
1

Symbolic Compilation of PSL
Alessandro Cimatti Marco Roveri Stefano Tonetta

Fondazione Bruno Kessler (FBK)
Institute for Scientific and Technological Research (IRST)

Via Sommarive 18, I-38050, Trento, Italy
{cimatti,roveri,tonettas}@fbk.eu

Abstract—
The IEEE standard Property Specification Language (PSL) is

increasingly used in many phases of the hardware design cycle,
from specification to verification. PSL combines Linear Temporal
Logic (LTL) with Sequential Extended Regular Expressions
(SEREs), and thus provides a natural formalism to express all
ω-regular properties.

In this paper, we propose a new method for efficiently convert-
ing PSL formulas into symbolically represented Nondeterministic
(Generalized) Büchi Automata (NGBA), that are typically used
in many verification and analysis tools. The construction is
based on a normal form that separates the LTL and the SERE
components, and allows for a modular and specialized encoding.
The compilation is enhanced by a set of syntactic transformations
that aim at reducing the state space of the resulting NGBA.
These rules enable to achieve, at low cost, the simplification that
can be achieved with expensive, semantic techniques based on
minimization.

A thorough experimental analysis over large sets of paradig-
matic properties (from patterns of properties commonly used
in practice) shows that our approach drastically reduces the
compilation time, and positively affects the overall search time.

Index Terms—PSL, SERE, Büchi Automata, Symbolic Compi-
lation, Formal Verification, Formal Methods, BDD, SAT.

I. INTRODUCTION

The IEEE standard Property Specification Language
PSL [17], [28] is increasingly used as means to capture
requirements on the behavior of a design, such as assumptions
about the environment in which the design is expected to
operate, internal behavioral requirements, and further con-
straints that arise during the design process from specification
to verification.

The most important fragment of PSL combines Linear
Temporal Logic (LTL) [36] with Sequential Extended Regular
Expressions (SERE) [28], a variant of classical regular expres-
sions [27]. This fragment, referred to as SERELTL in the rest
of this paper, constitutes the core of many specification lan-
guages such as ForSpec [2] and SVA [47]. SERELTL enables
encoding many properties of practical interest in compact and
readable formulas, capturing the well known class of ω-regular
properties. Most verification engines are in principle able to
deal with ω-regular properties, by manipulating Nondetermin-
istic (Generalized) Büchi Automata (NGBAs). However, only
few model checkers are able to deal with SERELTL, and they
usually cover only very limited fragments of the language,

Some of the material presented in this paper appears in preliminary version
in the conference papers [11] and [13]. The current manuscript presents a new
and more extensive experimental evaluation, contains a uniform presentation
of the proposed techniques, and proves their correctness.

such as LTL or the PSL simple subset [17], [28]. Thus, the
ability to convert SERELTL into NGBA would be an important
enabling factor for the reuse of a large wealth of verification
tools.

The main problem is that the translation of SERELTL into
NGBA may become a bottleneck. In fact, the translation
of LTL augmented with regular expressions into NGBA is
exponential in the size of the input formula [3], [8]. In addi-
tion, SEREs extend regular expressions with the intersection
operation, at the cost of another exponential blow-up [3].

In this paper, we propose a modular direct encoding of
SERELTL into a symbolically represented NGBA, motivated
by two main objectives: the first is to alleviate the theoretical
blow-up of the translation by decomposing the formula into
smaller components and exploiting the symbolic representa-
tion of their composition; the second is to apply syntactic
simplification to the specifications as to avoid the explicit
manipulation of automata.

The core of the algorithm is a normal form for SERELTL
formulas that we named Suffix Operator Normal Form
(SONF). This normal form separates the SERE components
and the LTL components. This makes the approach mod-
ular, i.e., rather than constructing a monolithic automaton
we generate it in the form of an implicit product, thus
delaying composition until search time. The resulting overall
automaton is the implicit symbolic composition of possibly
smaller symbolic automata. In addition, the two kinds of
components can be encoded separately. The encoding of the
LTL components can rely on mature techniques (e.g., [23],
[24], [39], [41]). Although the SERELTL components can be
encoded by any standard conversion to NGBA, we exploit the
fact that SONF admits only specific SERELTL patterns, called
Suffix Operator Subformulas. For each pattern, we define a
specific and optimized encoding into symbolic NGBAs.

In order to reduce the explicit manipulation of automata,
we propose a number of syntactic rewriting rules, based on
the following ideas. First, we try to minimize the size of
the arguments to the SERE language-intersection operators,
given that they are associated with an exponential blow up.
Second, whenever possible we convert the SEREs into LTL,
in order to limit as much as possible suffix operators, and to
enable the use of specialized algorithms for LTL. Finally, some
Suffix Operator Subformulas resulting from the conversion
into SONF can be further simplified by taking into account
their structure.

We prove that our transformation is correct, and evaluate our
approach in the NUSMV model checker [9], with a thorough

2

experimental analysis over large sets of paradigmatic PSL
properties [4]. The analysis shows that our approach dramat-
ically reduces the construction time of the symbolic NGBA.
In addition, an evaluation on language-emptiness problems,
using both BDDs and SAT, shows that our approach can
positively affect the overall verification time. The experiments
also show that the simplifications are computationally cheap,
and substantially pay off in terms of verification time. The
result is that, overall, the new method is vastly superior to the
approach described in [3], [6].

The paper is structured as follows. In Section II, we present
the syntax and semantics of SERELTL, some background
on automata and on state-of-the-art symbolic techniques for
compiling SERELTL formulas. In Section III, we outline our
approach to SERELTL symbolic compilation. In Section IV,
we define the Suffix Operator Normal form, and, in Section V,
we discuss the encoding, and we show how to exploit the
structure of the SONF to generate symbolically represented
NGBAs. In Section VI, we present the set of syntactic
optimizations. In Section VII, we discuss some related work.
In Section VIII, we experimentally evaluate our approach.
Finally, in Section IX, we draw the conclusions.

II. TECHNICAL BACKGROUND

A. PSL and SERELTL

The fragment of PSL we deal with is based on a combina-
tion of operators from Linear Temporal Logic [36] (LTL), and
Sequential Extended Regular Expressions (SEREs), a variant
of classical regular expressions [27]. This combination has
been studied in the literature under the name of SERELTL, and
provides ω-regular expressiveness [31]. In the following, we
will identify the relevant fragment of PSL with SERELTL.We
will not deal with “clocked” expressions, since any clocked
expression can be rewritten into an equivalent un-clocked
one [28]. The same applies for the “abort” operator, which can
be efficiently rewritten into an abort-free equivalent formula
[1], [37].

1) Syntax: Given a generic set V , we denote with B+(V)
the set of Boolean formulas obtained by applying only disjunc-
tion (∨) and conjunction (∧) to elements in V ∪{true, false};
with B∨(V) the set of Boolean formulas obtained by applying
only disjunction ∨ to elements in V ∪ {true, false}; and
with B¬(V) the set of Boolean formulas obtained by applying
disjunction, conjunction and negation (¬) to elements in
V ∪ {true, false}. In the following, we assume as given a
set A of atomic propositions.

Definition 1 (SEREs syntax):

• if b ∈ B¬(A), then b is a SERE;
• if r is a SERE, then r[*] is a SERE;
• if r1 and r2 are SEREs, then r1 ; r2, r1 : r2, r1 ||| r2,
r1 & r2, and r1 && r2 are SEREs.

; and : are concatenation operators: the former is the classical
regular expression concatenation [27]; the latter is a variant
with one-letter overlapping. & and && are intersection op-
erators, the former without synchronization, the latter with
synchronization. ||| and [*] are respectively the union and

Kleene-closure standard regular expression operators. We use
r[*n] as an abbreviation for r ; r ; . . . ; r repeated n times.

Definition 2 (SERELTL syntax): We define the SERELTL
formulas over A, as follows:
• if p ∈ A, p is a SERELTL formula;
• if φ1 and φ2 are SERELTL formulas, then ¬¬¬φ1, φ1∧∧∧φ2,
φ1 ∨∨∨ φ2 are SERELTL formulas;

• if φ1 and φ2 are SERELTL formulas, then X φ1, φ1 U φ2,
φ1 R φ2 are SERELTL formulas;

• if r is a SERE and φ is a SERELTL formulas, then
r ♦→♦→♦→ φ and r |→|→|→ φ are SERELTL formulas;

The X (“next-time”), the U (“until”), and the R (“releases”)
operators are the standard temporal operators from Linear
Temporal Logic. We call the ♦→♦→♦→ (“suffix conjunction”),
and the |→|→|→ (“suffix implication”), suffix operators. We also
use G φ as an abbreviation for false R φ and a SERE r
not occurring in a suffix operator as an abbreviation for
r ♦→♦→♦→ true. LTL can be seen as a subset of SERELTL in which
the suffix operators and the SEREs are suppressed.

In the following we write φ(ψ) to state that formula ψ is
a subformula of φ. We also denote with φ[P/ψ] the formula
resulting from the substitution of every occurrence of ψ in φ
with P .

Definition 3: Let φ be a SERELTL formula and ψ a
SERELTL subformula of φ. We define the positive [resp.,
negative] occurrences of ψ in φ recursively as follows:
• φ is a positive occurrence of φ in φ
• every positive [resp., negative] occurrence of ψ in φ is a

negative [resp., positive] occurrence in ¬φ
• every positive [resp., negative] occurrence of ψ in φ is a

positive [resp., negative] occurrence in X φ, φ′∧φ, φ∧φ′,
φ′ ∨ φ, φ ∨ φ′, φ′ U φ, φ R φ′, r |→|→|→ φ, and r ♦→♦→♦→ φ

Note that the definition does not consider subformulas of
SEREs.

