
Contracts-refinement proof system
for component-based embedded systems

Alessandro Cimattia, Stefano Tonettaa

aFondazione Bruno Kessler, Trento, Italy

Abstract

Contract-based design is an emerging paradigm for the design of complex systems,
where each component is associated with a contract, i.e., a clear description of the
expected interaction of the component with its environment. Contracts specify the
expected behavior of a component by defining the assumptions that must be satisfied
by the environment and the guarantees satisfied by the component in response. The
ultimate goal of contract-based design is to allow for compositional reasoning, stepwise
refinement, and a principled reuse of components that are already pre-designed, or
designed independently.

In this paper, we present fully formal contract framework based on temporal logic1.
The synchronous or asynchronous decomposition of a component into subcomponents
is complemented with the corresponding refinement of its contracts. The framework
exploits such decomposition to automatically generate a set of proof obligations. Once
verified, the conditions allow concluding the correctness of the architecture. This
means that that the components ensure the guarantee of the system and the system
ensures the assumptions of the components. The framework can be instantiated with
different temporal logics. The proof system reduces the correctness of contracts refine-
ment to entailment of temporal logic formulas. The tool support relies on an expressive
property specification language, conceived for the formalization of embedded system
requirements, and on a verification engine based on automated SMT techniques.

Keywords: contract-based design, temporal logics, embedded systems, OCRA

1. Introduction

Embedded systems are continuously growing in complexity, and carry out critical
functions. This calls for effective and rigorous methods to find defects early in the
development process, to guarantee safety and correctness, and to reduce the costs of
certification.

Component-based design is a very promising paradigm, amenable to compositional
reasoning and to reuse of components. In order to tame the complexity of embedded
systems, the component implementations can be abstracted with properties that specify

1A preliminary version of this framework has been presented in [1].

Preprint submitted to Science of Computer Programming May 1, 2014

the behavioral aspects that are relevant for the system-level properties. In this settings,
the cost of formal methods is alleviated by compositional verification and reuse of
proof.

Contract-based design, first conceived for software specification [2] and now ap-
plied also to embedded systems [3, 4, 5, 6, 7, 8, 1, 9, 10], structures the component
properties into contracts. A contract specifies the properties assumed to be satisfied
by the component environment (assumptions), and the properties guaranteed by the
component in response (guarantees).

Contract-based design comes with multiple advantages: it supports stepwise re-
finement, compositional reasoning, and a principled reuse of pre-designed or indepen-
dently designed components. This approach is adopted in several recent projects for
embedded systems, such as SafeCer (www.safecer.eu), which exploits contracts
to enable a compositional certification and reuse of pre-qualified components.

In this paper, we give full account of a contract framework where contracts are
tightly integrated within an architectural decomposition of the system, and are specified
with temporal logics. The framework provides a formal notion of correctness of the
contract refinement, which is reduced to checking the validity of set of (necessary and
sufficient) proof obligations. The generated proof obligations are formulae in the same
temporal logic used to express the contracts, and can be decided by means of suitable
decision procedures.

The approach, which extends and completes the framework presented preliminarily
in [1], encompasses both synchronous and asynchronous composition of components,
and is based on a generic notion of traces, so that it can be instantiated with different
temporal logics.

This framework has some distinguishing features. First, the refinement checks are
tightly integrated with the architecture decomposition flow of safety-critical applica-
tions. This includes taking into account the connections of components that play a
fundamental role in the contract refinement. This allows for an early validation of the
choices underlying the architectural decomposition and requirements delegation. Sec-
ond, our approach supports the automated production of refinement checks. Finally,
compared to other approaches (that are typically either theoretic or limited to simple
specification patterns), our specialization supports more expressive and general prop-
erties.

The approach has been implemented in the tool OCRA [11], which was used to
analyze systems from various application domains. The tool instantiates the framework
by allowing the specification with two (of many possible) logics: Linear Temporal
Logic (LTL) [12], which models discrete traces, and HRELTL, a variant of LTL defined
in [13], which models hybrid traces (combining discrete and continuous transitions).
In the case study proposed in [7], used as a running example in this paper, OCRA was
able to pinpoint some inaccuracies in the original formulation.

This paper is structured as follows. In Section 2, we discuss relevant related work.
In Section 3, we present a motivating case study and the envisaged contract-based de-
sign that requires the methods proposed in the paper. In Section 4, we present our
contract-based framework in terms of sets of generic traces. In Section 5, we define
the proof obligations proving that they characterize the correctness of contract refine-
ment. In Section 6, we instantiate the trace-based framework described in the previous

2

section using temporal logics and we describe the support in terms of tool and concrete
language to the framework. In Section 7, we evaluate the approach on the case study.
In Section 8, we draw some conclusions and outline directions for future work.

2. Related work

Contracts have been first defined in the context of object-oriented programming
by Meyer [2]. For software programs, assumptions and guarantees are represented
respectively by preconditions and postconditions of functions: preconditions define
the assumptions that the function caller must satisfy at the entry point of the function;
postconditions define the guarantee that the function provider must satisfy at the exit
point. Other used assertions are class- and loop-invariants. In concurrent programs, the
interaction between service clients and providers is more complex, and require the use
of assertions over execution traces.

As in other works, such as [7, 14, 9], we separate the architectural design (where the
primitive components are specified as black boxes) from the behavioral models of the
component (that may be specified in different languages). In these works, however,
contracts distinguish between assumption and guarantee only for enabling assume-
guarantee reasoning. Thus the semantics of a contract is simply the implication “if
the assumption holds, also the guarantee holds”. In our work, instead, following the
seminal work of Meyer [2] and the recent applications to embedded systems, contracts
represent two distinct properties, one for the environment of the component and one
for the component itself. If the environment does not satisfy the assumption, then the
architecture is not correct.

This paper builds on the recent works presented in [8], from which we inherit some
formal notions for contract-based reasoning. While [8] describes when and how con-
tracts can be composed (in a bottom-up design process), we focus on the verification
conditions necessary to prove that a contract is correctly refined by a specific decom-
position (in a top-down design process). Moreover, we detail how the architectural
connections play a fundamental role in the composition of components and therefore
also in the contract refinement. Based on this insight, we provide new theoretical re-
sults tailored to the verification of contracts decomposition.

The idea of contract decomposition and refinement is also provided in [7]. Our
approach has two important differences. First, [7] adopts a semantics of a contract
in terms of implementations, without reference to the notion of environment, and the
refinement is defined as trace-set inclusion. This approach is therefore missing the
notion of assumption as constraint for the environment and allows to refine a contract
by strengthening the assumptions. Another important difference with respect to [7] is
that it uses contract patterns converted into automata, while our approach is based on
temporal logics.

As in [3], we use a trace-based semantics for contracts. However, we use a concrete
property specification language to express the assumption and guarantees of the con-
tracts. Also, differently from [3], we do not assume that contracts are in normal form,
but we reduce to normal form just for the refinement checks. This may become impor-
tant when the negation of assertion is not possible (as for timed and hybrid automata) or

3

when performing syntactic checks of realizability which can be hindered by the normal
form having to deal with the (possibly un-realizable) negation of the assumption.

The composition of components have been studied in many works on interface
theories and automata (see, e.g., [15]). As in [3, 8, 1], we define the satisfaction and
refinement of contracts in terms of trace-based language inclusions. Checking that an
implementation is receptive to any input of the environment satisfying the assumption
is not in the scope of the present framework. Rather, the framework is focused on
checking that contracts are correctly refined from the language point of view.

