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Abstract—Contract-based design is an emerging paradigm
for the design of complex systems, where each component
is associated with a contract, i.e., a clear description of the
expected behaviour. Contracts specify the input-output behaviour
of a component by defining what the component guarantees,
provided that the its environment obeys some given assumptions.
The ultimate goal of contract-based design is to allow for
compositional reasoning, stepwise refinement, and a principled
reuse of components that are already pre-designed, or designed
independently.

In this paper, we present a novel, fully formal contract
framework. The decomposition of the system architecture is
complemented with the corresponding decomposition of compo-
nent contracts. The framework exploits such decomposition to
automatically generate a set of proof obligations, which, once
verified, allow concluding the correctness of the top-level system
properties. The framework relies on an expressive property spec-
ification language, conceived for the formalization of embedded
system requirements. The proof system reduces the correctness
of contracts refinement to entailment of temporal logic formulas,
and is supported by a verification engine based on automated
SMT techniques.

I. INTRODUCTION

The development of safety-critical complex embedded sys-
tems is witnessing a paradigm shift in many industrial sectors:
Original Equipment Manufacturer (OEM) reorganized the sup-
ply chain focusing on those parts of the design at the core of
their competitive advantage, and share the design and devel-
opment of other parts with the competitors. This poses strong
challenges in terms of global verification and certification, and
has lead to a growing interest in interface theories and frame-
works of embedded systems [SV07], [BCF+07]. Among them,
contract-based design [BCF+07], [BCP07], [QG08], [GPQ11],
[DHJ+11], [BDH+12] is an emerging paradigm for the design
of complex systems, where each component is associated with
a contract, i.e., a clear description of the expected behavior.
Contracts specify the input-output behavior of a component
by defining what the component guarantees, provided that the
its environment obeys some given assumptions. Unlike pre-
and post-conditions of sequential programs, in the context of
embedded systems, assumptions and guarantees are properties
of the whole history/dynamics of a component.

The ultimate goal of contract-based design is to allow for
compositional reasoning, stepwise refinement, and a princi-
pled reuse of components that are already pre-designed, or
designed independently. This approach is adopted in several

recent projects for embedded systems such as SafeCer (www.
safecer.eu), which exploits contracts to enable a compositional
certification and reuse of qualified components.

In this paper, we present a novel, fully formal contract
framework, able to complement the decomposition of the
system architecture with a corresponding decomposition of
component contracts. We make two key contributions.

First, we define a proof system, that exploits contract decom-
position to automatically generate a set of proof obligations:
the correctness of the system properties decomposition directly
follows from the discharge (i.e., verification) of such proof
obligations. We associate to each component a set of contracts,
each of which can be refined by a set of contracts. The
framework is presented at a general and abstract level, in
terms of traces, and encompassess many different concrete
ways to specify contracts (e.g., automata, logics, patterns).
We remark that the definition of the refinement poses several
important technical challenges. The contract separation of
assumptions and guarantees is moreover important to define
properly the refinement of components. In fact, even if the
specification language allows to capture the assume-guarantee
with an implication so that I |= 〈A,G〉 iff I |= A → G,
this is not sufficient when considering refinement. As noted in
[AHKV98], the implementation can satisfy a smaller (refined)
specification while restricting the assumption of A. Since
the assumptions guaranteed by other components cannot be
controlled by the component under refinement, such restriction
of assumptions must be avoided. This is the reason of the
necessity of a covariant/contravariant refinement of contracts
[BDH+12], where guarantees are strengthened while assump-
tions are weakened.

The second contribution is to instantiate the framework so
that contracts are expressed in terms of an expressive property
specification language called Othello [CRST]. The underlying
temporal logic, HRELTL [CRT09], has been conceived for
the formalization of requirements for embedded systems and
can express temporal constraints on both discrete events and
real-time continuous quantities. The proof system is also spe-
cialized, so that the proof obligations that yield the correctness
of contracts refinement is mapped onto entailment of temporal
logic formulae.

The approach has been implemented on top of the NuSMV3
framework. The framework is based on a reasoning engine
for satisfiability/validity checking on HRELTL, which lifts



symbolic reasoning for discrete temporal logics (SAT-based
LTL) to the continuous case by leveraging on SMT tech-
niques [BCF+08].

