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The ES Unit at FBK 

Fondazione Bruno Kessler (FBK) is a research non-profit public interest 
entity, located in Trento, Italy 
Embedded Systems (ES) Unit  
• Head: Alessandro Cimatti 
• People: 25-30, research staff,  programmers, PhD students, 

technologists 
• Technology transfer: Intel, Boeing, NASA, Ansaldo, others under NDA 
Topics: 
• Model checking 
• Design automation with formal methods 
• Autonomous reasoning and control 
Beyond Model Checking: 
• Requirements analysis 
• Contract-based design 
• Safety analysis (in case of faults) 
• Fault detection, identification and recovery (FDIR) 
• Planning 
Strategy: 
• Basic research 
• Tool development 
• Technology transfer 
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ES Tools 

• NuSMV 
– Open Source, widely used: +10 years, used in +25 external projects, +500 download/month         
– Discrete-Time Finite-state systems         
– Model Checking of CTL, LTL, PSL properties (BDD and SAT) 

• nuXmv 
– Discrete-Time Infinite-state  Systems with Integers, Reals, and Uninterpreted Functions types  
– Implements SMT-based verification techniques, through a tight integration with MathSAT5     
– Extended model checking algorithms (Interpolation-based, IC3-based, K-liveness, …) 
– Parameter synthesis   
– Validation of properties/requirements 

• HyCOMP 
– Allows modeling and verification of Asynchronous Hybrid Systems with event-based synchronization 
– Verification of Invariant properties and LTL properties  
– Discretization of hybrid systems to the nuXmv language         

• xSAP 
– Safety Analysis of Discrete Infinite Synchronous Systems  
– Automatic model extension with fault specifications         
– Fault Tree Analysis (FTA) and generation of Minimal Cut Sets (MCS) for dynamic systems         
– Fault propagation analysis based on Timed Failure Propagation Graphs (TFPG) 
– Fault Detection and Isolation (FDI) design and Diagnosability Analysis           

• OCRA 
– Contract Refinement 
– Contract-based compositional verification of SMV (nuXmv) and HyDI (HyCOMP) 
– Contract-based fault-tree generation           
– Validation of contracts           
– Supports synchronous and asynchronous composition 
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COMPASS 
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• Toolset for 
HW/SW co-design 

• Developed mainly in ESA 
projects 

• Main functions: 
• Requirements 

validation 
• Functional verification 
• Automated fault 

extension 
• Safety assessment 
• FDIR analysis 
• Performability analysis 

• ES Tools integrated as 
backed 



Projects with the European Space Agency (2008-2016) 

• Autonomy 
– OMC-ARE 

– IRONCAP 

• Model-based co-design of Hw-Sw 
– COMPASS 

– AUTOGEF 

– FAME 

– FOREVER 

– HASDEL 

– CATSY 

– COMPASS3 
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AIR6110 Wheel Brake System 

• Joint scientific study with Boeing 
• Aerospace Information Report 6110:  

– Traditional Aircraft/System Development Process Example 
– Describes the development process of a Wheel Brake System 

for a fictional dual-engine aircraft  
– Analyzes different architectures with standard informal 

techniques 

• Objectives: 
– Analyze the system safety through formal techniques 
– Repeat AIR6110 steps with formal techniques to demonstrate 

the usefulness and suitability of formal techniques for 
improving the overall traditional development and  
supporting aircraft certification  

• Control brake for aircraft wheels 
• Redundancy 

– Multiple BCSU 
– Hydraulic plants 

• Functions 
– Asymmetrical braking 
– Antiskid 

• Single wheel/coupled 
• depending on control mode 
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WBS: Adopted approach 
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WBS: Conclusion 

• Results:  
– Cover the process described in AIR6110 with formal methods 

– Production of modular descriptions of 5 architectures variants 
• Analysis of their characteristics in terms of a set of requirements expressed as 

properties 

• Production of more than 3000 fault trees 

• Production of reliability measures 

– Detection of an unexpected flaw in the process 
• Detection of the wrong position of the accumulator earlier in the process 

 

• Highlights: 
– Going from informal to formal allows highlighting the missing information 

of the AIR6110 to reproduce the process 

– Automated and efficient engines as IC3 is a key factor 

– OCRA modular modeling allows a massive reuse of the design through 
architectures variant 
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Wide Literature on Contracts for CPS 

• Contracts first conceived for OO programing [Meyer, 82]. 
• New challenge given by CPS 

– E.g., Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming Dr. 
Frankenstein: Contract-Based Design for Cyber-Physical Systems. European Journal of 
Control, 18(3):217-238, 2012. 

