
Tightening a Contract Refinement

Alessandro Cimatti, Ramiro Demasi, and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,demasi,tonettas}@fbk.eu

Abstract. Contract-based design is an emerging paradigm for correct-
by-construction hierarchical systems: components are associated with as-
sumptions and guarantees expressed as formal properties; the architec-
ture is analyzed by verifying that each contract of composite components
is correctly refined by the contracts of its subcomponents.

The approach is very efficient, because the overall correctness proof is
decomposed into proofs local to each component. However, part of the
complexity is delegated to the designer, who has the burden of specifying
the contracts. Typical problems include understanding which contracts
are necessary, and how they can be simplified without breaking the cor-
rectness of the refinement.

In this paper, we tackle these problems by proposing a new technique
to understand and simplify a contract refinement. The technique, called
tightening, is based on parameter synthesis. The idea is to generate a set
of parametric proof obligations, where each parameter evaluation corre-
sponds to a variant of the original contract refinement, and to search for
tighter variants of the contracts that still ensure the correctness of the
refinement. We cast this approach in the OCRA framework, where con-
tracts are expressed with LTL formulas, and we evaluate its performance
and effectiveness on a number of benchmarks.

1 Introduction

Embedded systems are growing in number and technical complexity. They are
becoming more and more sophisticated towards open, interconnected and net-
worked systems. Such complexity requires a rigorous analysis especially for those
functions that have safety-critical requirements. Formal architectural models
provide an important means to guarantee the correct refinement of system re-
quirements along the design development and decomposition of the system.

Contract-based design, first conceived for software specification by
Meyer in [20] and nowadays also applied to embedded systems (cfr. e.g.,
[3,22,16,15,12,14,4,2]), is an emerging paradigm for correct-by-construction sys-
tems which structures components properties into contracts. A contract specifies
the properties assumed to be satisfied by the component environment (assump-
tions), and the properties guaranteed by the component in response (guaran-
tees). The architecture is analyzed by verifying that each contract of composite
components is correctly refined by the contracts of its subcomponents.

In the contract framework proposed in [12,13], assumptions and guarantees
are specified as temporal formulas. Checking the correctness of contracts refine-
ment is supported by generating a set of necessary and sufficient conditions.
These proof obligations are temporal formulas obtained from assumptions and
guarantees, which are valid if and only if the refinement is correct. The approach
is implemented in the OCRA tool [8] and is parametrized by a linear-time tem-
poral logic, either propositional LTL [21], or LTL with SMT predicates [11],
or HRELTL [10,11], a variant of LTL where formulas represent sets of hybrid
traces, mixing discrete- and continuous-time steps, and therefore amenable to
model properties of hybrid systems. The approach has been used in several con-
texts and domains. A significant case study is presented in [5], where different
variants of an industrial-size architectural model of a wheel braking system are
analyzed, following the example outlined in the avionic AIR6110 standard.

The approach is very efficient, because the overall correctness proof is de-
composed into proofs local to each component. However, part of the complexity
is delegated to the designer, who has the burden of specifying the contracts.
Typical problems include understanding which contracts are necessary, and how
they can be simplified without breaking the correctness of the refinement.

In this paper, we tackle these problems by proposing a new technique to
understand and simplify a contract refinement. The technique, called tightening,
is based on parameter synthesis. The idea is to generate a set of parametric proof
obligations, where each parameter evaluation corresponds to a variant of the
original contract refinement, and to search for tighter variants of the contracts
that still ensures the correctness of the refinement. We cast this approach in the
OCRA framework and we evaluate its performance and effectiveness on a number
of benchmarks, including the industrial-size architectures described in [5].

Related Work We are not aware of similar works in the context of contract-based
design. The problem of contract tightening is related to vacuity checking [18] and
unsatisfiability core extraction [9]. The probably most related work is the notion
of unsatisfiability core for LTL proposed in [23]. However, the design problem, the
formal problem, and the technical solution are very different. First, differently
from the above-mentioned problems, we are not weakening/strengthening the
occurrence of a subformula, but we need to weaken/strengthen all occurrences
of an assumption/guarantee inside the proof obligations in the same way. Second,
we do not have just one property to simplify, but every assumption/guarantee
that is simplified occurs in different proof obligations; this corresponds to dif-
ferent unsatisfiability or model checking problems to consider at the same time.
Third, we reduce the problem to a parameter synthesis problem and we ensure
the monotonicity of parameters to ensure scalable results.

Also the work described in [17] addresses the problem of simplifying a con-
tract refinement, but with a different purpose and solution: the approach relies
on a library of contracts and refinement relations considered as additional inputs
to the refinement check problem, and simplifies the contract refinement based on
such library. The main objective of the authors is to improve the performance

of the refinement check based on the library, while we search a tighter version
of the contracts that still ensure the correctness of the refinement.