Compared to related work, our work has several key el-
ements of novelty. First, in previous approaches the refine-
ment checks are not integrated into a system architecture
description. Our work paves the way to a tighter integration
of contract based design in the flow of safety-critical applica-
tions, because the automated production of refinement checks.
Second, the current approaches are typically either theoretic or
limited to specific specification patterns, rather than a general
temporal logic. Our specialization supports more expressive
and general properties. Finally, ours is the first mechanized
system for property-based contract refinement.

This paper is structured as follows. In Section II, we present
a motivating case study. In Section III, we present our contract-
based framework in terms of generic sets of generic traces.
In Section IV, we discuss the property-based specialization
of the framework, considering the particular type of hybrid
traces and characterizing sets of traces with logical properties.
In Section V, we discuss relevant related work. In Section VI,
we draw some conclusions and outline directions for future
work.

II. MOTIVATING EXAMPLE

In this section, we describe informally the benchmark that
is used in examples throughout the paper. It is taken from
[DHJ+11], where the architecture of the system and the
formalized contracts of the components are presented.

The benchmark describes a Wheel Braking System (WBS),
which takes care of translating the brake signals of the braking
pedals into physical brake of the wheel. The system takes in
input two brake Pedal_Pos signals and outputs a pressure
on the Brake_Line. See Figure 1 for a high-level picture.

The property under analysis of the WBS system is that the
maximum delay between the brake signal and its execution
is no more than 10 time units. This is guaranteed under the
assumptions that (i) the two inputs always carry the same
value, and that (ii) there is never more than one fault in the
system.

The system is composed of a Brake System Control Unit
(BSCU) and an Hydraulic subsystem. In this benchmark,
the BSCU component is refined into three componens: two
redundant sub-BSCU, and a Select_Switch that selects
the back-up sub-BSCU when the signal of the primary
sub-BSCU is no more valid due to a failure. The two
sub-BSCU are further refined into two subcomponents, a
Monitor and a Command, and the failure is due to a fault
in either of these two subcomponents.

III. CONTRACT-BASED COMPOSITIONAL VERIFICATION
OF SYSTEM ARCHITECTURE

A. Trace-based Contracts

As in [BCF+07], we base our models on a set V of
variables, which represent the relevant information of the
system (e.g., the ports between components) and sets of
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Fig. 1. High-level view of the Wheel Braking System.

traces/behaviors over V , which are (discrete or continuous)
evolutions of the values assigned to the variables in V .

A system architecture is defined by means of components. In
order to simplify the description of the proof system, we omit
the details on input/output ports and their connection, and we
consider a global set V of variables. In practice, components
have their own set of variables and mappings are used to
delegate ports to sub-components and to connect ports of sub-
components.

A component may include both implementations and con-
tracts. An implementation is an instantiation of a component
and is here modeled as a set of traces. A contract is a
pair 〈A,G〉 of assertions, which represents respectively an
assumption and a guarantee for the component. An assertion
is a property that may or may not be satisfied by a trace and
is also modeled here as a set of traces.

As in [BCF+07], [BDH+12], contract semantics are defined
in terms of implementations and environments, which consist
of sets of traces. Let a contract C = 〈A,G〉 over V be given.
Let I and E be two sets of traces over V . We say that I is
an implementation satisfying C iff I ∩ A ⊆ G. We say that
E is an environment satisfying C iff E ⊆ A. We denote with
I(C) and with E(C), respectively, the implementations and
the environments satisfying the contract C.

Two contracts C and C ′ are equivalent (denoted with C ≡
C ′) iff they have the same implementations and environments,
i.e., iff I(C) = I(C ′) and E(C) = E(C ′).

As defined in [BCF+07], a contract C = 〈A,G〉 is in normal
form iff G = A∪G (where A denotes the complement of A).
We denote with Gnf(A) the assertion A ∪G.

The contract 〈A,Gnf(A)〉 is in normal form, and is equiva-
lent (i.e., has the same implementations and environments) to
〈A,G〉.

Theorem 1 ([BCF+07]): 〈A,G〉 ≡ 〈A,Gnf(A)〉.
We say that a contract C ′ refines a contract C (C ′ ≤ C)

iff I(C ′) ⊆ I(C) and E(C) ⊆ E(C ′). The following
theorem says that a sufficient and necessary condition for the
refinement relation is that the assumption is weakened and the
guarantee is strengthened (relatively to the assumption).

