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Abstract—Contract-based design enriches a component model
with properties structured in pairs of assumptions and guaran-
tees. These properties are expressed in term of the variables at
the interface of the components, and specify how a component
interacts with its environment: the assumption is a property
that must be satisfied by the environment of the component,
while the guarantee is a property that the component must
satisfy in response. Contract-based design has been recently
proposed in many methodologies for taming the complexity
of embedded systems. In fact, contract-based design enables
stepwise refinement, compositional verification, and reuse of
components. However, only few tools exist to support the formal
verification underlying these methods.

OCRA (Othello Contracts Refinement Analysis) is a new tool
that provides means for checking the refinement of contracts
specified in a linear-time temporal logic. The specification lan-
guage allows to express discrete as well as metric real-time
constraints. The underlying reasoning engine allows checking
if the contract refinement is correct. OCRA has been used in
different projects and integrated in CASE tools.

I. INTRODUCTION

Contract-based design, first conceived for software specifi-
cation [21] and now also applied to embedded systems [5],
[25], [19], [15], [3], [13], [14], [6], structures the component
properties into contracts. A contract specifies the properties
assumed to be satisfied by the component environment (as-
sumptions), and the properties guaranteed by the component
in response (guarantees). There are several points supporting
the idea of contract-based reasoning. The first one is that it
provides a clean framework for compositional verification of
global properties of an existing system: the contracts are used
as landmarks for the proof, so that in the end it is possible to
obtain the guarantee for the global property out of the proof
that each of the components satisfies its contracts, and that the
individual contracts entail the global property. The second is
that it supports stepwise refinement, so that when a component
is decomposed, the corresponding specification is decomposed
at the same time. This means for example that the allocation of
functions to subcomponents is decided and proved correct at
the moment of decomposition, i.e. way before the behavioral
descriptions are provided. The third reason is the support
of component reuse: the proof of refinement holds for any
component implementation satisfying the contracts of the
component leaves.

In this paper we present OCRA, a new tool that provides
automated support for contract-based design with temporal
logics. OCRA relies on the contract framework originally pro-

posed in [13], where assumptions and guarantees are specified
as temporal formulas. Checking the correctness of contracts
refinement is supported by generating a set proof obligations.
These are temporal logic formulas, obtained from assumptions
and guarantees, that are valid if and only if the contracts
refinement is correct.

A distinguishing feature of the tool is its high degree of
expressiveness: the underlying temporal logic, HRELTL [12],
is a variant of LTL where formulas represent sets of hybrid
traces, mixing discrete- and continuous-time steps, and is
therefore amenable to model properties of timed and hybrid
systems. When restricted to the propositional fragment, the
proof obligations can be proved valid using BDD- or SAT-
based model checking techniques for LTL. In the general case
of HRELTL, reasoning relies on Satisfiability Modulo Theory
(SMT). Since logical entailment for HRELTL is undecidable,
bounded model checking techniques are used to find coun-
terexamples to the contract refinement [12], [13].

OCRA has been developed within the European project
SafeCer [26], focusing on the compositional certification of
embedded systems. The tool is currently in use by the indus-
trial partners of the project, and has also been integrated within
a UML-based modeling environment for aerospace [17]. The
tool is publicly available [23].

II. RELATED WORK AND TOOLS

Many related works focus on methods and tools for assume-
guarantee reasoning. In many cases, assumptions and guaran-
tees are expressed in temporal logics (including LTL) [1],
[20], [24], [14]). The semantics of the assumption-guarantee
pair is however different from the one used in contract-
based design. The role of an assumption in assume-guarantee
reasoning is to define the context in which the component
implementation satisfies the guarantee (these are also called
“weak” assumptions in contract-based design). Thus, the se-
mantics of the assume-guarantee pair in most works is simply
the implication “if the assumption holds, also the guarantee
holds”. In this context, many works focused on finding the
right assumptions to enable the compositional reasoning, given
the implementations of the components (see, for example,
[18]).

In contract-based design [21], as well as in OCRA, contracts
instead must be satisfied by both the environment and the
component. If the environment does not satisfy the assumption,
the component is not compatible with that architecture. For



this reason, as for interface automata [16], the refinement is
not given by a simple trace inclusion, but has a contravariant
fashion: guarantees must be strengthened and assumptions
must be weakened. However, instead of relying on alternation
simulation between the interface automata, we exploit the less
expensive contract refinement that can be reduced to multiple
checks of trace inclusion.

