
 SMT-Based Satisfiability of Temporal Logic

Stefano Tonetta
Fondazione Bruno Kessler
tonettas@fbk.eu

SCARE Workshop 2017
October 25, 2017
Bad Zwischenahn, Germany

The CITADEL project receives funding from the
European Union's Horizon 2020 Research and
Innovation Programme under grant
agreement No. 700665.

Part of the material have been taken from
presentations of A. Cimatti and A. Griggio

mailto:tonettas@fbk.eu

Outline

• Motivations

• Temporal Satisfiability Modulo Theories
– Models of Time

– First-Order Temporal Logic

– Temporal Satisfiability Modulo Theories

– Extensions and Equi-SAT Reductions

• SMT-Based Satisfiability
– Symbolic Model Checking

– LTL Model Checking

– IC3IA

• Conclusions

2 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

The ES Unit at FBK

Fondazione Bruno Kessler (FBK) is a research non-profit public interest
entity, located in Trento, Italy
Embedded Systems (ES) Unit
• Head: Alessandro Cimatti
• People: 25-30, research staff, programmers, PhD students,

technologists
• Technology transfer: Intel, Boeing, NASA, Ansaldo, others under NDA
Topics:
• Model checking
• Design automation with formal methods
• Autonomous reasoning and control
Beyond Model Checking:
• Requirements analysis
• Contract-based design
• Safety analysis (in case of faults)
• Fault detection, identification and recovery (FDIR)
• Planning
Strategy:
• Basic research
• Tool development
• Technology transfer

3 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Research

Technology
Transfer

Tools

ES Tools

• NuSMV
– Open Source, widely used: +10 years, used in +25 external projects, +500 download/month
– Discrete-Time Finite-state systems
– Model Checking of CTL, LTL, PSL properties (BDD and SAT)

• nuXmv
– Discrete-Time Infinite-state Systems with Integers, Reals, and Uninterpreted Functions types
– Implements SMT-based verification techniques, through a tight integration with MathSAT5
– Extended model checking algorithms (Interpolation-based, IC3-based, K-liveness, …)
– Parameter synthesis
– Validation of properties/requirements

• HyCOMP
– Allows modeling and verification of Asynchronous Hybrid Systems with event-based synchronization
– Verification of Invariant properties and LTL properties
– Discretization of hybrid systems to the nuXmv language

• xSAP
– Safety Analysis of Discrete Infinite Synchronous Systems
– Automatic model extension with fault specifications
– Fault Tree Analysis (FTA) and generation of Minimal Cut Sets (MCS) for dynamic systems
– Fault propagation analysis based on Timed Failure Propagation Graphs (TFPG)
– Fault Detection and Isolation (FDI) design and Diagnosability Analysis

• OCRA
– Contract Refinement
– Contract-based compositional verification of SMV (nuXmv) and HyDI (HyCOMP)
– Contract-based fault-tree generation
– Validation of contracts
– Supports synchronous and asynchronous composition

4 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

COMPASS

5 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

• Toolset for
HW/SW co-design

• Developed mainly in ESA
projects

• Main functions:
• Requirements

validation
• Functional verification
• Automated fault

extension
• Safety assessment
• FDIR analysis
• Performability analysis

• ES Tools integrated as
backed

Projects with the European Space Agency (2008-2016)

• Autonomy
– OMC-ARE

– IRONCAP

• Model-based co-design of Hw-Sw
– COMPASS

– AUTOGEF

– FAME

– FOREVER

– HASDEL

– CATSY

– COMPASS3

6 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

AIR6110 Wheel Brake System

• Joint scientific study with Boeing
• Aerospace Information Report 6110:

– Traditional Aircraft/System Development Process Example
– Describes the development process of a Wheel Brake System

for a fictional dual-engine aircraft
– Analyzes different architectures with standard informal

techniques

• Objectives:
– Analyze the system safety through formal techniques
– Repeat AIR6110 steps with formal techniques to demonstrate

the usefulness and suitability of formal techniques for
improving the overall traditional development and
supporting aircraft certification

• Control brake for aircraft wheels
• Redundancy

– Multiple BCSU
– Hydraulic plants

• Functions
– Asymmetrical braking
– Antiskid

• Single wheel/coupled
• depending on control mode

7 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

WBS: Adopted approach

3 SMT-Based Satisfiability of Temporal Logic

V & V

Safety Assessment

Fault extension Fault trees computation

Architecture
decomposition

& Contracts
ocra language

• Automatic contract refinement
verification

• Automatic fault extension • Automatic hierarchical fault tree
generation

• Over-approximation

Behavioral

Implementation
(Leaf components

& System)
smv language

• Automatic compositional
verification

• Automatic monolithic verification

• Failure modes defined by the
user

• Generation of the extended
system implementation

• Automatic flat fault tree
generation

xSAP

OCRA

xSAP

OCRA OCRA

Semi-automatic
Generation

MODELING

ANALYSIS

nuXmv

OCRA

𝑀 ⊨ 𝜑

𝑀

𝑀 ⇝ 𝑀 𝐹 𝛿 𝐹 ∶ 𝑀 𝐹 ⊨ 𝜑 /

SCARE 2017

WBS: Conclusion

• Results:
– Cover the process described in AIR6110 with formal methods

– Production of modular descriptions of 5 architectures variants
• Analysis of their characteristics in terms of a set of requirements expressed as

properties

• Production of more than 3000 fault trees

• Production of reliability measures

– Detection of an unexpected flaw in the process
• Detection of the wrong position of the accumulator earlier in the process

• Highlights:
– Going from informal to formal allows highlighting the missing information

of the AIR6110 to reproduce the process

– Automated and efficient engines as IC3 is a key factor

– OCRA modular modeling allows a massive reuse of the design through
architectures variant

4 SMT-Based Satisfiability of Temporal Logic SCARE 2017

Wide Literature on Contracts for CPS

• Contracts first conceived for OO programing [Meyer, 82].
• New challenge given by CPS

– E.g., Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems. European Journal of
Control, 18(3):217-238, 2012.