Theorem 2 ([BDH+12]): 〈A′, G′〉 ≤ 〈A,G〉 iff A ⊆ A′

and G′ ∩A ⊆ G.



B. Compositional verification and proof obligations

The purpose of the contracts is to support the compositional
verification of a system, but also reuse of component and
independent implementation. A verification method is compo-
sitional if it deduces the system properties from the properties
of its components without using the internals of the compo-
nents [dRdBH+01]. The proof of a system property therefore
follows the classic structure of a deduction proof starting from
a set of axioms (in this case, the properties of the components)
and applying iteratively some inference rules. Each rule has
as consequence a property of a composite component and as
premises the properties of its subcomponents and the definition
of the composite component decomposition.

The semantics of the proof is that, for all implementations
of the basic components that satisfy the axiom properties, the
system built with such component will satisfy the deduced
property. In order to be correct, the proof generates a proof
obligation for all inference rule used in the deduction. A proof
obligation is a condition, typically written in a logical formula,
which is sufficient to prove the soundness of the inference
rule. If the proof obligation is valid only if the inference rule
is correct, we say that the proof obligation is complete.

C. System architecture and components decomposition

A system architecture is defined by means of components
interface and structural decomposition of components in sub-
components. Formally, we define the interface of a component
S as a set ξ(S) of contracts over V , and we define the
decomposition of a component S as a set ρ(S) of sub-
components. A system architecture consists of a top-level
component, also called system component, and the recursive
definition of the interface and decomposition of the system
components and sub-components.

Implementations and environments of S are sets of traces
over V . If S is decomposed in sub-components, an implemen-
tation of S is typically obtained by composing the implemen-
tations of the sub-components. In our settings, since we are
considering a synchronous model and a global set of variables,
the composition is obtained simply with the intersection of
the traces. Formally, if ρ(S) 6= ∅, an implementation of S
is given by

⋂
S′∈ρ(S) IS′ , where IS′ is an implementation of

S′. We say that such implementation of S is induced by the
implementations {IS′}S′∈ρ(S).

Similarly, an environment of S′′ ∈ ρ(S) is given by E ∩⋂
S′∈ρ(S)\{S′′} IS′ , where E is an environment of S and IS′

is an implementation of S′. We say that such environment of
S′′ is induced by the environment E and the implementations
{IS′}S′∈ρ(S)\{S′′}.

We say that I is a correct implementation of S iff I ∈
I(C) for every contract C ∈ C. We say that E is a correct
environment of S iff I ∈ E(C) for every contract C ∈ C.

D. Proof obligations for contracts decomposition

Let us consider a component S which is refined in the
sub-components ρ(S) = {S1, . . . , Sn}. We say that a set

of contracts C ⊆
⋃
S′∈ρ(S) ξ(S

′) (C ≤ C) is a correct
decomposition of C iff the following conditions hold:

1) for any implementation I of S induced by the implemen-
tations {IS′}S′∈ρ(S) of the sub-components of S, if, for
all S′ ∈ ρ(S), for all C ′ ∈ ξ(S′) ∩ C, IS′ ∈ I(C ′),
then I ∈ I(C) (i.e., the correct implementations of the
sub-contracts form a correct implementation of C);

2) for every subcomponent S′′ of S, for every contract
C ′′ ∈ ξ(S′′) ∩ C, for any environment E′′ of S′′

induced by the environment E of S and the implemen-
tations {IS′}S′∈ρ(S)\{S′′} of the sub-components of S,
if E ∈ E(C) and, for all S′ ∈ ρ(S) \ {S′′}, for all
C ′ ∈ ξ(S′) ∩ C, IS′ ∈ I(C ′), then E′′ ∈ E(C ′′) (i.e.,
for each sub-contract C ′′, the correct implementation of
the other sub-contracts and a correct environment of C
form a correct environment of C ′′).

This is the extension of the definition of [BDH+12] of one
contract dominating two contracts extended to more compo-
nents. We prefer not to use the term “dominance” that is used
differently in [BCF+07]. Also, differently from [BDH+12],
we take the viewpoint of a top-down design.

Note that the refinement coincides with the notion of
decomposition when the set is a singleton.

The following theorem gives a sufficient and necessary
condition for the decomposition relation as done by Theorem 2
for the refinement relation.