Outline The remainder of the paper is structured as follows. In Section 2 we
introduce some notions used throughout the paper. In Section 3, we introduce the
problem of tightening a contract refinement. We present in Section 4 the main
algorithm for solving such problem. We describe the experimental evaluation
performed in Section 5. Finally, we discuss some conclusions and directions for
further work.

2 Background

2.1 Transition Systems

Given a finite set V of variables with a (potentially infinite) domain D, we
denote with Σ(V) the set of assignments to V , i.e. mapping from V to D. A
transition system (TS) S is a tuple S = 〈V, I, T 〉, where V is a set of (state)
variables, I ⊆ Σ(V) is the set of initial states, and T ⊆ Σ(V) × Σ(V) is the
set of transitions. A state s ∈ Σ(V) of S is an assignment to the variables
V . A trace σ of S is an infinite sequence of states σ = s0, s1, · · · such that
s0 ∈ I and for all i ≥ 0, 〈si, si+1〉 ∈ T . Given two transition systems S1 =
〈V1, I1, T1〉 and S2 = 〈V2, I2, T2〉, we define the synchronous product S1 × S2 as
〈V1 ∪ V2, I1 ∧ I2, T1 ∧ T2〉. Since the product is commutative and associative, it
can be generalized to a set of transitions systems.

2.2 LTL

Given a set of variables V , we assume to be given a set Expr(V) of Boolean
expressions over V as in [19]. In particular, in this paper we consider standard
arithmetic predicates (<,≤, >,≥, . . .) and functions (+,−, . . .) over integer and
real variables, although the proposed methods can be applied to more general
settings.

We define the set of LTL formulas over the variables V with the following
grammar rule:

φ := p | φ ∧ φ | φ ∨ φ | ¬φ | Xφ | φUφ | φRφ

where p ranges in Expr(V). We use the following standard abbreviations: > :=
p ∨ ¬p, ⊥ := ¬>, φ→ ψ := (¬φ) ∨ ψ, Fφ := >Uφ, Gφ := ¬F¬φ.

Traces over V are infinite sequences of assignments to V . Given a trace
σ = s0, s1, . . ., we denote with σ[i] the i + 1-th state si and with σi the suffix
trace starting from s[i].

Given a trace σ and an LTL formula φ over V , we define σ |= φ as follows:

– σ |= p iff p evaluates to true given the assignment σ[0]
– σ |= ¬φ iff σ 6|= φ

– σ |= Xφ iff σ1 |= φ
– σ |= φUψ iff there exists i ≥ 0 s.t. σi |= ψ and for all j, 0 ≤ j < i, σj |= φ
– σ |= φRψ iff for all i ≥ 0 σi |= ψ or there exists j, 0 ≤ j < i, s.t. σj |= φ

The satisfiability problem is the problem of checking if for a given LTL for-
mula φ there exists a trace σ such that σ |= φ.

Given a TS S = 〈V, I, T 〉 and an LTL formula φ over V ′ ⊆ V , M |= φ if for all
traces σ of M , σ |= φ. The satisfiability problem of an LTL formula over V can
be reduced to model checking by considering the universal model as transition
system: i.e., φ is satisfiable iff 〈V,Σ(V), Σ(V)×Σ(V)〉 6|= ¬φ.

Note that we are considering in general infinite-state transition systems for
which these problems are undecidable. Our methods are based on SMT-based
algorithms as those implemented in nuXmv [7].

2.3 Parameter Synthesis

The goal of parameter synthesis is to find the maximal set of values for some
parameters, so that a given property is satisfied. Let S be a transition system
and let U be a set of parameter, we define the parametric transition system
P = (V,U, IU , TU), where I and T are now defined on both the state variables
and parameters. We define the parameters as frozen, i.e., we set their value in the
initial state and preserve it during the execution of the system. Given a valuation
for the parameters (γ ∈ Σ(U)), and a formula ψ we write γ(ψ) = ψ[u ∈ U/γ(u)],
to indicate that each parameter has been substituted with its value. Given a
parametric transition system P and a valuation for the parameters γ, we can
compute the induced transition system, by replacing the parameters with their
valuation: Pγ = (V, γ(IU), γ(TU)). Given an LTL property φ expressed over the
state variables and parameters, the parameter region ρ is the maximal set of
assignments to the parameters, such that the property is satisfied by every trace
of the induced system, formally: ρ = {γ | Pγ |= γ(φ)}.

In this paper, we consider Boolean parameters and, with abuse of notation,
we identify a parameter evaluation γ with the set {p | p ∈ U, γ(p) = >}. The
parameter region is monotonic iff whenever γ ⊆ γ′, if γ ∈ ρ then γ′ ∈ ρ. The
monotonicity of the parameter region is typically exploited by parameter synthe-
sis algorithms that enumerate the parameter evaluations γ such that Pγ 6|= γ(φ).
In fact, one can proceed with γ of increasing cardinality and as soon as Pγ |= γ(φ)
all γ′ with γ ⊆ γ′ can be included in ρ.