• Contracts theories such as
– Albert Benveniste, Benoît Caillaud, Roberto Passerone: A Generic Model of Contracts for

Embedded Systems. CoRR abs/0706.1456 (2007)
– Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen, Axel Legay, Ulrik

Nyman, Andrzej Wasowski: Moving from Specifications to Contracts in Component-Based
Design. FASE 2012: 43-58

– Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet,
Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner Damm, Thomas A.
Henzinger, and Kim G. Larsen. Contracts for Systems Design. Rapport de recherche RR-8147,
INRIA, 2012

– Alessandro Cimatti, Stefano Tonetta: A Property-Based Proof System for Contract-Based
Design. EUROMICRO-SEAA 2012: 21-28

• Tool support such as
– Darren D. Cofer, Andrew Gacek, Steven P. Miller, Michael W. Whalen, Brian LaValley, Lui Sha:

Compositional Verification of Architectural Models. NASA Formal Methods 2012: 126-140
– Alessandro Cimatti, Michele Dorigatti, Stefano Tonetta: OCRA: A tool for checking the

refinement of temporal contracts. ASE 2013: 702-705

10 SMT-Based Satisfiability of Temporal Logic SCARE 2017

Trace-based contract refinement

• The set of contracts 𝐶𝑖 refines 𝐶 with the connection 𝛾 (𝐶𝑖 ≼𝛾 𝐶)
iff for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖 and correct environment
𝐸𝑛𝑣 of 𝐶:
– The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C.

– For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of
𝐶𝑘.

• 𝐶1 = 𝛼1, 𝛽1 , … , 𝐶𝑛 = 𝛼𝑛, 𝛽𝑛 , 𝐶 = 〈𝛼, 𝛽〉

• Proof obligations for contract refinement:

– 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽

The subcomponents entail the parents’ contract

– 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖

The subcomponent’s assumption is entailed

by the subcomponent context

• 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid

11 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Component

Sub

Sub

C

C1

C2

OCRA tool support

• OCRA supports contracts where assumptions and guarantees are
expressed in extensions of Linear-time Temporal Logic

• Supports both discrete or super-dense (hybrid) models of time

• Supports both synchronous and asynchronous composition of
components

• Integrated with nuXmv for validity checking and model checking
in case of discrete time

• Integrated with HyCOMP for validity checking and model
checking in case of super-dense time

• Integrated with xSAP for contract-based fault-tree generation

• Integrated with CASE tools (AutoFocus3, CHESS, COMPASS)

12 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Formalization of Component Requirements

13 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

• Components are specified as black boxes
• Visible traces of input/output data/events
• Linear-time Temporal Logic (LTL) well accepted formalism to specify

component properties
• Embedded systems application needs

– Rich data  first-order
– Combine continuous and discrete components  hybrid (super-dense) model of

time

• Moreover, component input/output events occur at different points of time
– Need to relate data at different point of time (like storing values in extra variables

and freeze them along time)
– Need to constrain time difference (bounded response, periodicity, …)

• Reasoning needs engine to solve validity/satisfiability queries
– Refinement proof obligation, consistency of assertions, …

Examples

• The counter is increased whenever a new valid message is
received
– 𝑎𝑙𝑤𝑎𝑦𝑠 (𝑉𝑎𝑙𝑖𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 → 𝑛𝑒𝑥𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1)

• The user shall switch the dispatcher to high before entering high-
level data.
– 𝑎𝑙𝑤𝑎𝑦𝑠 (ℎ𝑖𝑔ℎ𝐿𝑒𝑣𝑒𝑙 𝑑𝑎𝑡𝑎 → 𝑐𝑚𝑑@𝑙𝑎𝑠𝑡 𝑠𝑤𝑖𝑡𝑐ℎ = 𝑡𝑜𝐻𝑖𝑔ℎ)

• The train trip shall issue an emergency brake command, which
shall not be revoked until the train has reached standstill and the
driver has acknowledged the trip (ETCS SRS Sec. 3.13.8.2)

– 𝑎𝑙𝑤𝑎𝑦𝑠 𝑡𝑟𝑎𝑖𝑛𝑇𝑟𝑖𝑝 → 𝑏𝑟𝑎𝑘𝑒 𝑢𝑛𝑡𝑖𝑙 𝑠𝑝𝑒𝑒𝑑 = 0 ∧ 𝑑𝑟𝑖𝑣𝑒𝑟𝐴𝑐𝑘

14 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Temporal Satisfiability Modulo Theory

SCARE 2017 15 SMT-Based Satisfiability of Temporal Logic

Many-Sorted First-Order LTL

• Many-Sorted Signature Σ = 〈Ω,Φ, Π, Ζ, 𝛾〉
– Ω set of constant symbols
– Φ set of function symbols
– Π set of predicate symbols
– Ζ set of sorts
– 𝛾 assigns sorts to symbols

• Σ-variables 𝑉 = ⋃ 𝜁∈Ζ𝑉𝜁
– 𝛾 𝑥 = 𝜁 iff 𝑥 ∈ 𝑉𝜁

• Terms: 𝑢 ≔ 𝑐 ∣ 𝑥 ∣ 𝑓 𝑢,… , 𝑢
– If 𝑢 = 𝑐 and 𝑐 ∈ Ω, then 𝑢 is a term and 𝛾 𝑢 = 𝛾 𝑐

– If 𝑢 = 𝑥 and 𝑥 ∈ V𝜁 , then 𝑢 is a term and 𝛾 𝑢 = 𝜁

– If 𝑢 = 𝑓 𝑢1, … , 𝑢𝑛 , 𝑢1, … , 𝑢𝑛 are terms, 𝑓 ∈ Φ, and
𝛾 𝑓 = 〈𝛾 𝑢1 , … , 𝛾 𝑢𝑛 , 𝜁〉, then 𝑢 is a term and 𝛾 𝑢 = 𝜁

• Temporal formulas: 𝜙 ≔ 𝑝 𝑢,… , 𝑢 ∣ 𝜙 ∧ 𝜙 ∣ ¬𝜙 ∣ 𝜙𝑈 𝜙 ∣ 𝜙𝑆 𝜙
– where 𝑝 𝑢1, … , 𝑢𝑛 is a formula if 𝑢1, … , 𝑢𝑛 are terms, 𝑝 ∈ Π, and 𝛾 𝑝 =

𝛾 𝑢1 , … , 𝛾 𝑢𝑛

• Quantifier-free fragment

16 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Example:
Ωr ≔ 0,1

Φ𝑟 ≔ {+,−,×, 𝑓}
Πr ≔ =,<
Ζ ≔ {𝑅}
𝑉𝑟 ≔ {𝑥, 𝑦}

𝑥 < 𝑓 𝑥 𝑈 𝑥 = 𝑦

States and Traces

• State s = 𝑀, 𝜇
– Σ-structure 𝑀

– Assignment 𝜇 to variables 𝑉

• Time structure 𝜏 = 𝑇, 0, <, 𝑣
– 𝑇 is the time domain, set of time points

– 0 ∈ 𝑇 is the initial time point

– < is a total order over 𝑇

– 𝑣: 𝑇 → ℝ0
+ is the real-time value of the time point

• Trace 𝜎 = 〈𝑀, 𝜏, 𝜇〉
– Σ-structure 𝑀

– Time model 𝜏 = 〈𝑇, 0,<, 𝑣〉

– 𝜇: 𝑇 → 𝑀𝑉
• 𝑀𝑉 set of states with same structure 𝑀

• 𝜎 𝑡 ≔ 𝜇(𝑡)