2) Semantics: The languages we are considering are de-
fined as sets of finite or infinite words over the alphabet
ΣA := 2A (total assignments to A). In the following, when
clear from the context, we simply write Σ, thus omitting the
set A of atomic propositions. We denote a letter from Σ by `,
a word from Σ by v or w, and the concatenation of v and w
by vw. We denote with |w| the length of word w. We denote
with ε the word with length 0. A finite word w = `0`1 . . . `n−1

has length n, an infinite word has length ω. Σ∗ denotes the
set of finite words, while Σω denotes the set of infinite words.
For all i, 0 ≤ i < |w | , we use wi to denote the (i + 1)th

letter of w, and we denote with wi.. the suffix of w starting
at wi. When 0 ≤ i ≤ j < |w | , we denote with wi..j the
finite sequence of letters starting from wi and ending in wj ,
i.e., wi..j := wiwi+1 . . . wj .

Boolean expressions are interpreted over letters in Σ: a
propositional atom p is true in ` iff p ∈ `, false otherwise;
Boolean connectives are interpreted in the standard way. If `
is a letter and b a Boolean expression, we denote with ` |=B b
the fact that ` is a model of b.

The semantics of SEREs is defined over finite words:
Definition 4 (SEREs semantics): Let w ∈ Σ∗.
• w |≡ b iff |w| = 1 and w0 |=B b

3

• w |≡ r1 ; r2 iff ∃w1, w2 s.t. w = w1w2, w1 |≡ r1, w2 |≡ r2
• w |≡ r1 : r2 iff ∃w1, w2, ` s.t. w = w1`w2, w1` |≡ r1,
`w2 |≡ r2

• w |≡ r1 ||| r2 iff w |≡ r1 or w |≡ r2
• w |≡ r1 & r2 iff

– w |≡ r1 and ∃w1, w2 s.t. w = w1w2, w1 |≡ r2, or
– w |≡ r2 and ∃w1, w2 s.t. w = w1w2, w1 |≡ r1

• w |≡ r1 && r2 iff ∃w1, w2 s.t. w = w1w2, w1 |≡ r1,
w1 |≡ r2

• w |≡ r[*] iff |w| = 0 or ∃w1, w2 s.t. |w1 | 6= 0, w =
w1w2, w1 |≡ r, w2 |≡ r[*]

Definition 5 (Language of SEREs): The language of a
SERE r is defined as L(r) := {w ∈ Σ∗ | w |≡ r}.

We interpret SERELTL expressions over infinite words
and we assume a strong semantics for all operators (though
our approach can be easily extended to deal with the weak
semantics and with finite words, see [18] for a discussion).

Definition 6 (SERELTL semantics): Let w ∈ Σω.
• w |= p iff w0 |=B p;
• w |= ¬¬¬φ iff w 6|= φ;
• w |= φ∧∧∧ ψ iff w |= φ and w |= ψ;
• w |= φ∨∨∨ ψ iff either w |= φ or w |= ψ;
• w |= X φ iff w1.. |= φ;
• w |= φ U ψ iff, for some j ≥ 0, wj.. |= ψ and, for all

0 ≤ k < j, wk.. |= φ;
• w |= φ R ψ iff, for all j ≥ 0, either wj.. |= ψ or, for

some 0 ≤ k < j, wk.. |= φ;
• w |= r ♦→♦→♦→ φ iff, for some j ≥ 0, w0..j |≡ r and wj.. |= φ;
• w |= r |→|→|→ φ iff, for all j ≥ 0, if w0..j |≡ r, then wj.. |= φ.
Example 1: Consider the SERELTL formula

G ({{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ {f ; g}). It
encodes the property for which every sequence that matches
both regular expressions {a ; b[*] ; c} and {d[*] ; e} must
be followed by {f ; g} with f overlapping with c and e.

Definition 7 (Language of SERELTL formulas): The lan-
guage of a SERELTL formula φ over the alphabet Σ is defined
as follows:

L(φ) := {w ∈ Σω | w |= φ}

For any subset A′ ⊆ A of propositions, we define the language
projected on A′ as:

LA′(φ) := {w ∈ ΣωA′ | for some v ∈ L(φ),
vi ∩ A′ = wi for all i ≥ 0}

B. Automata

Definition 8 (NFA): A Non-deterministic Finite-state Au-
tomaton (NFA) is a tuple A = 〈Σ, Q, q0, ρ, F 〉, where
• Σ is the alphabet;
• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• ρ : Q× Σ → 2Q is the transition function;
• F ⊆ Q is the set of final states.

A run of an NFA A over the finite word w = `0, `1, ..., `n−1 ∈
Σ∗ is a finite sequence of states π = q0, q1, ..., qn such that,
for 0 ≤ i < n, qi+1 ∈ ρ(qi, `i), and qn ∈ F .

Definition 9 (Language of NFAs): The language L(A) of
an NFA A is the set of words w such that there exists a run
of A over w.

Definition 10 (DFA): A Deterministic Finite-state Automa-
ton (DFA) is an NFA A = 〈Σ, Q, q0, ρ, F 〉 such that, for all
q ∈ Q and ` ∈ Σ, |ρ(q, `)| ≤ 1.

Definition 11: A (Non-)Deterministic Finite-state Automa-
ton is complete iff for all q ∈ Q, for all ` ∈ Σ, |ρ(q, `)| ≥ 1.

Definition 12 (NGBA): A Non-deterministic Generalized
Büchi Automaton (NGBA) is a tuple A = 〈Σ, Q,Q0, ρ,F〉,
where
• Σ is the alphabet;
• Q is a finite set of states;
• Q0 ⊆ Q is the set of initial states;
• ρ : Q× Σ → 2Q is the transition function;
• F ⊆ 2Q is the set of fairness conditions.

A run of an NGBA A over the infinite word w = `0, `1, ... ∈
Σω is an infinite sequence of states π = q0, q1, ... starting from
some q0 ∈ Q0 such that, for all i ≥ 0, qi+1 ∈ ρ(qi, `i), and
for all F ∈ F , for infinitely many i ≥ 0, qi ∈ F .

Definition 13 (ABA): An Alternating Büchi Automaton
(ABA) over infinite words is a tuple A = 〈Σ, Q,Q0, ρ, F 〉,
where
• Σ is the alphabet;
• Q is a finite set of states;
• Q0 ⊆ Q is the set of initial states;
• ρ : Q× Σ → B+(Q) is the transition function;
• F ⊆ Q is the fairness condition.

A run of an ABA on an infinite word w is a (possibly infinite)
Q-labeled tree τ = (T , L) such that L(ε) ∈ Q0 and for every
node t ∈ T , t has at most |Q| children and, if t is at the i-th
level of τ , L(t) = q, and the children of t are t1, ..., tk, then
L(t1), ..., L(tk) satisfy ρ(q, wi), and every branch has infinite
depth and features infinitely many labels in F .

Definition 14 (ABA and NGBA language): The language
L(A) of an ABA or NGBA A is the set of words w such
that there exists a run of A over w.

Fair Transition Systems [32] are a symbolic representation
of automata.

Definition 15 (FTS): A Fair Transition System (FTS) is a
tuple S = 〈V,W, T, I,F〉, where V is a finite set of state
variables, W is a finite set of input variables, T ∈ B¬(V ∪
W ∪ V ′) is the transition relation (V ′ is the set of primed
versions of variables in V), I ∈ B¬(V) specifies the set of
initial states, and F ∈ B¬(V) specifies a fairness condition
for each F ∈ F . The size |S| of S is given by the number of
variables (|V |).

An FTS S = 〈Vs,Ws, Ts, Is,Fs〉 defines an NGBA A as
follows:A = 〈2Ws , 2Vs , Q0, ρ,F〉, where Q0 = {q | q |= Is},
ρ(q, `) = {q′ | (q, `, q′) |= T}, and F contains a fairness
condition F = {q | q |= Fs} for each Fs ∈ Fs. Thus, we can
speak of a run of an FTS and the language of an FTS as if it
were an NGBA.

Let S1 = 〈V1,W, T1, I1,F1〉 and S2 = 〈V2,W, T2, I2,F2〉
be two FTSs over the same alphabet, such that V1 and V2

are disjoint. The Synchronous Product of S1 and S2, P =
〈VP ,W, TP , IP ,FP 〉, is defined as follows:

4

• VP = V1 ∪ V2,
• TP = T1 ∧ T2,
• IP = I1 ∧ I2,
• FP = F1 ∪ F2.
The synchronous product corresponds to language intersec-

tion, i.e. L(P) = L(S1) ∩ L(S2).

C. From SERELTL to FTS

The process of translating a formula into an FTS is called
Symbolic Compilation. In this section, we list a series of
known theorems that allow for the symbolic compilation of
SERELTL in different ways.

Regular expressions, NFAs and DFAs have the same expres-
sive power [27]. Since SERE extends the regular expressions
with intersection operations, the following theorem holds:

Theorem 1 (From SERE to NFA): For every SERE r, there
exists a complete NFA Ar such that L(Ar) = L(r) and |Ar| =
|r| if r does not contain the && operator, |Ar| = 2O(|r|)

otherwise.
The determinization of an NFA results in an exponential

blow up [27].
Theorem 2 (From NFA to DFA): Given an NFA A, we can

build a DFA A′ such that L(A′) = L(A) and |A′| = 2O(|A|).
SERELTL formulas can be translated both to NGBA and

ABA. In [8], it is shown how to translate LTL extended
with regular expressions into NGBA. Given Theorem 1, the
following holds:

Theorem 3 (From SERELTL to NGBA): For every
SERELTL formula φ, there exists an NGBA Aφ such
that L(Aφ) = L(φ) and |Aφ| = 22O(|φ|)

.
In [3], it is shown that:
Theorem 4 (From SERELTL to ABA): For every

SERELTL formula φ, there exists an ABA Aφ such
that L(Aφ) = L(φ) and |Aφ| = 2O(|φ|).