We build our framework on existing advanced techniques for property specifica-
tions and analysis [13, 16]. However, the contract-based framework can be instantiated
with any temporal logic with a linear model of time. In particular, MTL [17, 18] can
be used to formalize real-time requirements and is supported by different tools also
for by graphical languages [19]. Although decidable variants of MTL exist, only few
tool supports the verification of satisfiability and they are mainly based on bounded
satisfiability [20] (similarly to our support of HRELTL).

This paper extends the previous version published in [1] by revising the trace-based
contract framework and giving full account of syntax and semantics of the underlying
component model, detailing the role of port connections in the contracts refinement,
and extending the framework to asynchronous composition of subcomponents. In fact,
in [1], the framework is simplified by assuming that all symbols are global. In real-
ity, the ports are local to every component and the connections among them play a
fundamental role in the refinement.

3. Contract-based design

3.1. Motivating example

In this section, we informally describe our contract-based design through an exam-
ple taken from [21], where it is used for giving guidelines on how to conduct safety
assessment in avionics. The same example has been used in [7] to illustrate the formal-
ization of contracts.

The benchmark describes a Wheel Braking System (WBS), which takes care of
translating the brake signals of the braking pedals into physical brake of the wheel.
The brake pedal position is electrically fed to the braking computer, which in turn pro-
duces corresponding control signals to the brakes. This computer is named the Braking
System Control Unit (BSCU). The Preliminary System Safety Assessment leads to the
design of a primary and secondary sub-system to perform the wheel braking function.
We call each sub-system a subBSCU. Therefore, the system takes in input two redun-
dant Pedal Pos brake positions and outputs a pressure on the Brake Line. See
Figure 1 for a high-level picture.

The property under analysis of the WBS system is that the maximum delay be-
tween the brake signal and its execution is 10 time units. This is guaranteed under the
assumptions that (i) the two inputs always carry the same value, and that (ii) there is
never more than one fault in the system.

The system is composed of a Brake System Control Unit (BSCU) and an Hydraulic
subsystem. In this benchmark, the BSCU component is refined into three components:

4

WBS

Podal_Pos1

Podal_Pos2

Brake_Line

BSCU

subBSCU Se
le

ct
_S

w
it

ch

Hydraulic

subBSCU

Figure 1: Component-based structure of the Wheel Braking System.

two redundant instances of subBSCU, and a Select Switch that selects the back-
up subBSCU when the signal of the primary subBSCU is no more valid due to a
failure. The two subBSCU are further refined into two subcomponents, a Monitor
and a Command, and the failure is due to a fault in either of these two subcomponents.

3.2. Design flow
The design flow, depicted in Figure 2, shows the WBS example of Figure 1 at the

different levels of abstraction. It starts with the view of the system as a whole black
box with ports to interact with its environment. Then, it is is decomposed into BSCU
and Hydraulic components. The BSCU is in turn decomposed into two redundant
subBSCU and a switch. The decomposition also defines how the ports of the compo-
nent being decomposed are mapped down into the decomposition. For example, the
“left” ports of the WBS are mapped onto the “left” ports of the BSCU.

Each component in the hierarchy is associated with a set of contracts, depicted
in green, specifying the acceptable behaviors for the component and its environment.
More precisely, a contract is a pair assumption-guarantee: the assumption is a property
that the component expects to be satisfied by its environment; the guarantee is a prop-
erty that the component ensures, provided that its environment does behave according
to the assumptions.

Contracts can be refined, following the decomposition of components. For ex-
ample, the contracts of the WBS are refined by some contracts of the BSCU and the
Hydraulic subcomponents. The framework guarantees that, under specific conditions
(corresponding to correct contract refinement), if the contracts of the subcomponents
hold, then the contract of the parent component also holds.

A contract can be fulfilled by an implementation, e.g. a concrete module whose
behaviors satisfy the guarantees, as long as the environment behaves according to the
assumptions. In Figure 2, if the implementations (corner-less rectangles) are proved to
satisfy the contracts of the leaf components (i.e. subBSCU, Select Switch, and

5

WBS Podal_Pos1

Podal_Pos2
Brake_Line

BSCU

H
yd

ra
u

lic

subBSCU
Se

le
ct

_S
w

it
ch

subBSCU

Figure 2: Component-based design flow. Contracts (papyrus shape) are attached to components. The arrows
represent the refinement of a component contract by the contracts the subcomponents.

Hydraulic), then the resulting system satisfies the top-level contract for WBS. Within
this framework, reuse can be supported by maintaining a library of implementations
together with the corresponding contracts. Instead of checking whether the implemen-
tation satisfies the leaf component contract (e.g. as a model checking problem), it may
be easier to check whether it is refined by the contracts stored in the library, that the
implementation is known to satisfy.

There are several points supporting the idea of contract-based reasoning. The first
one is that it provides a clean framework for compositional verification of global prop-
erties of an existing systems: the contracts are used as landmarks for the proof, so that
in the end it is possible to obtain the guarantee for the global property out of the proof
that each of the components satisfies its contracts, and that the individual contracts
entail the global property. The second is that it supports stepwise refinement, so that
when a component is decomposed, the corresponding specification is decomposed at
the same time. This means for example that the allocation of functions to subcompo-
nents is decided and proved correct at the moment of decomposition, i.e. way before
the behavioral descriptions are provided. The third reason is the support of component
reuse: the proof of refinement holds for any component implementation satisfying the
contracts of the component leaves.

6

4. Trace-based framework

4.1. Traces

The basic structure underlying the semantics of contracts and components is a
trace. A trace represents the observable part of a run (execution) of a component.
It consists of the events and values of data ports that an observer can see watching at a
component from outside.

Formally, a trace is defined over a set of variables. It represents the evolution of the
value of these variables along time. Different notions of traces exist depending on the
model of time. The contract-based framework presented in this paper is independent of
such choice. The related tool support instantiates the framework using different notions
of traces.

We present the framework based on a generic notion of traces. A generic trace is
seen as a sequence of states. Each state contains an assignment to the variables, and
can encompass information on time as in timed state sequences [18]. We just assume
to have a notion of composition × and projection π such that, given two traces σ1 and
σ2 respectively on V1 and V2, the projection πV1

(σ1 × σ2) is equivalent to σ1, and
πV2(σ1 × σ2) is equivalent to σ2.

In the following we overview some specific notions of traces.
Given a set of variables V over a domain D, a discrete trace over V is a simple

sequence of assignments to the variables V inD (without explicit information on time).
For example, given V = {x} a discrete trace over V can be x = 0, x = 1, x = 4,
Composition and projection are defined state by state in a straightforward way.

Timed traces contain, besides the value of variables, also the value of time along
the sequence. We define a timed trace as a sequence 〈s0, I0〉, 〈s1, I1〉, 〈s2, I2〉, . . . such
that:

• the intervals are adjacent, i.e., for all i ∈ N, the upper endpoint of Ii is equal to
the lower endpoint of Ii+1;

• I0 = [0, 0] and the intervals cover R+:
⋃
i∈N Ii = R+.

Note that time is weakly monotonic, i.e. it is possible for two subsequent states to have
a common time point. This case allows to model instantaneous changes.

Hybrid traces extend timed traces considering also continuous and differentiable
real functions as the domain of the variables. We partition V in three types of variables:
continuous variables, discrete variables and events.