To the best of our knowledge, OCRA is the first tool
that supports the verification of refinement of contracts for
component-based systems specified with a temporal logic. The
most related tools are the following: MIO [4], which checks
the refinement of contracts specified with a modal variant of
interface automata; Ticc [2], which checks the compatibility of
interface automata; AGREE [14], which uses temporal logics
to apply assume-guarantee reasoning on architectural models,
but with the “weak” notion of assumptions.

III. CONTRACT-BASED FORMAL FRAMEWORK

We consider both discrete and hybrid traces. A discrete
trace is a sequence of assignments to the variables in V . In a
hybrid trace, continuous variables evolve continuously when
time elapses, while discrete variables only change at discrete
steps (see [12] for a more formal definition). Given a set V
of variables, we denote with ΠV the set of all possible traces
over V (either discrete or hybrid depending on the context).

The interface of a component is defined in terms of ports,
i.e. the visible variables with which the component interacts
with the environment. We denote with VS such set of variables,
which encompass input/output data/event ports. Given a set S
of components, VS is defined as VS =

⋃
S∈S VS .

An implementation M of a component S is defined as a
transition system such that each run of M corresponds to a
trace over VS , i.e., the language L(M) of M is a subset of
ΠVS

. An environment E of S is defined in the same way and,
therefore, the language L(E) is a subset of ΠVS

.
A decomposition ρ of a component S defines a set of sub-

components Sub and a mapping γ of ports. The implementa-
tion of a decomposed component S consists of the composition
of the implementations of its sub-components Sub through
the mapping γ. Similarly, the environment of a subcomponent
U ∈ Sub is composed by the environment of S and by the
sibling subcomponents Sub \ {U}.

Given a component S, a contract for S is a pair 〈A,G〉 of
assertions over VS representing respectively an assumption and
a guarantee for the component. Every assertion φ is associated
with the set of traces that satisfy it, denoted JφK. Let C =
〈A,G〉 be a contract of S. Let M and E be respectively an
implementation and an environment of S. We say that M is an
implementation satisfying C iff M |= A → G (i.e., L(M) ∩
JAK ⊆ JGK). We say that E is an environment satisfying C
iff E |= A (i.e., L(E) ⊆ JAK). We say that M is receptive to
C iff M is compatible with E (i.e., for any reachable state of
the composition, for every transition of E on an input port of
C, there exists a matching transition of M ). Finally, we say
that M realizes C iff M |= C and M is receptive to C.

Since the decomposition of a component S into subcompo-
nents induces a composite implementation of S and composite
environment for the subcomponents, it is necessary to prove
that the decomposition is correct, i.e., that the composite im-
plementation of S satisfies S’s contracts and that the composite
environment of each subcomponent U satisfies U ’s contracts.
Contracts are used to prove these facts compositionally and
thus independently from the specific implementation of the
subcomponents and environment of the composite component.

Given a component S and a decomposition ρ = 〈Sub, γ〉,
a contract C of S, and a set of contracts CS of the sub-
components of S, we say that CS is a refinement of C,
written CS ≤ρ C, iff 1) the correct implementations of the
sub-contracts form a correct implementation of C; and 2) for
each sub-contract C ′′, the correct implementation of the other
sub-contracts and a correct environment of C form a correct
environment of C ′′ (see [13] for a formal definition).

The following theorem defines the proof obligations for
contracts refinement, i.e. a set of assertions that are valid iff
the refinement is correct.

Theorem 1 ([13]): Consider a component S, a decompo-
sition ρ = 〈Sub, γ〉, and CS = {〈A1, G1〉, . . . , 〈An, Gn〉}.
CS ≤ρ C iff the following conditions hold:
• (∃VSub((¬A1∨B1)∧. . .∧(¬An∨Bn)∧γ))→ (¬A∨B));
• for all U ∈ Sub, (∃VS ,∃VSub\{U}(A ∧∧

1≤j≤n,j 6=i(¬Aj ∨Bj) ∧ γ))→ Ai.