Theorem 3: Consider C = {〈A1, G1〉, . . . , 〈An, Gn〉}. C ≤
C iff G1

nf(A1) ∧ . . . ∧ Gnnf(An) ⊆ Gnf(A) and for all i,
1 ≤ i ≤ n, A ∩

⋂
1≤j≤n,j 6=iGj

nf(Aj) ⊆ Ai.

E. Deduction proofs of system contracts

The architecture abstract description defined in Section III-C
is enriched with contracts for each component composing
the system. The correctness of the contracts of the system
component is proved by composing the correctness arguments
of the sub-components.

To this purpose, we define for each component S a refine-
ment of each of its contracts C, defined as the set χ(C)
of contracts of the sub-components of S (i.e., χ(C) ⊆⋃
S′∈ρ(S) ξ(S

′)). For each contract of the system component,
the relation χ defines a proof tree as the one depicted in
Figure 9 for the WBS contract brake_time. Note that
the decomposition of a contract may contain more than one
contract of the same sub-component.

The correctness of the system component contracts is
therefore proved by checking that for every contract C in
the proof tree, the defined decomposition χ(C) is a correct
decomposition of C, i.e., χ(C) ≤ C.

IV. PROPERTY-BASED PROOF SYSTEM

A. Hybrid traces

The system specified by the contracts we are considering
is an embedded system interacting with the physical en-
vironment. The underlying model is given by hybrid sys-
tems [ACHH92], which combines discrete aspects representing
the control part (including for example the system modes) and
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Fig. 2. Example of hybrid evolution. The location and the speed of the train
evolve continuously along time. The EOA and the Target Speed of the MA
instead change instantaneously.

continuous aspects representing the physical part (including
the time and the monitored and controlled variables). An
evolution of the system is represented by a sequence of discrete
and continuous transitions. Discrete transitions are character-
ized by instantaneous changes of the systems involving control
switches and events such as system-mode transitions, and also
changes to the continuous variables such as the reset of a timer.

Continuous transitions are characterized by the elapsing of
time, which is associated with the evolution of the continu-
ous aspects according to its dynamics constraints, while the
discrete aspects remains unchanged.

An example of such evolution is depicted in Figure 2: the
location and the speed of the train are continuous variables
and thus evolve with a continuous function, while the End Of
Authority (EOA) and the Target Speed (TS) of the Movement
Authority (MA) are discrete variables that change instanta-
neously, and thus evolve with a step function. In the figure, the
train starts from an initial location running with constant speed
and alternating continuous and discrete transitions (see lower
part of the figure) it moves to a different location; it passes
to deceleration mode; then, it decelerates while approaching
the first EOA until the speed is lower than the corresponding
target speed; then, the train receives a new MA with a farther
EOA, and passes to acceleration mode; it moves on, passes to
constant speed, moves on, passes to deceleration mode, and
finally reaches the second EOA.

B. A temporal logic for embedded systems

We characterize sets of hybrid traces by means of a sym-
bolic logic, called OTHELLO, which allows for complex com-
binations of linear temporal operators, Boolean connectives,
regular expressions, over terms referring to the variables of
components.

In the following, we give some examples of OTHELLO

constraints, while we refer the reader to [CRST] for a complete
definition of the language. A formal definition of the set of
hybrid traces represented by these constraints can be found
instead in [CRT09].

The following OTHELLO constraint:

always (train.location<=MA.EOA implies der(train.location)>=0)

states that if the train has not yet reached the EOA, its speed
is greater than or equal to zero.

Similarly, the following OTHELLO constraint:

always (train.location=MA.EOA implies
der(train.location)<=MA.TS)

states that the speeds of the train must be less than the target
speed when passing over the MA.EOA.

The logic is suitable to express functional, timing, and
safety-related properties as some of the patterns described
in [CES10]. The der operator is used to specify constraints
on the derivative of the continuous evolution of continuous
variables. The next operator is used to specify functional
properties requiring discrete changes to variables. For exam-
ple, we can express the property that the train will receive a
new MA after passing the EOA with the following constraint:

always (train.location=MA.EOA implies in the future change(MA))

where change(x) is an abbreviation for next(x)!=x
which means that there is a discrete event in which MA is
changed.