2.4 Contract Refinement

In order to simplify the presentation, in this paper, we define a contract re-
finement independently from the component interfaces. In practice, in the tool
support we consider, contracts are specified in terms of component input/output
ports and the refinement has to take into account the connections among ports
in component decomposition.

A contract C over the variables V is a pair 〈A,G〉 of LTL formulas over VS
representing respectively an assumption and a guarantee.

We also denote A by A(C), G by G(C), and the assertion ¬A∨G by nf(C).
Let C = 〈A,G〉 be a contract over V . Let I and E be TS over V . We say that

I is a correct implementation of C iff I |= A → G. We say that E is a correct
environment of C iff E |= A. We denote by I(C) and E(C), respectively, the set
of correct implementations and the set of correct environments of C.

Given two contracts C and C ′ over V , we say that C refines C ′ (denoted by
C � C ′) iff I(C ′) ⊆ I(C) and E(C) ⊆ E(C ′).

In a system architecture, each contract is associated to a component. If a com-
ponent is decomposed into subcomponents, the associated contracts are imple-
mented by the composition of the subcomponents’ implementations. Similarly,
the environment of the contract of a subcomponent is given by the composition
of the environment of the composite component and the implementations of the
other subcomponents. In order to prove that such decomposition is correct, we
generalize the refinement notion to a set of contracts.

Given a contract C and a set of contracts Sub = {C1, . . . , Cn}, we say that
Sub is a refinement of C, written Sub � C, iff the following conditions hold:

1. the correct implementations of the sub-contracts form a correct implemen-
tation of C:

{S1 × . . .× Sn | S1 ∈ I(C1), . . . , Sn ∈ I(Cn)} ⊆ I(C)

2. for every Ci ∈ Sub, the correct implementation of the other sub-contracts
and a correct environment of C form a correct environment of Ci:

{E×S1×. . .×Sj 6=i×. . .×Sn | E ∈ E(C), for all j, 1 ≤ j ≤ n, j 6= i, Sj ∈ I(Cj)} ⊆ E(Ci)

In [12,13], we proved that the refinement is correct if and only if the following
proof obligations are valid temporal formulas:

nf(C1) ∧ . . . ∧ nf(Cn)→ nf(C)

A ∧
∧

1≤j≤n,j 6=i

nf(Cj)→ Ai (for every i, 1 ≤ i ≤ n)

3 The Problem of Tightening a Refinement

3.1 Motivation

Contract-Based Design The contract-based design flow is depicted in Fig-
ure 1, using the example of a Wheel Braking System (WBS), which takes care
of translating the brake signals of the braking pedals into physical brake of the
wheel. The brake pedal position is electrically fed to the braking computer, which
in turn produces corresponding control signals to the brakes. This computer is
named the Braking System Control Unit (BSCU). The BSCU is implemented
with two redundant sub-systems, called subBSCU. Therefore, the BSCU takes
as input two redundant Pedal Pos brake positions and outputs a pressure on
the Brake Line.

Fig. 1: Contract-based design flow.

The design starts with the view of
the system as a whole black box with
ports to interact with its environment.
Then, it is decomposed into BSCU and
Hydraulic components. The BSCU is
in turn decomposed into two redun-
dant subBSCU and a switch. The
decomposition also defines how the
ports of the component being decom-
posed are mapped down into the de-
composition. For example, the “left”
ports of the WBS are mapped onto the
“left” ports of the BSCU.

Each component in the hierarchy
is associated with a set of contracts,
depicted in green, specifying the ac-
ceptable behaviors for the component
and its environment. Contracts are re-
fined, following the decomposition of
components. For example, the contracts of the WBS are refined by some con-
tracts of the BSCU and the Hydraulic subcomponents. The framework guar-
antees that, under specific conditions (corresponding to correct contract refine-
ment), if the contracts of the subcomponents hold, then the contract of the
parent component also holds.

Need for Tightening The typical design of a system follows a top-down ap-
proach starting from the system requirements and iteratively deriving the re-
quirements of subcomponents. The process is however quite expensive, espe-
cially if the requirements are formalized into formal properties. It may happen
therefore to specify contracts on the subcomponents that are more demanding
than necessary or that contain unwanted redundancies. It may happen also that
the designer specifies a very strong assumption on the system to make the re-
finement correct and she/he wants to relax such assumption while keeping the
design correct. In general, given a correct contract refinement, we would like to
understand if the guarantees of subcomponents or assumption on the compos-
ite component can be weakened. We call this problem top-down tightening of a
contract refinement.