Continuous variables are interpreted with differentiable functions. Given a state of
the trace and the related time interval I , the value of a continuous variable varies along
the time points of the interval. Moreover, if an endpoint of I is open, the interpretation
of the variable in that endpoint must be the same as the adjacent state (while it can be
a discontinuous point for the derivative).

Discrete variables are interpreted with constant functions. They can change value
only during the discrete instantaneous changes. We actually do not distinguish between
the constant function and the value itself, so that if a discrete variable v is interpreted
in a state with the constant function c, we say that v is assigned with c. Therefore,

7

Figure 3: Example of hybrid trace. The variable “speed” evolves continuously along time; the variable
“warning” changes instantaneously; “limit” remains constant.

discrete variables may be of type real, integer, or Boolean, depending on the domain of
constant functions they are restricted to.

Finally, events are Boolean variables that may be true only before discrete instan-
taneous changes. For simplicity, we consider them state variables, even if they would
be more properly characterized by the transition between the two states in the discrete
change.

To understand better the concept of hybrid trace, let us consider the example de-
picted in Figure 3: the variable “speed” is a continuous variable and thus evolves with
a continuous function, while the variable “limit” is a discrete variable that changes
instantaneously, and thus evolves with a step function. In this example, “limit” is con-
stant and never changes. Suppose the trace represents the movement of a train; in this
scenario the train is initially in a still position and starts moving, it passes the speed
limit and then brakes until it reaches a speed below the limit.

In the bottom part of the figure, the sequence of time intervals is shown. It starts
with a singular interval [0, 0], followed by an open interval in which “speed” changes,
followed by two consecutive singular points where “warning” instantaneously changes.

In order to define the composition and projection of hybrid traces, let us introduce
the concept of sampling refinement. Given two hybrid traces σ1 and σ2, we say that σ1
is a sampling refinement of σ2 (denoted with σ1 � σ2) if the σ1 can be obtained by σ2
by splitting some open intervals into two or more intervals. Therefore, the two traces
have the same discrete changes and the same interpretation of the variables.

Given two traces σ1 and σ2, respectively on V1 and V2, with V1∩V2 = ∅, we define
the product σ1 × σ2 as the trace σ over V1 ∩ V2 such that for all i, σ(i)(x) = σ′1(i)(x)
if x ∈ V1 and σ(i)(x) = σ′2(i)(x) if x ∈ V2, where σ′1 and σ′2 are the greatest sampling
refinements of σ1 and σ2 respectively such that σ′1 and σ′2 have the same sequence of
intervals.

Given a trace σ over the variables V and a subset V ′ of V , we define the projection
of σ over V ′ (denoted as πV ′(σ)) as the trace σ′ such that for all i for all x ∈ V ′,
σ′(i)(x) = σ(i)(x). Note that given two traces σ1 and σ2 respectively on V1 and V2,
the projection πV1

(σ1 × σ2) is a sampling refinement of σ1, and πV2
(σ1 × σ2) is a

sampling refinement of σ2.

8

4.2. Components

In this section, we define the semantics of contracts and components in terms of
generic traces. Therefore, given a set V of variables, we denote with Tr(V) the set of
all possible traces over V .

A component S is described with a set VS of ports, which are the variables rep-
resenting the relevant information of the component that are visible from outside it.
Given a set S of components, we denote with VS the union of the ports, i.e., VS =⋃
S∈S VS .

An implementation of a component S is defined as a subset of traces over VS , i.e.,
a subset of Tr(VS). An environment of S is also defined as a subset of Tr(VS) (since
VS are the variables at the interface of S).

4.3. Contracts

We assume to be given an assertion language, which can be automata-based or
logic-based, for which every assertion A has associated a set of variables VA and a
semantics JAK as a subset of Tr(VA). We also assume to have the operations of com-
plementation (denoted with ¬), intersection (denoted with ∧), union (denoted with
∨), and projection over a subset of variables V ′ (denoted with ∃V (·)). Formally,
J¬AK = Tr(V) \ JAK, JA ∨BK = JAK∪ JBK, JA ∧BK = JAK∩ JBK, ∃V ′(A) = {σ |
there exists σ′ ∈ JAK and πV ′(σ′) = σ}. We say that A |= B iff JAK ⊆ JBK.

Given a component S, a contract for S is a pair 〈A,G〉 of assertions over VS rep-
resenting respectively an assumption and a guarantee for the component. Let C =
〈A,G〉 be a contract of S. Let I and E be respectively an implementation and an envi-
ronment of S. We say that I is a implementation satisfying C iff I ∩ JAK ⊆ JGK. We
say that E is an environment satisfying C iff E ⊆ JAK. We denote with I(C) and with
E(C), respectively, the implementations and the environments satisfying the contract
C.

Two contracts C and C ′ are equivalent (denoted with C ≡ C ′) iff they have the
same implementations and environments, i.e., iff I(C) = I(C ′) and E(C) = E(C ′).

A contract C = 〈A,G〉 is in normal form iff JAK ⊆ JGK. We denote with nf(C)
the assertion ¬A ∨ G. The contract 〈A,nf(C)〉 is obviously in normal form, and is
equivalent to (i.e., has the same implementations and environments of) C [3].

4.4. System architecture and components decomposition

A system architecture is defined by a tree of components. The root of the tree
is called the system component. The leafs of the tree are called atomic (or basic or
primitive) components. The tree structure is given by the decomposition of each non-
atomic component.

The architectural decomposition is a pair ρ = 〈Sub, γ〉where, for every component
S:

• Sub(S) is the set of subcomponents of S such that S 6∈ Sub∗(S), where Sub∗ is
the transitive closure of the function Sub; Sub(S) 6= ∅ iff the S is a composite
component;

9

• γ(S) represents the connections among the subcomponents and the delegation
of VS to the ports of the subcomponents.

Note that we avoid to distinguish between component type and component in-
stances to simplify the notation. Actually, the subcomponents of a component type
may be instances of the same component type and the system is a component instance.
We simply see two component instances as two distinct components with the same
structure and renamed ports and subcomponents.

The decomposition may be synchronous or asynchronous. The architecture can
also contain both types of decomposition. The composite implementation of a de-
composed component S (denoted with CIρS) consists of the composition of the imple-
mentations of its subcomponents Sub(S). Similarly, the composite environment of a
subcomponent U ∈ Sub(S) (denoted with CEρU) consists of the composition of the
implementations of the other subcomponent Sub(S) \ {U} and the environment of S.
The formal definition of CIρS and CEρU depend on the type of composition, which can
be synchronous or asynchronous. In the following sections, we detail such definitions.

4.4.1. Synchronous decomposition
The synchronous composition of component implementations is given by their in-

tersection restricted by the connection. Namely, it is given by all the traces that are
compatible with the subcomponents and their connection.

The connection γ is interpreted with a subset (denoted with JγK) of traces over
VS ∪

⋃
S′∈Sub(S) VS′ , i.e. JγK ⊆ Tr(VS ∪

⋃
S′∈Sub(S) VS′).