Timers are continuous variables with derivative constantly
equal to one and are used to express timing constraints. For
example, we use the following declaration:

DELAY d: delay between (trigger , reaction);

as an abbreviation for declaring a continuous variable d with
constraint:

(always (trigger implies (reaction releases
(der(d)=1 and not change(d)))))

and (always (reaction implies next (trigger releases d=0)))
and (trigger releases d=0)

which means that d tracks the maximum delay between
the condition trigger and reaction. More specifically,
initially and after a reaction, it remains zero until the first
trigger; after the first trigger (since the beginning or since
the last reaction) it behaves as a timer until a new reaction.
Figure 3 gives a pictorial view of the semantics.

Finally, as in [DHJ+11], faults are modeled as standard
discrete events and are used to specify safety-related properties
such as fault-tolerance.

C. Othello system and components specification

In this section, we define the concrete language that we
propose to describe the architecture decomposition of a system
components and the decomposition of system contracts into
the contracts of sub-components.

An Othello System Specification (OSS) is written following
the grammar below (in Extended Backus-Naur Form):
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Fig. 3. An example of the semantics of a delay variable. The real value of
the delay is function of the Boolean waveforms of the trigger and reaction
expressions shown at the bottom.

OCS = system_comp component* ;
system_comp = "COMPONENT" "system" interface refinement? ;
component = "COMPONENT" name interface refinement? ;
interface = "INTERFACE" var* contract* ;
refinement = "REFINEMENT" sub* connection* refinedby* ;
var = (port | parameter | delayv) ;
port = ("INPUT" | "OUTPUT") "PORT" name ":" type ";" ;
parameter = "PARAMETER" name ":" type ";" ;
delayv = "DELAY name ":" "delay between"

"(" constraint "," contraint ")" ";" ;
type = "boolean" | "integer" | "real" | "continuous" ;
contract = "CONTRACT" name "assume" ":" constraint ";"

"guarantee" ":" constraint ";" ;
sub = "SUB" name ":" name ";" ;
connection = "DEFINE" name ":=" constraint ";" ;
refinedby = "CONTRACT" name "REFINEDBY" contr_id+ ";" ;
contr_id = name "." name ;

where name is replaced with a string and constraint
is replaced with an Othello constraint. Note that if we do
not need continuous variables and timing constraints, we can
consider discrete-time LTL formulas, for which satisfiability
is decidable.

An Othello System Specification (OSS) is tuple 〈S, S〉
where S is a set of Othello Component Specification (OCS)
and S ∈ S is the system top-level component. An OCS con-
sists of an interface and possibly a refinement. The interface
defines the set of ports and parameters (forming the set V
of variables) and the contracts (over V ). Ports are simple
variables and represent what is visible as input/output of the
component. Parameters are rigid variables (i.e., their value
never changes) and represent some configuration option in the
component or in the analysis (e.g., number of tolerated faults).
The refinement defines the subcomponents decomposition,
the delegation and inter-subcomponents connections, and the
contracts decomposition.

The main difference with the abstract architecture of Sec-
tion III is that a property specification language is used to
specify the assumption and guarantees of contracts. The trace
sets used in Section III are given by the semantics of the
formulas. The variables used in the contracts are local to the
owning component but the connection definitions are used to
map the variables used in a refinement step to a global set of
variables.

D. SMT-based verification of property-based proof obligations

When the component contracts are specified by means
of logical formulas, the proof obligations defined in Sec-
tion III can be specified with formulas too. In particular,
if a contract C = 〈α, β〉 is decomposed in the contracts
〈α1, β1〉, . . . , 〈αn, βn〉, the correctness of the decomposition
can be verified by checking the validity of the following
formulas:

((¬α1 ∨ β1) ∧ . . . ∧ (¬αn ∨ βn))→ (¬α ∨ β)
(α ∧

∧
2≤j≤n,j

(¬αj ∨ βj))→ α1

. . .

(α ∧
∧

1≤j≤n,j 6=i

(¬αj ∨ βj))→ αi

. . .

(α ∧
∧

1≤j≤n−1

(¬αj ∨ βj))→ αn

If the formulas are restricted to the standard propositional
LTL, the validity is decidable and can be performed by
standard model checking techniques for propositional temporal
logic. In the most general case, the problem is undecidable but
can be addressed with SMT-based model checking techniques,
which, although incomplete, are in practice quite effective. In
particular, we use the approach described in [CRT09], which
can decide if there exists a lasso-shape trace with up to k states
violating the proof obligations.