In some cases, the guarantees of subcomponents or the assumption of the
system are fixed. For example, the designer used the contract specification of an
existing component. After having verified the contract refinement, the designer
would like to understand if, using this subcomponents’ specification, the system
properties can be strengthened. Similarly, a given subcomponent specification
can entail stronger assumptions on other subcomponents, which would allow
the designer to choose alternative design solutions. We call bottom-up tightening

of a contract refinement to this problem of strengthening the guarantees of a
composite component and the assumptions of the subcomponents.

3.2 Formal Definition

Tightening We now define formally the problem of tightening a contract re-
finement as follows. Given a contract C, and a set of contracts C1, . . . , Cn such
that {C1, . . . Cn} � C, a tightening of this contract refinement is given by a set
of contracts C ′, C ′1, . . . , C

′
n such that:

– {C ′1, . . . C ′n} � C ′
– C ′ � C and, for every i, 1 ≤ i ≤ n, Ci � C ′i.

A top-down tightening is a tightening as defined above such that G(C) =
G(C ′) and, for all i, 1 ≤ i ≤ n, A(Ci) = A(C ′i). We can easily prove that,
equivalently, a top-down tightening is given by a set of contracts C ′, C ′1, . . . , C

′
n

such that:

– {C ′1, . . . C ′n} � C ′
– A(C) |= A(C ′) and, for every i, 1 ≤ i ≤ n, G(Ci) |= G(C ′i).

A bottom-up tightening is a tightening as defined above such that A(C) =
A(C ′) and, for all i, 1 ≤ i ≤ n, G(Ci) = G(C ′i). We can easily prove that,
equivalently, a bottom-up tightening is given by a set of contracts C ′, C ′1, . . . , C

′
n

such that:

– {C ′1, . . . C ′n} � C ′
– G(C ′) |= G(C) and, for every i, 1 ≤ i ≤ n, A(C ′i) |= A(Ci).

4 The Algorithm

4.1 Overview

In this section, we present the main algorithm for tightening a contract refine-
ment for the two variants of the problem we defined (top-down and bottom-up).
The procedure first injects a set P of parameters in the contract specification to
create a search space of weakened or strengthened assumptions and guarantees.
Second, it creates the related proof obligations that are now parametrized by
P and we want to find for which configurations of the parameters the contract
refinement holds. This is a multiple parameter synthesis problem, because we
have to search for the assignment to P such that all proof obligations are valid.
Thus, as third step, we convert the problem to a single standard parameter
synthesis problem and we call an off-the-shelf algorithm to solve it. In the first
step, we make sure that the injection creates a monotonic parameter region by
construction, which can be exploited by the synthesis algorithm.

These steps are formalized as follows, while the pseudo-code is shown in
Algorithm 1. Suppose we want to obtain a top-down tightening of Sub � C.

1. We transform C and Sub into a parametrized version CP and SubP such that
for every evaluation γ of P , if γ(SubP) � γ(CP), then 〈γ(CP), γ(SubP)〉 is
a top-down tightening of 〈C, Sub〉.

2. We generate the proof obligations PO(V, P) of γ(SubP) � γ(CP).
3. We generate a single proof obligation φ that is equivalent to PO(V, P) in

the sense that {γ ∈ Σ(P) s.t. |= γ(φ) for every φ ∈ PO(V, P)} = {γ ∈ Σ(P)
s.t. |= γ(φPO)}.

Algorithm 1 Tightening a Contract Refinement

Input: a contract C, a set of contracts Sub = {C1, . . . , Cn} such that Sub � C, and
T = bottom-up or top-down

Output: Sub′ = {C′
1, . . . C

′
n} � C′and C′ � C and, for every i, 1 ≤ i ≤ n, Ci � C′

i.
1: {Calling top-down or bottom-up alg. on Sub and C}
2: if T = top-down then
3: 〈〈SubP , CP 〉, P 〉 = Top down tightening(Sub, C)
4: else {T = bottom-up}
5: 〈〈SubP , CP 〉, P 〉 = Bottom up tightening(Sub, C)
6: end if
7: {Construction of the Proof Obligations}
8: POs = ConstructPOs(SubP , CP)
9: {Encodes all POs into a single PO}

10: PO = BuildSinglePO(POs)
11: {Calling Parameter Synthesis Algorithm}
12: param region = ComputeParamRegion(PO,P)
13: {Generate output}
14: GenerateT ightenedContractRef(PO, param region)

4.2 Generation of the Parametric Problem

In this section, we describe how we introduce parameters in the contracts and
generate a monotonic parameter synthesis problem. The high-level transforma-
tion is described in Algorithms 2 and 3 where assumptions and guarantees are
weakened or strengthened depending on whether we are targeting a top-down
or a bottom-up tightening of the contract refinement.