• Contracts theories such as 
– Albert Benveniste, Benoît Caillaud, Roberto Passerone: A Generic Model of Contracts for 

Embedded Systems. CoRR abs/0706.1456 (2007) 
– Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen, Axel Legay, Ulrik 

Nyman, Andrzej Wasowski: Moving from Specifications to Contracts in Component-Based 
Design. FASE 2012: 43-58 

– Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, 
Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner Damm, Thomas A. 
Henzinger, and Kim G. Larsen. Contracts for Systems Design. Rapport de recherche RR-8147, 
INRIA, 2012 

– Alessandro Cimatti, Stefano Tonetta: A Property-Based Proof System for Contract-Based 
Design. EUROMICRO-SEAA 2012: 21-28 

• Tool support such as 
– Darren D. Cofer, Andrew Gacek, Steven P. Miller, Michael W. Whalen, Brian LaValley, Lui Sha: 

Compositional Verification of Architectural Models. NASA Formal Methods 2012: 126-140 
– Alessandro Cimatti, Michele Dorigatti, Stefano Tonetta: OCRA: A tool for checking the 

refinement of temporal contracts. ASE 2013: 702-705 
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Trace-based contract refinement 

• The set of contracts 𝐶𝑖  refines 𝐶 with the connection 𝛾 ( 𝐶𝑖 ≼𝛾 𝐶) 
iff for all correct implementations 𝐼𝑚𝑝𝑖  of 𝐶𝑖  and correct environment 
𝐸𝑛𝑣 of 𝐶: 
– The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C. 

– For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of 
𝐶𝑘. 

• 𝐶1 = 𝛼1, 𝛽1 , … , 𝐶𝑛 = 𝛼𝑛, 𝛽𝑛 , 𝐶 = 〈𝛼, 𝛽〉 

• Proof obligations for contract refinement: 

– 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽  

The subcomponents entail the parents’ contract 

– 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖  

The subcomponent’s assumption is entailed  

by the subcomponent context 

• 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid 
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OCRA tool support 

• OCRA supports contracts where assumptions and guarantees are 
expressed in extensions of Linear-time Temporal Logic 

• Supports both discrete or super-dense (hybrid) models of time 

• Supports both synchronous and asynchronous composition of 
components 

• Integrated with nuXmv for validity checking and model checking 
in case of discrete time 

• Integrated with HyCOMP for validity checking and model 
checking in case of super-dense time 

• Integrated with xSAP for contract-based fault-tree generation 

• Integrated with CASE tools (AutoFocus3, CHESS, COMPASS) 

 

 

12 SCARE 2017 SMT-Based Satisfiability of Temporal Logic  



Formalization of Component Requirements 

13 SCARE 2017 SMT-Based Satisfiability of Temporal Logic  

• Components are specified as black boxes 
• Visible traces of input/output data/events 
• Linear-time Temporal Logic (LTL) well accepted formalism to specify 

component properties 
• Embedded systems application needs 

– Rich data  first-order 
– Combine continuous and discrete components  hybrid (super-dense) model of 

time 

• Moreover, component input/output events occur at different points of time 
– Need to relate data at different point of time (like storing values in extra variables 

and freeze them along time) 
– Need to constrain time difference (bounded response, periodicity, …) 

• Reasoning needs engine to solve validity/satisfiability queries 
– Refinement proof obligation, consistency of assertions, … 



Examples 

• The counter is increased whenever a new valid message is 
received 
– 𝑎𝑙𝑤𝑎𝑦𝑠 (𝑉𝑎𝑙𝑖𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 → 𝑛𝑒𝑥𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1) 

• The user shall switch the dispatcher to high before entering high-
level data. 
– 𝑎𝑙𝑤𝑎𝑦𝑠 (ℎ𝑖𝑔ℎ𝐿𝑒𝑣𝑒𝑙 𝑑𝑎𝑡𝑎 → 𝑐𝑚𝑑@𝑙𝑎𝑠𝑡 𝑠𝑤𝑖𝑡𝑐ℎ = 𝑡𝑜𝐻𝑖𝑔ℎ) 

• The train trip shall issue an emergency brake command, which 
shall not be revoked until the train has reached standstill and the 
driver has acknowledged the trip (ETCS SRS Sec. 3.13.8.2) 

– 𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑎𝑖𝑛𝑇𝑟𝑖𝑝 → 𝑏𝑟𝑎𝑘𝑒 𝑢𝑛𝑡𝑖𝑙 𝑠𝑝𝑒𝑒𝑑 = 0 ∧ 𝑑𝑟𝑖𝑣𝑒𝑟𝐴𝑐𝑘  
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Temporal Satisfiability Modulo Theory 
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Many-Sorted First-Order LTL  

• Many-Sorted Signature Σ = 〈Ω,Φ, Π, Ζ, 𝛾〉 
– Ω set of constant symbols 
– Φ set of function symbols 
– Π set of predicate symbols 
– Ζ set of sorts 
– 𝛾 assigns sorts to symbols 

• Σ-variables 𝑉 = ⋃ 𝜁∈Ζ𝑉𝜁  
– 𝛾 𝑥 = 𝜁 iff 𝑥 ∈ 𝑉𝜁  

• Terms: 𝑢 ≔ 𝑐 ∣ 𝑥 ∣ 𝑓 𝑢,… , 𝑢    
– If 𝑢 = 𝑐 and 𝑐 ∈ Ω, then 𝑢 is a term and 𝛾 𝑢 = 𝛾 𝑐  