Formally, given a decomposition ρ = 〈Sub, γ〉 of S, a set of implementations
I = {IS′}S′∈Sub(S), one for every S′ ∈ Sub(S), the composite implementation of S
induced by the decomposition ρ is defined as:

CIρS(I) :={σ ∈ Tr(VS) | there exists σS′ ∈ IS′ for every S′ ∈ Sub(S) such that

σ ×
⊗

S′∈Sub(S)

σS′ ∈ Jγ(S)K}

Similarly, the environment of a subcomponent U ∈ Sub(S) is composed by the
environment of S and by the sibling subcomponents of S. Formally, given a decom-
position ρ = 〈Sub, γ〉 of S, a set of implementations I = {IS′}S′∈Sub(S)\{U}, one
for every S′ ∈ Sub(S) different from U , and an environment E of S, the composite
environment of U induced by the decomposition ρ of S (denoted with CEρU (E, I)) is
defined as:

CEρU (E, I) :={σU ∈ Tr(VU) | there exists σS′ ∈ IS′ for every S′ ∈ Sub(S) \ {U}

and σ ∈ EU such that σ ×
⊗

S′∈Sub(S)

σS′ ∈ Jγ(S)K}

4.4.2. Asynchronous decomposition
In an asynchronous composition, the traces of the implementations of the subcom-

ponents are concurrent mixing interleaving and synchronizations. In particular, the
composite implementation of a component at every discrete step runs a subset of the

10

subcomponents while the others must stutter. The connections can be used to define
which subcomponents must run together on which events. Therefore, we are not forc-
ing a strict interleaving semantics where only one subcomponent active at a time, but
we allow more subcomponents to progress together. Note that the supported commu-
nication mechanism is given by synchronizations such as hand-shakes or multi-cast
as in many formal architectural languages like AltaRica [22], AADL-SLIM [23], and
BIP [24]. It would be possible to model buffered communication, but with an explicit
buffered component.

Stuttering means that the component is not involved in the transition so that all
output data ports do not change and no event of the component happens in that transi-
tion. When we consider the asynchronous decomposition of a component S and a trace
resulting from such decomposition, if we project the trace over the VS′ of a subcom-
ponent S′ ∈ Sub(S), we obtain a sequence where some assignments to the output data
ports are repeated (stuttered) without any event of S′ happening on these transitions.
Removing such stuttering we obtain a trace of S′.

For every component S, we introduce a fictitious event stS . We denote with V stS
the extended set of ports VS ∪ {stS}. The stuttering version of a trace is obtained by
inserting in the trace an arbitrary number of additional transitions where st occurs, no
other event occurs, and the data ports do not change. If I is an implementation of the
component S, we define Ist the stuttering version where every trace has been replaced
by the corresponding set of stuttering traces.

The connection γ is interpreted with a subset (denoted with JγK) of traces over
VS ∪

⋃
S′∈Sub(S) V

st
S′ , i.e. JγK ⊆ Tr(VS ∪

⋃
S′∈Sub(S) V

st
S′).

Given a decomposition ρ = 〈Sub, γ〉 of S, a set of implementations I = {IS′}S′∈Sub(S),
one for every S′ ∈ Sub(S), the asynchronous composite implementation of S induced
by the decomposition ρ is defined as:

CIρS(I) :={σ ∈ Tr(VS) | there exists σS′ ∈ IstS′ for every S′ ∈ Sub(S) such that

σ ×
⊗

S′∈Sub(S)

σS′ ∈ Jγ(S)K}

Similarly, given a subcomponentU of S, a set of implementations I = {IS′}S′∈Sub(S)\{U},
one for every S′ ∈ Sub(S) different from U , and an environment E of S, the asyn-
chronous composite environment of U induced by the decomposition ρ of S is defined
as:

CEρU (E, I) :={σ
′
U ∈ Tr(VU) | there exist σU stuttering of σ′U ,

σS′ ∈ IstS′ for every S′ ∈ Sub(S) \ {U}

and σ ∈ EU such that σ ×
⊗

S′∈Sub(S)

σS′ ∈ Jγ(S)K}

Notice that the γ operator could model different types of synchronization used in
various practical modeling languages, such as the strong and weak synchronization
mechanisms used in the Altarica language. Consider for example a component S with
an input event port p and output event port q and two subcomponents s1 and s2 with

11

the same interface. We refer to their ports as s1.p, s1.q, s2, p, and s2.q. Consider the
connection γ = G((p ↔ s1.p) ∧ (q ↔ s2.q) ∧ (s2.p → s1.q)). In this case, the ports
p and q of S are delegated respectively to s1.p and s2.q. The synchronization between
s1 and s2 is weak: the input p of s2 happens only if s1 generates q, but not the contrary
so that s1.q may be lost, it may triggered when s2 is stuttering.

4.5. Contract refinement
Contracts are used to specify the assumptions and guarantees of components in a

system architecture. We denote with ξ(S) the contracts of the component S. We extend
ξ to sets of components such that, if S is a set of components, ξ(S) =

⋃
S∈S ξ(S).

Since the decomposition of a component S into subcomponents induces a com-
posite implementation of S and composite environment for the subcomponents, it is
necessary to prove that the decomposition is correct with regards to the contracts. In
particular, it is necessary to prove that the composite implementation of S satisfies the
guarantee of S’s contracts and that the composite environment of each subcomponent
U satisfies the assumptions of U ’s contracts. We perform this verification composi-
tionally only reasoning with the contracts of the subcomponent independently from the
specific implementation of the subcomponents or specific environment of the compos-
ite component.

Given a component S and a decomposition ρ = 〈Sub, γ〉, a set of contracts C ⊆⋃
S′∈Sub(S) ξ(S

′) is a refinement of C, written C ≤ρ C, iff the following conditions
hold:

1. if, for all S′ ∈ Sub(S), for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈ I(C ′), then CIρS(I) ∈
I(C) (i.e., the correct implementations of the sub-contracts form a correct im-
plementation of C);

2. for every subcomponent U of S, for every contract CU ∈ ξ(U)∩C, if E ∈ E(C)
and, for all S′ ∈ Sub(S) \ {U}, for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈ I(C ′), then
CEρU (E, I) ∈ E(CU) (i.e., for each sub-contract CU , the correct implementa-
tion of the other sub-contracts and a correct environment of C form a correct
environment of U).

This is the extension of the definition of [8] of one contract dominating two con-
tracts extended to more components2. In the case of one subcomponent C ′, the defi-
nition reduces to that of [8], where the contract C ′ refines the contract C iff I(C ′) ⊆
I(C) and E(C) ⊆ E(C ′).

Also, differently from [3] and [8], we do not define the composition of contracts
since we assume that contracts are given for both the composite component and its sub-
components. This is a pragmatic choice to avoid computing existential quantifications.

5. Proof system for contracts refinement

5.1. Proof system and proof obligations
The purpose of the contracts is to support the compositional verification of a sys-

tem, but also reuse of component and independent implementation. A verification

2We prefer not to use the term “dominance”, that is used differently in [3].

12

method is compositional if it deduces the system properties from the properties of its
components without using the internals of the components [25]. The proof of a system
property therefore follows the classic structure of a deduction proof starting from a set
of axioms (in this case, the properties of the components) and applying iteratively some
inference rules. Each rule has as consequence a property of a composite component
and as premises the properties of its subcomponents and the definition of the composite
component decomposition.

