝑆 = 𝐼𝑆 ∪ 𝑂𝑆: all ports of 𝑆 

 𝑇𝑟(𝑋) traces over 𝑋 ⊆ 𝑉𝑆 (sequence of assignments to 𝑋) 

 State machine 𝐼𝑚𝑝 implementation of 𝑆 iff L(𝐼𝑚𝑝) ⊆
𝑇𝑟 𝑉𝑆  

 𝑀 can be associated with 𝜇𝐼𝑚𝑝:  𝑇𝑟 𝐼𝑆 → 2𝑇𝑟 𝑂𝑆  such that 

𝜇𝐼𝑚𝑝 𝜎𝑖 = {𝜎𝑜 ∣ 𝜎𝑖 × 𝜎𝑜 ∈ 𝐿(𝐼𝑚𝑝)} 
o Input trace mapped to a set of output traces 

o “set” to consider non determinism 

o Empty set corresponds to rejected input trace 
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 State machine 𝐸𝑛𝑣 environment of 𝑆 iff L(𝐸𝑛𝑣) ⊆ 𝑇𝑟(𝐼𝑆) 

 Compatibility of implementation with environment (e.g., for 

reuse): 

o Trace-based (black-box) view: 

• 𝐼𝑚𝑝 must accept any trace of 𝐸𝑛𝑣 (i.e., L(𝐸𝑛𝑣) ⊆ 𝜎 𝜇𝐼𝑚𝑝 𝜎 ≠ ∅  ) 

o State-based (glass-box) view: 

• For any reachable state of 𝐼𝑚𝑝 × 𝐸𝑛𝑣, for any input transition of 𝐸𝑛𝑣, 

there exists a matching transition of 𝐼𝑚𝑝.  

• As in interface theory [AH01] (note that 𝐼𝑚𝑝 × 𝐸𝑛𝑣 is a closed system). 
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 Components are composed to create composite components. 

 Different kind of compositions: 

o Synchronous, 

o Asynchronous, 

o Synchronizations: 

• Rendez-vous vs. buffered; 

• Pairwise, multicast, broadcast, multicast with a receiver 

 Connections map (general rule of architecture languages): 

o Input ports of the composite component 

o Output ports of the subcomponents 

Into 

o Output ports of the composite component 

o Input ports of the subcomponents. 
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 A component is actually a component type. 

 A system architecture is an instance of a composite 

component. 

 It defines a tree of component instances. 
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 Properties of the component and its environment. 

 Can be seen as assertion for component interfaces. 

 Contracts used to characterize the correctness of component 
implementations and environments. 

 Typically, properties for model checking have a “god” view of the 
system internals.  

 For components instead: 

o Limited to component interfaces. 

o Structure into assumptions and guarantees. 

 Contracts for OO programing are pre-/post-conditions [Meyer, 
82]. 

 For systems, assumptions correspond to pre-conditions, 
guarantees correspond to post-conditions. 
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 Assertions used to represent sets of traces over the component 
ports: 
o 𝜙(𝑉) assertion over variables 𝑉 

o 〈 𝜙 〉 ⊆ 𝑇𝑟 𝑉  semantics of 𝜙 

 A contract of component 𝑆 is a pair 〈𝐴, 𝐺〉 of assertions over 𝑉𝑆 
o A is the assumption,  

o G is the guarantee. 

 𝐸𝑛𝑣 is a correct environment iff L(𝐸𝑛𝑣) ⊆ 〈 𝐴 〉 
 𝐼𝑚𝑝 is a correct implementation iff L(𝐼𝑚𝑝) ∩ 〈 𝐴 〉 ⊆ 〈 𝐺 〉 
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assume: 

  always (Pedal_Pos1 iff Pedal_Pos2)  

guarantee: 

  always ( (Pedal_Pos1 or Pedal_Pos2)  

   implies (time_until(Brake_Line) <=10 )); 
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 The set of contracts 𝐶𝑖  refines 𝐶 with the connection 𝛾 ( 𝐶𝑖 ≼𝛾 𝐶) iff 

for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖 and correct environment 𝐸𝑛𝑣 
of 𝐶: 

1. The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C. 

2. For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of 𝐶𝑘. 

 Verification problem:  

o check if a given refinement is correct (independently from implementations). 
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 Given C1=<1,1>, … , C1=<n,n>, C=<,> 

 Proof obligations for 𝐶𝑖 ≼ 𝐶: 

o 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽  

o 𝛾  𝛼𝑗 → 𝛽𝑗2≤𝑗≤𝑛 → 𝛼 → 𝛼1  

o … 

o 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖  

o … 

o 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛−1 → 𝛼 → 𝛼𝑛  

 

 Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid. [CT12] 
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 Weak vs. strong assumptions (both important): 

o Weak assumptions  

• Define the context in which the guarantee is ensured 

• As in assume-guarantee reasoning 

• Different assume-guarantee pairs may have inconsistent assumptions 

(if x>0 then …, if x<0 then …) 

o Strong assumptions 

• Define properties that must be satisfied by the environment. 

• Original idea of contract-based design. 

• If not satisfied, the environment can cause a failure (division by zero, 

out of power, collision). 
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 Correspond to one direction of the contract refinement. 

 Many works focused on finding the right 

assumption/guarantee. 

 E.g. how to break circularity? 

o 𝐺 𝐴 → 𝐵 ∧ 𝐺 𝐵 → 𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is false 

o Induction-based mechanisms 

o 𝐵 ∧ 𝐺 𝐴 → 𝑋𝐵 ∧ 𝐴 ∧ 𝐺 𝐵 → 𝑋𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is true 

 Note they are structural ways to prove the property-based 

refinement. 
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 OCRA=Othello Contract Refinement Analysis [CDT13] 

 Contracts’ assertions specified in Othello. 