If the target is the top-down tightening of Sub � C, the Algorithm 2 weakens
every guarantee of the subcontracts in Sub and the assumption of the C. If the
target is the bottom-up tightening, the Algorithm 3 strengthens the guarantee
of C and every assumption of Sub.

The Weaken and Strengthen functions are described respectively in Algo-
rithms 4 and 5. They take as input a formula and they return a parametric
formula and a set of injected parameters. The definition assumes that every new
parameter p is a fresh symbol. The number of parameters is linear in the size of
the formula.

Parameters are injected so that every parameter evaluation yields a respec-
tively weaker or stronger formula.

Algorithm 2 Top-down tightening (Top down tightening(Sub,C))

Input: a contract C and a set of contracts Sub = {C1, . . . , Cn}
Output: 〈〈Sub′, C′〉, P 〉
1: Sub′ = ∅
2: P = ∅ {Set of parameters}
3: for all Ci ∈ Sub do
4: 〈G(C′

i), P
′〉 = Weaken(G(Ci))

5: Sub′ = Sub′ ∪ {〈A(Ci),G(C′
i)〉}

6: P = P ∪ P ′

7: end for
8: 〈A(C′), P ′〉 = Weaken(A(C))
9: C′ = 〈A(C′),G(C)〉

10: P = P ∪ P ′

11: return 〈〈Sub′, C′〉, P 〉

Algorithm 3 Bottom-up tightening (Bottom up tightening(Sub,C))

Input: a contract C and a set of contracts Sub = {C1, . . . , Cn}
Output: 〈〈Sub′, C′〉, P 〉
1: Sub′ = ∅
2: P = ∅ {Set of parameters}
3: for all Ci ∈ Sub do
4: 〈A(C′

i), P
′〉 = Strengthen(A(Ci))

5: Sub′ = Sub′ ∪ {〈A(C′
i),G(Ci)〉}

6: P = P ∪ P ′

7: end for
8: 〈G(C′), P ′〉 = Strengthen(G(C))
9: C′ = 〈A(C),G(C′)〉

10: P = P ∪ P ′

11: return 〈〈Sub′, C′〉, P 〉

We remark that we do not aim to obtain the weakest or strongest version of
a formula. In our approach, the definition of Weaken and Strengthen functions is
pattern-based where new patterns can be investigated to complement or improve
the current ones.

Theorem 1. For any parameter evaluation γ, φ→ γ(Weaken(φ)) and
γ(Strengthen(φ))→ φ.

Proof. We prove the theorem by induction on the structure of the formula. If
Weaken(φ) = 〈φW , P 〉, we denote with φ′ the instantiation of φW with some
evaluation γ. Similarly, if Strengthen(φ) = 〈φS , P 〉, we denote with φ′′ the in-
stantiation of φS with some evaluation γ.

The result of Weaken and Strengthen is outlined in Tables 1 and 2. It is
routine to check line by line that φ → φ′ and φ′′ → φ, based on the inductive
hypothesis that φ1 → φ′1, φ2 → φ′2, φ′′1 → φ1. ut

Algorithm 4 Weaken(φ)

Input: a formula φ
Output: 〈φW , P 〉
1: if φ = a > b (similar for φ = a < b) then
2: φW = p1 → (a > b) ∧ p2 → (a ≥ b)
3: return 〈φW , {p1, p2}〉
4: else if φ = φ1 ∧ φ2 then
5: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

6: φW = p1 → φW
1 ∧ p2 → φW

2

7: return 〈φW , P1 ∪ P2 ∪ {p1, p2}〉
8: else if φ = φ1 ∨ φ2 then
9: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

10: φW = φW
1 ∨ φW

2

11: return 〈φW , P1 ∪ P2〉
12: else if φ = φ1 R φ2 then
13: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

14: φW = p1 → (φW
1 ∧ φW

2) ∧ p2 → (φW
1 R φW

2)
15: return 〈φW , P1 ∪ P2 ∪ {p1, p2}〉
16: else if φ = φ1 U φ2 then
17: 〈φW

1 , P1〉 = Weaken(φ1), 〈φW
2 , P2〉 = Weaken(φ2)

18: φW = φW
1 U φW

2

19: return 〈φW , P1 ∪ P2〉
20: else if φ = ¬φ1 then
21: 〈φS

1 , P1〉 = Strengthen(φ1)
22: return 〈¬φS

1 , P1〉
23: else
24: return 〈p→ φ, {p}〉
25: end if

It follows immediately that Algorithm 2 and 3 yield a correct top-
down/bottom-up tightening, as stated in the following corollary.