Given an ABA A, the algorithm by Miyano and Hayashi
[33] produces an NGBA B accepting the same language. In
the following, we rely on a simplified version [29]:

Theorem 5 (From ABA to NGBA): For any ABA A
there exists an NGBA B such that L(B) = L(A).
Given A = 〈Σ, Q,Q0, ρ, F 〉, B is defined as
B = 〈Σ, QB , Q0B , ρB , {FB}〉, where:
• QB = {(L,R)|L ∈ 2Q, R ∈ 2Q\F }
• Q0B = Q0 × {∅}
• if R 6= ∅, then ρB((L,R), `) = {(L′, R′ \ F) | L′ |=⋂

q∈L ρ(q, `), R
′ ⊆ L′, R′ |=

⋂
q∈R ρ(q, `)}

if R = ∅, then ρB((L,R), `) = {(L′, L′ \ F) | L′ |=⋂
q∈L ρ(q, `)}

• FB = 2Q × {∅}
The following is usually called logarithmic encoding:
Theorem 6 (From NGBA to FTS): For every NGBA A,

there exists an FTS B such that L(A) = L(B) and |B| =
log(O(|A|)).

A symbolic variant of [33] is presented in [6]:
Theorem 7 (From ABA to FTS): For every ABA A, there

exists an FTS B such that L(A) = L(B) and |B| = O(|A|).
Finally,

Theorem 8 (From SERELTL to FTS): For every
SERELTL formula φ, there exists an FTS Bφ such that
L(Bφ) = L(φ) and |Bφ| = 2O(|φ|).

D. State-of-the-art Symbolic Compilers for LTL and
SERELTL into FTS

We can identify two main approaches to LTL compilation
into FTS: on one hand, syntactic compilers (such as ltl2smv
[14]) translate the LTL formula directly into a linear size FTS
by introducing one variable for each sub-formula; on the other
hand, semantic compilers (such as Wring [41]) translate the
formula into an intermediate explicit representation, which is
optimized and then symbolically represented by means of a
logarithmic encoding. Semantic compilers have been highly
optimized and focus most of their efforts in the minimization
of the explicit-state automata. LTL formulas can be translated
linearly into a fragment of ABA, called linear weak ABA [24],
[43]. The ABA can be exploited for a further intermediate
minimization [23]. Also the classic syntactic compilation (
[14]) can be seen as a linear encoding of the corresponding
ABA, but typically the ABA is not explicitly built and mini-
mized. In [39], it is shown that semantic compilers usually
performs better in terms of verification time; though, their
main drawback is that the automata optimization are often so
expensive that the compilation time may result in a bottleneck.

The standard approach to the compilation of SERELTL
extends the semantic compilation of LTL to handle SERE and
their combination with temporal connectives. The translation
proposed in [3] proceeds bottom-up: it builds the automaton
corresponding to the SEREs, and combines them with the
temporal and the suffix operators. The resulting automaton
is an ABA which is then translated into an NGBA by the
Miyano-Hayashi (MH) algorithm [33]. Finally, the NGBA can
be converted into an FTS. In [6], this compilation is improved
by providing a symbolic version of MH, so that the potential
explosion is delayed at run time.

The main obstacles to an efficient symbolic compilation of
SERELTL are the following:

1) The first bottleneck is in the translation of SEREs into
NFAs. While the standard translation for concatenation
(;, :) and union (|||) is linear [27], the intersection opera-
tor && allows for a greater succinctness, but implies
a potential blow-up. The complexity stems from the
difficulty of codifying the fact that two automata must
synchronize on the end of the accepted words [30], [49].

2) A second bottleneck is in the suffix implication r |→|→|→ φ,
which requires that every finite prefix satisfying the
SERE r is followed by a suffix satisfying the SERELTL
formula φ. This can be guaranteed by determinizing and
completing the NFA, thus forcing the search to consider
exactly one path per prefix. Theoretical translations
such as [8] avoid this determinization, but in order to
define the transition relation they explicitly enumerate
the letters of the alphabet, which is exponential in the
number of atomic propositions.

5

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

LT
L2

F
T

S

LT
L2

F
T

S

LT
L2

F
T

S

LT
L2

F
T

S

S
O

S
2F

T
S

S
O

S
2F

T
S

S
O

S
2F

T
S

TEMPORAL OPERATORS
SUFFIX OPERATORS

�� SERE OPERATORS

SYMBOLIC FTS

G (P −> __) OPERATORS

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

S
L2

F
T

S

X X X X X X

SL2SONF

Fig. 1. The core of the approach.

III. THE APPROACH: OVERVIEW

In this section, we give an overview the approach proposed
in this paper. The main underlying ideas are the following.
First, the original formula is transformed into a normal form
that separates out the LTL and SERE components and enables
for a modular encoding (see Figure 1). The final automaton
is the (implicit) synchronous composition of the encoding
of smaller components. Second, the SERE components are
rewritten and simplified in order to maximize the parts that can
be expressed in LTL, as to exploit off-the-shelf techniques for
LTL and thus reducing the explicit manipulation of automata
required for the SERE components.

The algorithm is based on the following three main steps: 1)
formula simplification, 2) formula normalization (and further
simplification), 3) final encoding.

The core of the translation is the reduction of SERELTL to
a normal form, called Suffix Operator Normal Form (described
in Section IV). The original SERELTL formula, where LTL
and SERE components are arbitrarily mixed according to the
SERELTL syntax, is decomposed into the conjunction of a
set of pure LTL subformulas, and of a set of Suffix Operator
Subformulas, i.e., invariant formulas of a precise structure
where only one suffix operator and one SERE occur. In order
to achieve this normal form, new variables are introduced as
place-holders for some subformulas. The same variables are
used at top-level to trigger the satisfaction of the corresponding
formulas.

The translation takes advantage of this form in order to
create a modular encoding (described in Section V). Each
of the conjuncts resulting from the translation is encoded
separately, and the results are recombined by means of an
implicit, symbolic synchronous composition. The encoding of
each component is also optimized based on the structure. LTL
components are translated by means of LTL to FTS techniques.
For Suffix Operator Subformulas, the encoding into automata
can use any existing SERELTL to automata technique or can
be further specialized (as described in Section V-A and in
Section V-B).

The rewritings and the simplifications (described in Sec-
tion VI) that are carried out on the original formula and on
the result of the normalization aim at reducing the scope of
the && operator in the SEREs, and at translating most of the
SERE components into LTL.

IV. SUFFIX OPERATOR NORMAL FORM FOR SERELTL

In this section, we define the Suffix Operator Normal Form
for SERELTL. The first step is to extend the Negative Normal
Form (standard for LTL) to the case of SERELTL.

Definition 16 (NNF): A SERELTL formula is in negated
normal form (NNF) iff all the negations occur only in front
of propositions.

The following two rules need to be added to the standard
rules N (·) for obtaining an NNF from an LTL formula:
• N (¬¬¬(r ♦→♦→♦→ φ1)) := r |→|→|→ N (¬¬¬φ1)
• N (¬¬¬(r |→|→|→ φ1)) := r ♦→♦→♦→ N (¬¬¬φ1)
Lemma 1 (NNF-ization): A SERELTL formula φ can al-

ways be translated to an NNF SERELTL formula N (φ) such
that L(φ) = L(N (φ)) and |N (φ)| = |φ|.

We now provide a set of rewriting rules to convert the
formula into a normal form named Suffix Operator Normal
Form (SONF). Intuitively, a formula in SONF is structured as
follows

ΨLT L︷ ︸︸ ︷∧
i

φi∧∧∧

ΨSOS︷ ︸︸ ︷∧
j

G (pjI →→→ (rj ?→?→?→ pjF))

where φi are arbitrary LTL formulas, rj are SEREs, pjI and
pjF are atoms, and ?→?→?→ ∈ { |→|→|→ , ♦→♦→♦→ }.

Given a formula φ, the rewriting rules build φ′, adding new
atoms while preserving the language so that a model of φ′

restricted to the original set of atomic propositions is a model
of φ. We define the following transformation function:

Definition 17:

S(φ) :=

S(φ[Pr ♦→♦→♦→ ψ/r ♦→♦→♦→ ψ]∧∧∧ if r ♦→♦→♦→ ψ occurs
G (Pr ♦→♦→♦→ ψ →→→ (r ♦→♦→♦→ Pψ))∧∧∧ in φ and ψ is not
G (Pψ →→→ ψ)) atomic;

S(φ[Pr |→|→|→ ψ/r |→|→|→ ψ]∧∧∧ if r |→|→|→ ψ occurs
G (Pr |→|→|→ ψ →→→ (r |→|→|→ Pψ))∧∧∧ in φ and ψ is not
G (Pψ →→→ ψ)) atomic;

φ otherwise.

Intuitively, for every subformula of φ of the form r ?→?→?→ ψ
with ψ not atomic, we introduce two new atoms: Pr ?→?→?→ ψ

and Pψ . We substitute the suffix operator r ?→?→?→ ψ with the
corresponding activation predicate Pr ?→?→?→ ψ , and we add two
global formulas at top-level: the first states that Pr ?→?→?→ ψ always
triggers r ?→?→?→ Pψ; the second states that Pψ always triggers ψ.
We call formulas of the form G (Pr ?→?→?→ ψ →→→ (r ?→?→?→ Pψ)) Suffix
Operator Subformulas (SOS).