– If 𝑢 = 𝑥 and 𝑥 ∈ V𝜁 , then 𝑢 is a term and 𝛾 𝑢 = 𝜁 

– If 𝑢 = 𝑓 𝑢1, … , 𝑢𝑛 ,  𝑢1, … , 𝑢𝑛 are terms, 𝑓 ∈ Φ, and 
𝛾 𝑓 = 〈𝛾 𝑢1 , … , 𝛾 𝑢𝑛 , 𝜁〉, then 𝑢 is a term and 𝛾 𝑢 = 𝜁 

• Temporal formulas: 𝜙 ≔ 𝑝 𝑢,… , 𝑢 ∣ 𝜙 ∧ 𝜙 ∣ ¬𝜙 ∣ 𝜙𝑈 𝜙 ∣ 𝜙𝑆 𝜙 
– where 𝑝 𝑢1, … , 𝑢𝑛  is  a formula if 𝑢1, … , 𝑢𝑛 are terms, 𝑝 ∈ Π, and 𝛾 𝑝 =

𝛾 𝑢1 , … , 𝛾 𝑢𝑛  

• Quantifier-free fragment 
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Example: 
Ωr ≔ 0,1  

Φ𝑟 ≔ {+,−,×, 𝑓} 
Πr ≔ =,<  
Ζ ≔ {𝑅} 
𝑉𝑟 ≔ {𝑥, 𝑦} 

𝑥 < 𝑓 𝑥 𝑈 𝑥 = 𝑦  



States and Traces 

• State s = 𝑀, 𝜇  
– Σ-structure 𝑀 

– Assignment 𝜇 to variables 𝑉 

• Time structure 𝜏 = 𝑇, 0, <, 𝑣  
– 𝑇 is the time domain, set of time points 

– 0 ∈ 𝑇 is the initial time point 

– < is a total order over 𝑇 

– 𝑣: 𝑇 → ℝ0
+ is the real-time value of the time point 

• Trace 𝜎 = 〈𝑀, 𝜏, 𝜇〉 
– Σ-structure 𝑀 

– Time model 𝜏 = 〈𝑇, 0,<, 𝑣〉 

– 𝜇: 𝑇 → 𝑀𝑉  
• 𝑀𝑉  set of states with same structure 𝑀 

• 𝜎 𝑡 ≔ 𝜇(𝑡) 

• Σ symbols are rigid,  same interpretation in 𝜎(𝑡) and 𝜎(𝑡′)  
– As in SMT, some symbols are interpreted by the theory while others are uninterpreted 

– Uninterpreted symbols are parameters in the temporal setting 
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𝑀 = ℝ, 0ℝ, 1ℝ, +ℝ, −ℝ,×ℝ, <ℝ, 𝑓𝑀  

∀𝑧, 𝑓𝑀 𝑧 ≔ −ℝ𝑧 
∀𝑡, 𝜎 𝑡 𝑥 ≔ 𝑡−ℝ1ℝ 
∀𝑡, 𝜎 𝑡 𝑦 ≔ −ℝ𝑡 



Uniform Structure of Time 

• Discrete time: 

– 𝑇 = ℕ 

– 𝑣 0 , 𝑣 1 , 𝑣 2 , …  

weakly-monotonic diverging 

• Dense time: 
– 𝑇 = ℝ0

+ 

– 𝑣 𝑡 = 𝑡 

• Super-dense: 

– 𝑇 ⊂ ℕ ×ℝ0
+ such that 𝐼𝑛 = 

{𝑡 ∣ 𝑛, 𝑡 ∈ 𝑇} is a time sequence 

– 𝑣 𝑛, 𝑡 = 𝑡 
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Temporal Satisfiability Modulo Theories 

• 𝜎, 𝑡 ⊨ 𝑝 iff 𝜎 𝑡 ⊨ 𝑝 
– Implicitly modulo Σ-theory 𝒯 

• E.g., theory of reals 𝒯ℝ 

– Finite variability assumption: 

• For every bounded interval 𝐼, the interpretation of 𝑝 changes only finitely 
many times 

• 𝜎, 𝑡 ⊨ 𝜙1U 𝜙2 iff there exists 𝑡′ > 𝑡, 𝜎, 𝑡′ ⊨ 𝜙2 and for all 
𝑡′′, 𝑡 < 𝑡′′ < 𝑡′, 𝜎, 𝑡′′ ⊨ 𝜙1 

• 𝜎, 𝑡 ⊨ 𝜙1𝑆 𝜙2 iff there exists 𝑡′ < 𝑡, 𝜎, 𝑡′ ⊨ 𝜙2 and for all 
𝑡′′, 𝑡′ < 𝑡′′ < 𝑡, 𝜎, 𝑡′′ ⊨ 𝜙1 
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Standard Abbreviations 

• Non-strict until (standard for discrete time)  

– 𝜙1𝑈𝜙2 ≔ 𝜙2 ∨ 𝜙1 ∧ 𝜙1𝑈 𝜙2  

• Non strict since 

– 𝜙1𝑆𝜙2 ≔ 𝜙2 ∨ 𝜙1 ∧ 𝜙1𝑆 𝜙2  

• In the future 𝜙 

– 𝐹𝜙 ≔ ⊤𝑈𝜙   

• Always 𝜙 
– G𝜙 ≔ ¬𝐹¬𝜙 

• In the past 𝜙 
– P𝜙 ≔ ⊤S𝜙  (sometimes denoted by 𝑂)  