IV. OCRA: FUNCTIONALITIES AND DESIGN

The main functionality of OCRA is the verification of
the contract refinement. OCRA checks if a given contract
refinement is correct generating the corresponding set of
proof obligations and checking their validity. OCRA takes as
input a textual description of the components interfaces and
their decomposition into sub-components, the components’
contracts and their refinement with the contracts of the sub-
components (refer to the documentation of the tool in [23] for
a formal definition of syntax and semanitics). The OCRA input
file, also called OSS (OCRA System Specification), describes
a tree of components (given by the decomposition into sub-
components), which represents the system architecture.

The contracts are specified in Othello [11], a human-
readable language which can be mapped to temporal formulas
in the HRELTL [12], and thus represent sets of hybrid traces.
The contract refinement is however independent from the
nature of the traces and OCRA provides an option to interpret
the contracts over discrete-time traces restricting the input to
forbid continuous ports and allow LTL contracts only.

OCRA can be used via an interactive shell or via scripts,
and provides the following six main commands:
• OCRA CHECK REFINEMENT, which checks the contract

refinement of the OSS. Traversing the system architec-
ture starting from the system root component, for each
refined contract, it generates the proof obligations, and
checks if they are all valid. If the check finds that the
refinement is not correct, OCRA provides one or more
counterexamples (one for each invalid proof obligation).



• OCRA CHECK IMPLEMENTATION, which, given an OSS,
the name of a component in the OSS, and an SMV
file representing an implementation of the component,
verifies if the SMV model satisfies the contracts of the
component defined in the OSS. This is restricted to
discrete-time LTL contracts. Given a finite state machine
modeled in the SMV language, it verifies if the machine
satisfies the contracts defined in the OSS.

• OCRA CHECK RECEPTIVENESS, which takes the same
input of OCRA CHECK IMPLEMENTATION, but veri-
fies if the SMV model is receptive to the con-
tracts of the specified component. Together with
OCRA CHECK IMPLEMENTATION, it checks if the SMV
model realizes the component contracts.

• OCRA PRINT SYSTEM IMPLEMENTATION, which,
given an SMV model for each basic component and
the OSS, builds the corresponding SMV model of the
system. This can be used for a monolithic verification
to be compared with the compositional verification
provided by OCRA.

• OCRA CHECK CONSISTENCY, which checks the consis-
tency of each assertion (assumption or guarantee of a
contract) of the OSS. This command provides a helpful
form of contract validation, that allows to trap some errors
in the specification of contracts.

• OCRA CHECK SYNTAX, which performs syntactic and
type checking on an input OSS file.

In order to prove the validity of the proof obligations
deriving from contract refinement, OCRA interacts with
NuSMV3 [22], a model checker built on top of NuSMV2 [9]
that is able to deal with various forms of temporal logics.
NUSMV3 provides the functionality to either prove that the
formulas are valid, or to find counterexamples, which can be
inspected by the user in order to find the bugs in the contract
refinement. When the contracts are written in the standard
discrete-time LTL, to prove or disprove the validity of the
proof obligations the BDD-based engine is used. In the general
case, instead, NuSMV3 relies on the satisfiability procedure
described in [12]. This procedure is based on the MathSAT
SMT solver [10] and, albeit incomplete, it can be very useful
to find errors in the refinement [13].

The tool is written in C, and consists of about 9000 lines
of code. About 1000 lines of code are dedicated to parsing;
the core of the code provides the functions to manipulate the
data structures, to perform some rewriting of formulas, the
generation of the proof obligations, and the interaction with
NuSMV3. Similarly to NuSMV2, OCRA has an option to run
the C preprocessor on the input file, which allows to include
other files and to define macros.

V. CONTRACT-BASED DESIGN WITH OCRA

The advantage of contract-based design is the possibility
to perform stepwise refinement, compositional verification,
and reuse of components. OCRA supports concretely these
techniques with the above commands.
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Fig. 1. Contract-based design example: the component A is decomposed into
B and C; B is decomposed in D and E.