The deduction rules that we use to prove the correctness of a system architecture
are the following:

∀S′ ∈ Sub(S), IS′ |=imp CS′ , {C1, . . . , Cn} ≤ρ C
CIρS(I1, . . . , In) |=imp C

(1)

E |=env C, ∀S′ ∈ Sub(S) \ U, IS′ |=imp CS′ , {C1, . . . , Cn} ≤ρ C
CEρU (E, I1, . . . , IS′ 6=U , . . . , In) |=env CU

(2)

Rule 1 deduces the correctness of the composite implementation of a component S
from the correctness of its subcomponents and the correctness of the contract refine-
ment. Rule 2 deduces the correctness of the composite environment of a subcomponent
U of S from the correctness of other subcomponents, the correctness of the environ-
ment of S, and the correctness of the contract refinement. These rules are applied
along the architectural decomposition and composed to form a proof tree whose leaves
correspond to the correctness of the basic components and the contract refinement of
each decomposition. The correctness of the contract refinements is discharged generat-
ing a set of sufficient and necessary conditions and proving their validity. These proof
obligations combine the assertions of the contracts involved in the refinement and de-
pend on the connection used in the decomposition and on the type (synchronous vs.
asynchronous) decomposition.

In the following sections, we define the proof obligations in the synchronous case
(Section 5.2), in the asynchronous case (Section 5.3).

5.2. Checking correct refinement of synchronous decomposition

The following theorem defines the proof obligations of contracts refinement in the
case of synchronous decomposition. In the following, since we are considering the
decomposition of just one component, in order to simplify the notation, we simply
write Sub for Sub(S) and γ for γ(S).

Theorem 1. Consider a component S, a contract C of S, a decomposition ρ =
〈Sub, γ〉, and C ⊆ ξ(Sub). C ≤ρ C iff the following conditions hold:

∃VSub(
∧

C′∈ξ(S′)∩C,S′∈Sub

(nf(C ′)) ∧ γ) |= (nf(C)) (3)

for all U ∈ Sub, for all 〈AU , GU 〉 ∈ ξ(U) ∩ C,

∃VS , VSub\{U}(A ∧
∧

C′∈ξ(S′)∩C,S′∈Sub\{U}

(nf(C ′)) ∧ γ) |= (AU) (4)

13

Basically, the entailment 3 says that the conjunction of the contracts of the subcom-
ponents combined with the connection γ and projected on the variable of the compo-
nent S, entails the contract of S; for each subcomponent U , the entailment 4 says that
the conjunction of the assumption of S with the contracts of the other subcomponents
combined with the connection γ and projected on the variable of the component U ,
entails the assumption of U .

In order to prove the theorem, we use the following lemma that comes directly from
the definitions of composite implementation and composite environment.

Lemma 1. Considering a component S, a decomposition ρ = 〈Sub, γ〉, and a sub-
component U ∈ Sub(S), the following equivalences hold:

CIρU (I) ≡πVS
(

⋂
S′∈Sub\{U}

IS′ ∩ JγK) (5)

CEρU (I) ≡πVU
(E ∩

⋂
S′∈Sub\{U}

IS′ ∩ JγK) (6)

Proof of Theorem 1. We first prove the proof obligation (3). We want to prove that (3)
is valid iff CIρS({IS′}S′∈Sub) |= C for any set {IS′}S′∈Sub of implementations, one
for each subcomponents of S, such that for all S′ ∈ Sub, for all C ′ ∈ ξ(S′) ∩ C,
IS′ ∈ I(C ′).
⇐ (only if case). We define IS′ :=

∧
C′∈ξ(S′)∩CJnf(C

′)K. Clearly, IS′ |= C ′

for any C ′ ∈ ξ(S′) ∩ C. Then, by hypothesis, CIρS({IS′}S′∈Sub) |= C. Thus, by
Lemma 1, πVS

(
⋂
S′∈Sub IS′ ∩ JγK) |= C, from which (3) follows.

⇒ (if case). Let us consider a set {IS′}S′∈Sub of implementations, one for each
subcomponents of S, such that for all S′ ∈ Sub, for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈ I(C ′).
Then,

⋂
S′∈Sub IS′∩JγK |=

∧
C′∈ξ(S′),S′∈Sub nf(C

′)∧γ, thus by Lemma 1CIρS(I) |=
∃VSub(

∧
C′∈ξ(S′)∩C,S′∈Sub(nf(C

′)) ∧ γ). Then by hypothesis, CIρS(I) |= ¬A ∨B.
Second, we prove the proof obligation (4). We want to prove that (4) is valid iff

CEρU (E, {IS′}S′∈Sub) |= AU for any set {IS′}S′∈Sub of implementations, one for
each subcomponents of S, such that for all S′ ∈ Sub, for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈
I(C ′), any environment E of S such that E |= A, and any contract CU ∈ ξ(U) ∩ C
such that CU = 〈AU , GU 〉.
⇐ (only if case). We define IS′ :=

∧
C′∈ξ(S′)∩CJnf(C

′)K and E := JAK. Clearly,
IS′ |= C ′ for anyC ′ ∈ ξ(S′)∩C andE |= A. Then, by hypothesis,CEρS(E, {IS′}S′∈Sub) |=
AU . Thus, by Lemma 1, πVU

(E ∩
⋂
S′∈Sub\{U} IS′ ∩ JγK) |= AU , from which (3) fol-

lows.
⇒ (if case). Let us consider a set {IS′}S′∈Sub of implementations and an environ-

mentE such that for all S′ ∈ Sub, for allC ′ ∈ ξ(S′)∩C, IS′ ∈ I(C ′) andE ∈ E(CU).
Then, E ∩

⋂
S′∈Sub\{U} IS′ ∩ JγK |= A∧

∧
C′∈ξ(S′)∩C,S′∈Sub\{U}(nf(C

′))∧ γ, thus
by Lemma 1 CEρU (E, I) |= ∃VSub\{U}(A ∧

∧
C′∈ξ(S′)∩C,S′∈Sub\{U}(nf(C

′)) ∧ γ).
Then by hypothesis, CEρU (E, I) |= AU .

5.3. Checking correct refinement of asynchronous decomposition
The proof obligations in the case of an asynchronous decomposition follows the

same structure of the synchronous case, but the contracts of the subcomponents must

14

be extended with stuttering. For this reason, we assume to have a transformation st
over assertions such that JφstK = JφKst3.

Theorem 2. Consider a component S, a contract C of S, an asynchronous decompo-
sition ρ = 〈Sub, γ〉, and C ⊆ ξ(Sub). C ≤ρ C iff the following conditions hold:

∃VSub(
∧

C′∈ξ(S′)∩C,S′∈Sub

(nf(C ′)st) ∧ γ) |= (nf(C)) (7)

for all U ∈ Sub, for all 〈AU , GU 〉 ∈ ξ(U) ∩ C,

∃VSub\{U}(A ∧
∧

C′∈ξ(S′)∩C,S′∈Sub\{U}

(nf(C ′)st) ∧ γ) |= (AstU) (8)

Lemma 2. Considering a component S, an asynchronous decomposition ρ = 〈Sub, γ〉,
and a subcomponent U ∈ Sub(S), the following equivalences hold:

CIρS(I) ≡πVS
(

⋂
S′∈Sub

IstS′ ∩ JγK) (9)

CEρU (I) ≡πVU
(E ∩

⋂
S′∈Sub\{U}

IstS′ ∩ JγK) (10)

The proof of Theorem 2 follows the same line of the proof of Theorem 1 using
Lemma 2 instead of Lemma 1.