Corollary 1. Let C be a contract and Sub a set of contracts.
Let 〈〈Sub′, C ′〉, P 〉 be the result of Top down tightening(Sub,C) or
Bottom up tightening(Sub,C). Then, for any evaluation γ of the param-
eters P , if γ(Sub′) � γ(C ′) then 〈γ(Sub′), γ(C ′)〉 is a top-down or bottom-up
tightening of 〈Sub,C〉, respectively.

Moreover, the parameter injection is designed so that the semantics of the
parametric formulas is monotonic with respect to the parameter evaluations.

Theorem 2. If γ ⊆ γ′, γ′(Weaken(φ)) → γ(Weaken(φ)) and
γ(Strengthen(φ))→ γ′(Strengthen(φ)).

Proof. Looking again at Table 1 and 2, one can check the monotonicity case by
case. In fact, for each type of formula, the lines reporting the result of Weaken
and Strengthen are sorted according to the strength of the parameter evaluation

(third column). More precisely, if γ is below γ′, then either they are incom-
parable or γ ⊂ γ′. Therefore it is routine to prove that, in the second case,
γ′(Weaken(φ)) → γ(Weaken(φ)) and γ(Strengthen(φ)) → γ′(Strengthen(φ))
(fourth column). ut

Formula φ Weaken(φ) = 〈φW , P 〉 Evaluation γ γ(Weaken(φ))

a < b p1 → (a < b) ∧ p2 → (a ≤ b) {p1, p2} a ≤ b
{p1} a < b
{p2} a ≤ b
∅ >

φ1 ∧ φ2 p1 → φW
1 ∧ p2 → φW

2 {p1, p2} φ′
1 ∧ φ′

2

{p1} φ′
1

{p2} φ′
2

∅ >
φ1 ∨ φ2 φW

1 ∨ φW
2 NA φ′

1 ∨ φ′
2

φ1 R φ2 p1 → (φW
1 ∧ φW

2) ∧ p2 → (φW
1 R φW

2) {p1, p2} φ′
1 ∧ φ′

2

{p2} φ′
1 R φ′

2

{p1} φ′
1 ∧ φ′

2

∅ >
φ1 U φ2 φW

1 U φW
2 NA φ′

1 U φ′
2

¬φ1 ¬φS
1 NA ¬φ′

1

Table 1: Simplification table for Weaken(φ), where φ′i denotes the instantiation
of φWi with some evaluation γ.

Formula φ Strengthen(φ) = 〈φS , P 〉 Evaluation γ γ(Strengthen(φ))

a ≤ b ¬p1 → (a < b) ∧ ¬p2 → (a = b)∧ {p1, p2} a ≤ b
(p1 ∧ p2)→ (a ≤ b) {p2} a < b

{p1} a = b
∅ ⊥

φ1 ∨ φ2 ¬p1 → φS
1 ∧ ¬p2 → φS

2∧ {p1, p2} φ′′
1 ∨ φ′′

2

(p1 ∧ p2)→ (φS
1 ∨ φS

2) {p2} φ′′
1

{p1} φ′′
2

∅ φ′′
1 ∧ φ′′

2

φ1 ∧ φ2 φS
1 ∧ φS

2 NA φ′′
1 ∧ φ′′

2

φ1 U φ2 ¬p→ φS
2 ∧ p→ φS

1 U φS
2 {p} φ′′

1 U φ′′
2

∅ φ′′
2

φ1 R φ2 φS
1 R φS

2 NA φ′′
1 R φ′′

2

¬φ1 ¬φW
1 NA ¬φ′′

1

Table 2: Simplification table for Strengthen(φ), where φ′′i denotes the instantia-
tion of φSi with some evaluation γ.

Note that parameters are introduced per contract, so they are shared by
difference occurrences of the assumption/guarantee in the proof obligations. It

is immediate to show that, thanks to the structured way in which formulas
are either strengthened or weakened according to the target top-down/bottom-
up tightening, the resulting synthesis problem is monotonic, as stated in the
following corollary.

Corollary 2. Let C be a contract and Sub a set of contracts. Let 〈〈Sub′, C ′〉, P 〉
the result of Top down tightening(Sub,C) or Bottom up tightening(Sub,C).
Then, for any evaluation γ, γ′ of the parameters P such that γ ⊆ γ′, if γ(Sub′) �
γ(C ′) then γ′(Sub′) � γ′(C ′).