• Σ symbols are rigid, same interpretation in 𝜎(𝑡) and 𝜎(𝑡′)
– As in SMT, some symbols are interpreted by the theory while others are uninterpreted

– Uninterpreted symbols are parameters in the temporal setting

17 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

𝑀 = ℝ, 0ℝ, 1ℝ, +ℝ, −ℝ,×ℝ, <ℝ, 𝑓𝑀

∀𝑧, 𝑓𝑀 𝑧 ≔ −ℝ𝑧
∀𝑡, 𝜎 𝑡 𝑥 ≔ 𝑡−ℝ1ℝ
∀𝑡, 𝜎 𝑡 𝑦 ≔ −ℝ𝑡

Uniform Structure of Time

• Discrete time:

– 𝑇 = ℕ

– 𝑣 0 , 𝑣 1 , 𝑣 2 , …

weakly-monotonic diverging

• Dense time:
– 𝑇 = ℝ0

+

– 𝑣 𝑡 = 𝑡

• Super-dense:

– 𝑇 ⊂ ℕ ×ℝ0
+ such that 𝐼𝑛 =

{𝑡 ∣ 𝑛, 𝑡 ∈ 𝑇} is a time sequence

– 𝑣 𝑛, 𝑡 = 𝑡

18 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Position
Far

Near

ST
A

TE

Past

Time

Temporal Satisfiability Modulo Theories

• 𝜎, 𝑡 ⊨ 𝑝 iff 𝜎 𝑡 ⊨ 𝑝
– Implicitly modulo Σ-theory 𝒯

• E.g., theory of reals 𝒯ℝ

– Finite variability assumption:

• For every bounded interval 𝐼, the interpretation of 𝑝 changes only finitely
many times

• 𝜎, 𝑡 ⊨ 𝜙1U 𝜙2 iff there exists 𝑡′ > 𝑡, 𝜎, 𝑡′ ⊨ 𝜙2 and for all
𝑡′′, 𝑡 < 𝑡′′ < 𝑡′, 𝜎, 𝑡′′ ⊨ 𝜙1

• 𝜎, 𝑡 ⊨ 𝜙1𝑆 𝜙2 iff there exists 𝑡′ < 𝑡, 𝜎, 𝑡′ ⊨ 𝜙2 and for all
𝑡′′, 𝑡′ < 𝑡′′ < 𝑡, 𝜎, 𝑡′′ ⊨ 𝜙1

19 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Standard Abbreviations

• Non-strict until (standard for discrete time)

– 𝜙1𝑈𝜙2 ≔ 𝜙2 ∨ 𝜙1 ∧ 𝜙1𝑈 𝜙2

• Non strict since

– 𝜙1𝑆𝜙2 ≔ 𝜙2 ∨ 𝜙1 ∧ 𝜙1𝑆 𝜙2

• In the future 𝜙

– 𝐹𝜙 ≔ ⊤𝑈𝜙

• Always 𝜙
– G𝜙 ≔ ¬𝐹¬𝜙

• In the past 𝜙
– P𝜙 ≔ ⊤S𝜙 (sometimes denoted by 𝑂)

• Always in the past 𝜙 (historically)
– H𝜙 ≔ ¬P¬𝜙

20 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Next Operator

• 𝑋𝜙 ≔⊥ 𝑈 𝜙
– Can be true only on discrete steps

– With discrete time, it is true in 𝑡 iff 𝜙 is true in 𝑡 + 1

– Always false with dense time

– With super-dense time, it is true in 〈𝑛, 𝑡〉 iff 〈𝑛 + 1, 𝑡〉 is also in 𝑇 and 𝜙 is true
in 〈𝑛 + 1, 𝑡〉

• 𝑋 𝜙 ≔ 𝜙𝑈 ⊤ ∧ ¬𝑋⊤
– Always false in discrete steps

– Always false with discrete time

– With dense time, it is true in 𝑡 iff 𝜙 is true in 𝑡, 𝑡′ for some 𝑡′

– With super-dense time, it is true in 〈𝑛, 𝑡〉 iff 〈𝑛 + 1, 𝑡〉 is not in 𝑇 and 𝜙 is true
in 〈𝑛, 𝑡, 𝑡′ 〉 for some 𝑡′

21 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

𝑝

𝑋𝑝 𝑋 𝑝 𝑋 𝑝

Next and ITE Functions

• With discrete time 𝑛𝑒𝑥𝑡(𝑢) is the value of 𝑢 at time
𝑡 + 1

– 𝜎′ 𝑡 𝑛𝑒𝑥𝑡 𝑢 ≔ 𝜎(𝑡 + 1)(𝑢)

– 𝜎, 𝑡 ⊨ 𝑝 iff 𝜎 𝑡 ⋅ 𝜎′(𝑡) ⊨ p

• Where 𝑀, 𝑠 ⋅ 𝑀, 𝑠′ = 𝑀, 𝑠 ∪ 𝑠′

– No counterpart in dense time

• We also use if-then-else 𝑖𝑡𝑒

– 𝜎 𝑡 𝑖𝑡𝑒 𝜙, 𝑢1, 𝑢2 ≔
𝜎 𝑡 𝑢1 𝑖𝑓 𝜎, 𝑡 ⊨ 𝜙

𝜎 𝑡 𝑢2 𝑖𝑓 𝜎, 𝑡 ⊭ 𝜙

22 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Event-Freezing Functions

• 𝑢@𝐹 𝜙 (“𝑢 at next 𝜙”) is the value of 𝑢 at the next point in
the future where 𝜙 holds

• 𝑢@𝑃 𝜙 (“𝑢 at last 𝜙”) is the value of 𝑢 at the last point in
the past where 𝜙 holds

• In discrete time, if there exists a point in the future, there
exists a first point

𝐹𝜙 ≡ ¬𝜙𝑈𝜙
• In dense time, if 𝜙 is true in (𝑡,∞) there is no first point
• But there is a first point in which 𝜙 or 𝑋 𝜙 holds

𝐹𝜙 ≡ ¬𝜙𝑈(𝜙 ∨ 𝑋 𝜙)
– Note we are assuming finite variability

23 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

𝜙 𝑡 ¬𝜙

𝜎 𝑡 𝑢@𝐹 𝜙 = 𝜎(𝑡)(𝑢)