6. Instantiation of the framework with temporal logics

6.1. Proof obligations in temporal logics
The framework described in the previous sections can be instantiated with any lan-

guage to specify set of traces and in particular with any temporal logic with a linear
model of time. When the component contracts are specified by means of temporal logic
formulas, the validity of the proof obligations defined in Section 5 can be reduced to
the satisfiability problem in the same temporal logic. Namely, the proof obligations (3),
(4), (7), (8) are valid iff the following formulas are respectively unsatisfiable:

(
∧

C′∈ξ(S′)∩C,S′∈Sub

(nf(C ′)) ∧ γ) ∧ ¬(nf(C)) (11)

(A ∧
∧

C′∈ξ(S′)∩C,S′∈Sub\{U}

(nf(C ′)) ∧ γ) ∧ (AU) (12)

(
∧

C′∈ξ(S′)∩C,S′∈Sub

(nf(C ′)st) ∧ γ) ∧ ¬(nf(C)) (13)

(A ∧
∧

C′∈ξ(S′)∩C,S′∈Sub\{U}

(nf(C ′)st) ∧ γ) ∧ ¬(AstU) (14)

3Such transformation for the adopted temporal logics can be obtained by a transformation as done in [26].

15

We can consider different temporal logics depending on the type of traces used to
describe the semantics of the components. In particular, Linear-time Temporal Logic
(LTL) [12] is suitable for characterizing set of discrete traces, Metric Temporal Logic
(MTL) [17] or other real-time extension of LTL for timed traces, and Hybrid LTL with
Regular Expressions (HRELTL) [13] for hybrid traces.

If the formulas are restricted to the standard propositional LTL, the validity is de-
cidable and can be performed by standard model checking techniques for proposi-
tional temporal logic. For the timed and hybrid cases, the problem is undecidable
(although there exist decidable fragments) but most of tools rely on bounded satis-
fiability [20, 13]. In this case, the problem can be addressed with techniques based
on Satisfiability Modulo Theories (SMT), which, although incomplete, are in practice
quite effective to prove the satisfiability of the temporal formulas.

6.2. Tool support

The approach presented in previous sections has been implemented in the tool
OCRA [11], and was used to analyze the formalization of the WBS example. Inter-
estingly, OCRA allowed us to pinpoint some inaccuracies in the model provided in [7],
where some details on the contracts refinement were missing.

OCRA takes in input a textual description of the components, specifying their inter-
faces and contracts, their decomposition and the refinement of contracts. More specif-
ically, a component specification is composed of an interface part, and of an optional
refinement part. The interface defines the set of ports and parameters (forming the set
V of variables), and the contracts (over V). Ports are simple variables and represent
what is visible as input/output of the component. Parameters are rigid variables (i.e.,
their value never changes) and represent some configuration option in the component
or in the analysis (e.g., number of tolerated faults). The refinement defines the subcom-
ponents decomposition, the delegation and inter-subcomponents connections, and the
contracts decomposition.

The main functionality of OCRA is to generate the proof obligations required to
check contract refinements, and to analyze them by exploiting the reasoning capa-
bilities provided by NuSMV3 [27] for the satisfiability/validity checking of temporal
logics. In particular, NuSMV3 lifts symbolic reasoning for LTL [28] to the continuous
case of HRELTL, by leveraging the functions of MATHSAT [29], the underlying solver
for SMT.

OCRA input language uses OTHELLO [16] to specify contracts. The relevant syntax
of OTHELLO has been summarized in Table 1 together with the corresponding mathe-
matical formulation in HRELTL. Apart from der and time until, the formulas can
be interpreted as LTL formulas. Note that in case of the time until operator we use
the formulation in State Clock Logic (SCL) [30], since it was not present in the original
[13] paper. Thus, time until(e)<c corresponds to the SCL formula B<ce, which is
equivalent to the MTL formula (¬t)U<ct. We refer the reader to [12, 18, 30, 13] for a
precise definition of the semantics. In the following, we give an informal intuition of
the semantics of the expressions that are used later in the case study.

Basic formulas are defined with linear arithmetic predicates over the variables or
their derivatives. For examples, x-e<limit and der(x)<0 are well-defined formu-

16

Table 1: The OTHELLO constraints language grammar.
constraint := atom | φ := a |

not constraint | ¬φ |
constraint and constraint | φ ∧ φ |
constraint or constraint | φ ∨ φ |
constraint implies constraint | φ→ φ |
always constraint | Gφ |
never constraint | G¬φ |
in the future constraint | Fφ |
constraint until constraint; φ Uφ;

atom := true | a := > |
false | ⊥ |
term relation term | t ./ t |
time until(term) relation term | B./tt |
change(port)| v′ 6= v |
term ; t;

term := port | t := v |
constant | c |
term function term | t ? t |
der(port) | v̇ |
next(port) ; v′;

las. Predicates can be combined with Boolean and temporal operators. For example,
x-e<limit and der(x)<0 and always x-e<limit are well-defined formulas.

In temporal logic, a formula without temporal operators is interpreted in the initial
state. Thus, x=0 characterizes all traces that start with a state evaluating x to 0, and
then x can evolve arbitrarily. Instead, to express that a predicates holds along the whole
evolution, one may use the always operator as in always x=0.

Another classical example of properties is the response to a certain event. The
formula always (p implies in the future q) defines the set of traces where
every occurrence of p is followed by an occurrence of q. Note that q may happen with
a certain delay (although there is no bound on such delay). The formula always (p

implies q) instead forces q to happen at the instant of p.
The above formulas do not constrain the time model of the traces. Therefore, they

can be interpreted either as discrete traces or as hybrid traces. However, the logic is
suitable to characterize specific sets of hybrid traces, constraining when there should
be discrete events and how the continuous variables should evolve along continuous
evolutions.

The der(.) operator is used to specify constraints on the derivative of the continu-
ous evolution of continuous variables. For example, the following OTHELLO constraint:

always (train.location<=target implies der(train.location)>=0)

characterizes the set of hybrid traces where in all states, if the train has not yet reached
the target location, its speed (expressed as the derivative of the location) is greater than
or equal to zero.

The next(.) operator is used to specify functional properties requiring discrete
changes to variables. For example, we can express the property that the warning vari-
able will change value after the train’s speed passes the limit with the following con-

17

COMPONENT system

INTERFACE

INPUT PORT Pedal_Pos1: boolean;
INPUT PORT Pedal_Pos2: boolean;
OUTPUT PORT Brake_Line: continuous;
PARAMETER No_Double_Fault: boolean;

CONTRACT brake_time
assume:
No_Double_Fault and always Pedal_Pos1=Pedal_Pos2;
guarantee:
always ((change(Pedal_Pos1) or change(Pedal_Pos2))
implies (time_until(change(Brake_Line)) <=10));

REFINEMENT

SUB bscu: BSCU;
SUB hydr: Hydraulic;

DEFINE bscu.Pedal_Pos1 := Pedal_Pos1;
DEFINE bscu.Pedal_Pos2 := Pedal_Pos2;
DEFINE Brake_Line := hydr.Brake_Line;
DEFINE No_Double_Fault := bscu.No_Double_Fault;
DEFINE hydr.CMD_AS := bscu.CMD_AS;
DEFINE hydr.Valid := bscu.Valid;

CONTRACT brake_time REFINEDBY
bscu.cmd_time, bscu.safety, hydr.brake_time;

Figure 4: The WBS system component.

straint:

always (speed>limit implies in the future next(warning)!=warning)

The expression change(x) can be used instead of next(x)!=x.
In order to constrain the delay between two events, we use the time until(.)

operator, which denotes the time that will elapse until the next occurrence of an event.
For example, the formula always (p implies time until(q)<max delay) de-
fines the set of hybrid traces where p is always followed by q in less than max delay

time units.

