
Stefano Tonetta

tonettas@fbk.eu

Tutorial of ASE’13

 Joint work with

o Alessandro Cimatti

o Michele Dorigatti

o Pietro Braghieri

 Supported by the European ARTEMIS SafeCer project.

Stefano Tonetta, ASE'13 Tutorial 2

1. Introduction and motivations

2. Infinite-state model checking

3. Properties specification languages

4. Contract-based design with temporal logics

5. OCRA tool support

Stefano Tonetta, ASE'13 Tutorial 3

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 Models used for system requirements, architectural design,
analysis, validation and verification.

 Different system-level analysis (safety, security,
performance, …).

 Top-down refinement process.

 Software/hardware co-engineering.

 Definition of the platform and deployment.

 Applied to embedded systems:

o Interaction with physical world (continuous time).

o Real-time constraints.

o Complex interaction of many components:

• Sensors, actuators, monitors, communication links.

Stefano Tonetta, ASE'13 Tutorial 5

 Formal methods
o Formal specification languages

• Assign models a mathematical meaning

• Different property languages for different model semantics

o Formal verification to prove the properties on the models.

 Verification flow:
o Design models translated into input for verification engine:

• Typically a (meaningful) subset is considered

• Automatic translation preserving semantics of properties of interest

o Requirements formalized into properties
• This is typically a manual process.

o Results mapped back to the design flow.

 This tutorial will focus on:
o Model checking [CGP99] techniques for a wide spectrum:

• Finite states vs. infinite states

• Discrete time vs. hybrid/continuous-time.

o Properties languages in the different cases.

Stefano Tonetta, ASE'13 Tutorial 6

 A component is a unit of composition with contractually

specified interfaces [Szy02].

 Components are the constituent parts of a system

architecture.

 Sub-components interact through connections.

 They are seen as black box for proper

o Compositional verification.

o Reuse.

o Structural/independent refinement.

Stefano Tonetta, ASE'13 Tutorial 7

 Compositional verification [RBH+01]:

1. Prove properties of the components (for example, with model checking).

2. Combine components’ properties to prove system’s property without looking into
the internals of the components (sometimes reduced to validity/satisfiability check

for composition of properties).

 Formally:
𝑆1 ⊨ 𝑃1, 𝑆2 ⊨ 𝑃2, … , 𝑆𝑛 ⊨ 𝑃𝑛

𝛾𝑆(𝑆1, 𝑆2, … , 𝑆𝑛) ⊨ 𝛾𝑃(𝑃1, 𝑃2, … , 𝑃𝑛)
 𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 ⊨ 𝑃

𝛾𝑆 𝑆1, 𝑆2, … , 𝑆𝑛 ⊨ 𝑃

 𝛾𝑃 combines the properties depending on the connections used in 𝛾𝑆

 E.g. synchronous case:

𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 = 𝜌𝛾𝑆 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛

 where 𝜌𝛾𝑆 is the renaming of symbols defined by the connections in 𝛾𝑆.

Stefano Tonetta, ASE'13 Tutorial 8

9

A

B C

D E

1. Step-wise refinement of

components.

2. Compositional

verification.

3. Proper reuse of

components.

Support to contracts: a
temporal logic approach.

Component-
based

systems

Property
languages

Model
checking

Stefano Tonetta, ASE'13 Tutorial 10

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 Problem of checking if a system
satisfies a property [CGP99].

 Algorithmic procedure to analyze
Reactive Systems
o systems with

infinite behaviors

o hardware, communication
protocols, operating
systems, controllers

 30 years old

 Turing Award 2007 (Clarke,
Emerson, and Sifakis).

 Tremendous Impact:
o Routinely applied

in hardware design.

o Increasing use in the design of
embedded systems.

o Ideal for model-based system
engineering.

Stefano Tonetta, ASE'13 Tutorial 12

 Symbolic variables 𝑉 = {𝑣1, … , 𝑣𝑛} to represent the state space.

 Symbolic formulas used to represent:

o Set of states: 𝜙 𝑉 ≡ 𝑠 𝑠 ⊨ 𝜙

o Set of transitions: 𝑇 𝑉, 𝑉′ ≡ 𝑠, 𝑠′ 𝑠, 𝑠′ ⊨ 𝜙

• Where the variables 𝑉′ = {𝑣′1, … , 𝑣′𝑛} represent next state variables.