• Always in the past 𝜙 (historically) 
– H𝜙 ≔ ¬P¬𝜙 
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Next Operator 

• 𝑋𝜙 ≔⊥ 𝑈 𝜙 
– Can be true only on discrete steps 

– With discrete time, it is true in 𝑡 iff 𝜙 is true in 𝑡 + 1 

– Always false with dense time 

– With super-dense time, it is true in 〈𝑛, 𝑡〉 iff 〈𝑛 + 1, 𝑡〉 is also in 𝑇 and 𝜙 is true 
in 〈𝑛 + 1, 𝑡〉  

• 𝑋 𝜙 ≔ 𝜙𝑈 ⊤ ∧ ¬𝑋⊤ 
– Always false in discrete steps 

– Always false with discrete time 

– With dense time, it is true in 𝑡 iff 𝜙 is true in 𝑡, 𝑡′  for some 𝑡′ 

– With super-dense time, it is true in 〈𝑛, 𝑡〉 iff 〈𝑛 + 1, 𝑡〉 is not in 𝑇 and 𝜙 is true 
in 〈𝑛, 𝑡, 𝑡′ 〉 for some 𝑡′ 

 

21 SCARE 2017 SMT-Based Satisfiability of Temporal Logic  

𝑝 

𝑋𝑝 𝑋 𝑝 𝑋 𝑝 



Next and ITE Functions 

• With discrete time 𝑛𝑒𝑥𝑡(𝑢) is the value of 𝑢 at time 
𝑡 + 1 

– 𝜎′ 𝑡 𝑛𝑒𝑥𝑡 𝑢 ≔ 𝜎(𝑡 + 1)(𝑢) 

– 𝜎, 𝑡 ⊨ 𝑝 iff 𝜎 𝑡 ⋅ 𝜎′(𝑡) ⊨ p 

• Where 𝑀, 𝑠 ⋅ 𝑀, 𝑠′ = 𝑀, 𝑠 ∪ 𝑠′  

– No counterpart in dense time 

• We also use if-then-else 𝑖𝑡𝑒 

– 𝜎 𝑡 𝑖𝑡𝑒 𝜙, 𝑢1, 𝑢2 ≔  
𝜎 𝑡 𝑢1     𝑖𝑓 𝜎, 𝑡 ⊨ 𝜙

𝜎 𝑡 𝑢2    𝑖𝑓 𝜎, 𝑡 ⊭ 𝜙
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Event-Freezing Functions 

• 𝑢@𝐹 𝜙 (“𝑢 at next 𝜙”) is the value of 𝑢 at the next point in 
the future where 𝜙 holds 

• 𝑢@𝑃 𝜙 (“𝑢 at last 𝜙”) is the value of 𝑢 at the last point in 
the past where 𝜙 holds 

• In discrete time, if there exists a point in the future, there 
exists a first point  

𝐹𝜙 ≡ ¬𝜙𝑈𝜙 
• In dense time, if 𝜙 is true in (𝑡,∞) there is no first point 
• But there is a first point in which 𝜙 or 𝑋 𝜙 holds  

𝐹𝜙 ≡ ¬𝜙𝑈(𝜙 ∨ 𝑋 𝜙) 
– Note we are assuming finite variability 
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𝜙 𝑡 ¬𝜙 

𝜎 𝑡 𝑢@𝐹 𝜙     =   𝜎(𝑡)(𝑢) 



Event-Freezing Functions 

• 𝜎 𝑡 𝑢@𝐹 𝜙 = 𝜎(𝑡′)(𝑢) iff  

– there exists 𝑡′ > 𝑡 such that 𝜎, 𝑡′ ⊨ 𝜙 and for all 𝑡′′, 𝑡 < 𝑡′′ < 𝑡′, 𝜎, 𝑡′′ ⊭
𝜙 

– there exists 𝑡′ ≥ 𝑡 such that 𝜎, 𝑡′ ⊨ 𝑋 𝜙 and for all 𝑡′′, 𝑡 < 𝑡′′ ≤ 𝑡′,
𝜎, 𝑡′′ ⊭ 𝜙 

– Else, 𝜎 𝑡 𝑢@𝐹 𝜙 = 𝑑𝑒𝑓𝑢@𝐹 𝜙 

• 𝑑𝑒𝑓𝑢@𝐹 𝜙 new symbol added to the signature Σ 

• Similarly for 𝑢@𝑃 𝜙 

• Non-strict version as abbreviation: 𝑢@𝐹𝜙 ≔ 𝑖𝑡𝑒(𝜙, 𝑢, 𝑢@𝐹 𝜙) 

• Counting: 𝑢@𝐹 𝑘+1𝜙 ≔ 𝑢@𝐹 𝜙 @𝐹 𝑘𝜙 
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Adding Explicit Time 

• We add an explicit variable 𝑡𝑖𝑚𝑒 to represent the time elapsed 
from the initial state (𝜎 𝑡 𝑡𝑖𝑚𝑒 ≔ 𝑣(𝑡)) 