7. The Wheel Breaking System Case Study

In the following, we illustrate the application of approach on the Wheel Braking
System example described in Section 3. We use the concrete syntax of OCRA de-
scriptions. In this example, the components interact synchronously and have hybrid
traces as execution models. Therefore, we are considering a continuous model of time
and during discrete instantaneous changes all components can do synchronously some
actions (without interleaving or specific scheduling).

18

COMPONENT BSCU

INTERFACE

INPUT PORT Pedal_Pos1: boolean;
INPUT PORT Pedal_Pos2: boolean;
OUTPUT PORT CMD_AS: boolean;
OUTPUT PORT Valid: boolean;
PARAMETER No_Double_Fault: boolean;

CONTRACT cmd_time
assume:
No_Double_Fault and always Pedal_Pos1=Pedal_Pos2;
guarantee:
always ((Valid and ((change(Pedal_Pos1) or change(Pedal_Pos2))))
implies (time_until((change(CMD_AS) or fall(Valid))) <=5));

CONTRACT safety
assume:

No_Double_Fault;
guarantee:

always Valid;

REFINEMENT

SUB bscu1: subBSCU;
SUB bscu2: subBSCU;
SUB switch: Select_Switch;

DEFINE bscu1.Pedal_Pos := Pedal_Pos1;
DEFINE bscu2.Pedal_Pos := Pedal_Pos2;
DEFINE Valid := bscu1.Valid or bscu2.Valid;
DEFINE switch.In1 := bscu1.CMD_AS;
DEFINE switch.In2 := bscu2.CMD_AS;
DEFINE switch.Select := bscu1.Valid;
DEFINE CMD_AS := switch.Out;
DEFINE No_Double_Fault :=

always ((not bscu1.fault_Monitor) and
(not bscu1.fault_Command) and

(not bscu2.fault_Monitor)) or
always ((not bscu1.fault_Monitor) and

(not bscu1.fault_Command) and
(not bscu2.fault_Command)) or

always ((not bscu1.fault_Monitor) and
(not bscu2.fault_Command) and

(not bscu2.fault_Monitor)) or
always ((not bscu1.fault_Command) and

(not bscu2.fault_Command) and
(not bscu2.fault_Monitor));

CONTRACT cmd_time REFINEDBY
bscu1.cmd_time, bscu2.cmd_time,
switch.sel0_time, switch.sel1_time,
bscu1.safety, bscu2.safety;

CONTRACT safety REFINEDBY
bscu1.safety, bscu2.safety;

Figure 5: The WBS BSCU component.

19

COMPONENT Hydraulic

INTERFACE

INPUT PORT CMD_AS: boolean;
INPUT PORT Valid: boolean;
OUTPUT PORT Brake_Line: continuous;

CONTRACT brake_time
assume:
true;
guarantee:
always (change(CMD_AS) implies
(time_until(change(Brake_Line))<=5));

Figure 6: The WBS Hydraulic component.

Consider Figure 4. The top level system component has an interface with two
input ports (Pedal Pos1 and Pedal Pos2) and an output port (Brake Line). The
parameter (No Double Faults) is used for safety analysis. The contract brake time

specifies that, assuming that there is at most one fault and that the value of the input
pedal positions is always the same, it is guaranteed that the delay between a change in
the input and the execution of the brake shall not exceed 10 time units.

The refinement part shows that system is decomposed, as informally shown in
Section 3, in the composition of the components bscu (of type BSCU) and hydr (of type
Hydraulic). The ports of system are mapped on the ports of bscu and hydr. Then,
the contract break time is refined by the contract bscu.cmd time, bscu.safety,
and hydr.brake time.

The interfaces of BSCU and Hydraulic are shown in Figures 5 and 6, respectively.
In turn, bscu is refined by the composition of switch (of type Select Switch, pre-
sented in Figure 7), and of bscu1 and bscu2 (of type subBSCU, presented in Figure 8).

The correctness of the refinement of the contract brake time of system is based
on the following arguments. First, the guarantees of bscu.cmd time and hydr.brake time

imply the guarantee of the system’s contract, provided that Valid is always true and
this is guaranteed by bscu.safety. Second, the assumption of the system contract
is the conjunction of the assumptions of bscu.cmd time and bscu.safety, while
hydr.brake time have a true assumption. Similar but more complex reasoning can
be applied to prove the correctness of the refinement of the BSCU contracts (shown in
Figures 5, 8, and 7). In the case of bscu.brake time, for example, the contract is
refined by four contracts of the subcomponents and a mechanized verification is neces-
sary to prove the refinement, because subtle errors may be present as described below.
The OCRA tool supports the analysis of the correctness of the above contract refine-
ments. The OCRA engine is able to generate the suitable proof obligations and prove
that, for all refinement steps, there is no counterexample up to k = 10 in few seconds.

We now contrast the formalization provided above with the original version of [7],
in which OCRA was able to pinpoint some inaccuracies (actually, this issue is due to
the semantics given by [7] to assumptions so that they do not constrain the environ-
ment). In [7] the contract sel1 time is formulated as:

20

COMPONENT Select_Switch

INTERFACE

INPUT PORT In1: boolean;
INPUT PORT In2: boolean;
INPUT PORT Select: boolean;
OUTPUT PORT Out: boolean;

CONTRACT sel0_time
assume:

true;
guarantee:

(not Select or fall(Select)) releases
(change(In1) implies (time_until(change(Out)) <=1));

CONTRACT sel1_time
assume:

true;
guarantee:
always ((not Select or time_until(fall(Select))<=2)
implies always (change(In2) implies (time_until(change(Out))<=3)));

Figure 7: The WBS Select Switch component.

COMPONENT subBSCU

INTERFACE

PORT fault_Monitor: boolean;
PORT fault_Command: boolean;
INPUT PORT Pedal_Pos: boolean;
OUTPUT PORT CMD_AS: boolean;
OUTPUT PORT Valid: boolean;

CONTRACT cmd_time
assume:

TRUE;
guarantee:

always ((Valid and (change(Pedal_Pos))) implies
(time_until(change(CMD_AS) or fall(Valid)) <=2));

CONTRACT safety
assume:
true;

guarantee:
(always (not fault_Command) and always (not fault_Monitor))
implies always Valid;

Figure 8: The WBS subBSCU component.

21

assume:
(always Select);

guarantee:
(always (in1 implies time_until(out)<=0.25));

Let us denote this contract with C1, while with C2 the following contract:

assume:
true;

guarantee:
(always Select)
implies (always (in1 implies time_until(out)<=0.25));

From the point of view of the implementations, the two versions are equivalent in
the sense that I ∈ I(C1) iff I ∈ I(C2). However, they are not equivalent in terms of
environments. In fact, while the decomposition of cmd time defined in BSCU is cor-
rect, it becomes wrong if we substitute C2 with C1. The reason is that the assumption
always Select is too strong and is not covered by the other contracts in the decom-
position. Our prototype implementation of the proof system finds (in negligible time) a
counterexample to the decomposition, i.e. a trace where Select is false (and nothing
changes along the evolution).