 A valuation s:VD used to build a formula true for exactly that

valuation.

o x1,y1,z5 we derive the formula x=1y=1z=5

 Each complete assignment can be considered a state

 A transition system is represented by:

o The set of initial states represented by the formula 𝐼(𝑉)

o The transition relation represented by the formula 𝑅(𝑉, 𝑉′)

Stefano Tonetta, ASE'13 Tutorial 13

 Symbolic algorithms search the state space
manipulating formulas.

 Main types of algorithms:

o Based on fix-point:

• Compute the pre/post-image of a set of states with quantifier
elimination, e.g., 𝑝𝑟𝑒 𝜙 ≔ ∃𝑉′ 𝜙 ∧ 𝑇

• Accumulate until at fix-point you get all reachable states.

o Based on satisfiability:

• Prove properties with a series of satisfiability checks (𝑠𝑎𝑡(𝜙)
iff there exists 𝑠 such that 𝑠 ⊨ ϕ).

o Based on abstraction:

• E.g. predicate abstraction (partition states according to
predicates).

• Properties proved on abstract system hold also on the
original system.

Stefano Tonetta, ASE'13 Tutorial 14

 Bounded Model Checking (BMC) [BCC+99]
o Check 𝑠𝑎𝑡 𝜙𝑘 where ϕ𝑘 is sat iff there exists a path of 𝑀 of length up to 𝑘

violating the property 𝑃.

o Focused on finding errors.

 Induction
o Base case: check if the initial state satisfies 𝑃 (invariant)

o Inductive case: check if the transitions preserve the invariant.

 K-induction [SSS00]
o Base case: check if all initial path satisfies 𝑃 (invariant) up to 𝑘 steps.

o Inductive case: check if every path of 𝑘 + 1 steps preserve the invariant.

 IC3 [Bra11]
o Keeps sequence of relative inductive invariants (frames).

o Use counterexamples to strengthen the frames.

 Also combined with abstraction:
o Interpolation-based abstraction [McM03]

• Unsat BMC used to over-approximate reachable states.

o Implicit abstraction [Ton09]
• SAT-based algorithms on abstract state space (without computing explicitly it).

 Stefano Tonetta, ASE'13 Tutorial 15

 Previous algorithms assume to have a solver for the
satisfiability of formulas.

 First developed for finite-state systems with the support of
SAT solvers.

 Satisfiability Modulo Theory (SMT):

o Satisfiability for decidable fragments of first-order logic.

o SAT solver used to enumerate Boolean models.

o Integrated with decision procedure for specific theories, e.g., theory
of real linear arithmetic.

 SAT solvers substituted by SMT solvers.

 Search algorithms applied to infinite-state systems
(although in general undecidable).

 Stefano Tonetta, ASE'13 Tutorial 16

 Hybrid systems encoded into symbolic transition systems

with SMT constraints [CMT11,CMT13].

 Reals used to represent time and continuous variables.

 Transitions are either

o Discrete: time does not change, state variables change according to

transition relation 𝜙 𝑉, 𝑉′

o Timed: time elapses, discrete variables do not change, continuous

variables evolve according to the flow law

• E.g., the flow condition 𝑥 < 𝑎 is encoded into

𝑥′ − 𝑥 < 𝑎 𝑡′ − 𝑡 where 𝑡 is the time variable.

Stefano Tonetta, ASE'13 Tutorial 17

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 Properties are expressions in a mathematical logic using

symbols of the system description.

 Used to formalize requirements.

 Also defined as assertions on the system’s behavior.

 Problems:

o Analysis: find the properties of a system.

o Verification: check if the system satisfies the properties.

o Validation: check if we are considering the right properties.

o Synthesis: construct a system that satisfies the properties.

Stefano Tonetta, ASE'13 Tutorial 19

Stefano Tonetta, ASE'13 Tutorial

Requirement 1 Property ϕ1 Formalized into Semantics

Requirement 2 Property ϕ2 Formalized into Semantics

A model

(trace)

A model

of both
20

 Conceived by Pnueli in 1977 [Pnu77]

 Linear models
o State sequences (traces).