• 𝑡𝑖𝑚𝑒@𝐹 𝜙 is the time at the next point in the future where 𝜙 
holds (call “time_until” in ocra) 

• Can express different real-time properties 

• Event clock logic 
– Next time in which 𝜙 holds is in the interval 𝐼 

– ⊳𝐼 𝜙 ≔ 𝑡𝑖𝑚𝑒@𝐹 𝜙 − 𝑡𝑖𝑚𝑒 ∈ 𝐼 ∧ ¬𝜙𝑈 𝜙 

• Metric temporal logic 
– 𝜙 will occur within 𝑝 

– 𝐹 <𝑝𝜙 ≔ 𝑡𝑖𝑚𝑒@𝐹 𝜙 − 𝑡𝑖𝑚𝑒 < 𝑝 ∧ 𝐹 𝜙 

• Counting logic 
– 𝜙 will occur 𝑘 times within 𝑝 

– 𝐶 <𝑝
𝑘 𝜙 ≔ 𝑡𝑖𝑚𝑒@𝐹 𝑘𝜙 − 𝑡𝑖𝑚𝑒 < 𝑝 ∧ 𝐹 𝑘𝜙 

• 𝑝 can be a parameter! 
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A Sensor Example 

• Output 𝑥 always equal to the last correct input y: 
𝐺 𝑥 = 𝑦@𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

• Permanent failure: 𝐺(¬𝑐𝑜𝑟𝑟𝑒𝑐𝑡 → 𝐺 ¬𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ) 

• Read periodically: 𝑝 > 0 ∧ 𝑟𝑒𝑎𝑑 ∧ 𝐺 𝑟𝑒𝑎𝑑 →⊳=p 𝑟𝑒𝑎𝑑  

• Trigger an alarm when last two readings are not 

equal: 𝐺 𝑎 ↔ 𝑥@𝑃 𝑟𝑒𝑎𝑑 ≠ 𝑥@𝑃 2 𝑟𝑒𝑎𝑑  

• Property: 𝐺 ¬𝑐𝑜𝑟𝑟𝑒𝑐𝑡 → 𝐹≤2∗𝑝𝑎  
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A Factory Example 

• PLC interface: 

– Load bottle 

– Move belt 

– Open/close valve1/valve2 

– Sense liquid level 

• Property: 

– The final liquid level in the  

bottle is equal the filling rate  

times the time difference 

between closing and opening  

the valve 

• One bottle at a time: 
– 𝐺(𝑠𝑒𝑛𝑠𝑜𝑟5 = 𝑏𝑜𝑡𝑡𝑙𝑒𝑂𝐾 → 

 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡1 = 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ (𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝐶𝑙𝑜𝑠𝑒 − 𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝑂𝑝𝑒𝑛 )) 

• Many bottles: 
– 𝐺(𝑠𝑒𝑛𝑠𝑜𝑟5 = 𝑏𝑜𝑡𝑡𝑙𝑒𝑂𝐾 → 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡1 = 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ (𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝐶𝑙𝑜𝑠𝑒 −

𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝑂𝑝𝑒𝑛 )@𝑃3(𝑚𝑜𝑣𝑒𝐵𝑒𝑙𝑡)) 
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Extension for hybrid systems 

• In hybrid systems, some variables evolve continuously in time 

• The trace 𝜎 is continuous and differentiable almost everywhere 

• Super-dense time: 𝑇 ⊂ ℕ × ℝ0
+ such that 𝐼𝑛 = {𝑡 ∣ 𝑛, 𝑡 ∈ 𝑇} is 

a time sequence 

• Discontinuous changes are allowed on discrete steps time points 
(i.e., in 〈𝑛, 𝑡〉 if 〈𝑛 + 1, 𝑡〉 is also in 𝑇) 

• Add predicates over derivatives: 𝑑𝑒𝑟 𝑋 ≥ 0 

• Restricted to linear constraints over derivatives 
– No comparison with variables (e.g., 𝑑𝑒𝑟 𝑥 = 𝑥) 

– To allow reduction to LTL with linear SMT constraints 
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Examples 

• The derivative of “x” is always less than 2:  
– 𝐺(𝑑𝑒𝑟 𝑥 < 2) 

• Whenever “a” holds, the derivative of “x” is zero 
– 𝐺(𝑎 → 𝑑𝑒𝑟 𝑥 = 0) 

• Whenever “a” holds, “b” remain true until the derivative of “x” is 
less or equal to 5 

– 𝐺 𝑎 → 𝑏 𝑈 𝑑𝑒𝑟 𝑥 ≤ 5   
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Equi-Satisfiability Reduction 

• Consider 𝜙 with super-dense semantics (dense time is 
a subcase) 

1. Discretize time 

– Equi-satisfiable LTL formula with 𝑛𝑒𝑥𝑡 

2. Remove event-freezing functions 

– Equi-satisfiable LTL formula with monitors 

3. Check validity with SMT-based model checking 
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Discretization idea 

• Exploit finite variability 

• Split the trace into intervals that are fine for the subformulas of input 
formula 𝜙 

• Consider only singular and open intervals 

• In case of open interval, the discrete state is a sample for some 
timepoint in the interval 

• One discrete timepoint for each interval 

• Introduce extra variables to represent the super-dense structure 
– 𝜄 is true iff the current discrete timepoint corresponds to a singular interval 

– 𝛿 is a real variable that stores the time elapsed between current and next 
timepoint 

𝐺( 𝜄 ∧ 𝑋𝜄 ∧ 𝛿 = 0 ∨ (𝜄 ∧ 𝑋¬𝜄 ∧ 𝛿 > 0) ∨ (¬𝜄 ∧ 𝑋𝜄 ∧ 𝛿 > 0) 

• In case of hybrid constraints add also 
– Constraints over derivatives. 