Figure 1 shows the idea of design flow that OCRA supports
in terms of verification. Components are decomposed into col-
lections of other interconnected components. For example, in
Figure 1, component A is decomposed into the interconnection
of B and C; B in turn is decomposed in the interconnection of
D and E. The decomposition also defines how the ports of the
component are delegated to ports of the sub-components. For
example, the “upper” port of B is mapped onto the “upper”
port of E. Each component in the hierarchy is associated with a
set of contracts (the scroll shapes in the figure), specifying the
acceptable behaviors for the component and its environment.
Contracts can be refined, following the decomposition of
components. For example, a contract for B may be refined by
contracts for D and E. The decomposition of components can
be increased step by step, adding every time the corresponding
contracts refinement; OCRA can verify this refinement with
the command OCRA CHECK REFINEMENT; this means that
the architectural decomposition is proved correct much before
the behavioral descriptions are provided.

In case of propositional LTL contracts, an SMV file can
describe the behavior of components. In Figure 1, if the
implementations (corner-less rectangles) are proved to satisfy
the contracts of the leaf components (i.e. C, D, E), then the re-
sulting system satisfies the top-level contract for A. OCRA can
verify compositionally the global property by verifying that the
refinement is correct (OCRA CHECK REFINEMENT) and that
the behavioral descriptions satisfy the corresponding compo-
nents’ contracts with OCRA CHECK IMPLEMENTATION (see
[13]). Similarly, it can verify that the system is receptive to its
contracts compositionally by verifying that the refinement is
correct (OCRA CHECK REFINEMENT) and that the behavioral
descriptions are receptive to their corresponding components’
contracts with OCRA CHECK IMPLEMENTATION.

Within this framework, reuse can be supported by main-
taining a library of components together with their imple-
mentations. Instead of checking whether the implementation
satisfies the leaf component contract (e.g. as a model checking
problem), it may be easier to check whether it is refined by



the contracts stored in the library, that the implementation is
known to satisfy. The library can be populated after running
OCRA CHECK IMPLEMENTATION to check that it satisfies the
contract and OCRA CHECK RECEPTIVENESS to check that it
will be compatible with any context satisfying the assumption.
In order to reuse a component from an existing library, the
command OCRA CHECK REFINEMENT can be used to check
that the refinement (and thus the reuse) is correct.

VI. PRACTICAL EXPERIENCE

OCRA has being developed within the ARTEMIS SafeCer
project [26] and is publicly available at [23]. The CHESS
tool [8] has been extended to specify Othello contracts on
SysML system-level components or on UML software-level
components and to interact with OCRA to check the contracts
refinement. A similar integration is under development for the
AutoFocus tool [7].

Within the SafeCer project, the tool will be used in a
number of demonstrators such as an avionic use case on the
airplane distance measuring equipment and a railway use case
on the train control and monitoring system of doors. The tool
has also been used in two case studies developed within the
FoReVer project [17]. The first case study focused on the
contract refinement of the requirements of the Fault Detection
Isolation and Recovery (FDIR) component of a small virtual
satellite system called EagleEye. The second case study was
developed by an industrial partner who evaluated the FoReVer
tool set (including CHESS) and methodology focusing on the
Guidance Navigation and Control (GNC) system of a satellite.
The feedback on OCRA was very positive, especially in terms
of what can be expressed, and the time required for the
refinement checking. It was also useful to improve usability
issues such as the readability of the generated traces.

The most complete case study is taken from [15]. It de-
scribes a Wheel Braking System (WBS), which takes care of
translating the brake signals of the braking pedals into physical
brake of the wheel. For the same benchmark, we provided
both a real-time and a propositional version. We also specified
an SMV model as implementation of each basic component.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presented OCRA, a new tool that supports the
verification of contracts refinement for embedded systems. To
the best of our knowledge, this the first tool in this context
to support the contracts specified in a temporal logic. OCRA
is publicly available and will be maintained at least until
2015. It is already integrated with CASE tools (see, e.g.,
[17] for the integration with CHESS). It has being used by
industrial partners within the SafeCer and FoReVer projects.
Interesting benchmarks have been already formalized and
verified with OCRA. The tool showed to nicely scale with
the number of decompositions (since the checks are local to
each decomposition).

We are currently working to improve the support in differ-
ent domain-specific aspects such as asynchronous, real-time,

safety, and security contracts. In particular, we are integrating
OCRA with the fault-tree analysis provided by NuSMV3.
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