Notice that |φ′| = O(|φ|). The function S is well defined be-
cause the recursive definition always decreases the number of
subformula of φ of the form r ?→?→?→ ψ with ψ not atomic. Thus,
the rewriting procedure terminates and it always produces
the same formula (modulo renaming). The following theorem
guarantees that the rewriting rules preserve the language with
respect to the original alphabet.

Theorem 9: Let φ be a SERELTL formula over A in NNF,
let P be a variable not occurring in φ, and let ψ be a SERELTL
subformula of φ that occurs only positively in φ. If φ′ :=
φ[P/ψ]∧∧∧ G (P →→→ ψ) then LA(φ) = LA(φ′).

Example 2: The SONF of the formula of Example 1
G ({{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ {f ; g}) is G p1 ∧

6

G (p1 → {{a ; b[*] ; c} && {d[*] ; e}} |→|→|→ p2) ∧ G (p2 →
{f ; g} ♦→♦→♦→ p3).

Example 3: The SONF of F G ({(a ∧ b)[*] ; (c ∨
d)} |→|→|→ F c) is F G (p1) ∧ G (p1 → {(a ∧ b)[*] ; (c ∨
d)} |→|→|→ p2) ∧ G (p2 → F c).

V. A MODULAR TRANSLATION FROM SERELTL TO FTS

Algorithm 1 depicts the pseudo code of the ModSL2Fts
procedure for translating SERELTL to FTS in a modular man-
ner. ModSL2Fts relies on two building blocks, Ltl2Fts
and Sos2Fts. Ltl2Fts is a procedure that builds an FTS
from an LTL formula (for instance [14]). Sos2Fts can be
implemented by any procedure SL2Fts that builds an FTS
from a SERELTL formula (like e.g. the procedure described
in Section II-D).

The ModSL2Fts procedure improves over SL2Fts by
transforming the SERELTL formula into an equivalent one
in SONF. The Sonf procedure generates the SONF of a
formula φ, thus decomposing it into subformulas according
to their nature. This normalization is then exploited in two
ways: first, we keep the resulting FTS partitioned (rather
than monolithically); second, we call the tableau constructor
Ltl2Fts, which is optimized for LTL, on the LTL part.

ModSL2Fts(φ)
input : φ, the SERELTL input formula
output : S, a set of FTSs;

the final FTS is the product of all FTSs in S
begin

φ′ := Sonf(φ);
S := ∅;
/* φ′ is in the form ΨLTL ∧ΨSOS */
for ψ ∈ ΨLTL do

A := Ltl2Fts(ψ);
S := S ∪ {A};

end
for ψ ∈ ΨSOS do

A := Sos2Fts(ψ);
S := S ∪ {A};

end
return S

end

Algorithm 1: Modular translation.

Intuitively, the approach can be seen as a way to decompose
the property in small pieces, apply to each piece the most
effective encoding, and then gluing together the results by
synchronous composition.

We remark that the result of the translation is a set of im-
plicitly synchronously composed FTSs, while the approaches
described in Section II-D return a single FTS. This enables a
greater efficiency since we can exploit in the search standard
techniques of conjunctive partitioning [15] widely used in
model checking. It also allows for multiple fairness conditions,
thus possibly resulting in a more compact encoding.

Algorithm 1 can be further optimized. First, we notice
that each formula φ ∈ ΨSOS matches exactly one of two
specific patterns, i.e., G (PI →→→ (r ♦→♦→♦→ PF)) and G (PI →→→
(r |→|→|→ PF)). In the following two sections we present op-
timized versions of Sos2Fts, for each one of the SOS

a ∧ b

c ∨ d

a, b, c, d

a, b,¬c, d

a, b, c,¬d

a, b,¬c,¬d

a, b, c, d

¬a,¬b,¬c, d

Fig. 2. Symbolic (on the left) vs. explicit (on the right) transitions.

patterns. In particular, we directly build the FTS Sφ from the
NFA Ar = 〈Σ, Q, q0, ρ, F 〉 of r. As a consequence of the
optimizations, the overall algorithm ModSL2Fts completely
avoids the use of an intermediate ABA or NGBA. We remark
that the symbolic encodings presented below are linear in the
size of Ar and we do not add new variables either for the
top-level G operator or for the propositions PI and PF .

A second optimization is to consider a symbolic represen-
tation of the labels in the NFA. The classical representation
of transitions is a function ρ : Q× Σ → 2Q (see Def. 8). We
call these transitions explicit because they depend on complete
assignments to propositions. Instead, we use symbolic transi-
tions, which are represented by a function ρ : Q→ 2B

¬(A)×Q,
where Boolean combinations of atomic formulas are used to
represent sets of assignments. This way, we can preserve the
succinctness of SEREs, which use Boolean expressions as
atomic formulas.

Example 4: Consider the suffix implication subformula
G (p1 → {(a∧ b)[*] ; (c∨d)} |→|→|→ p2) of Example 3. In order

to represent r = (a∧b)[*] ; (c∨d), we use the following NFA
with symbolic transitions:

Ar = 〈{q1, q2}, q1, {(q1, a ∧ b, q1), (q1, c ∨ d, q2)}, {q2}〉.

In Figure 2, we show Ar both with the symbolic and with the
explicit transitions.

A. Encoding φ := G (PI →→→ (r |→|→|→ PF))

We recall that the semantics of r |→|→|→ PF says that every time
we read a word accepted by r we must set PF to true. In order
to monitor the acceptance of r, we use the automaton Ar. We
introduce a set of variables V := {vq}q∈Q, with the intuition
that vq is true whenever we start monitoring the acceptance
of a suffix of r associated with q. Thus, if vq is true and we
read l ∈ Σ, we need to activate every vq′ with q′ ∈ ρ(q, l). A
simple way to encode this would be to enumerate all possible
explicit transitions, i.e., all the assignments to the atomic
propositions. Instead, we choose to enumerate all possible
subsets of the symbolic transitions outgoing from q, since
typical SEREs often exhibit a limited branching rate, and have
Boolean expressions as atomic formulas.

Thus, the activation of the next variables is defined by the
following condition:

Tr :=
∧
q∈Q

(vq → (
∨

C⊆ρ(q)

(
∧

(γ,q′)∈C

(γ∧v′q′)∧
∧

(γ,q′)∈ρ(q)\C

¬γ)))

7

Given a state q, ρ(q) contains a set of pairs (γ, q′), each of
which symbolically represents a set of explicit transitions, i.e.
the pairs (l, q′) such that l |= γ. Given a subset C of ρ(q), v′q′
holds if q′ can be reached from q by means of a transition in
C, and if the propositions satisfy all the labels occurring in C
and violate all the labels not in C.

The formula Tr can be seen as a sloppy symbolic encoding
[42] of the deterministic and completed version of Ar. We
note in fact that, for every l ∈ Σ, there exists one and only
one subset of transitions in ρ(q) whose labels accept l.

The FTS Sφ is defined as 〈Vφ,A, Tφ, Iφ, {Fφ}〉, where
Vφ = V , Iφ := true, Fφ := true, and

Tφ := (PI → vq0) ∧ Tr[v′q ∧ PF /v′q]q∈F .

In the substitution, PF is used rather than P ′F , in order to take
into account the overlapping required by |→|→|→ .

Theorem 10: Suppose, the NBA Aφ is built from Sφ as
described in Definition 15, so that L(Aφ) = L(Sφ), then
L(Aφ) = L(φ), and thus L(Sφ) = L(φ).

Example 5: Consider the suffix implication subformula
G (p1 → {(a ∧ b)[*] ; (c ∨ d)} |→|→|→ p2) of Example 3 and

the NFA for r = (a ∧ b)[*] ; (c ∨ d) of Example 4. Then the
transition relation of the final FTS is:
(p1 → vq1) ∧ (vq1 → (((a ∧ b) ∧ (c ∨ d) ∧ v′q1 ∧ v

′
q2 ∧ p2)∨

((a ∧ b) ∧ ¬(c ∨ d) ∧ v′q1)∨
(¬(a ∧ b) ∧ (c ∨ d) ∧ v′q2 ∧ p2)∨
(¬(a ∧ b) ∧ ¬(c ∨ d)))).

B. Encoding φ := G (PI →→→ (r ♦→♦→♦→ PF))

In the case of the suffix conjunction r ♦→♦→♦→ PF , the semantics
requires that at least one word accepted by r is read. As
before, we introduce a linear number of symbolic variables
Vr := {vq}q∈Q. The condition on the next variables is simpler,
because if vq is true and we read l ∈ Σ, it is sufficient to
activate at least one vq′ with q′ ∈ ρ(q, l).

Tr :=
∧
q∈Q

(vq → (
∨

(γ,q′)∈ρ(q)

(γ ∧ v′q′)))

The FTS Sφ is defined as 〈Vφ,A, Tφ, Iφ, {Fφ}〉, where
Vφ = VL ∪ VR, VL := {vqL}vq∈Vr , VR := {vqR}vq∈Vr ,
Iφ := true, and
• Tφ := PI → vq0L∧

Tr[vqL/vq]q∈Q[v′qL/v
′
q]q∈Q\F [v′qL ∨ PF /v′q]q∈F∧

(
∧
q∈Q ¬vqR) → (

∧
q∈Q(v′qL → v′qR))∧

Tr[vqR/vq]q∈Q[v′qR/v
′
q]q∈Q\F [v′qR ∨ PF /v′q]q∈F∧∧

q∈Q(vqR → vqL),
• Fφ :=

∧
vq∈Vr

¬vqR.
This encoding corresponds to the MH construction (see

Theorem 5). Intuitively, the FTS triggers and monitors the
acceptance of multiple runs of Ar that start and finish at
different points in time. In particular, the variables VL monitor
the simulation of Ar, while the variables VR track if every
simulation eventually terminates with an accepting state.