 Built over set of atomic propositions
AP.

 LTL formulas are the smallest set of
formulas such that:
o any atomic proposition p AP is an LTL

formula;

o if p and q are LTL formulas, then p,
pq, pq are LTL formulas;

o if p and q are LTL formulas, then X p, G
p, F p, and [p U q] are LTL formulas.

 Semantics defined for every trace, for
every 𝑖 ∈ ℕ .

 𝑀 ⊨ 𝜙 iff 𝑀,𝜎, 0 ⊨ 𝜙 for every trace
𝜎 of 𝑀.

Stefano Tonetta, ASE'13 Tutorial 21

 𝐺𝑝 “always p” – invariant

 𝐺(𝑝 → 𝐹𝑞) “p is always followed by q” - reaction

 𝐺(𝑝 → 𝑋𝑞) “whenever p holds, q is set to true” – immediate

reaction

 𝐺𝐹𝑝 “infinitely many times p” – fairness

 𝐹𝐺𝑝 “eventually permanently p”

 𝐺(𝑝 → 𝑞𝑈𝑟)

Stefano Tonetta, ASE'13 Tutorial 22

 𝐺 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

 𝐺 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 → 𝐹(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)

 𝐺 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 → 𝑋 𝑔𝑟𝑎𝑛𝑡

From which we can entail

 𝐺(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑔𝑟𝑎𝑛𝑡)

Stefano Tonetta, ASE'13 Tutorial 23

 Past operators

o 𝑌𝜙, in the previous state 𝜙, dual of 𝑋

o 𝑂𝜙, in the past once 𝜙, dual of 𝐹

o 𝐻𝜙, in the past always 𝜙, dual of 𝐺

o 𝜙1𝑆𝜙2, in the past 𝜙1 since 𝜙2, dual of 𝑈

Stefano Tonetta, ASE'13 Tutorial 24

 RELTL enriches LTL with regular expressions:

o Suffix implication: 𝑟 ∣→ 𝜙 means that every finite sequence

matching 𝑟 is followed by a suffix satisfying 𝜙.

o Suffix conjunction: 𝑟 ⋄→ 𝜙 means that there exists a finite

sequence matching 𝑟 and followed by a suffix satisfying 𝜙.

 Example:

o ¬𝑝 ∗ ; 𝑝 ∗ 3 → 𝐹𝑞

o 𝐺(𝑟𝑒𝑞𝑢𝑒𝑠𝑡; 𝑏𝑢𝑠𝑦 ∗ ; 𝑔𝑟𝑎𝑛𝑡 → 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

Stefano Tonetta, ASE'13 Tutorial 25

 Rich language to specify assertions on hardware design.

 Include RELTL.

 Increase usability with

o Syntactic sugar

o English words instead of math symbols:

• “always” (𝐺)

• “never” (𝐺¬)

• “eventually” (𝐹)

• “next” (𝑋)

Stefano Tonetta, ASE'13 Tutorial 26

 Use first-order predicates instead of propositions:

o 𝐺 𝑥 ≥ 𝑎 ∧ 𝑥 ≤ 𝑏

o 𝐺𝐹 𝑥 = 𝑎 ∧ 𝐺𝐹 𝑥 = 𝑏

 Predicates interpreted according to specific theory T

(henceforth, only used reals).

 “next” to express changes/transitions:

o 𝐺 𝑛𝑒𝑥𝑡 𝑥 = 𝑥 + 1

o 𝐺(𝑛𝑒𝑥𝑡 𝑎 − 𝑎 ≤ 𝑏)

Stefano Tonetta, ASE'13 Tutorial 27

 𝐺(𝑝 → 𝐹≤3𝑞) “p is followed by q within 3 time units”

 𝐺(𝑝 → 𝐺≤2𝑞) “Whenever p holds, q holds in the following

two time units”

 𝐺(𝑝 → ¬𝑞𝑈≥1𝑞) “p is followed by q but only after 1 time

unit”

Stefano Tonetta, ASE'13 Tutorial

p

q

S
TA

T
E

T
IM

E

28

 𝐺(𝑑𝑒𝑟 𝑥 < 2) “The derivative of x is always less than 2”

 𝐺(𝑎 → 𝑑𝑒𝑟 𝑥 = 0) “Whenever a holds, the derivative of x

is zero”

 𝐺 𝑎 → 𝑏𝑈𝑑𝑒𝑟 𝑥 ≤ 5 “Whenever a holds, b remain true

until the derivative of x is less or equal to 5”.