Event-Freezing Functions

• 𝜎 𝑡 𝑢@𝐹 𝜙 = 𝜎(𝑡′)(𝑢) iff

– there exists 𝑡′ > 𝑡 such that 𝜎, 𝑡′ ⊨ 𝜙 and for all 𝑡′′, 𝑡 < 𝑡′′ < 𝑡′, 𝜎, 𝑡′′ ⊭
𝜙

– there exists 𝑡′ ≥ 𝑡 such that 𝜎, 𝑡′ ⊨ 𝑋 𝜙 and for all 𝑡′′, 𝑡 < 𝑡′′ ≤ 𝑡′,
𝜎, 𝑡′′ ⊭ 𝜙

– Else, 𝜎 𝑡 𝑢@𝐹 𝜙 = 𝑑𝑒𝑓𝑢@𝐹 𝜙

• 𝑑𝑒𝑓𝑢@𝐹 𝜙 new symbol added to the signature Σ

• Similarly for 𝑢@𝑃 𝜙

• Non-strict version as abbreviation: 𝑢@𝐹𝜙 ≔ 𝑖𝑡𝑒(𝜙, 𝑢, 𝑢@𝐹 𝜙)

• Counting: 𝑢@𝐹 𝑘+1𝜙 ≔ 𝑢@𝐹 𝜙 @𝐹 𝑘𝜙

24 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Adding Explicit Time

• We add an explicit variable 𝑡𝑖𝑚𝑒 to represent the time elapsed
from the initial state (𝜎 𝑡 𝑡𝑖𝑚𝑒 ≔ 𝑣(𝑡))

• 𝑡𝑖𝑚𝑒@𝐹 𝜙 is the time at the next point in the future where 𝜙
holds (call “time_until” in ocra)

• Can express different real-time properties

• Event clock logic
– Next time in which 𝜙 holds is in the interval 𝐼

– ⊳𝐼 𝜙 ≔ 𝑡𝑖𝑚𝑒@𝐹 𝜙 − 𝑡𝑖𝑚𝑒 ∈ 𝐼 ∧ ¬𝜙𝑈 𝜙

• Metric temporal logic
– 𝜙 will occur within 𝑝

– 𝐹 <𝑝𝜙 ≔ 𝑡𝑖𝑚𝑒@𝐹 𝜙 − 𝑡𝑖𝑚𝑒 < 𝑝 ∧ 𝐹 𝜙

• Counting logic
– 𝜙 will occur 𝑘 times within 𝑝

– 𝐶 <𝑝
𝑘 𝜙 ≔ 𝑡𝑖𝑚𝑒@𝐹 𝑘𝜙 − 𝑡𝑖𝑚𝑒 < 𝑝 ∧ 𝐹 𝑘𝜙

• 𝑝 can be a parameter!

25 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

A Sensor Example

• Output 𝑥 always equal to the last correct input y:
𝐺 𝑥 = 𝑦@𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

• Permanent failure: 𝐺(¬𝑐𝑜𝑟𝑟𝑒𝑐𝑡 → 𝐺 ¬𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

• Read periodically: 𝑝 > 0 ∧ 𝑟𝑒𝑎𝑑 ∧ 𝐺 𝑟𝑒𝑎𝑑 →⊳=p 𝑟𝑒𝑎𝑑

• Trigger an alarm when last two readings are not

equal: 𝐺 𝑎 ↔ 𝑥@𝑃 𝑟𝑒𝑎𝑑 ≠ 𝑥@𝑃 2 𝑟𝑒𝑎𝑑

• Property: 𝐺 ¬𝑐𝑜𝑟𝑟𝑒𝑐𝑡 → 𝐹≤2∗𝑝𝑎

26 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Sensor Monitor

𝑟𝑒𝑎𝑑

𝑥 𝑦

𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑎

A Factory Example

• PLC interface:

– Load bottle

– Move belt

– Open/close valve1/valve2

– Sense liquid level

• Property:

– The final liquid level in the

bottle is equal the filling rate

times the time difference

between closing and opening

the valve

• One bottle at a time:
– 𝐺(𝑠𝑒𝑛𝑠𝑜𝑟5 = 𝑏𝑜𝑡𝑡𝑙𝑒𝑂𝐾 →

 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡1 = 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ (𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝐶𝑙𝑜𝑠𝑒 − 𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝑂𝑝𝑒𝑛))

• Many bottles:
– 𝐺(𝑠𝑒𝑛𝑠𝑜𝑟5 = 𝑏𝑜𝑡𝑡𝑙𝑒𝑂𝐾 → 𝑖𝑛𝑔𝑟𝑒𝑑𝑖𝑒𝑛𝑡1 = 𝑓𝑖𝑙𝑙𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ (𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝐶𝑙𝑜𝑠𝑒 −

𝑡𝑖𝑚𝑒@𝑃 𝑣𝑎𝑙𝑣𝑒1𝑂𝑝𝑒𝑛)@𝑃3(𝑚𝑜𝑣𝑒𝐵𝑒𝑙𝑡))

27 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

liquid level

Liquid Filling
station 1

Liquid Filling
station 2

Mixer
station

Quality Check
station

valve 1 valve 2

Physical Process (PP)

sensor 1 sensor 2 sensor 3 sensor 4

sensor 5

PLC

Extension for hybrid systems

• In hybrid systems, some variables evolve continuously in time

• The trace 𝜎 is continuous and differentiable almost everywhere

• Super-dense time: 𝑇 ⊂ ℕ × ℝ0
+ such that 𝐼𝑛 = {𝑡 ∣ 𝑛, 𝑡 ∈ 𝑇} is

a time sequence

• Discontinuous changes are allowed on discrete steps time points
(i.e., in 〈𝑛, 𝑡〉 if 〈𝑛 + 1, 𝑡〉 is also in 𝑇)

• Add predicates over derivatives: 𝑑𝑒𝑟 𝑋 ≥ 0

• Restricted to linear constraints over derivatives
– No comparison with variables (e.g., 𝑑𝑒𝑟 𝑥 = 𝑥)

– To allow reduction to LTL with linear SMT constraints

28 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Examples

• The derivative of “x” is always less than 2:
– 𝐺(𝑑𝑒𝑟 𝑥 < 2)

• Whenever “a” holds, the derivative of “x” is zero
– 𝐺(𝑎 → 𝑑𝑒𝑟 𝑥 = 0)

• Whenever “a” holds, “b” remain true until the derivative of “x” is
less or equal to 5

– 𝐺 𝑎 → 𝑏 𝑈 𝑑𝑒𝑟 𝑥 ≤ 5

29 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

speed
limit

warning

ST
A

TE

TI
M

E

𝐺 (𝑠𝑝𝑒𝑒𝑑 > 𝑙𝑖𝑚𝑖𝑡 →
𝐹 𝑤𝑎𝑟𝑛𝑖𝑛𝑔)