We implemented a prototype that takes in input a OSS and
generates the proof obligations on top of NuSMV3, which
interfaces with NUSMV2 [CCG+02] model checking and
with the MATHSAT [BCF+08] SMT solver, and supports the
analysis of OTHELLO constraints.

E. Case study

We consider the Wheel Braking System (WBS) described
in [DHJ+11] and we show how the proposed approach is able
to increase the rigor of the reasoning at support of the contract
refinement.

The system component has two input ports (Pedal_Pos1
and Pedal_Pos2) and an output port (Brake_Line). We
added a parameter (No_Double_Faults) used for safety
analysis. The contract brake_time of the system component
specifies that, assuming that there are no more than one fault
and that the value of the input pedal positions is always the
same, it is guaranteed that the delay between a change in
the input and the execution of the brake shall not exceed 10
time units. The OCS of this system component is shown in
Figure 4. The system is decomposed in the BSCU component
bscu and in the Hydraulic component hydr as described
in Section II.

The decomposition of the system component requires
the definition of the BSCU and Hydraulic components
interface, shown respectively in Figures 5 and 6. These
contain the definition of the contracts bscu.cmd_time,
bscu.safety, and hydr.brake_time, which refine



COMPONENT system

INTERFACE

INPUT PORT Pedal_Pos1: boolean;
INPUT PORT Pedal_Pos2: boolean;
OUTPUT PORT Brake_Line: continuous;
PARAMETER No_Double_Fault: boolean;

DELAY Delay_between_pedal_and_brake: delay between
((change(Pedal_Pos1) or change(Pedal_Pos2)) ,
change(Brake_Line));

CONTRACT brake_time
assume:
No_Double_Fault and always Pedal_Pos1=Pedal_Pos2;

guarantee:
always ( Delay_between_pedal_and_brake<=10 );

REFINEMENT

SUB bscu: BSCU;
SUB hydr: Hydraulic;

DEFINE bscu.Pedal_Pos1 := Pedal_Pos1;
DEFINE bscu.Pedal_Pos2 := Pedal_Pos2;
DEFINE Brake_Line := hydr.Brake_Line;
DEFINE No_Double_Fault := bscu.No_Double_Fault;
DEFINE hydr.CMD_AS := bscu.CMD_AS;
DEFINE hydr.Valid := bscu.Valid;

CONTRACT brake_time REFINEDBY
bscu.cmd_time, bscu.safety, hydr.brake_time;

Fig. 4. OCS of the WBS system component.

the system component contract. The refinement is cor-
rect because, first, the guarantees of bscu.cmd_time
and hydr.brake_time implies the guarantee of the sys-
tem’s contract provided that Valid is always true and
this is guaranteed by bscu.safety; second, the assump-
tion of the system contract is the conjunction of the as-
sumptions of bscu.cmd_time and bscu.safety, while
hydr.brake_time have a true assumption.

Similar but more complex reasoning can be applied to
prove the correctness of the refinement of the BSCU contracts
(shown in Figures 5, 7, and 8). The complete deduction tree
is shown in Figure 9. In the case of bscu.brake_time,
for example, the contract is refined by four contracts of the
subcomponents and a mechanized verification is necessary to
prove the refinement, because subtle errors may be present as
described below. Our prototype implementation proved that,
for all refinement steps, there is no counterexample up to
k = 10 in few seconds.

a) Example of too strong assumption: In the original
version of [DHJ+11], the contract sel1_time is formulated
as:

assume:
(always Select);

guarantee:
(always (Delay_between_in1_and_out<=0.25));

Let us denote this contract with C1, while sel1_time with
C2. From the point of view of the implementations, the two
versions are equivalent in the sense that I ∈ I(C1) iff
I ∈ I(C2). However, they are not equivalent in terms of
environments. In fact, while the decomposition of cmd_time

COMPONENT BSCU

INTERFACE

INPUT PORT Pedal_Pos1: boolean;
INPUT PORT Pedal_Pos2: boolean;
OUTPUT PORT CMD_AS: boolean;
OUTPUT PORT Valid: boolean;
PARAMETER No_Double_Fault: boolean;

DELAY Delay_between_pedal_and_cmd: delay between
((change(Pedal_Pos1) or change(Pedal_Pos2)) ,
(change(CMD_AS) or fall(Valid)));

CONTRACT cmd_time
assume:

always Pedal_Pos1=Pedal_Pos2;
guarantee:

always ( Delay_between_pedal_and_cmd<=5 );