– Continuity of predicates along continuous evolution (e.g., (¬𝜄 x) → x) 
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Rewriting the Event-Freezing Functions 

• Replace 𝑢@𝐹𝜙 with a prophecy variable 𝑝𝑢@𝐹𝜙 

• Add monitoring conditions: 

– 𝐺 𝐹𝜙 → ¬𝜙 ∧ 𝑛𝑒𝑥𝑡 𝑝𝑢@𝐹𝜙 = 𝑝𝑢@𝐹𝜙 𝑈 𝜙 ∧ 𝑝𝑢@𝐹𝜙 = 𝑢   

– 𝐺 𝐺¬𝜙 → 𝑝𝑢@𝐹𝜙 = 𝑑𝑒𝑓𝑢@𝐹𝜙  
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SMT-Based Temporal Satisfiability 
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Symbolic Transition System 

• As before 
– Given a many-sorted first-order signature Σ and a Σ-theory 𝒯 

– Formulas implicitly mean Σ-formulas and ⊨ implicitly means ⊨𝒯  

• A transition system is a tuple 〈𝑉, 𝐼, 𝑇〉 where: 
– 𝑉 is a finite set of variables 

– The set of initial states represented by the formula 𝐼(𝑉) 

– The transition relation represented by the formula 𝑇 𝑉, 𝑉′  
where 𝑉′ ≔ {𝑛𝑒𝑥𝑡 𝑣 ∣ 𝑣 ∈ 𝑉} 

• A state s = 𝑀, 𝜇  is given by Σ-structure 𝑀 and an assignment 𝜇 to variables 𝑉 

• Trace 𝜎 = 𝑀, 𝜇   (implicitly with a discrete time model) 
– Σ-structure 𝑀 

– 𝜇:ℕ → 𝑀𝑉  

• In other words, a trace is a sequence 𝑠0, 𝑠1, 𝑠2, … of states with the same 
structure 𝑀 
– A finite trace is a finite sequence 

• A trace of the system S is a trace 𝑠0, 𝑠1, 𝑠2, … of states such that 𝑠0 ⊨ 𝐼 and for 
all 𝑖, 𝑠𝑖 ⋅ 𝑠

′
𝑖 ⊨ 𝑇 
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Example: 
𝑉 = {𝑥, 𝑦} 
𝐼≔𝑥=1∧𝑦=1 

𝑇≔𝑥′=𝑥+1∧𝑦′=𝑦+𝑥 



Model Checking 

• Given an LTL formula 𝜙, 𝑀 ⊨𝐿𝑇𝐿 𝜙 iff for every trace 𝜎 of 𝑀, 
𝜎 ⊨ 𝜙 

• A state 𝑠 is reachable iff there exists a trace 𝑠0, 𝑠1, … , 𝑠𝑘  such 
that 𝑠 = 𝑠𝑘  

• A formula 𝑃(𝑉) is an invariant (𝑀 ⊨𝐼𝑁𝑉 𝑃) iff for all traces 
𝑠0, 𝑠1, … , 𝑠𝑘, for all 𝑖, 𝑠𝑖 ⊨ 𝑃 

• Equivalent to say that no state in ¬𝑃 is reachable 

• Similar to LTL property 𝐺(𝑃) but slightly different: 
– Invariants defined over finite traces 

– LTL defined over infinite traces 

– There may be a counterexample 𝜎 for the invariant 𝑃 and for LTL 𝐺(𝑃) 
because 𝜎 cannot be extended to an infinite trace 

– If 𝑀 ⊨𝐼𝑁𝑉 𝑃 then 𝑀 ⊨𝐿𝑇𝐿 𝐺(𝑃) 

– If 𝑀 is deadlock free and 𝑀 ⊨𝐿𝑇𝐿 𝐺(𝑃), then 𝑀 ⊨𝐼𝑁𝑉 𝑃 
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LTL Satisfiability as Model Checking 

• Consider universal model 𝑀𝑈 ≔ 〈V,⊤, ⊤〉 

• 𝜙 is satisfiable iff 𝑀𝑈 ⊭ ¬𝜙 

• Automata-theoretic approach: 

– Build a transition system 𝑀𝜙 with a fairness condition 𝑓𝜙, such that 

𝜎 ⊨ 𝐺𝐹𝑓𝜙  iff 𝜎 ⊨ 𝜙 for every trace 𝜎 of 𝑀𝜙 

– 𝜙 is satisfiable iff 𝑀𝜙 ⊭ 𝐹𝐺¬𝑓𝜙 

• Standard techniques to build 𝑀𝜙 [Vardi95] in case of 

propositional LTL 

• In case of first-order LTL: 