Theorem 11: Suppose, the NBA Aφ is built from Sφ as
described in Definition 15, so that L(Aφ) = L(Sφ), then
L(Aφ) = L(φ), and thus L(Sφ) = L(φ).

This solution produces a fairness condition for each Suffix
Conjunction Subformula. Despite the resulting encoding is
more compact, it may result in inefficiencies in the search.
A single global condition FC, shared by all the FTS cor-
responding to Suffix Conjunction Subformula may alleviate
this problem. In this case, the transition relation of each
FTS must be changed so that the variables that track the
fulfillment of the fairness condition are set to false only when
FC becomes true. Formally, let Scs be the set of Suffix
Conjunction Subformulas,
• Tφ := PI → vq0L∧

Tr[vqL/vq]q∈Q[v′qL/v
′
q]q∈Q\F [v′qL ∨ PF /v′q]q∈F∧

FC → (
∧
q∈Q(v′qL → v′qR))∧

Tr[vqR/vq]q∈Q[v′qR/v
′
q]q∈Q\F [v′qR ∨ PF /v′q]q∈F∧∧

q∈Q(vqR → vqL),

• FC :=
∧
φ∈Scs Fφ.

VI. SYNTACTIC OPTIMIZATIONS FOR PSL

In this section, we describe an optimized approach, which
extends the SONF-based conversion with the integration of
the following simplifications. Before the SONF conversion,
we apply two steps: (i) we simplify the SEREs in order to
reduce the subformulas in the scope of SERE conjunction
operators; (ii) we simplify occurrences of suffix operators
by converting as much as possible the SEREs into LTL.
Then, after the conversion in SONF, we apply two other
steps: (iii) we simplify the Suffix Operator Subformulas by
means of rules that strengthen the ones in (ii) by exploiting
the specific structure of SOSs; (iv) the LTL component is
rewritten in order to minimize the overall automaton and to
reduce the number of resulting fairness constraints. In the rest
of this section we describe the first three sets of rewriting
rules (i− iii), which regard SEREs and SERELTL formulas.
For lack of space, we do not report a detailed description of
the LTL simplification rules (iv), which follow the techniques
described in [20], [41].

In the following, we write b, b1, b2, . . . for Boolean formu-
las, and r, r1, r2, . . . for SEREs. We notice that we can check
if the empty word ε belongs to the language of r, written
ε ∈ L(r), by parsing: if r = b, then False; if r = r1 ; r2,
then True if both r1 and r2 accept ε, False otherwise;
if r = r1 : r2, then False; if r = r1[*], then True; if
r = r1 && r2 or r = r1 & r2, then True if both r1 and
r2 accept ε, False otherwise; if r = r1 ||| r2, then True if
either r1 or r2 accepts ε, False otherwise. We also define a
SERE to be “of fixed length” as follows. b has fixed length 1;
r = r1 ; r2 has fixed length n1 + n2 iff r1 and r2 have fixed
length n1 and n2. r = r1 : r2 has fixed length n1 +n2− 1 iff
r1 and r2 have fixed length n1 and n2. r = r1 && r2 has fixed
length n iff both r1 and r2 have fixed length n. r = r1 & r2
has fixed length n iff r1 and r2 have fixed length n1 and n2,
and n is the maximum between n1 and n2. r = r1 ||| r2 has
fixed length n iff both r1 and r2 have fixed length n. r = r1[*]
has fixed length n iff n = 0 and r1 has fixed length 0.

(i) Simplifying SEREs: Step (i) of our simplification flow
is implemented by the following rules for &&:

8

r && {r1 ||| r2} ⇒ {r && r1} ||| {r && r2}
b1 && b2 ⇒ b1 ∧ b2

b && {r1 && r2} ⇒ {b && r1} && r2

b && {r1 ; r2} ⇒

8><>:
False if ε 6∈ L(r1), ε 6∈ L(r2)
b && r1 if ε 6∈ L(r1), ε ∈ L(r2)
b && r2 if ε ∈ L(r1), ε 6∈ L(r2)
b && r1 ||| b && r2 otherwise

b && {r1 : r2} ⇒ {b && r1} && r2
b && r[*] ⇒ b && r

b[*] && {r1 ; r2} ⇒ {b[*] && r1} ; {b[*] && r2}
b[*] && {r1 : r2} ⇒ {b[*] && r1} : {b[*] && r2}

b[*] && r[*] ⇒ {b[*] && r}[*]
{b1 ; r1} && {b2 ; r2} ⇒ {b1 ∧ b2} ; {r1 && r2}
{b1 : r1} && {b2 : r2} ⇒ {b1 ∧ b2} : {r1 && r2}
{r1 ; b1} && {r2 ; b2} ⇒ {r1 && r2} ; {b1 ∧ b2}
{r1 : b1} && {r2 : b2} ⇒ {r1 && r2} : {b1 ∧ b2}

{b1[*] ; r1} && {b2 ; r2} ⇒ {r1 && {b2 ; r2}} |||
{{b1 ∧ b2} ; {{b1[*] ; r1} && r2}}

{b1[*] ; r1} && {b2[*] ; r2} ⇒ {b1 ∧ b2}[*];{{{r1 && {b2[*] ; r2}} |||
{{b1[*] ; r1} && r2}}}

r1[*] && r2[*] ⇒† {r1[*n2] && r2[*n1]}[*]

In the rule (†), r1 and r2 must be of fixed length, and n1 and
n2 are the least integers such that n = (|r1| ·n2) = (|r2| ·n1).
For lack of space, we only report some of the rules for &;
other rules based on the commutativity and associativity of
the operators are also omitted.

r & {r1 ||| r2} ⇒ {r & r1} ||| {r & r2}
b1 & b2 ⇒ b1 ∧ b2

b & {r1 & r2} ⇒ {b & r1} & r2

b & {r1 ; r2} ⇒

b : {r1 ; r2} if ε 6∈ L(r1), or ε 6∈ L(r2)
b : {r1 ; r2} ||| b otherwise

b & {r1 : r2} ⇒ b : {r1 : r2}
b & r[*] ⇒ b ||| {b : r[*]}
b[*] & r ⇒ {r} ||| {{b[*] && r} ; b[*]}

r1[*] & r2 ⇒ r2 ||| r1[*] && {r2 ; true[*]}
{b1 ; r1} & {b2 ; r2} ⇒ {b1 ∧ b2} ; {r1 & r2}
{b1 : r1} & {b2 : r2} ⇒ {b1 ∧ b2} : {r1 & r2}
{r1 ; b1} & {r2 ; b2} ⇒ {r1 & r2} ; {b1 ∧ b2}
{r1 : b1} & {r2 : b2} ⇒ {r1 & r2} : {b1 ∧ b2}

r1[*] & r2[*] ⇒ r1[*] ||| r2[*]

Example 6: The above rewriting rules apply to the SERE
in the SERELTL formula of Example 1, as follows:

{a ; b[*] ; c} && {d[*] ; e} ⇒ {{a ; b[*]} && d[*]} ; c ∧ e⇒
{a && d[*]} ; {b[*] && d[*]} ; c ∧ e⇒
{a && d} ; {b[*] && d}[*] ; c ∧ e⇒
a ∧ d ; {b && d}[*] ; c ∧ e⇒
a ∧ d ; {b ∧ d}[*] ; c ∧ e.

(ii) Simplifying Suffix Operations: In order to reduce a
SERELTL formula to LTL “as much as possible”, we define
the following rules, where (†) requires ε 6∈ L(r1) and ε 6∈
L(r2), while (‡) requires ε 6∈ L(r). The conversion aims at
minimizing the size of the SEREs and heuristically applies the
rewriting till no rule is applicable anymore.

{[0*]} ♦→♦→♦→ φ ⇒ False
{b} ♦→♦→♦→ φ ⇒ b ∧ φ

{r1 : r2} ♦→♦→♦→ φ ⇒ {r1} ♦→♦→♦→ ({r2} ♦→♦→♦→ φ)

{r1 ; r2} ♦→♦→♦→ φ ⇒† {r1} ♦→♦→♦→ X ({r2} ♦→♦→♦→ φ)
{r1 ||| r2} ♦→♦→♦→ φ ⇒ ({r1} ♦→♦→♦→ φ) ∨ ({r2} ♦→♦→♦→ φ)

{r ; b[*]} ♦→♦→♦→ φ ⇒‡ {r} ♦→♦→♦→ ((X b) U φ)

{b[*] ; r} ♦→♦→♦→ φ ⇒‡ b U ({r} ♦→♦→♦→ φ)

{[0*]} |→|→|→ φ ⇒ True
{b} |→|→|→ φ ⇒ b→ φ

{r1 : r2} |→|→|→ φ ⇒ {r1} |→|→|→ ({r2} |→|→|→ φ)

{r1 ; r2} |→|→|→ φ ⇒† {r1} |→|→|→ X ({r2} |→|→|→ φ)
{r1 ||| r2} |→|→|→ φ ⇒ ({r1} |→|→|→ φ) ∧ ({r2} |→|→|→ φ)

{r ; b[*]} |→|→|→ φ ⇒‡ {r} |→|→|→ ((X ¬b) R φ)

{b[*] ; r} |→|→|→ φ ⇒‡ ¬b R ({r} |→|→|→ φ)

The rewritings are mostly effective on those expressions
where the Kleene-closure is applied to Boolean expressions,
as shown in the following example.