CONTRACT safety
assume:

No_Double_Fault;
guarantee:

always Valid;

REFINEMENT

SUB bscu1: subBSCU;
SUB bscu2: subBSCU;
SUB switch: Select_Switch;

DEFINE bscu1.Pedal_Pos := Pedal_Pos1;
DEFINE bscu2.Pedal_Pos := Pedal_Pos2;
DEFINE Valid := bscu1.Valid or bscu2.Valid;
DEFINE switch.In1 := bscu1.CMD_AS;
DEFINE switch.In2 := bscu2.CMD_AS;
DEFINE switch.Select := bscu1.Valid;
DEFINE CMD_AS := switch.Out;
DEFINE
No_Double_Fault :=

always ( (not bscu1.fault_Monitor) and
(not bscu1.fault_Command) and

(not bscu2.fault_Monitor) ) or
always ( (not bscu1.fault_Monitor) and

(not bscu1.fault_Command) and
(not bscu2.fault_Command) ) or

always ( (not bscu1.fault_Monitor) and
(not bscu2.fault_Command) and

(not bscu2.fault_Monitor) ) or
always ( (not bscu1.fault_Command) and

(not bscu2.fault_Command) and
(not bscu2.fault_Monitor) );

CONTRACT cmd_time REFINEDBY bscu1.cmd_time, bscu2.cmd_time,
switch.sel0_time, switch.sel1_time;

CONTRACT safety REFINEDBY bscu1.safety, bscu2.safety;

Fig. 5. OCS of the WBS BSCU component.

COMPONENT Hydraulic

INTERFACE

INPUT PORT CMD_AS: boolean;
INPUT PORT Valid: boolean;
OUTPUT PORT Brake_Line: continuous;

DELAY Delay_between_cmd_and_brake: delay between
(change(CMD_AS) , change(Brake_Line));

CONTRACT brake_time
assume:

TRUE;
guarantee:

always ( Delay_between_cmd_and_brake<=5 );

Fig. 6. OCS of the WBS Hydraulic component.



bscu2|=cmd time switch|=sel timebscu1|=cmd time bscu2|=safetybscu1|=safety

bscu|=cmd time bscu|=safety

system|=brake time

hydr|=brake time

Fig. 9. Deduction tree of system property brake time.

COMPONENT subBSCU

INTERFACE

PORT fault_Monitor: boolean;
PORT fault_Command: boolean;
INPUT PORT Pedal_Pos: boolean;
OUTPUT PORT CMD_AS: boolean;
OUTPUT PORT Valid: boolean;

DELAY Delay_between_pedal_and_cmd: delay between
((change(Pedal_Pos)) , change(CMD_AS));

CONTRACT cmd_time
assume:
TRUE;

guarantee:
(always Valid) implies
(always ( Delay_between_pedal_and_cmd<=4 ));

CONTRACT safety
assume:
TRUE;

guarantee:
(always (not fault_Command) and always (not fault_Monitor))
implies always Valid;

Fig. 7. OCS of the WBS subBSCU component.

COMPONENT Select_Switch

INTERFACE

INPUT PORT In1: boolean;
INPUT PORT In2: boolean;
INPUT PORT Select: boolean;
OUTPUT PORT Out: boolean;

DELAY Delay_between_in1_and_out:
delay between (change(In1) , change(Out));

DELAY Delay_between_in2_and_out:
delay between (change(In2) , change(Out));

CONTRACT sel0_time
assume:
TRUE;

guarantee:
always ( fall(Select) implies
( always Delay_between_in2_and_out<=1 ) );

CONTRACT sel1_time
assume:
TRUE;

guarantee:
(always Select) implies
( Delay_between_in1_and_out<=0.25 );

Fig. 8. OCS of the WBS Select Switch component.

defined in BSCU OCS is correct, it becomes wrong if we sub-
stitute C2 with C1. The reason is that the assumption always
Select is too strong and is not covered by the other contracts
in the decomposition. Our prototype implementation of the
proof system finds (in negligible time) a counterexample to
the decomposition which is trace where Select is false (and
nothing changes along the evolution).

b) Example of too strong guarantee: Another error
that we fixed in a first version of the formalization of the
WBS architecture decomposition is the connection defini-
tion of Valid in BSCU in terms of bscu1.Valid and
bscu2.Valid. Following the structure of WBS graphi-
cally depicted in a figure of [DHJ+11], we defined Valid
as the conjunction bscu1.Valid and bscu2.Valid.
However, this leads to a too strong guarantee in the con-
tract safety of BSCU. The tool reports in fact a coun-
terexample with a false bscu2.Valid and a single fault
(bscu2.fault_Command) in bscu2.