Stefano Tonetta, ASE'13 Tutorial

speed

limit

warning

S
TA

T
E

T
IM

E

𝐺(𝑠𝑝𝑒𝑒𝑑 > 𝑙𝑖𝑚𝑖𝑡 →
𝐹(𝑤𝑎𝑟𝑛𝑖𝑛𝑔))

29

 Human-readable language for HRELTL.

 Controlled natural language expressions. Examples:

o “always” (𝐺)

o “in the future” (𝐹)

o “and” (∧)

 Validated in the EuRailCheck project focus on the
formalization and validation of ETCS requirements.

o Example: “The train trip shall issue an emergency brake command,
which shall not be revoked until the train has reached standstill and
the driver has acknowledged the trip.“

o Formalized into: “always (train_trip implies
(emergency_brake_command until (der(train_location)=0 and
driver_acknowledges_trip)))”

Stefano Tonetta, ASE'13 Tutorial 30

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 A component has

o A syntactic interface

o Optionally, an internal structure.

o A behavior.

o An environment.

o Properties.

Stefano Tonetta, ASE'13 Tutorial 32

 A component interface defines boundary of the interaction

between the component and its environment.

 Consists of:

o Set of input and output ports (syntax)

• Ports represent visible data and events exchanged with environment.

o Set of traces (semantics)

• Traces represent the behavior, history of events and values on data ports.

33

Component

In
p

u
t

O
u

tp
u

t

Stefano Tonetta, ASE'13 Tutorial

Component

 A component has an internal structure.

 Architecture view:
o Subcomponents

o Inter-connections

o Delegations

 State-machine view:
o Internal state

o Internal transitions

o Language over the ports

34

In
p

u
t

O
u

tp
u

t

Component

Sub1

Sub2

Stefano Tonetta, ASE'13 Tutorial

 𝐼𝑆: input ports of component 𝑆

 𝑂𝑆: output ports of 𝑆

 𝑉𝑆 = 𝐼𝑆 ∪ 𝑂𝑆: all ports of 𝑆

 𝑇𝑟(𝑋) traces over 𝑋 ⊆ 𝑉𝑆 (sequence of assignments to 𝑋)

 State machine 𝐼𝑚𝑝 implementation of 𝑆 iff L(𝐼𝑚𝑝) ⊆
𝑇𝑟 𝑉𝑆

 𝑀 can be associated with 𝜇𝐼𝑚𝑝: 𝑇𝑟 𝐼𝑆 → 2𝑇𝑟 𝑂𝑆 such that

𝜇𝐼𝑚𝑝 𝜎𝑖 = {𝜎𝑜 ∣ 𝜎𝑖 × 𝜎𝑜 ∈ 𝐿(𝐼𝑚𝑝)}
o Input trace mapped to a set of output traces

o “set” to consider non determinism

o Empty set corresponds to rejected input trace

35 Stefano Tonetta, ASE'13 Tutorial

 State machine 𝐸𝑛𝑣 environment of 𝑆 iff L(𝐸𝑛𝑣) ⊆ 𝑇𝑟(𝐼𝑆)

 Compatibility of implementation with environment (e.g., for

reuse):

o Trace-based (black-box) view:

• 𝐼𝑚𝑝 must accept any trace of 𝐸𝑛𝑣 (i.e., L(𝐸𝑛𝑣) ⊆ 𝜎 𝜇𝐼𝑚𝑝 𝜎 ≠ ∅)

o State-based (glass-box) view:

• For any reachable state of 𝐼𝑚𝑝 × 𝐸𝑛𝑣, for any input transition of 𝐸𝑛𝑣,

there exists a matching transition of 𝐼𝑚𝑝.

• As in interface theory [AH01] (note that 𝐼𝑚𝑝 × 𝐸𝑛𝑣 is a closed system).