– 𝜙 ≔ 𝜙 𝑝 ↦ 𝑣𝑝 𝑝∈𝑆𝑢𝑏(𝜙)
 where 𝑣𝑝 are fresh Boolean variables 

– If 𝑀𝜙 = 〈𝐼𝜙 , 𝑇𝜙 〉 then 𝑀𝜙 ≔ 〈𝐼𝜙 , 𝑇𝜙 ∧  𝑝 ↔ 𝑣𝑝𝑝∈𝑆𝑢𝑏(𝜙)  〉 
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K-liveness 

• Symbolic techniques for proving 𝐹𝐺 require a doubly-nested fixpoint 

• SAT-based approaches typically reduce the problem to invariant 
checking 

• K-Liveness: simple but effective technique for LTL verification of finite-
state systems [ClaessenSörensson12] 

• Key insight: 𝑀 ⊨ 𝐹𝐺¬𝑓¬𝜙 iff there exists k such that 𝑓¬𝜙  is visited at 
most k times 
– Again, a safety property 

• K-liveness: increase k incrementally 
– Liveness checking as a sequence of safety checks 

• From finite to infinite 
– No change 

– Sound to prove properties, but not complete 

– Property may hold, but fairness can be visited an unbounded number of times 

– Extended in [Cimatti et al. 14] for hybrid systems 
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Other techniques 

• BMC 
– Add encoding of lasso-shape and fairness 

– Sound for finding traces, but not complete 

– The only counterexample may be not lasso-shape 

• Liveness2safety 
– Not sound (proving absence of lasso-shape is not sufficient) 

– Extended in [SchuppanBiere06] for specific classes of systems 

– Extended in [Daniel et al. 16] to consider only abstract lasso-shape paths 
and to integrate ranking functions like for termination 
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Induction 

• 𝑃 is an inductive invariant iff 
– Base case: check if the initial state satisfies 𝑃  

𝐼 𝑉 ⊨ 𝑃 

– Inductive case: check if the transitions preserve the invariant 
𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉′ ⊨ 𝑃 𝑉′  
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Example 

• 𝑉 ≔ 𝑥1, 𝑥2,, 𝑥3  

• 𝐼 ≔ ¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3 

• 𝐵𝑎𝑑 ≔ 𝑥1 ∧ 𝑥2 

• 𝑃 ≔ ¬𝑥1 ∨ ¬𝑥2 

• Inductive?  

• Inductive invariant? 
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Induction proof strategies 

• Different strategies to prove 𝑃 (see [MannaPnueli95]) 

• Stronger assertion: find 𝑆 such that 
– 𝑆 is inductive  

– 𝑆 ⊨ 𝑃 

• Incremental strategy: 
– Use previously proved invariant 𝑆  

– Check if 𝑃 is inductive relative to 𝑆  

𝑆 ∧ 𝑃 ∧ 𝑇 ⊨ 𝑃′ 

• Note that the set of reachable states is the strongest inductive 
invariant 
– Needs quantifiers 

– SMT with quantifiers is in many theories very complex or undecidable 
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Incremental induction example 

• Example: 
– 𝐼 ≔ 𝑥 = 1 ∧ 𝑦 = 1 

– 𝑇 ≔ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 + 𝑥 

– 𝑃 ≔ 𝑦 ≥ 1 

• Is 𝑃 inductive? 

• 𝑃 is inductive relative to … 
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IC3 

• Very successful SAT-based model checking algorithm 
proposed by Bradley in 2011 

• Inductive invariant built incrementally 

• Trace of formulas 𝐹0 ≡ 𝐼, 𝐹1, … , 𝐹𝑘 s.t: 

• for 𝑖 > 0, 𝐹𝑖 is a set of clauses, overapproximation of states 
reachable in up to 𝑖 steps 

• 𝐹𝑖+1 ⊆ 𝐹𝑖 (so 𝐹𝑖 ⊨ 𝐹𝑖+1) 

• 𝐹𝑖 ∧ 𝑇 ⊨ 𝐹𝑖+1
′  

• For all i < k, 𝐹𝑖 ⊨ 𝑃 

• Strengthen formulas until 𝐹𝑖 = 𝐹i+1 for some 𝑖 

• Exploiting efficient SAT solvers 
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IC3 key points 

• Blocking phase:  

• If 𝐹𝑖−1 ∧ ¬𝑐 ∧ 𝑇 ⊨ ¬𝑐′ and 𝐼 ⊨ ¬𝑐, add generalize 𝑐 to 𝑔 

and block by adding ¬𝑔 to 𝐹𝑖 , 𝐹𝑖−1, … , 𝐹1 

• Propagation phase:  

• If 𝑐 ∈ 𝐹𝑖 and 𝐹𝑖 ∧ 𝑇 ⊨ 𝑐′, add 𝑐 to 𝐹𝑖+1 
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Example 
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Predicate Abstraction 

• Reduction to finite-state MC [GrafSaidi97] 