Example 7: Consider the formula of Example 1. After
rewriting the SERE as in the Example 6, the formula becomes
G ({a ∧ d ; {b ∧ d}[*] ; c ∧ e} |→|→|→ {f ; g}). The above

rewriting rules apply as follows:

G ({a ∧ d ; {b ∧ d}[*] ; c ∧ e} |→|→|→ {f ; g}) ⇒
G ((a ∧ d) → X {{b ∧ d}[*] ; c ∧ e} |→|→|→ (f ∧ X {g}) ⇒

G ((a ∧ d) → X (¬(b ∧ d) R ({c ∧ e} |→|→|→ (f ∧ X g)) ⇒
G ((a ∧ d) → X (¬(b ∧ d) R ((c ∧ e) → (f ∧ X g)).

(iii) Rewriting Suffix Implication Subformulas: After
the simplifications described in previous sections, the SONF
conversion is carried out, so that the occurrences of suffix
operators have the fixed structure of SOS, and can be fur-
ther rewritten. The aim is to apply the suffix operators to
smaller SERE. This way, we partition further the automaton
representation, and we enable the sharing of subformulas
representations. The following rule requires ε 6∈ L(r), pushes
the occurrences of suffix implication inside the SEREs, while
keeping the overall formula in SONF.

G (P → ({r[*]} |→|→|→ P ′)) ⇒ G (P → ({r} |→|→|→ (P ′ ∧ X P)))

Note that the transformation preserves the language only
if the global formula is the result of the SONF conversion,
so that there is a fixed structure for SOS. Unfortunately, no
similar transformation is possible for suffix conjunction. In
order to simplify the suffix conjunction in an analog way, one
would need to add a fairness condition in order to guarantee
that every P is eventually followed by the corresponding P ′.

All the simplifications described above are correct.
Theorem 12: Let φ be a SERELTL property and φ′ be the

SERELTL formula resulting from the application of the above
rewrite rules. Then L(φ) = L(φ′).

VII. RELATED WORK

Since the seminal paper on LTL [36], the quest of a richer
specification language that kept the simplicity of the linear
temporal operators has been long (see [44] for an overview).
Many formalisms have been conceived to reach the omega-
regular expressiveness extending LTL either with grammar
operators [48], or with automata [45], or with quantifica-
tion [40], or with fixpoint [46]. Nevertheless, this kind of
formalisms was not practical and not easy for designers to
use. PSL, ForSpec [2] and SVA [47] instead combine the
simplicity of regular expressions with LTL in order to reach
the same expressive power. The core of the formalism common
to all these languages is also called RELTL [8], and can be
viewed as an extension of LTL with the dynamic modalities of
Propositional Dynamic Logic [21], interpreted linearly [44].

In this section, we basically use PSL to refer to logics
that, similarly to SERELTL, combine LTL with regular ex-
pressions. As discussed in Section II, an explicit translation
from PSL into NGBA is described in [8], while [3] encodes
PSL formulas into ABA. The authors of [25] exploit the fact
that the ABAs obtained from PSL are “weak” (see [34]) to
directly define a symbolic encoding for incremental SAT-
based Bounded Model Checking. Therefore, their encoding

9

cannot be reused for different verification engines, or different
analysis tools.

The work in [37] proposes a different direct encoding of
PSL into symbolically represented NGBA. It is based on
the notion of tester, a finite-state machine that monitors if
the suffix of the processed word satisfies the formula. The
translation is bottom-up and compositional: the SEREs are first
translated into grammars; then each subformula is associated
with a symbolic variable that monitors its satisfiability. The
translation is similar to our normalization step. There are
at least two key differences. First, the symbolic variables
we introduce trigger some subformulas (with an implication),
while in a tester the value of the symbolic variables become
true if and only if the associated subformula is satisfied
(double implication). This difference may have substantial
impact in the search, in particular in the case of SAT solvers,
where implications may enable the use of don’t cares. No
implementation is however available for the approach in [37].
The second difference is our use of syntactic transformations,
that are carried out also at the level of formulas.

Motivated by the needs of dynamic verification, the work in
[7] studied how to convert PSL formulas into dynamic check-
ers, also known as monitors. The goal and the assumptions
on the input formula are different from the static verification
case. Only the simple subset of PSL is considered, which
syntactically restricts the formulas to safety properties. The
resulting circuit checks at run time if the property is satisfied
or alert to the first failure. The corresponding automata might
be not equivalent to the input formula, and therefore are not
comparable with our results. Remarkably, some subroutines
such as the construction of NFAs from the SEREs may
be shared by the two approaches, and the determinization
procedure presented in [7] exploits the symbolic labels in a
way similar to our approach.

Finally, rewriting the formulas into a normal form is also
used in two other different approaches: temporal resolu-
tion [22] exploits a normal form in order to determine if a
formula is satisfiable; in [38], properties are normalized in
order to synthesize a fragment of the simple subset of PSL.

VIII. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

1) Measures: The proposed algorithms aims at an effi-
cient compilation of SERELTL formulas into symbolically-
represented automata. The efficiency is measured in terms of
how fast the compilation is performed (construction time), and
how fast a search of the resulting automata state space can be
(search time). The efficiency of the search strongly depends
on the adopted verification engine. Thus, in order to better
evaluate the encoding, we use both a BDD-based and a SAT-
based engines.

Construction and search times are typically antithetic pa-
rameters since a slow compilation may spend most of time in
reducing the state space, thus resulting in a fast search pro-
cedure. Similarly, a fast compilation that represents implicitly
the product of some components may pay the construction
of such products at search time. Therefore, we evaluate the

algorithm also on the sum of construction and search times
(total time).

2) Examples Suite: For the comparison, we use the test
suite of 1076 properties proposed in [11]. The set of properties
has been obtained by filling in, with randomly generated
SEREs, typical PSL patterns extracted from industrial case
studies [4], which include both safety and liveness properties
and fall in the SERELTL language. Then, we used both
Boolean combinations and single and double implications
between big conjunctions of typical properties. The latter cases
model problems arising in requirements engineering setting,
i.e. refinement and equivalence among specifications. More
in detail, we obtained four families of properties: a) 297
formulas consist of conjunctions of random-filled PSL patterns
[4]; b) 198 formulas consist of an implication between large
conjunctions of random-filled PSL patterns; c) 198 formulas
consist of a double implication between large conjunctions
of random-filled PSL patterns; d) 383 formulas consists of
entirely random PSL formulas.

Finally, for each formula, we also consider the negation,
reaching a total number of 2152 formulas.

3) Procedures: We implemented and evaluated our algo-
rithm within the NUSMV model checker [9]. We compared it
against the symbolic encoding [6] of the monolithic approach
[3] (called MONO), implemented as part of the PROSYD
project and integrated into NUSMV. We consider the pro-
posed approach without (referred to as MODNOSO) and with
(referred to as MOD) the syntactic optimizations.

We compared the approaches with respect to automaton
generation, and fair cycle detection (i.e. language emptiness),
using both a BDD-based approach [19], and the Simple
Bounded Model Checking (SBMC) SAT-based approach [26].
The BDD-based algorithm for fair cycle detection is restricted
to the set of reachable states, which are preliminarily com-
puted. The BDD algorithms were run with dynamic variable
ordering activated. For SBMC, we used MiniSAT [16] as SAT
engine. These settings provided good performance for all the
approaches.

All experiments were run on a 3GHz Intel CPU equipped
with 4GB of memory running Linux; for each run, we used
a timeout of 120 seconds for construction time, 120 seconds
for search time, and a memory limit of 768MB.

We also tested the new approach without the optimizations
described in Section V-A and in Section V-B in order to
evaluate their impact. It turned out that such optimizations are
crucial and thus we always enabled them in the reported tests.
Further evaluation has been performed on model checking
instances. The results were similar in trend to the ones for
language emptiness, and are not reported here (see [12] for
additional details).

4) Relevance of the experimental results: As for any ex-
perimental evaluation, the test-bench is critical. Unfortunately,
there are no available benchmarks neither for full PSL nor for
the temporal layer we considered. There are benchmarks on
LTL and on some subset of PSL, but none of them is suitable
for evaluating our algorithm, since either they miss the SERE
components or they do not cover fairness and general infinite
behaviors. The benchmarks we created are based on realistic

10

PSL patterns, but have a random component that may bias the
evaluation.

Another weakness is the lack of competitors, since other
tools either produce monitors which are not comparable (such
as [7]), or they verify the PSL property skipping the symbolic
compilation such as [25]. We compared our algorithm with
the only known non-commercial compiler for PSL.

Finally, the results may be biased by the choice of evaluating
the search time by means of language emptiness. A thorough
comparison on model checking would be more valuable,
but would require to evaluate the different PSL properties
on different real systems. This type of benchmarks are not
currently available.

B. Experimental Results

Figures 3-6 show the results of the experimental evaluation1.
Figure 3 reports the plot of the number of problems generated
in a given amount of time (the samples are ordered by
increasing computation time). The first row refers to construc-
tion time, while the second and the third refer respectively
to search and total time. The left column shows the SAT-
based evaluation, while the right column shows the BDD-based
counterpart.

Figures 4-6 show the same results as scatter plots by
comparing the methods pairwise. Each figure reports on
the performance of a measure parameter, as discussed in
Section VIII-A1. As before, the left column reports on the
results obtained by using a SAT-based verification engine,
while the right column refers to the results obtained with a
BDD-based engine. For every figure the first row shows the
comparison between MOD and MONO, the second row shows
the comparison between MOD and MODNOSO, and the last
row shows the comparison between MODNOSO and MONO.
The lines labeled with “to” and “mo” represent respectively
the timeout and the memory limit has been reached.

