
ACVI Workshop 

April 5, 2016 

Venice, Italy 

 

Contract-Based Architectural Design with OCRA 

Stefano Tonetta 
Fondazione Bruno Kessler 
Center for Scientific and Technological Research 
tonettas@fbk.eu  

Parts of the material presented in these slides have been 
contributed by Alessandro Cimatti, Anthony Fernandes Pires, 
Cristian Mattarei, Marco Gario and other people in FBK 

mailto:tonettas@fbk.eu


Outline 

• Contract-based design with OCRA 

• OCRA language 

• OCRA-supported analysis 

• OCRA and AADL 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 2 



Component-based design 

• Embedded systems become more and more 
complex, networked, interconnected 

• Component-based design: popular approach for 
managing such complexity 

• Many languages and tools: (SysML, AADL, AF3, 
Altarica, …) 

• A component can be defined as a unit of 
composition with contractually specified interfaces 
– Hides internal information 
– Defines interface to interact with the environment 

• Component-based design ideal for 
– Independent development 
– Reuse of components 

3 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Contract-based design 

• Contracts used to specify assumptions and guarantees 
– First conceived for software, now popular also for system 

architectural design  

• Assumptions and guarantees are properties respectively 
of the environment and of component 

• Can be seen as assertions for component interfaces. 

• Contracts used to characterize the correctness of 
component implementations and environments 

• Contracts for OO programing are pre-/post-conditions 

• For systems, assumptions correspond to pre-conditions, 
guarantees correspond to post-conditions 

 

4 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Contract-based approach 

Contract-Based Architectural Design with OCRA 5 

WBS 

Pedal_Pos1 

Pedal_Pos2 
Brake_Line 

BSCU 

H
yd

ra
u

lic
 

subBSCU 

Se
le

ct
_S

w
it

ch
 subBSCU 

ACVI Workshop April 5, 2016 

• Early validation of refinement 
• Composition verification 
• Ensuring correct reuse 



OCRA tool support 

• Textual representation of the architecture and contracts 
• Built on top of nuXmv for infinite-state model checking 
• Integrated with CASE tools: 

– AutoFocus3 
• Developed by Fortiss 
• For synchronous system architectures 

– CHESS 
• Developed by Intecs 
• For SysML and UML modeling 

– COMPASS 
• Developed by FBK and RWTH/AACHEN 
• Variant of AADL 

• One of the few tools supporting contract-based design for 
embedded systems 

• Publicly available at https://ocra.fbk.eu  
 

6 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 

https://ocra.fbk.eu/


Contract specification language 

• Contracts’ assumptions and guarantees 
specified in an extension of LTL 

• Both discrete-time and hybrid semantics are 
supported 

• Increase usability with 
– Syntactic sugar 

– English words instead of math symbols: 
• “always” (𝐺) 

• “never” (𝐺¬) 

• “eventually” (𝐹) 

• “next” (𝑋)  

7 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



OCRA language 

COMPONENT system 
… 
 
COMPONENT A 
… 
 
COMPONENT B 
… 

8 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Component interface 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 9 

COMPONENT system 
 INTERFACE 
  INPUT PORT x: continuous; 
  OUTPUT PORT a: boolean;  
 … 
 REFINEMENT 
 … 
 
COMPONENT A 
… 
 
COMPONENT B 
… 



Contracts 

COMPONENT simple system 
 INTERFACE 
  INPUT PORT x: continuous; 
  OUTPUT PORT v: boolean; 
 
  CONTRACT v_correct 
   assume: always x>=0; 
   guarantee: always (x=0 implies v);  
 
 REFINEMENT 
 … 
 
COMPONENT A 
… 
 
COMPONENT B 
… 

10 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Component refinement 

COMPONENT simple system 
 INTERFACE 
  INPUT PORT x: continuous; 
  OUTPUT PORT v: boolean; 
 
  CONTRACT v_correct 
   assume: always x>=0; 
   guarantee: always (x=0 implies v);  
 
 REFINEMENT 
  SUB a: A; 
  SUB b: B; 
  