36 Stefano Tonetta, ASE'13 Tutorial

 Components are composed to create composite components.

 Different kind of compositions:

o Synchronous,

o Asynchronous,

o Synchronizations:

• Rendez-vous vs. buffered;

• Pairwise, multicast, broadcast, multicast with a receiver

 Connections map (general rule of architecture languages):

o Input ports of the composite component

o Output ports of the subcomponents

Into

o Output ports of the composite component

o Input ports of the subcomponents.

Stefano Tonetta, ASE'13 Tutorial 37

 A component is actually a component type.

 A system architecture is an instance of a composite

component.

 It defines a tree of component instances.

Stefano Tonetta, ASE'13 Tutorial 38

 Properties of the component and its environment.

 Can be seen as assertion for component interfaces.

 Contracts used to characterize the correctness of component
implementations and environments.

 Typically, properties for model checking have a “god” view of the
system internals.

 For components instead:

o Limited to component interfaces.

o Structure into assumptions and guarantees.

 Contracts for OO programing are pre-/post-conditions [Meyer,
82].

 For systems, assumptions correspond to pre-conditions,
guarantees correspond to post-conditions.

Stefano Tonetta, ASE'13 Tutorial 39

 Assertions used to represent sets of traces over the component
ports:
o 𝜙(𝑉) assertion over variables 𝑉

o 〈 𝜙 〉 ⊆ 𝑇𝑟 𝑉 semantics of 𝜙

 A contract of component 𝑆 is a pair 〈𝐴, 𝐺〉 of assertions over 𝑉𝑆
o A is the assumption,

o G is the guarantee.

 𝐸𝑛𝑣 is a correct environment iff L(𝐸𝑛𝑣) ⊆ 〈 𝐴 〉
 𝐼𝑚𝑝 is a correct implementation iff L(𝐼𝑚𝑝) ∩ 〈 𝐴 〉 ⊆ 〈 𝐺 〉

40

Component

In
p

u
t

O
u

tp
u

t
Assumption

A

Behaviors

M

Guarantee

G Example with Othello assertions:

assume:

 always (Pedal_Pos1 iff Pedal_Pos2)

guarantee:

 always ((Pedal_Pos1 or Pedal_Pos2)

 implies (time_until(Brake_Line) <=10));

Stefano Tonetta, ASE'13 Tutorial

 The set of contracts 𝐶𝑖 refines 𝐶 with the connection 𝛾 (𝐶𝑖 ≼𝛾 𝐶) iff

for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖 and correct environment 𝐸𝑛𝑣
of 𝐶:

1. The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C.

2. For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of 𝐶𝑘.

 Verification problem:

o check if a given refinement is correct (independently from implementations).

41

Component

Sub

Sub

C

C1

C2

 Given C1=<1,1>, … , C1=<n,n>, C=<,>

 Proof obligations for 𝐶𝑖 ≼ 𝐶:

o 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽

o 𝛾 𝛼𝑗 → 𝛽𝑗2≤𝑗≤𝑛 → 𝛼 → 𝛼1

o …

o 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖

o …

o 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛−1 → 𝛼 → 𝛼𝑛

 Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid. [CT12]

42 Stefano Tonetta, ASE'13 Tutorial

 Weak vs. strong assumptions (both important):

o Weak assumptions

• Define the context in which the guarantee is ensured

• As in assume-guarantee reasoning

• Different assume-guarantee pairs may have inconsistent assumptions

(if x>0 then …, if x<0 then …)

o Strong assumptions

• Define properties that must be satisfied by the environment.

• Original idea of contract-based design.

• If not satisfied, the environment can cause a failure (division by zero,

out of power, collision).

Stefano Tonetta, ASE'13 Tutorial 43

 Correspond to one direction of the contract refinement.

 Many works focused on finding the right

assumption/guarantee.

 E.g. how to break circularity?

o 𝐺 𝐴 → 𝐵 ∧ 𝐺 𝐵 → 𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is false

o Induction-based mechanisms

o 𝐵 ∧ 𝐺 𝐴 → 𝑋𝐵 ∧ 𝐴 ∧ 𝐺 𝐵 → 𝑋𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is true

 Note they are structural ways to prove the property-based

refinement.