• Predicates ℙ over concrete variables to 
define the abstraction 

• Abstract state space given by Boolean 
variables, one for each predicate V =

𝑣𝑝  𝑝 ∈ ℙ} 

• Abstract state 𝛼 𝑠 = 𝑣𝑝  𝑠 𝑝 = ⊤} 
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• Abstract transition iff there exists a concrete transition between two 
corresponding concrete states 

𝑇 = 𝑠 , 𝑠 ′ ∃𝑠, 𝑠′, 𝛼 𝑠 = 𝑠 , 𝛼 𝑠′ = 𝑠 ′, 𝑇(𝑠, 𝑠′)} 

• Spurious paths can be removed by adding more predicates (automatically 
extracted by the path) – see CEGAR in [Clarke et al.00] 

 

 

 



Implicit Predicate Abstraction 

• Abstract version of BMC and k-induction, avoiding explicit computation 
of the abstract transition relation [Tonetta09] 

• By embedding the abstraction in the SMT encoding 

• 𝐸𝑄(𝑉1, 𝑉2) ≔  𝑝 𝑉1 ↔ 𝑝(𝑉2)𝑝∈ℙ  

• For example, given the encoding a sequence of concrete transitions 

𝑇 𝑉0, 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ ⋯∧ 𝑇 𝑉𝑘−1, 𝑉𝑘  

• The abstract version is 

𝑇 𝑉0, 𝑉1 ∧ 𝐸𝑄 𝑉1, 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ 𝐸𝑄 𝑉2, 𝑉2 ∧ 𝑇 𝑉2, 𝑉3 ∧ ⋯ 
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IC3 with Implicit Abstraction 

• Integrate the idea of Implicit Abstraction within IC3 [Cimatti et al. 14] 

• 𝑃 is inductive relative to 𝑆 iff the following is unsat 
𝑆 𝑉 ∧ 𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉′ ∧ ¬𝑃(𝑉′) 

• 𝑃 is inductive relative to 𝑆 in the abstraction with predicates ℙ iff 
the following is unsat 

𝑆 𝑉 ∧ 𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉 ∧ 𝑝 𝑉′ ↔ 𝑝 𝑉

𝑝∈ℙ

∧ ¬𝑃(𝑉′) 

• No theory-specific technique needed 

• No preimage needed 

• Same generalization as in the finite-state case 
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Abstraction refinement 

• Abstract counterexample check can use incremental SMT 

• Abstraction refinement is fully incremental 

• No restart from scratch 

• Can keep all the clauses of 𝐹1, … , 𝐹𝑘  

• Refinements monotonically strengthen 𝑇 

𝑇𝑛𝑒𝑤 ≔ 𝑇𝑜𝑙𝑑 ∧  𝑝 𝑉 ↔ 𝑝 𝑊 ∧ 𝑝 𝑉′ ↔ 𝑝 𝑊′

𝑝∈𝑛𝑒𝑤ℙ

 

• All IC3 invariants on 𝐹1, … , 𝐹𝑘 are preserved  

• 𝐹𝑖+1 ⊆ 𝐹𝑖 (so 𝐹𝑖 ⊨ 𝐹𝑖+1) 

• 𝐹𝑖 ∧ 𝑇 ⊨ 𝐹𝑖+1
′  

• For all i < k, 𝐹𝑖 ⊨ 𝑃 
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Example 

• System with 2 state vars c and d 
– Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑) 

– Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1) 

– Property: 𝑑 > 2 → (𝑐 > 𝑑) 

• Predicates ℙ  
– 𝑑 = 1 , 𝑐 ≥ 𝑑 ,  

– 𝑑 > 2 , 𝑐 > 𝑑 , 

– 𝑑 ≥ 2 , (𝑑 ≥ 3) 

• Final trace 
– 𝐹0 ≔ 𝐼𝑛𝑖𝑡 

– 𝐹1 ≔ ¬ 𝑑 > 2 ∧ 𝑐 ≥ 𝑑 ∧ 𝐹2 

– 𝐹2 ≔ 𝐹3 ≔ 𝑐 ≥ 𝑑 ∨ ¬ 𝑑 ≥ 2 ∧ 𝑑 = 1 ∨ 𝑑 ≥ 2 ∧ 𝐹4 

– 𝐹4 ≔ 𝑐 > 𝑑 ∨ ¬(𝑑 > 2) 
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Summary 

Contract-based reasoning 

(Extended) Metric/Hybrid LTL SMT over 
(super)dense time 

(Extended) LTL SMT over discrete time 

LTL SMT-based Model Checking 

Invariant SMT-based Model Checking 
(IC3 with Implicit Abstraction) 
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Conclusions 

• Overview of extensions of LTL with SMT-based support 

• Motivated by component-based design of embedded systems 

• Rich language that includes: 
– First-order terms to represent the state 

– Discrete, dense, or super-dense models of time 

– Event-freezing functions which can express metric time, event clocks, and 
counting constraints 

• Supported by complex layered tool chain 

• Effective in practice for many problems 
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Future Directions 

• From satisfiability to realizability 

• Parameter synthesis (see work on tightening [SEFM16]) 

• Integrating security properties such as information flow 

• Integrating probabilities 

• Checking diagnosability and synthesis of monitors 

• Specification mining from traces 

 

• Contact me for next open positions for post-doc!  
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