Algorithm 5 Strengthen(φ)

Input: a formula φ
Output: 〈φS , P 〉
1: if φ = a ≤ b (similar for a ≥ b) then
2: φS = ¬p1 → (a < b) ∧ ¬p2 → (a = b) ∧ (p1 ∧ p2)→ (a ≤ b)
3: return 〈φS , {p1, p2}〉
4: else if φ = φ1 ∨ φ2 then
5: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

6: φS = ¬p1 → φS
1 ∧ ¬p2 → φS

2 ∧ (p1 ∧ p2)→ (φS
1 ∨ φS

2)
7: return 〈φS , P1 ∪ P2 ∪ {p1, p2}〉
8: else if φ = φ1 ∧ φ2 then
9: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

10: φS = φS
1 ∧ φS

2

11: return 〈φS , P1 ∪ P2〉
12: else if φ = φ1 U φ2 then
13: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

14: φS = ¬p→ φS
2 ∧ p→ φS

1 U φS
2

15: return 〈φS , P1 ∪ P2 ∪ {p}〉
16: else if φ = φ1 R φ2 then
17: 〈φS

1 , P1〉 = Strengthen(φ1), 〈φS
2 , P2〉 = Strengthen(φ2)

18: φS = φS
1 R φS

2

19: return 〈φS , P1 ∪ P2〉
20: else if φ = ¬φ1 then
21: 〈φW

1 , P1〉 = Weaken(φ1)
22: return 〈¬φW

1 , P1〉
23: else
24: return 〈¬p→ φ, {p}〉
25: end if

4.3 Multiple Validity Parameter Synthesis Problem

The approach to solve the tightening problem proposed in Section 4.1 intro-
duces the problem of finding the parameter evaluations γ such that each for-
mula φ(P, V) ∈ PO instantiated with γ is valid. Each validity problem can be
reduced to a model checking problem but the parameter evaluation is shared by
the different verification problems. This is different from the standard parameter

synthesis problem where only one verification problem is considered. We called
this problem a multiple validity parameter synthesis problem (not to be confused
with multiple objective parameter synthesis problem).

We propose to reduce the multiple validity to one validity problem by re-
naming the variables in V and taking the conjunction of the proof obligations.
Namely, if PO = {φ1, . . . , φn} we create the formula φPO(P, V1, . . . , Vn) =∧

1≤j≤n φj [Vj/V], where Vj contains one copy vj for each variable v ∈ V and
φj [Vj/V] is the formulas obtained by substituting every variable v ∈ V with vj
(while the parameters P remain unchanged).

Theorem 3. For all parameter evaluation γ, γ(φPO) is valid iff, for all formulas
φ ∈ PO, γ(φ) is valid.

Proof. ⇒) Suppose for some φj ∈ PO, γ(φj) is not valid. Let σ be a trace over
V satisfying ¬γ(φj). Let us define the trace σj such that, for every i ≥ 0, for
all v ∈ V , σj [i](vj) = σ[j](v). Let us extend σj to a trace σ′j over V1 ∪ . . . Vn
assigning variables not in Vj in an arbitrary way. Then σ′j satisfies ¬γ(φPO).
⇐) Suppose φPO is not valid. Let σ be a trace over V1 ∪ . . . ∪ Vn satisfying

¬γ(φPO). Then, there exists j, 1 ≤ j ≤ n, such that σ |= ¬γ(φj [Vj/V]). Let us
define the trace σj such that, for every i ≥ 0, for all v ∈ V , σj [i](v) = σ[j](vj).
Then σ′j satisfies ¬γ(φj). ut

5 Experimental Evaluation

5.1 Details of the Implementation

We have implemented the algorithms described in the previous section on top
of OCRA [8], a tool for architectural design based on contract-based design. In
more details, we implemented a new command in OCRA that takes as input an
OCRA specification, a contract’s name, a component’s name, and a desired vari-
ant of tightening (top-down or bottom-up) and produces as output an OCRA
specification containing the tightened version of the given contract and its sub-
contracts. Regarding the parameter synthesis algorithm, we have used as back-
end an implementation reported in [6]. Since the synthesis is quite expensive for
large number of parameters, we arbitrarily limit the injection to 350 parame-
ters. This allows to get a tightening also in cases in which the definitions would
produce many more parameters making the synthesis blow up.

We also implemented self checks to validate the results: first, we automatically
check that each tightened contract refinement is correct; second, we automati-
cally check for each tightened specification that the original formula entails the
weaken formula (top-down tightening) and the strengthened formula entails the
original formula (bottom-up tightening), see Theorem 1.

5.2 Description of benchmarks

We have taken several benchmarks from several case studies developed manually
using the OCRA language. Some examples are: several versions of the Wheel

Brake System described in Section 3, a Lift System, a system with Redundant
Sensors, and Airbag system [1]. Particularly, an interesting case study is taken
from [5], where the authors presented a complete formal analysis of the AIR6110,
a document describing the informal design of a Wheel Brake System, covering all
the phases of the process, and modeled the case study by means of a combination
of formal methods including contract-based design using OCRA, model checking
and safety analysis.