Equi-Satisfiability Reduction

• Consider 𝜙 with super-dense semantics (dense time is
a subcase)

1. Discretize time

– Equi-satisfiable LTL formula with 𝑛𝑒𝑥𝑡

2. Remove event-freezing functions

– Equi-satisfiable LTL formula with monitors

3. Check validity with SMT-based model checking

30 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Discretization idea

• Exploit finite variability

• Split the trace into intervals that are fine for the subformulas of input
formula 𝜙

• Consider only singular and open intervals

• In case of open interval, the discrete state is a sample for some
timepoint in the interval

• One discrete timepoint for each interval

• Introduce extra variables to represent the super-dense structure
– 𝜄 is true iff the current discrete timepoint corresponds to a singular interval

– 𝛿 is a real variable that stores the time elapsed between current and next
timepoint

𝐺(𝜄 ∧ 𝑋𝜄 ∧ 𝛿 = 0 ∨ (𝜄 ∧ 𝑋¬𝜄 ∧ 𝛿 > 0) ∨ (¬𝜄 ∧ 𝑋𝜄 ∧ 𝛿 > 0)

• In case of hybrid constraints add also
– Constraints over derivatives.

– Continuity of predicates along continuous evolution (e.g., (¬𝜄 x) → x)

31 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Rewriting the Event-Freezing Functions

• Replace 𝑢@𝐹𝜙 with a prophecy variable 𝑝𝑢@𝐹𝜙

• Add monitoring conditions:

– 𝐺 𝐹𝜙 → ¬𝜙 ∧ 𝑛𝑒𝑥𝑡 𝑝𝑢@𝐹𝜙 = 𝑝𝑢@𝐹𝜙 𝑈 𝜙 ∧ 𝑝𝑢@𝐹𝜙 = 𝑢

– 𝐺 𝐺¬𝜙 → 𝑝𝑢@𝐹𝜙 = 𝑑𝑒𝑓𝑢@𝐹𝜙

32 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

SMT-Based Temporal Satisfiability

SCARE 2017 33 SMT-Based Satisfiability of Temporal Logic

Symbolic Transition System

• As before
– Given a many-sorted first-order signature Σ and a Σ-theory 𝒯

– Formulas implicitly mean Σ-formulas and ⊨ implicitly means ⊨𝒯

• A transition system is a tuple 〈𝑉, 𝐼, 𝑇〉 where:
– 𝑉 is a finite set of variables

– The set of initial states represented by the formula 𝐼(𝑉)

– The transition relation represented by the formula 𝑇 𝑉, 𝑉′
where 𝑉′ ≔ {𝑛𝑒𝑥𝑡 𝑣 ∣ 𝑣 ∈ 𝑉}

• A state s = 𝑀, 𝜇 is given by Σ-structure 𝑀 and an assignment 𝜇 to variables 𝑉

• Trace 𝜎 = 𝑀, 𝜇 (implicitly with a discrete time model)
– Σ-structure 𝑀

– 𝜇:ℕ → 𝑀𝑉

• In other words, a trace is a sequence 𝑠0, 𝑠1, 𝑠2, … of states with the same
structure 𝑀
– A finite trace is a finite sequence

• A trace of the system S is a trace 𝑠0, 𝑠1, 𝑠2, … of states such that 𝑠0 ⊨ 𝐼 and for
all 𝑖, 𝑠𝑖 ⋅ 𝑠

′
𝑖 ⊨ 𝑇

34 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Example:
𝑉 = {𝑥, 𝑦}
𝐼≔𝑥=1∧𝑦=1

𝑇≔𝑥′=𝑥+1∧𝑦′=𝑦+𝑥

Model Checking

• Given an LTL formula 𝜙, 𝑀 ⊨𝐿𝑇𝐿 𝜙 iff for every trace 𝜎 of 𝑀,
𝜎 ⊨ 𝜙

• A state 𝑠 is reachable iff there exists a trace 𝑠0, 𝑠1, … , 𝑠𝑘 such
that 𝑠 = 𝑠𝑘

• A formula 𝑃(𝑉) is an invariant (𝑀 ⊨𝐼𝑁𝑉 𝑃) iff for all traces
𝑠0, 𝑠1, … , 𝑠𝑘, for all 𝑖, 𝑠𝑖 ⊨ 𝑃

• Equivalent to say that no state in ¬𝑃 is reachable

• Similar to LTL property 𝐺(𝑃) but slightly different:
– Invariants defined over finite traces

– LTL defined over infinite traces

– There may be a counterexample 𝜎 for the invariant 𝑃 and for LTL 𝐺(𝑃)
because 𝜎 cannot be extended to an infinite trace

– If 𝑀 ⊨𝐼𝑁𝑉 𝑃 then 𝑀 ⊨𝐿𝑇𝐿 𝐺(𝑃)

– If 𝑀 is deadlock free and 𝑀 ⊨𝐿𝑇𝐿 𝐺(𝑃), then 𝑀 ⊨𝐼𝑁𝑉 𝑃

35 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

LTL Satisfiability as Model Checking

• Consider universal model 𝑀𝑈 ≔ 〈V,⊤, ⊤〉

• 𝜙 is satisfiable iff 𝑀𝑈 ⊭ ¬𝜙

• Automata-theoretic approach:

– Build a transition system 𝑀𝜙 with a fairness condition 𝑓𝜙, such that

𝜎 ⊨ 𝐺𝐹𝑓𝜙 iff 𝜎 ⊨ 𝜙 for every trace 𝜎 of 𝑀𝜙

– 𝜙 is satisfiable iff 𝑀𝜙 ⊭ 𝐹𝐺¬𝑓𝜙

• Standard techniques to build 𝑀𝜙 [Vardi95] in case of

propositional LTL

• In case of first-order LTL:

– 𝜙 ≔ 𝜙 𝑝 ↦ 𝑣𝑝 𝑝∈𝑆𝑢𝑏(𝜙)
 where 𝑣𝑝 are fresh Boolean variables

– If 𝑀𝜙 = 〈𝐼𝜙 , 𝑇𝜙 〉 then 𝑀𝜙 ≔ 〈𝐼𝜙 , 𝑇𝜙 ∧ 𝑝 ↔ 𝑣𝑝𝑝∈𝑆𝑢𝑏(𝜙) 〉

36 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

K-liveness

• Symbolic techniques for proving 𝐹𝐺 require a doubly-nested fixpoint

• SAT-based approaches typically reduce the problem to invariant
checking

• K-Liveness: simple but effective technique for LTL verification of finite-
state systems [ClaessenSörensson12]