Another error that we fixed in a first version of the formalization of the WBS ar-
chitecture decomposition is the connection definition of Valid in BSCU in terms of
bscu1.Valid and bscu2.Valid. Following the structure of WBS graphically de-
picted in Figure 2 of [7], we defined Valid as the conjunction bscu1.Valid and

bscu2.Valid. However, this lead to a too strong guarantee in the contract safety
of BSCU. The tool reports in fact a counterexample with a false bscu2.Valid and a
single fault (bscu2.fault Command) in bscu2.

8. Conclusions and Future Work

In this paper we presented a framework for contract-based reasoning with component-
based embedded systems. We addressed the problem of verifying the architectural
decomposition of an embedded system based on the specification of contracts on the
components. The contracts specify the assumptions and guarantees of every compo-
nents, making clear what the components expect from their environment and what they
can guarantee in response. If a component is decomposed into other components, the
architecture is correct only if the contracts of the subcomponents imply the contract of
the composite component. On the other hand, if a component is part of decomposition
(a child of a composite component), the architecture is correct only if the assumptions
of the component are satisfied by the contracts of the other connected components and
by the environment of the parent component. These conditions can be converted into
proof obligations that are valid if and only if the decomposition is correct.

The main contributions of the paper are the following. First, we extended the trace-
based framework of [8] with a proper notion of synchronous and asynchronous de-
composition, restricting the interaction of subcomponents to connections, and hiding

22

the variables of subcomponents to the interface of the parent component. Second, we
defined a set of proof obligations over the assumptions and guarantees of the contracts
involved in such decomposition. Third, we showed that these proof obligations can be
reduced to a set of satisfiability problems in the logic used to express the assertions.
Fourth, we analyzed the WBS case study presented by [7], using OTHELLO as specifi-
cation language for hybrid properties [16], and the SMT-based satisfiability procedure
presented in [13]. The results showed how we can automatically discover issues in the
architecture description of the WBS.

We identify several directions for future research. We are working on improving
the reasoning engines connected to OCRA, to effectively prove the validity of the proof
obligations in presence of expressive logics such as HRELTL (although the problem is
in general undecidable) with algorithms as those presented in [31, 32]. We are also
integrating the framework with fault-tree analysis, to exploit the contract-based design
flow to analyze the dependencies among component failures. Finally, we intend to
integrate the framework with the verification of hybrid programs implementing the
contracts.

Acknowledgment

The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreements no 269265 and 295373 and from National fund-
ing.

References

[1] A. Cimatti, S. Tonetta, A Property-Based Proof System for Contract-Based De-
sign, in: SEAA, 2012.

[2] B. Meyer, Applying ”Design by Contract”, Computer 25 (10) (1992) 40–51.
doi:10.1109/2.161279.

[3] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, C. Sofronis,
Multiple Viewpoint Contract-Based Specification and Design, in: FMCO, 2007,
pp. 200–225.

[4] A. Benveniste, B. Caillaud, R. Passerone, A Generic Model of Contracts for Em-
bedded Systems, Tech. rep., INRIA (2007).

[5] S. Quinton, S. Graf, Contract-Based Verification of Hierarchical Systems of Com-
ponents, in: SEFM, 2008, pp. 377–381.

[6] S. Graf, R. Passerone, S. Quinton, Contract-Based Reasoning for Component
Systems with Complex Interactions , in: TIMOBD’11, 2011.

[7] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, I. Stierand, Using contract-based
component specifications for virtual integration testing and architecture design,
in: DATE, 2011, pp. 1023–1028.

23

[8] S. Bauer, A. David, R. Hennicker, K. Larsen, A. Legay, U. Nyman, A. Wasowski,
Moving from Specifications to Contracts in Component-Based Design, in: FASE,
2012, pp. 43–58.

[9] D. Cofer, A. Gacek, S. Miller, M. Whalen, B. LaValley, L. Sha, Compositional
Verification of Architectural Models, in: NFM, 2012, pp. 126–140.

[10] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinke-
meier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, K. Larsen, Contracts
for System Design, Tech. Rep. RR-8147, INRIA (Nov. 2012).

[11] A. Cimatti, M. Dorigatti, S. Tonetta, OCRA: A Tool for Checking the Refinement
of Temporal Contracts, in: ASE, IEEE, 2013, pp. 702–705.

[12] A. Pnueli, The temporal logic of programs, in: FOCS, 1977, pp. 46–57.

[13] A. Cimatti, M. Roveri, S. Tonetta, Requirements Validation for Hybrid Systems,
in: CAV, 2009, pp. 188–203.

[14] A. Sangiovanni-Vincentelli, W. Damm, R. Passerone, Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems, Eur. J. Control 18 (3) (2012)
217–238.

[15] L. de Alfaro, T. A. Henzinger, Interface Theories for Component-Based Design,
in: EMSOFT, 2001, pp. 148–165.

[16] A. Cimatti, M. Roveri, A. Susi, S. Tonetta, Validation of requirements for hybrid
systems: A formal approach, ACM TOSEM 21 (4) (2012) 22.

[17] R. Koymans, Specifying Real-Time Properties with Metric Temporal Logic, Real-
Time Systems 2 (4).

[18] R. Alur, T. Henzinger, Real-time Logics: Complexity and Expressiveness, in:
LICS, 1990, pp. 390–401.

[19] P. Zhang, B. Li, L. Grunske, Timed property sequence chart, J. Syst. Softw. 83 (3)
(2010) 371–390.

[20] M. Pradella, A. Morzenti, P. S. Pietro, Bounded satisfiability checking of metric
temporal logic specifications, ACM TOSEM 22 (3) (2013) 20.

[21] SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment (Dec. 1996).

[22] A. Arnold, A. Griffault, G. Point, A. Rauzy, The AltaRica formalism for describ-
ing concurrent systems, Fundamenta Informaticae 40 (2000) 109–124.

[23] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, M. Roveri, Safety, de-
pendability, and performance analysis of extended AADL models, The Computer
Journal 54 (5) (2011) 754–775.

24

[24] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, J. Sifakis,
Rigorous Component-Based System Design Using the BIP Framework, IEEE
Software 28 (3) (2011) 41–48.

[25] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
J. Zwiers, Concurrency verification: introduction to compositional and noncom-
positional methods, Cambridge University Press, 2001.

[26] N. Benes, L. Brim, I. Cerná, J. Sochor, P. Vareková, B. Zimmerova, Partial Order
Reduction for State/Event LTL, in: IFM, 2009, pp. 307–321.

[27] The NuSMV3 system, fondazione Bruno Kessler, Trento, Italy, https://es.
fbk.eu/tools/nusmv3/.

[28] A. Cimatti, M. Roveri, V. Schuppan, S. Tonetta, Boolean Abstraction for Tempo-
ral Logic Satisfiability, in: CAV, 2007, pp. 532–546.

[29] A. Cimatti, A. Griggio, B. J. Schaafsma, R. Sebastiani, The MathSAT5 SMT
Solver, in: TACAS, 2013, pp. 93–107.

[30] J.-F. Raskin, P.-Y. Schobbens, State Clock Logic: A Decidable Real-Time Logic,
in: HART, 1997, pp. 33–47.

[31] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, IC3 Modulo Theories via Implicit
Predicate Abstraction, in: TACAS, 2014, pp. 46–61.

[32] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, Verifying LTL Properties of Hybrid
Systems with K-Liveness, in: CAV, 2014, to appear.

25