C. Discussion of the results.

The optimized modular approach MOD clearly outperforms
MONO. The comparison between MODNOSO and MONO
shows that the monolithic approach has a much harder time
than the modular counterpart in completing the generation. The
plots also show that the MOD rewriting, in addition to causing
negligible overhead in the simple cases, seems to pay off in the
harder cases. Overall, MOD is able to complete the generation
for more properties than MONO: 116 more properties in the
case of BDD, 184 as for SBMC. In the cases where MONO
terminated, MOD is vastly more efficient: as for the BDD
case, the monolithic approach is able to build the NBA for
1685 properties in about 14000 seconds, the modular approach
dealt with 1801 properties in 5904 seconds; the improvement
is even more dramatic for SBMC, for which MONO builds
1768 automata in 6491 seconds, while MOD builds almost
all automata in 56 seconds. Note that, in the case of BDD, the
improvement is obtained thanks to the syntactic optimizations.

1All the files to reproduce this experimental analysis can be found at http:
//es.fbk.eu/people/tonetta/tests/tcad07/tcad.tar.gz.

There are indeed several samples where the construction time
is substantially reduced by these optimizations. We see in
the BDD case that MOD completes the 1763 samples that
MODNOSO can solve one order of magnitude faster; the
same holds for the three most difficult instances in SAT.
In addition, we see that MOD can solve harder problems
where MODNOSO times out. The speed up typically occurs in
examples where SERE automata have to be determinized both
in MONO and MODNOSO, while for MOD the rules manage
to generate smaller SERE.

The plots on search time show that the encoding of MONO is
more efficient in terms of state space than MODNOSO because
it allows for a fast search. This is more evident for a BDD-
based search, while for the SAT-based case, the results are
comparable. The reasons of such difference are twofold. First,
the modular encoding tends to generate a higher number of
fairness conditions. Second, MONO performs a more advanced
minimization of the automata state space based on simulation.
The syntactic optimization we proposed solve this problem
and allow for a comparable search time, even superior when
considering a BDD-based search. We remark that, MOD plot
is always under the MONO one. The proposed rewriting is
therefore as effective as the semantic ones of MONO; the
improvement with respect to MODNOSO in terms of search
time is also evident.

When considering the total time, we notice that these
advantages come without paying the price of the semantic
simplification. In fact, this price is often so high that also
MODNOSO is superior to MONO. These claims are also
confirmed by the scatter plots reported in Figures 4-6, where it
is clear that MOD is almost uniformly superior to MODNOSO.
It is also interesting to notice that while MONO and MOD
have overall similar performance, they are not simplifying in
the same way, and sometimes the semantic simplifications are
unable to achieve as much reduction as rewriting.

IX. CONCLUSION

In this paper we have presented a new algorithm for
the conversion of SERELTL into a symbolically represented
NGBA. The approach is based on the decomposition of the
SERELTL specification into a normal form that separates out
LTL and SERE parts. The various components can be inde-
pendently generated, and are implicitly conjuncted. Additional
optimizations are possible by exploiting the specific structure
of subformulas involving suffix operators. The approach is
proved to be correct. A thorough experimental evaluation
shows that the construction is extremely efficient, consum-
ing many fewer resources than required by the monolithic
construction. This makes it possible to tackle problems that
were previously out of reach. Moreover, the resulting encoding
enables an efficient search. The rewriting rules we proposed
greatly reduce the redundancies of the generated automata.
While the optimizations have negligible run-times, the benefit
in search and overall time is substantial.

In the future, we plan to integrate the techniques described
in this paper within the RAT tool [5], [35] for the formal
analysis of requirements, to investigate the impact of different

11

10^4

10^3

10^2

 10

 1

 0.1

 0.01

 2000 1600 1200 800 400 0

Mod

ModNoSo
Mono

Mod
ModNoSO
Mono

(a) Construction time per number of solved problems with SBMC.

10^4

10^3

10^2

 10

 1

 0.1

 0.01

 2000 1600 1200 800 400 0

Mod
Mono

ModNoSo

Mod
ModNoSO
Mono

(b) Construction time per number of solved problems with BDD.

10^4

10^3

10^2

 10

 1

 0.1

 0.01

 2000 1600 1200 800 400 0

Mod

Mono

ModNoSo

Mod
ModNoSO
Mono

(c) Search time per number of solved problems with SBMC.

10^4

10^3

10^2

 10

 1

 0.1

 0.01

 2000 1600 1200 800 400 0

Mod

Mono

ModNoSo

Mod
ModNoSO
Mono

(d) Search time per number of solved problems with BDD.

10^4

10^3

10^2

 10

 1

 0.1

 0.01

 2000 1600 1200 800 400 0

Mod

Mono ModNoSo

Mod
ModNoSO
Mono

(e) Total time per number of solved problems with SBMC.

10^4

10^3

10^2

 10

 1

 0.1

 0.01

 2000 1600 1200 800 400 0

Mod

Mono

ModNoSo

Mod
ModNoSO
Mono

(f) Total time per number of solved problems with BDD.

Fig. 3. Cumulative plots. X axis: number of solved problems; Y axis: time in seconds.

search techniques, in particular [10], and to apply them to
practical case studies.

ACKNOWLEDGMENTS

The authors would like to thank R. Bloem, I. Pill, V. Schup-
pan and M. Vardi for fruitful discussions. The authors would
also thank S. Semprini for his contribution on a preliminary
version of this paper.

REFERENCES

[1] R. Armoni, D. Bustan, O. Kupferman, and M. Y. Vardi. Resets vs. aborts
in linear temporal logic. In TACAS, pages 65–80, 2003.

[2] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi,
and Y. Zbar. The ForSpec temporal logic: A new temporal property-
specification language. In TACAS, pages 296–211, 2002.

[3] S. Ben-David, R. Bloem, D. Fisman, A. Griesmayer, I. Pill, and
S. Ruah. Automata Construction Algorithms Optimized for PSL.
http://www.prosyd.org, 2005. Deliverable D 3.2/4.

[4] S. Ben-David and A. Orni. Property-by-Example guide: a handbook of
PSL/Sugar examples. http://www.prosyd.org, 2005. Deliverable D 1.1/3.

[5] R. Bloem, R. Cavada, I. Pill, M. Roveri, and A. Tchaltsev. Rat: A tool
for the formal analysis of requirements. In CAV, pages 263–267, 2007.

[6] R. Bloem, A. Cimatti, I. Pill, and M. Roveri. Symbolic Implementation
of Alternating Automata. International Journal of Foundations of
Computer Science, 18(4):727–743, August 2007.

[7] M. Boulé and Z. Zilic. Efficient Automata-Based Assertion-Checker
Synthesis of PSL Properties. In HLDVT, 2006.

[8] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M. Y. Vardi.
Regular Vacuity. In CHARME, pages 191–206, 2005.

12

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(a) SBMC, MOD (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(b) BDD, MOD (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(c) SBMC, MOD (X axis) vs MODNOSO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(d) BDD, MOD (X axis) vs MODNOSO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(e) SBMC MODNOSO (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(f) BDD, MODNOSO (X axis) vs MONO (Y axis)

Fig. 4. Construction time

[9] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a
new Symbolic Model Verifier. In CAV, pages 495 – 499, 1999.

[10] A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean abstraction
for temporal logic satisfiability. In CAV, pages 532–546, 2007.

[11] A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA:
a Modular Symbolic Encoding. In FMCAD, pages 125–133, 2006.

[12] A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA:
a Modular Symbolic Encoding. Technical Report 18-08-06, 2006.

[13] A. Cimatti, M. Roveri, and S. Tonetta. Syntactic Optimizations for PSL
Verification. In TACAS, pages 505–518, 2007.

[14] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at LTL
Model Checking. Formal Methods in System Design, 10(1):47–71, 1997.

[15] E.M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT
Press, 1999.

[16] N. Eén and N. Sörensson. MiniSAT, 2005. http://www.cs.chalmers.se/
Cs/Research/FormalMethods/MiniSat/Main.html.

[17] C. Eisner and D. Fisman. A Practical Introduction to PSL (Series on
Integrated Circuits and Systems). Springer-Verlag New York, Inc., 2006.

[18] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. Van
Campenhout. Reasoning with temporal logic on truncated paths. In
CAV, pages 27–39, 2003.

[19] E.A. Emerson and C.L. Lei. Efficient Model Checking in Fragments of
the Propositional µ-Calculus. In LICS, pages 267–278, 1986.

[20] K. Etessami and G. Holtzmann. Optimizing Büchi Automata. In
CONCUR, 2000.

[21] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular
programs. J. Comput. Syst. Sci., 18(2):194–211, 1979.

[22] M. Fisher. A resolution method for temporal logic. In IJCAI, pages
99–104, 1991.

[23] C. Fritz. Constructing Büchi Automata from Linear Temporal Logic
Using Simulation Relations for Alternating Büchi Automata. In CIAA,
pages 35 – 48, 2003.

[24] P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In
CAV, pages 53–65, 2001.

[25] K. Heljanko, T. Junttila, M. Keinänen, M. Lange, and T. Latvala.
Bounded Model Checking for Weak Alternating Büchi Automata. In

13

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(a) SBMC, MOD (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(b) BDD, MOD (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(c) SBMC, MOD (X axis) vs MODNOSO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(d) BDD, MOD (X axis) vs MODNOSO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(e) SBMC MODNOSO (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(f) BDD, MODNOSO (X axis) vs MONO (Y axis)

Fig. 5. Search time

CAV, pages 95–108, 2006.
[26] K. Heljanko, T. A. Junttila, and T. Latvala. Incremental and complete

bounded model checking for full PLTL. In CAV, volume 3576 of LNCS,
pages 98–111. Springer, 2005.

[27] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[28] IEEE-Commission. IEEE standard for Property Specification Language
(PSL), 2005. IEEE Std 1850-2005.

[29] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that
weak. In ISTCS, pages 147–158, 1997.