• Key insight: 𝑀 ⊨ 𝐹𝐺¬𝑓¬𝜙 iff there exists k such that 𝑓¬𝜙 is visited at
most k times
– Again, a safety property

• K-liveness: increase k incrementally
– Liveness checking as a sequence of safety checks

• From finite to infinite
– No change

– Sound to prove properties, but not complete

– Property may hold, but fairness can be visited an unbounded number of times

– Extended in [Cimatti et al. 14] for hybrid systems

37 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Other techniques

• BMC
– Add encoding of lasso-shape and fairness

– Sound for finding traces, but not complete

– The only counterexample may be not lasso-shape

• Liveness2safety
– Not sound (proving absence of lasso-shape is not sufficient)

– Extended in [SchuppanBiere06] for specific classes of systems

– Extended in [Daniel et al. 16] to consider only abstract lasso-shape paths
and to integrate ranking functions like for termination

38 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Induction

• 𝑃 is an inductive invariant iff
– Base case: check if the initial state satisfies 𝑃

𝐼 𝑉 ⊨ 𝑃

– Inductive case: check if the transitions preserve the invariant
𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉′ ⊨ 𝑃 𝑉′

39 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Example

• 𝑉 ≔ 𝑥1, 𝑥2,, 𝑥3

• 𝐼 ≔ ¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3

• 𝐵𝑎𝑑 ≔ 𝑥1 ∧ 𝑥2

• 𝑃 ≔ ¬𝑥1 ∨ ¬𝑥2

• Inductive?

• Inductive invariant?

40 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

000 10x 01x 11x

001

𝑥3 𝑥1 𝑥2

Induction proof strategies

• Different strategies to prove 𝑃 (see [MannaPnueli95])

• Stronger assertion: find 𝑆 such that
– 𝑆 is inductive

– 𝑆 ⊨ 𝑃

• Incremental strategy:
– Use previously proved invariant 𝑆

– Check if 𝑃 is inductive relative to 𝑆

𝑆 ∧ 𝑃 ∧ 𝑇 ⊨ 𝑃′

• Note that the set of reachable states is the strongest inductive
invariant
– Needs quantifiers

– SMT with quantifiers is in many theories very complex or undecidable

41 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Incremental induction example

• Example:
– 𝐼 ≔ 𝑥 = 1 ∧ 𝑦 = 1

– 𝑇 ≔ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 + 𝑥

– 𝑃 ≔ 𝑦 ≥ 1

• Is 𝑃 inductive?

• 𝑃 is inductive relative to …

42 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

IC3

• Very successful SAT-based model checking algorithm
proposed by Bradley in 2011

• Inductive invariant built incrementally

• Trace of formulas 𝐹0 ≡ 𝐼, 𝐹1, … , 𝐹𝑘 s.t:

• for 𝑖 > 0, 𝐹𝑖 is a set of clauses, overapproximation of states
reachable in up to 𝑖 steps

• 𝐹𝑖+1 ⊆ 𝐹𝑖 (so 𝐹𝑖 ⊨ 𝐹𝑖+1)

• 𝐹𝑖 ∧ 𝑇 ⊨ 𝐹𝑖+1
′

• For all i < k, 𝐹𝑖 ⊨ 𝑃

• Strengthen formulas until 𝐹𝑖 = 𝐹i+1 for some 𝑖

• Exploiting efficient SAT solvers

43 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

IC3 key points

• Blocking phase:

• If 𝐹𝑖−1 ∧ ¬𝑐 ∧ 𝑇 ⊨ ¬𝑐′ and 𝐼 ⊨ ¬𝑐, add generalize 𝑐 to 𝑔

and block by adding ¬𝑔 to 𝐹𝑖 , 𝐹𝑖−1, … , 𝐹1

• Propagation phase:

• If 𝑐 ∈ 𝐹𝑖 and 𝐹𝑖 ∧ 𝑇 ⊨ 𝑐′, add 𝑐 to 𝐹𝑖+1

44 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

¬𝑃

𝐹𝑘−1 𝐹𝑘
𝐼 𝐹𝑘−2

𝑇 𝑇 𝑇
s

c c

Example

SMT-Based Satisfiability of Temporal Logic 45

000 10x 01x 11x

001

Inductive invariant:

SCARE 2017

Predicate Abstraction

• Reduction to finite-state MC [GrafSaidi97]

• Predicates ℙ over concrete variables to
define the abstraction

• Abstract state space given by Boolean
variables, one for each predicate V =

𝑣𝑝 𝑝 ∈ ℙ}

• Abstract state 𝛼 𝑠 = 𝑣𝑝 𝑠 𝑝 = ⊤}

46 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

• Abstract transition iff there exists a concrete transition between two
corresponding concrete states

𝑇 = 𝑠 , 𝑠 ′ ∃𝑠, 𝑠′, 𝛼 𝑠 = 𝑠 , 𝛼 𝑠′ = 𝑠 ′, 𝑇(𝑠, 𝑠′)}

• Spurious paths can be removed by adding more predicates (automatically
extracted by the path) – see CEGAR in [Clarke et al.00]

Implicit Predicate Abstraction

• Abstract version of BMC and k-induction, avoiding explicit computation
of the abstract transition relation [Tonetta09]

• By embedding the abstraction in the SMT encoding

• 𝐸𝑄(𝑉1, 𝑉2) ≔ 𝑝 𝑉1 ↔ 𝑝(𝑉2)𝑝∈ℙ

• For example, given the encoding a sequence of concrete transitions

𝑇 𝑉0, 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ ⋯∧ 𝑇 𝑉𝑘−1, 𝑉𝑘

• The abstract version is

𝑇 𝑉0, 𝑉1 ∧ 𝐸𝑄 𝑉1, 𝑉1 ∧ 𝑇 𝑉1, 𝑉2 ∧ 𝐸𝑄 𝑉2, 𝑉2 ∧ 𝑇 𝑉2, 𝑉3 ∧ ⋯

47 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

T

T

T

E
Q

E
Q

E
Q

E
Q

IC3 with Implicit Abstraction

• Integrate the idea of Implicit Abstraction within IC3 [Cimatti et al. 14]

• 𝑃 is inductive relative to 𝑆 iff the following is unsat
𝑆 𝑉 ∧ 𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉′ ∧ ¬𝑃(𝑉′)

• 𝑃 is inductive relative to 𝑆 in the abstraction with predicates ℙ iff
the following is unsat