  CONNECTION a.x := x; 
  CONNECTION b.y := a.v; 
  CONNECTION v:= b.v; 
 … 

11 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Contract refinement 

COMPONENT simple system 
 INTERFACE 
  INPUT PORT x: continuous; 
  OUTPUT PORT v: boolean; 
 
  CONTRACT v_correct 
   assume: always x>=0; 
   guarantee: always (x=0 implies v);  
 
 REFINEMENT 
  SUB a: A; 
  SUB b: B; 
  
  CONNECTION a.x := x; 
  CONNECTION b.vi := a.v; 
  CONNECTION v:= b.vo; 
 
  CONTRACT v_correct REFINEDBY a.v_correct, b.pass; 

12 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Port types 

• Port types are either 
– NuSMV types: boolean, enumeratives, ... 

– nuXmv additional types: real, integer, and uninterpreted 
functions 

– continuous, i.e. real-value ports evolving continuously in 
time. 

– event, i.e. boolean-value port that is assigned only on 
discrete transitions. 

• Port can be: 
– Input 

– Output 

– Parameter 

13 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



LTL with SMT predicates 

• Use first-order predicates instead of 
propositions: 

 always (x>=a and x<=b) 

• Standard LTL operators: 
 always (e1 implies in the future (e2 and x=y+z)) 

• “next” to express changes/transitions: 
 always (next(x) = x+1) 

 always (next(x) – a <= b) 

14 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Continuous time 

• The derivative of “x” is always less than 2: 
 always der(x)<2 

• Whenever “a” holds, the derivative of “x” is zero 
 always (a implies der(x)<=2) 
• Whenever “a” holds, “b” remain true until the derivative of “x” is 

less or equal to 5 
 always (a implies (b until der(x)<=5) 

• Reaction time 
 always (e1 implies time_until(e2)<=5) 

speed 
limit 

warning 

ST
A

TE
 

TI
M

E 

always (speed>limit implies 

in the future warning) 

15 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Trace-based semantics 

• A component interface defines boundary of the interaction 
between the component and its environment. 

• Consists of: 
– Set of input and output ports (syntax) 

• Ports represent visible data and events exchanged with environment. 

– Set of traces (semantics) 
• Traces represent the behavior, history of events and values on data 

ports. 

 

16 

Component 

In
p

u
t 

O
u

tp
u

t 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Composite components 

• Components are decomposed 
into subcomponents 

• Different kind of compositions: 
– Synchronous, 
– Asynchronous, 
– Synchronizations 

• Connections map (general rule 
of architecture languages): 
– Input ports of the composite 

component 
– Output ports of the 

subcomponents 
Into 
– Output ports of the composite 

component 
– Input ports of the 

subcomponents. 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 17 

In
p

u
t 

O
u

tp
u

t 

Component 

Sub1 

Sub2 



Component 

Leaf implementations 

• External to the OCRA 
language 

• State-machine 

– Internal state 

– Internal transitions 

– Language over the ports 

• Hybrid automaton in case 
of continuous variables 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 18 



Discrete vs. hybrid 

• OCRA is parametrized by the logic 

• The expressions can be restricted and 
interpreted as discrete-time LTL or hybrid LTL 

• In discrete-time mode, behavior of leaf 
components specified in smv (nuXmv) 

• In hybrid-time mode, behavior of leaf 
components specified in hydi (HyCOMP) 

19 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Main Features 

• Check refinement 

• Validation of contracts 

• Check implementation 

• Check receptiveness 

• Compute fault tree 

 

• Results are shown in textual form or in XML to 
ease the integration within modeling tools (to 
map back results) 

 

 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 20 



Trace-based contract refinement 

 

• The set of contracts 𝐶𝑖  refines 𝐶 with the connection 𝛾 ( 𝐶𝑖 ≼𝛾 𝐶) iff for all 
correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖 and correct environment 𝐸𝑛𝑣 of 𝐶: 
– The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C. 
– For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of 𝐶𝑘. 