V. RELATED WORK

There are many works such as [BCF+07], [BCP07],
[QG08], [GPQ11], [DHJ+11], [BDH+12], which present dif-
ferent approaches to contract-based design. Most of these
works (see, e.g., [BCF+07], [BCP07], [QG08], [GPQ11]) are
very theoretical and abstract without concrete languages and
examples of complete decomposition from system properties.
This paper advances the state-of-the-art by concretely show-
ing how a system architecture can be verified by means of
contracts. We provide a concrete language and tool to support
such verification, and we associate the underlying reasoning
to a rigorous formal contract framework.

The paper builds in particular on two recent works,
[BDH+12] and [DHJ+11], the first as the basis for the formal
contract-based reasoning, the second for a concrete example of
contracts decomposition. In particular, we build on [BDH+12],
which described how a specification language (such as Oth-
ello) can be used in a contract framework. Besides instantiating
this method for the Othello specification language, we also
provide new theoretical results tailored to the verification of
contracts decomposition. In fact, while [BDH+12] describes
when and how contracts can be composed (in a bottom-
up design process), we focus on the verification conditions
necessary to prove that a contract is refined by a specific
decomposition (in a top-down design process).



As in [BCF+07], we use a trace-based semantics for con-
tracts. However, we use a concrete property-based language to
express the assumption and guarantees of the contracts. Also,
differently from [BCF+07], we do not assume that contracts
are in normal form, but we reduce to normal form just for
the refinement checks. This may become important when the
negation of assertion is not possible (as for timed and hybrid
automata) or when performing syntactic checks of realizability
which can be hindered by the normal form having to deal with
the (possibly un-realizable) negation of the assumption.

As in [DHJ+11], we combine contracts with functional, tim-
ing, and safety aspects. However, in [DHJ+11], the semantics
of a contract is given just in terms of implementations and the
refinement is defined as trace-set inclusion, therefore missing
the covariant/contravariant relation, which is necessary for
a proper refinement of behavioral typing. In fact, trace-set
inclusion allows to refine a contract by strengthening the
assumptions. Another important difference is that the language
is based on CSL and thus on hybrid automata while our
approach is based on hybrid temporal logics for which we
have an established tool support.

Finally, we build our framework on existing advanced
techniques for property specifications and analysis [CRT09],
[CRST]. In this works, HRELTL and Othello are used to for-
malize requirements without distinction between assumptions
and guarantees. The properties are checked for entailment,
which, as discussed, is a pre-order relation not suitable for
contracts. Intuitively, an implementation satisfies a contract
iff its behaviors, restricted to the assumption, satisfy the
guarantee. As we have shown in the case study, the distinction
between assumption and guarantee has a strong impact in
terms of semantics of contracts and their refinement. In this
sense, contracts are more expressive and more adequate than
simple unstructured property specification languages.

VI. CONCLUSIONS AND FUTURE WORK

We addressed the problem of verifying the decomposition
of hybrid properties in a component-based specification. The
properties are specified in a contract-based framework, with
an explicit distinction between assumption and guarantees.
Their decomposition is correct provided that guarantees are
strengthened and assumptions are relaxed while proceeding
along the architectural decomposition. We provided a proof
system that generates a set of proof obligations that valid if
and only if the decomposition is correct.

The main contributions of the paper are the following.
First, we presented the proof obligations in the generic trace-
based contract framework of [BCF+07] and [BDH+12] and
proved their correctness. Second, we instantiated the generic
framework by adopting the Othello language as specification
language for hybrid properties [CRST] and the SMT-based
satisfiability procedure presented in [CRT09]. We extended
the tool support of NuSMV3 to take in input a component-
based specification with assumptions and guarantees written in
Othello and to automatically generate the proof obligations.

We validated the tool with the case study presented by
[DHJ+11].

Directions for future research include to extend the frame-
work to asynchronous systems as HyDI [CMT11] and to
improve the support for validity checking based on abstraction
techniques as in [Ton09] and syntactic simplifications as in
[CRT07].
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