5.3 Experimental Results

We carried out an experimental evaluation for 875 contract refinements taking
into account the simplification obtained on each tightened contract refinement
with respect to the length of the formulas on the original contracts involved 1.
The results of applying top-down (red crosses) and bottom-up (grey circles)
tightening are shown in Figure 2. From the results, we can clearly see a significant
simplification for top-down tightening. As for bottom-up tightening, we did not
get important simplification, but we observed that the main reason is that the
size of formulas of the contracts involved are much smaller compared to the ones
involved on the top-down tightening.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Ti
gh

te
n

le
ng

th
 o

f f
or

m
ul

as

Original length of formulas

Fig. 2: Analysis of length of formulas for top-down and bottom-up.

1 We consider the standard definition of the length of a formula (number of symbols),
apart from the length of > which is set to 0.

Fig. 3: Parameter scalability.

In Figure 3 it is shown how our approach scales with respect to the number
of parameters used for tightening a contract refinement and the time for com-
puting the parameter region for three extended versions of the WBS example.
All benchmarks have been performed with a time limit of 5 minutes for check-
ing the contract refinement before and after tightening, the computation of the
parameter region, and the check of the entailments properties. For the 875 con-
tract refinements, 68 could not be completed within the timeout. We have run
our experiments on a Linux machine with 8 CPU of 3.40 Ghz Intel Xeon, with
a memory of 15Gb.

6 Conclusions and Future Work

Motivated by validation problems of contract-based design, we defined the prob-
lem of tightening a contract refinement. We provided a solution based on the
synthesis of parameters of temporal satisfiability problems. We evaluated the
approach on a number of benchmarks and showed that the solution is effective
and scalable. For future work, we will extend the approach to consider also the
tightening of metric operators and the preservation of realizability.

References

1. T. Arts, M. Dorigatti, and S. Tonetta. Making Implicit Safety Requirements Ex-
plicit - An AUTOSAR Safety Case. In SAFECOMP, pages 81–92, 2014.

2. S.S. Bauer, A. David, R. Hennicker, K.G. Larsen, A. Legay, U. Nyman, and A. Wa-
sowski. Moving from Specifications to Contracts in Component-Based Design. In
FASE, pages 43–58, 2012.

3. A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofro-
nis. Multiple Viewpoint Contract-Based Specification and Design. In FMCO, pages
200–225, 2007.

4. A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier,
A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K.G. Larsen. Contracts
for System Design. Technical Report RR-8147, INRIA, November 2012.

5. M. Bozzano, A. Cimatti, A.F. Pires, D. Jones, G. Kimberly, T. Petri, R. Robinson,
and S. Tonetta. Formal Design and Safety Analysis of AIR6110 Wheel Brake
System. In CAV, pages 518–535, 2015.

6. Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Cristian Mattarei. Ef-
ficient Anytime Techniques for Model-Based Safety Analysis. In CAV, pages 603–
621, 2015.

7. R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuXmv Symbolic Model Checker. In CAV, pages
334–342, 2014.

8. A. Cimatti, M. Dorigatti, and S. Tonetta. OCRA: A Tool for Checking the Re-
finement of Temporal Contracts. In ASE, pages 702–705, 2013.

9. A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean Abstraction for
Temporal Logic Satisfiability. In CAV, pages 532–546, 2007.

10. A. Cimatti, M. Roveri, and S. Tonetta. Requirements Validation for Hybrid Sys-
tems. In CAV, pages 188–203, 2009.

11. A. Cimatti, M. Roveri, and S. Tonetta. HRELTL: A temporal logic for hybrid
systems. Inf. Comput., 245:54–71, 2015.

12. A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-Based
Design. In SEAA, 2012.

13. A. Cimatti and S. Tonetta. Contracts-refinement proof system for component-
based embedded systems. Sci. Comput. Program., 97:333–348, 2015.

14. D.D. Cofer, A. Gacek, S.P. Miller, M.W. Whalen, B. LaValley, and L. Sha. Com-
positional Verification of Architectural Models. In NFM, pages 126–140, 2012.

15. W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In DATE, pages 1023–1028, 2011.

16. S. Graf, R. Passerone, and S. Quinton. Contract-Based Reasoning for Component
Systems with Complex Interactions . In TIMOBD’11, 2011.

17. A. Iannopollo, P. Nuzzo, S. Tripakis, and A.L. Sangiovanni-Vincentelli. Library-
based scalable refinement checking for contract-based design. In DATE, pages 1–6,
2014.

18. O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking.
STTT, 4(2):224–233, 2003.

19. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

20. B. Meyer. Applying ”Design by Contract”. Computer, 25(10):40–51, 1992.
21. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.
22. S. Quinton and S. Graf. Contract-Based Verification of Hierarchical Systems of

Components. In SEFM, pages 377–381, 2008.
23. V. Schuppan. Towards a notion of unsatisfiable and unrealizable cores for LTL.

Sci. Comput. Program., 77(7-8):908–939, 2012.

	Tightening a Contract Refinement