𝑆 𝑉 ∧ 𝑃 𝑉 ∧ 𝑇 𝑉, 𝑉 ∧ 𝑝 𝑉′ ↔ 𝑝 𝑉

𝑝∈ℙ

∧ ¬𝑃(𝑉′)

• No theory-specific technique needed

• No preimage needed

• Same generalization as in the finite-state case

48 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Abstraction refinement

• Abstract counterexample check can use incremental SMT

• Abstraction refinement is fully incremental

• No restart from scratch

• Can keep all the clauses of 𝐹1, … , 𝐹𝑘

• Refinements monotonically strengthen 𝑇

𝑇𝑛𝑒𝑤 ≔ 𝑇𝑜𝑙𝑑 ∧ 𝑝 𝑉 ↔ 𝑝 𝑊 ∧ 𝑝 𝑉′ ↔ 𝑝 𝑊′

𝑝∈𝑛𝑒𝑤ℙ

• All IC3 invariants on 𝐹1, … , 𝐹𝑘 are preserved

• 𝐹𝑖+1 ⊆ 𝐹𝑖 (so 𝐹𝑖 ⊨ 𝐹𝑖+1)

• 𝐹𝑖 ∧ 𝑇 ⊨ 𝐹𝑖+1
′

• For all i < k, 𝐹𝑖 ⊨ 𝑃

49

SM
T-

Bas
ed

Sati
sfia
bilit
y of

Te
mp

oral
Log

ic

SCARE 2017

Example

• System with 2 state vars c and d
– Init: 𝑑 = 1 ∧ (𝑐 ≥ 𝑑)

– Trans: 𝑐′ = 𝑐 + 𝑑 ∧ (𝑑′ = 𝑑 + 1)

– Property: 𝑑 > 2 → (𝑐 > 𝑑)

• Predicates ℙ
– 𝑑 = 1 , 𝑐 ≥ 𝑑 ,

– 𝑑 > 2 , 𝑐 > 𝑑 ,

– 𝑑 ≥ 2 , (𝑑 ≥ 3)

• Final trace
– 𝐹0 ≔ 𝐼𝑛𝑖𝑡

– 𝐹1 ≔ ¬ 𝑑 > 2 ∧ 𝑐 ≥ 𝑑 ∧ 𝐹2

– 𝐹2 ≔ 𝐹3 ≔ 𝑐 ≥ 𝑑 ∨ ¬ 𝑑 ≥ 2 ∧ 𝑑 = 1 ∨ 𝑑 ≥ 2 ∧ 𝐹4

– 𝐹4 ≔ 𝑐 > 𝑑 ∨ ¬(𝑑 > 2)

50 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Summary

Contract-based reasoning

(Extended) Metric/Hybrid LTL SMT over
(super)dense time

(Extended) LTL SMT over discrete time

LTL SMT-based Model Checking

Invariant SMT-based Model Checking
(IC3 with Implicit Abstraction)

51 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Conclusions

• Overview of extensions of LTL with SMT-based support

• Motivated by component-based design of embedded systems

• Rich language that includes:
– First-order terms to represent the state

– Discrete, dense, or super-dense models of time

– Event-freezing functions which can express metric time, event clocks, and
counting constraints

• Supported by complex layered tool chain

• Effective in practice for many problems

52 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

Future Directions

• From satisfiability to realizability

• Parameter synthesis (see work on tightening [SEFM16])

• Integrating security properties such as information flow

• Integrating probabilities

• Checking diagnosability and synthesis of monitors

• Specification mining from traces

• Contact me for next open positions for post-doc!

53 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

References

• Tools

– NuSMV http://nusmv.fbk.eu

– nuXmv https://nuxmv.fbk.eu

– HyCOMP https://hycomp.fbk.eu

– xSAP https://xsap.fbk.eu

– OCRA https://ocra.fbk.eu

– COMPASS http://www.compass-toolset.org/

• WBS case study

– Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, D. Jones, G. Kimberly, T. Petri,
R. Robinson, Stefano Tonetta: Formal Design and Safety Analysis of AIR6110 Wheel Brake
System. CAV (1) 2015: 518-535

54 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

http://nuxmv.fbk.eu/
http://nuxmv.fbk.eu/
http://nuxmv.fbk.eu/
http://nuxmv.fbk.eu/
http://nuxmv.fbk.eu/
http://nuxmv.fbk.eu/
http://www.compass-toolset.org/
http://www.compass-toolset.org/
http://www.compass-toolset.org/
http://www.compass-toolset.org/

References

• Linear-time Temporal Logic
– Amir Pnueli: The Temporal Logic of Programs. FOCS 1977: 46-57
– Orna Lichtenstein, Amir Pnueli, Lenore D. Zuck: The Glory of the Past. Logic of Programs 1985: 196-218
– Zohar Manna, Amir Pnueli: The temporal logic of reactive and concurrent systems - specification. Springer

1992, ISBN 978-3-540-97664-6, pp. I-XIV, 1-427
– Ron Koymans: Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4): 255-

299 (1990)
– Rajeev Alur, Thomas A. Henzinger: Logics and Models of Real Time: A Survey. REX Workshop 1991: 74-106
– Rajeev Alur, Thomas A. Henzinger: A Really Temporal Logic. J. ACM 41(1): 181-204 (1994)
– Rajeev Alur, Tomás Feder, Thomas A. Henzinger: The Benefits of Relaxing Punctuality. J. ACM 43(1): 116-

146 (1996)
– Jean-François Raskin, Pierre-Yves Schobbens: The Logic of Event Clocks - Decidability, Complexity and

Expressiveness. Journal of Automata, Languages and Combinatorics 4(3): 247-286 (1999)
– Alexander Moshe Rabinovich: On the Decidability of Continuous Time Specification Formalisms. J. Log.

Comput. 8(5): 669-678 (1998)
– Yoram Hirshfeld, Alexander Moshe Rabinovich: An Expressive Temporal Logic for Real Time. MFCS 2006:

492-504
– Silvio Ghilardi, Enrica Nicolini, Silvio Ranise, Daniele Zucchelli: Combination Methods for Satisfiability and

Model-Checking of Infinite-State Systems. CADE 2007: 362-378
– Carlo A. Furia, Matteo Rossi: On the Expressiveness of MTL Variants over Dense Time. FORMATS 2007:

163-178
– Stéphane Demri, Ranko Lazic: LTL with the freeze quantifier and register automata. ACM Trans. Comput.

Log. 10(3): 16:1-16:30 (2009)
– Alessandro Cimatti, Marco Roveri, Stefano Tonetta: HRELTL: A temporal logic for hybrid systems. Inf.