Stefano Tonetta, ASE'13 Tutorial 44

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 OCRA=Othello Contract Refinement Analysis [CDT13]

 Contracts’ assertions specified in Othello.

 Textual representation of the architecture.

 Built on top of nuXmv for infinite-state model checking.

 Integrated with CASE tools:

o AutoFocus3

• Developed by Fortiss.

• For synchronous system architectures.

o CHESS

• Developed by Intecs.

• For SysML and UML modeling.

 One of the few tools supporting contract-based design for embedded
systems.

 Publicly available (for non-commercial purposes) at

https://es.fbk.eu/tools/ocra

 46 Stefano Tonetta, ASE'13 Tutorial

 Rich component interfaces to specify:

o Input/output ports

o Data/Event ports.

o Including real-time and safety aspects.

 Contracts in temporal logics.

 Temporal formulas used to characterize set of traces over

the ports of components.

47 Stefano Tonetta, ASE'13 Tutorial

Stefano Tonetta, ASE'13 Tutorial

COMPONENT system

…

COMPONENT A

…

COMPONENT B

…

48

Stefano Tonetta, ASE'13 Tutorial

COMPONENT system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT a: boolean;

 …

 REFINEMENT

 …

COMPONENT A

…

COMPONENT B

…

49

Stefano Tonetta, ASE'13 Tutorial

COMPONENT simple system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT v: boolean;

 CONTRACT v_correct

 assume: always x>=0;

 guarantee: always (x=0 implies v);

 REFINEMENT

 …

COMPONENT A

…

COMPONENT B

…

50

Stefano Tonetta, ASE'13 Tutorial

COMPONENT simple system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT v: boolean;

 CONTRACT v_correct

 assume: always x>=0;

 guarantee: always (x=0 implies v);

 REFINEMENT

 SUB a: A;

 SUB b: B;

 CONNECTION a.x := x;

 CONNECTION b.y := a.v;

 CONNECTION v:= b.v;

 …

51

Stefano Tonetta, ASE'13 Tutorial

COMPONENT simple system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT v: boolean;

 CONTRACT v_correct

 assume: always x>=0;

 guarantee: always (x=0 implies v);

 REFINEMENT

 SUB a: A;

 SUB b: B;

 CONNECTION a.x := x;

 CONNECTION b.vi := a.v;

 CONNECTION v:= b.vo;

 CONTRACT v_correct REFINEDBY a.v_correct, b.pass;
52

Stefano Tonetta, ASE'13 Tutorial 53

System

A

B

v_correct

pass

x v

v_correct

x x v

vi

vo v

 LTL operators with the following syntax:

o “always” 𝐺

o “in the future” 𝐹

o “until” 𝑈

o “then” 𝑋

o “historically” 𝐻

o “in the past” 𝑂

o “since” 𝑆

o “previously” 𝑌

Stefano Tonetta, ASE'13 Tutorial 54

 Port types are either

o NuSMV types: “boolean”, enumeratives, ...

o nuXmv additional types: “real”, “integer”, …

o “continuous”, i.e. real-value ports evolving continuously in time.

o “event”, i.e. boolean-value port that is assigned only on discrete

transitions.

 Atomic formulas may be:

o Boolean variables.

o Equalities.

o Arithmetic predicates over integer, real, and continuous terms.

Stefano Tonetta, ASE'13 Tutorial 55

 Special function symbols:

o “der” denoting the derivative of a continuous variable (e.g., “der(x)=0”).

o “next” denoting the next value after a discrete change (e.g. “next(x)=x+1”).

o “time_until” used to express constraints on the time to the next occurrence of
an event:

• “time_until(e)<=2” means ¬𝑒 𝑈≤2𝑒

 Syntactic sugar:

o fall(x) means “x=true and next(x)=false”

o rise(x) means “x=false and next(x)=true”

o change(x) means “next(x)!=x”

 Important warning:

o The time model is hybrid with continuous evolution.

o What does “next” mean when time elapses?

o In OCRA/Othello/HRELTL, “next” forces a discrete step:

• “always ((der(timer)=1) and (timer=timeout implies next(timer)=0))”

Stefano Tonetta, ASE'13 Tutorial 56

 ocra_check_syntax

 ocra_check_refinement

 ocra_check_consistency

 ocra_check_implementation

 ocra_check_receptiveness

 Typical script:
o set verbose_level 1

o set on_failure_script_quits 1

o set pp_list cpp

o ocra_check_syntax -i SenseSpacecraftRate.oss

o ocra_check_refinement

o quit

 Call: ocra –source SenseSpacecraftRate.cmd

Stefano Tonetta, ASE'13 Tutorial 57

 OCRA is parametrized by the logic.