 Textual representation of the architecture. 

 Built on top of nuXmv for infinite-state model checking. 

 Integrated with CASE tools: 

o AutoFocus3 

• Developed by Fortiss. 

• For synchronous system architectures.  

o CHESS 

• Developed by Intecs. 

• For SysML and UML modeling. 

 One of the few tools supporting contract-based design for embedded 
systems. 

 Publicly available (for non-commercial purposes) at 

https://es.fbk.eu/tools/ocra 
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 Rich component interfaces to specify: 

o Input/output ports 

o Data/Event ports. 

o Including real-time and safety aspects.  

 Contracts in temporal logics. 

 Temporal formulas used to characterize set of traces over 

the ports of components. 
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COMPONENT system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT a: boolean;  

 … 

 REFINEMENT 

 … 

 

COMPONENT A 

… 

 

COMPONENT B 

… 
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COMPONENT simple system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT v: boolean; 

 

  CONTRACT v_correct 

   assume: always x>=0; 

   guarantee: always (x=0 implies v);  

 

 REFINEMENT 

 … 

 

COMPONENT A 

… 

 

COMPONENT B 

… 

50 



Stefano Tonetta, ASE'13 Tutorial 

COMPONENT simple system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT v: boolean; 

 

  CONTRACT v_correct 

   assume: always x>=0; 

   guarantee: always (x=0 implies v);  

 

 REFINEMENT 

  SUB a: A; 

  SUB b: B; 

  

  CONNECTION a.x := x; 

  CONNECTION b.y := a.v; 

  CONNECTION v:= b.v; 

 … 
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COMPONENT simple system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT v: boolean; 

 

  CONTRACT v_correct 

   assume: always x>=0; 

   guarantee: always (x=0 implies v);  

 

 REFINEMENT 

  SUB a: A; 

  SUB b: B; 

  

  CONNECTION a.x := x; 

  CONNECTION b.vi := a.v; 

  CONNECTION v:= b.vo; 

 

  CONTRACT v_correct REFINEDBY a.v_correct, b.pass; 
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System 

A 

B 

v_correct 

pass 

x v 

v_correct 

x x v 

vi 

vo v 



 LTL operators with the following syntax: 

o “always” 𝐺 

o “in the future” 𝐹 

o “until” 𝑈 

o “then” 𝑋 

o “historically” 𝐻 

o “in the past” 𝑂 

o “since” 𝑆 

o “previously” 𝑌 
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 Port types are either 

o NuSMV types: “boolean”, enumeratives, ... 

o nuXmv additional types: “real”, “integer”, … 

o “continuous”, i.e. real-value ports evolving continuously in time. 

o “event”, i.e. boolean-value port that is assigned only on discrete 

transitions. 

 Atomic formulas may be: 

o Boolean variables. 

o Equalities. 

o Arithmetic predicates over integer, real, and continuous terms. 
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 Special function symbols: 

o “der” denoting the derivative of a continuous variable (e.g., “der(x)=0”). 

o “next” denoting the next value after a discrete change (e.g. “next(x)=x+1”). 

o “time_until” used to express constraints on the time to the next occurrence of 
an event: 

• “time_until(e)<=2” means ¬𝑒 𝑈≤2𝑒 

 Syntactic sugar: 

o fall(x) means “x=true and next(x)=false” 

o rise(x) means “x=false and next(x)=true” 

o change(x) means “next(x)!=x”  

 Important warning: 

o The time model is hybrid with continuous evolution. 

o What does “next” mean when time elapses? 

o In OCRA/Othello/HRELTL, “next” forces a discrete step: 

• “always ((der(timer)=1) and (timer=timeout implies next(timer)=0))”  
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 ocra_check_syntax 

 ocra_check_refinement 

 ocra_check_consistency 

 ocra_check_implementation 

 ocra_check_receptiveness 

 

 Typical script: 
o set verbose_level 1 

o set on_failure_script_quits 1 

o set pp_list cpp 

o ocra_check_syntax -i SenseSpacecraftRate.oss 

o ocra_check_refinement 

o quit 

 

 Call: ocra –source SenseSpacecraftRate.cmd 
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 OCRA is parametrized by the logic. 

 The expressions can be restricted and interpreted as 

discrete-time LTL or hybrid LTL. 

 Default is hybrid. 

 Set discrete-time to switch to LTL. 
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 For every component, for every refined contract, check 

refinement. 

 For every proof obligation, check its validity: 

o [OK] if valid 

o [BOUND OK] if no counterexample found up to k 

o [FAIL] if found counterexample 
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 Contract-based design powerful 

o For property refinement 

o Safety analysis 

 Temporal logic is suitable for component contracts. 

 Contract framework parametrized by the logic. 

 SMT-based model checking used to reason with expressive 

properties. 

 OCRA tool support. 
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 Basic concepts on contract-based design for embedded systems: 

o Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, 
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based 
Specification and Design. FMCO 2007. 

o Manfred Broy: Towards a Theory of Architectural Contracts: - Schemes and 
Patterns of Assumption/Promise Based System Specification. Software and 
Systems Safety - Specification and Verification 2011: 33-87 

o Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming 
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European 
Journal of Control, 18(3):217-238, 2012. 

o Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner 
Damm, Thomas A. Henzinger, and Kim G. Larsen. Contracts for Systems Design. 
Rapport de recherche RR-8147, INRIA, Nov. 2012.  

 META program and AGREE tool by Cofer and colleagues. 

o Also on system architecture with temporal logics for assume-guarantee 
reasoning. 
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