Comput. 245: 54-71 (2015)
– Stefano Tonetta: Linear-time Temporal Logic with Event Freezing Functions. GandALF 2017: 195-209

55 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

References

• Contract-based design for embedded systems/CPS
– Albert Benveniste, Benoît Caillaud, Roberto Passerone: A Generic Model of Contracts for Embedded Systems.

CoRR abs/0706.1456 (2007)
– Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto Passerone, Christos Sofronis:

Multiple Viewpoint Contract-Based Specification and Design. FMCO 2007: 200-225
– Werner Damm, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, Ingo Stierand: Using contract-based

component specifications for virtual integration testing and architecture design. DATE 2011: 1023-1028
– Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, Andrzej

Wasowski: Moving from Specifications to Contracts in Component-Based Design. FASE 2012: 43-58
– Sebastian S. Bauer, Rolf Hennicker, Axel Legay: A meta-theory for component interfaces with contracts on ports.

Sci. Comput. Program. 91: 70-89 (2014)
– Alberto L. Sangiovanni-Vincentelli, Werner Damm, Roberto Passerone: Taming Dr. Frankenstein: Contract-Based

Design for Cyber-Physical Systems. Eur. J. Control 18(3): 217-238 (2012)
– Antonio Iannopollo, Pierluigi Nuzzo, Stavros Tripakis, Alberto L. Sangiovanni-Vincentelli: Library-based scalable

refinement checking for contract-based design. DATE 2014: 1-6
– Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti, Tiziano Villa: A Platform-Based

Design Methodology With Contracts and Related Tools for the Design of Cyber-Physical Systems. Proceedings of
the IEEE 103(11): 2104-2132 (2015)

– Alessandro Cimatti, Stefano Tonetta: A Property-Based Proof System for Contract-Based Design. EUROMICRO-
SEAA 2012: 21-28

– Alessandro Cimatti, Michele Dorigatti, Stefano Tonetta: OCRA: A tool for checking the refinement of temporal
contracts. ASE 2013: 702-705

– Marco Bozzano, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta: Formal Safety Assessment via Contract-
Based Design. ATVA 2014: 81-97

– Alessandro Cimatti, Stefano Tonetta: Contracts-refinement proof system for component-based embedded
systems. Sci. Comput. Program. 97: 333-348 (2015)

– Alessandro Cimatti, Rance DeLong, Davide Marcantonio, Stefano Tonetta: Combining MILS with Contract-Based
Design for Safety and Security Requirements. SAFECOMP Workshops 2015: 264-276

– Alessandro Cimatti, Ramiro Demasi, Stefano Tonetta: Tightening a Contract Refinement. SEFM 2016: 386-402

56 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

References

• IC3 for Finite-State Transition Systems:
– Aaron R. Bradley: SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87

– Fabio Somenzi, Aaron R. Bradley: IC3: where monolithic and incremental meet. FMCAD 2011: 3-8

– Krystof Hoder, Nikolaj Bjørner: Generalized Property Directed Reachability. SAT 2012: 157-171

• IC3 for Infinite-State Systems:
– Alessandro Cimatti, Alberto Griggio: Software Model Checking via IC3. CAV 2012: 277-293

– Alessandro Cimatti, Alberto Griggio, Sergio Mover, Stefano Tonetta: IC3 Modulo Theories via Implicit Predicate Abstraction. TACAS
2014: 46-61

– Johannes Birgmeier, Aaron R. Bradley, Georg Weissenbacher: Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR).
CAV 2014: 831-848

– Yakir Vizel, Arie Gurfinkel: Interpolating Property Directed Reachability. CAV 2014: 260-276

– Nikolaj Bjørner, Arie Gurfinkel: Property Directed Polyhedral Abstraction. VMCAI 2015: 263-281

• Predicate abstraction
– Susanne Graf, Hassen Saïdi: Construction of Abstract State Graphs with PVS. CAV 1997: 72-83

– E. Clarke, O. Grumberg, S. Jha, Y. Lu, and V.H., “Counterexample-guided abstraction refinement,” in Computer Aided Verification,
2000, pp. 154–169.

– Stefano Tonetta: Abstract Model Checking without Computing the Abstraction. FM 2009: 89-105

• LTL Model Checking:
– Amir Pnueli: The Temporal Logic of Programs. FOCS 1977: 46-57

– Moshe Y. Vardi: An Automata-Theoretic Approach to Linear Temporal Logic. Banff Higher Order Workshop 1995: 238-266

– Edmund M. Clarke, Orna Grumberg, Kiyoharu Hamaguchi: Another Look at LTL Model Checking. Formal Methods in System Design
10(1): 47-71 (1997)

• Liveness to safety:
– Viktor Schuppan, Armin Biere: Efficient reduction of finite state model checking to reachability analysis. STTT 5(2-3): 185-204 (2004)

– Koen Claessen, Niklas Sörensson: A liveness checking algorithm that counts. FMCAD 2012: 52-59

57 SMT-Based Satisfiability of Temporal Logic SCARE 2017

References

• Liveness to Safety for Infinite-State Systems:

– Viktor Schuppan, Armin Biere: Liveness Checking as Safety Checking for Infinite State Spaces. Electr. Notes Theor. Comput.
Sci. 149(1): 79-96 (2006)

– Andreas Podelski, Andrey Rybalchenko: Transition predicate abstraction and fair termination. ACM Trans. Program. Lang.
Syst. 29(3) (2007)

– Alessandro Cimatti, Alberto Griggio, Sergio Mover, Stefano Tonetta: Verifying LTL Properties of Hybrid Systems with K-
Liveness. CAV 2014: 424-440

– Jakub Daniel, Alessandro Cimatti, Alberto Griggio, Stefano Tonetta, Sergio Mover:
Infinite-State Liveness-to-Safety via Implicit Abstraction and Well-Founded Relations. CAV (1) 2016: 271-291

• Hybrid systems

– Thomas A. Henzinger: The Theory of Hybrid Automata. LICS 1996: 278-292

– Rajeev Alur: Formal verification of hybrid systems. EMSOFT 2011: 273-278

• SMT-Based Verification of Hybrid Systems

– Gilles Audemard, Marco Bozzano, Alessandro Cimatti, Roberto Sebastiani: Verifying Industrial Hybrid Systems with
MathSAT. Electr. Notes Theor. Comput. 119(2): 17-32 (2005)

– Andreas Eggers, Martin Fränzle, Christian Herde: SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems. ATVA 2008:
171-185

– Alessandro Cimatti, Sergio Mover, Stefano Tonetta: SMT-based scenario verification for hybrid systems. Formal Methods in
System Design 42(1): 46-66 (2013)

58 SCARE 2017 SMT-Based Satisfiability of Temporal Logic