• Verification problem:  
– check if a given refinement is correct (independently from implementations). 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 21 

Component 

Sub 

Sub 

C 

C1 

C2 



Proof obligations for contract refinement 

• Given 𝐶1 = 〈𝛼1, 𝛽1〉, … , 𝐶𝑛 = 𝛼𝑛, 𝛽𝑛 , 𝐶 = 〈𝛼, 𝛽〉 

• Proof obligations for 𝐶𝑖 ≼ 𝐶: 

– 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽  

– 𝛾  𝛼𝑗 → 𝛽𝑗2≤𝑗≤𝑛 → 𝛼 → 𝛼1  

– … 

– 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖  

– … 

– 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛−1 → 𝛼 → 𝛼𝑛  

 

• Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid. 

 
22 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Hierarchical Safety Assessment 

23 ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 



Integration with testing 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 24 

BUS 

Collision 
sensor 

E2E_Protect E2E_Check 

Airbag 
Controller 

System 
𝐶 

𝐶𝑠 

𝐶𝑃 

𝐶𝐵 

𝐶𝐴 

𝐶𝐶  

cccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccccccccccccccccc 

test suite 



OCRA vs. AADL 

• Same component-based approach 
• Same separation of architecture and implementations 
• OCRA  

– Has a formal semantics 
– Both discrete-time and hybrid semantics 
– Both synchronous and asynchronous composition 
– Expressions in connections (e.g., in:= outp1 or outp2) 
– Built-in data types 

• AADL 
– Event data ports 
– Richer language for design 
– Extensible with property sets and annexes 
– Behavioral and error annexes 

• SLIM 
– Variant of AADL with formal semantics 
– Asynchronous composition 
– Built-in data types 
– Error models 
– Now supports AADL-compliant models 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 25 



AADL property set for OCRA Contracts 

• COMPASS, tool developed within ESA projects in 
collaboration with RWTH (Aachen University) 

• integrated with OCRA for contract-based design 
of a subset of AADL models 

– First developed in the FP7 D-MILS project 

– Extended in the ESA CATSY project 

• Automatic translation of AADL into OCRA 

• Mapping back of results 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 26 



CATSY Example 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 27 



CSSP Example 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 28 



Past and Current Projects 

• SafeCer (Apr. 2011 – Mar. 2015) 
– ARTEMIS project on Safety Certification of Software-Intensive 

Systems with Reusable Components.  
– First development of OCRA 
– Used by Thales Comm., TTTECH, CAF, … 

• FoReVer (Jan. 2012 – Mar. 2013) 
– ESA study on Functional Requirements and Verification Techniques 

for the Software Reference Architecture.  

• D-MILS (Nov. 2012 – Oct. 2015) 
– FP7 project on Distributed MILS for Dependable Information and 

Communication Infrastructures.  

• Collaboration with Boeing (2014 – 2015) 
• CATSY (Dec. 2014 – Apr. 2016) 

– ESA study on Catalogue of System and Software Properties 

• AMASS (Apr. 2016 – Mar. 2019) 
– ECSEL project on architecture-driven assurance and more. 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 29 

http://www.safecer.eu/
https://es.fbk.eu/projects/forever/
http://www.d-mils.org/
http://www.d-mils.org/
http://www.d-mils.org/


Some Case Studies 

• Redundant Sensors (developed with Thales in 
FoReVer) 

• AUTOSAR E2E Protection example (developed 
with Quviq in SafeCer) 

• ARP4761 WBS (taken from literature) 

• AIR6110 WBS (developed with Boeing) 

– 30 component types for 169 instances 

– max depth of 6 levels 

– 149 contracts  

 

 

 
ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 30 



Conclusions 

• OCRA: tool to support contract-based design of 
system architecture 

• Contracts specified in linear-time temporal logic 

• Support for discrete-time, infinite-state, continuous 
time 

• Main supported analysis: 

– Refinement verification 

– Validation of specification 

– Fault-tree generation 

• Integrated in COMPASS for analysis of AADL models 

ACVI Workshop April 5, 2016 Contract-Based Architectural Design with OCRA 31 