 The expressions can be restricted and interpreted as

discrete-time LTL or hybrid LTL.

 Default is hybrid.

 Set discrete-time to switch to LTL.

Stefano Tonetta, ASE'13 Tutorial 58

 For every component, for every refined contract, check

refinement.

 For every proof obligation, check its validity:

o [OK] if valid

o [BOUND OK] if no counterexample found up to k

o [FAIL] if found counterexample

Stefano Tonetta, ASE'13 Tutorial 59

Stefano Tonetta, ASE'13 Tutorial 60

Stefano Tonetta, ASE'13 Tutorial 61

Stefano Tonetta, ASE'13 Tutorial 62

 Contract-based design powerful

o For property refinement

o Safety analysis

 Temporal logic is suitable for component contracts.

 Contract framework parametrized by the logic.

 SMT-based model checking used to reason with expressive

properties.

 OCRA tool support.

Stefano Tonetta, ASE'13 Tutorial 63

 Basic concepts on contract-based design for embedded systems:

o Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based
Specification and Design. FMCO 2007.

o Manfred Broy: Towards a Theory of Architectural Contracts: - Schemes and
Patterns of Assumption/Promise Based System Specification. Software and
Systems Safety - Specification and Verification 2011: 33-87

o Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European
Journal of Control, 18(3):217-238, 2012.

o Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner
Damm, Thomas A. Henzinger, and Kim G. Larsen. Contracts for Systems Design.
Rapport de recherche RR-8147, INRIA, Nov. 2012.

 META program and AGREE tool by Cofer and colleagues.

o Also on system architecture with temporal logics for assume-guarantee
reasoning.

Stefano Tonetta, ASE'13 Tutorial 64

 [CGP99] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking. MIT Press, 1999.

 [Szy02] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed.. Boston, MA: Addison-
Wesley, 2002.

 [RBH+01] W.P. de Roever, F.S. de Boer, U. Hannemann, J.Hooman, Y. Lakhnech, M. Poel, J. Zwiers, Concurrency
Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University Press 2001.

 [BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic Model Checking Using SAT Procedures
instead of BDDs. DAC 1999: 317-320.

 [SSS00] M. Sheeran, S. Singh, G. Stålmarck, Checking Safety Properties Using Induction and a SAT-Solver.
FMCAD 2000: 108-125.

 [Bra11] A.R. Bradley. SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87.

 [McM03] K.L. McMillan, Interpolation and SAT-Based Model Checking. CAV 2003: 1-13.

 [Ton09] S. Tonetta, Abstract Model Checking without Computing the Abstraction. FM 2009: 89-105.

 [CMT11] A. Cimatti, S. Mover, S. Tonetta, HyDI: A Language for Symbolic Hybrid Systems with Discrete
Interaction. EUROMICRO-SEAA 2011: 275-278.

 [CMT13] A. Cimatti, S. Mover, S. Tonetta, SMT-based scenario verification for hybrid systems. Formal Methods
in System Design 42(1): 46-66 (2013).

 [Pnu77] A. Pnueli, The Temporal Logic of Programs. FOCS 1977: 46-57.

 [AH01] L. de Alfaro, T.A. Henzinger, Interface automata. ESEC / SIGSOFT FSE 2001: 109-120.

 [CT12] A. Cimatti, S. Tonetta, A Property-Based Proof System for Contract-Based Design. EUROMICRO-SEAA
2012: 21-28.

 [CDT13] A. Cimatti, M. Dorigatti, S. Tonetta. OCRA: A Tool for Checking the Refinement of Temporal Contracts .
ASE 2013.

Stefano Tonetta, ASE'13 Tutorial 65