[30] O. Kupferman and S. Zuhovitzky. An Improved Algorithm for the
Membership Problem for Extended Regular Expressions. In MFCS,
pages 446–458, 2002.

[31] M. Lange. Linear Time Logics Around PSL: Complexity, Expressive-
ness, and a Little Bit of Succinctness. In CONCUR, pages 90–104,
2007.

[32] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems, Specification. Springer Verlag, New York, 1992.

[33] S. Miyano and T. Hayashi. Alternating finite automata on omega-words.
Theor. Comput. Sci., 32:321–330, 1984.

[34] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the
weak monadic theory of trees and its complexity. Theor. Comput. Sci.,
97(2):233–244, 1992.

[35] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti.
Formal analysis of hardware requirements. In DAC, pages 821–826,
2006.

[36] A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57,
1977.

[37] A. Pnueli and A. Zaks. PSL Model Checking and Run-time Verification
via Testers. In FM, pages 573–586, 2006.

[38] M. Schickel, V. Nimbler, M. Braun, and H. Eveking. An Efficient
Synthesis Method for Property-Based Design in Formal Verification,
chapter 10, pages 163–182. Kluwer Acad. Publishers, 2007.

[39] R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic Systems, Explicit
Properties: On Hybrid Approaches for LTL Symbolic Model Checking.
In CAV, pages 350–363, 2005.

14

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(a) SBMC, MOD (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(b) BDD, MOD (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(c) SBMC, MOD (X axis) vs MODNOSO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(d) BDD, MOD (X axis) vs MODNOSO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(e) SBMC MODNOSO (X axis) vs MONO (Y axis)

mo

to

 100

 10

 1

 0.1

 0.01

moto 100 10 1 0.1 0.01

unsat,neg
unsat,pos
sat,neg
sat,pos

(f) BDD, MODNOSO (X axis) vs MONO (Y axis)

Fig. 6. Total time

[40] A.P. Sistla, M.Y. Vardi, and P. Wolper. The Complementation Problem
for Büchi Automata with Applications to Temporal Logic. In ICALP,
pages 465–474, 1985.

[41] F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL
Formulae. In CAV, pages 247–263, 2000.

[42] D. Tabakov and M.Y. Vardi. Experimental Evaluation of Classical
Automata Constructions. In LPAR, pages 396–411, 2005.

[43] M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal
Logic. In Banff Higher Order Workshop, pages 238–266, 1995.

[44] M. Y. Vardi. From Church and Prior to PSL. In Proceedings of Workshop
on 25 Years of Model Checking, August 2006.

[45] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. In Proc. of the 1st Symposium on
Logic in Computer Science, pages 332–344. IEEE Computer Society,
1986.

[46] M.Y. Vardi. A Temporal Fixpoint Calculus. In POPL, pages 250–259,
1988.

[47] S. Vijayaraghavan and M. Ramanathan. A Practical Guide for Sys-

temVerilog Assertions. Springer, 2005.
[48] P. Wolper. Temporal Logic Can Be More Expressive. In FOCS, pages

340–348, 1981.
[49] H. Yamamoto. An Automata-Based Recognition Algorithm for Semi-

extended Regular Expressions. In MFCS, pages 699–708, 2000.

15

APPENDIX

A. Correctness for Suffix Operator Normal Form

Theorem 9:
Let φ be a SERELTL formula over A in NNF, let P be

a variable not occurring in φ, and let ψ be a SERELTL
subformula of φ that occurs only positively in φ. If φ′ :=
φ[P/ψ]∧∧∧ G (P →→→ ψ) then LA(φ) = LA(φ′).

Proof: Let A′ := A∪{P} and ΣA′ := 2A
′
. If w′ ∈ ΣωA′ ,

we will use w′|A to denote the word in ΣωA such that w′i|A :=
w′i ∩ A for all i ≥ 0. It is sufficient to prove that

1) if w ∈ ΣωA and w |= φ, then there exists w′ ∈ ΣωA′ such
that w′ |= φ′ and w = w′|A;

2) vice versa, if w′ ∈ ΣωA′ and w′ |= φ′, then w′|A |= φ.
1) Suppose that w ∈ ΣωA and w |= φ. Define w′ ∈ ΣωA′ as
follows:

w′i :=
{
wi ∪ {P} if wi.. |= ψ
wi if wi.. 6|= ψ

Notice that, for all i ≥ 0, w′i.. |= P iff w′i.. |= ψ. Thus,
w′ |= G (P → ψ). We prove by induction on the positive
occurrence of ψ in φ that w′ |= φ[P/ψ]:
• if φ = ψ, then φ[P/ψ] = P ; since w |= ψ, w′ |= P ; thus
w′ |= φ[P/ψ];

• if φ = φ1 ∧φ2, then, w |= φ1 and w |= φ2; for inductive
hypothesis, w′ |= φ1[P/ψ] and w′ |= φ2[P/ψ]; thus,
w′ |= φ[P/ψ];

• if φ = φ1 ∨ φ2, then w |= φ1 or w |= φ2; consider
for example the case w |= φ1; for inductive hypothesis,
w′ |= φ1[P/ψ]; thus, w′ |= φ[P/ψ];

• if φ = X φ1, then w1.. |= φ1; for inductive hypothesis,
w′1.. |= φ1[P/ψ]; thus, w′ |= φ[P/ψ];

• if φ = φ1 U φ2, then, for some j ≥ 0, wj.. |= φ2

and, for all 0 ≤ k < j, wk.. |= φ1; for inductive
hypothesis, w′j.. |= φ2[P/ψ] and, for all 0 ≤ k < j,
w′k.. |= φ1[P/ψ]; thus, w′ |= φ[P/ψ];

• if φ = φ1 R φ2, then, for all j ≥ 0, either wj.. |= φ2

and, for some 0 ≤ k < j, wk.. |= φ1; for inductive
hypothesis, for all j ≥ 0, either w′j.. |= φ2[P/ψ] or, for
some 0 ≤ k < j, w′k.. |= φ1[P/ψ]; thus, w′ |= φ[P/ψ];

• if φ = r ♦→♦→♦→ φ1, then, for some j ≥ 0, w0..j |≡ r and
wj.. |= φ1; for inductive hypothesis, w′j.. |= φ1[P/ψ];
thus, w′ |= φ[P/ψ];

• if φ = r |→|→|→ φ, then, for all j ≥ 0, if w0..j |≡ r, then
wj.. |= φ1; for inductive hypothesis, for all j ≥ 0, if
w0..j |≡ r, then wj.. |= φ1[P/ψ]; thus, w′ |= φ[P/ψ].

2) Suppose w′ ∈ ΣωA′ , w′ |= φ′ and w = w′|A. w′ |= G (P →
ψ) means that, for all i ≥ 0, if w′i.. |= P , then wi.. |= ψ. We
prove by induction on the positive occurrence of ψ in φ that
w |= φ:
• if φ = ψ, then φ[P/ψ] = P ; since w′ |= P , w |= ψ; thus
w |= φ;

• if φ = φ1 ∧φ2, then, w′ |= φ1[P/ψ] and w′ |= φ2[P/ψ];
for inductive hypothesis, w |= φ1 and w |= φ2; thus,
w |= φ;

• if φ = φ1 ∨ φ2, then w′ |= φ1[P/ψ] or w′ |= φ2[P/ψ];
consider for example the case w′ |= φ1[P/ψ]; for
inductive hypothesis, w |= φ1; thus, w |= φ;

• if φ = X φ1, then w′1.. |= φ1[P/ψ]; for inductive
hypothesis, w1.. |= φ1; thus, w |= φ;

• if φ = φ1 U φ2, then, for some j ≥ 0, w′j.. |= φ2[P/ψ]
and, for all 0 ≤ k < j, w′k.. |= φ1[P/ψ]; for inductive
hypothesis, wj.. |= φ2 and, for all 0 ≤ k < j, wk.. |= φ1;
thus, w |= φ;

• if φ = φ1 R φ2, then, for all j ≥ 0, either w′j.. |=
φ2[P/ψ] or, for some 0 ≤ k < j, w′k.. |= φ1[P/ψ];
for inductive hypothesis, for all j ≥ 0, either wj.. |= φ2

and, for some 0 ≤ k < j, wk.. |= φ1; thus, w |= φ;
• if φ = r ♦→♦→♦→ φ1, then, for some j ≥ 0, w0..j |≡ r and
w′j.. |= φ1[P/ψ]; for inductive hypothesis, wj.. |= φ1;
thus, w |= φ;

• if φ = r |→|→|→ φ, then, for all j ≥ 0, if w0..j |≡ r, then
wj.. |= φ1[P/ψ]; for inductive hypothesis, for all j ≥ 0,
if w0..j |≡ r, then wj.. |= φ1; thus, w |= φ.

B. Correctness for the encoding of G (p→ (r |→|→|→ p′))

Theorem 10: Let φ be G (p → (r |→|→|→ p′)) where p and p′

are atoms and r is a SERE. Suppose to have an NFA Ar =
〈Σ, Q, q0, ρ, F 〉 such that L(Ar) = L(r). We build an NGBA
Bφ such that Bφ = 〈Σ, QB , qB0 , ρB , {FB}〉 where:
• QB := 2Q

• qB0 := QB

• ρB(L, `) := {L′ |
if ρ(q0, `|A) ∩ F = ∅, then L′ |= p→ ρ(q0, `|A),
else L′ |= p→ (ρ(q0, `|A) ∧ p′);
L′ |=

∧
qL∈L,ρ(qL,`|A)∩F=∅ ρ(qL, `|A),

L′ |=
∧
qL∈L,ρ(qL,`|A)∩F 6=∅ ρ(qL, `|A) ∧ p′}

• FB := QB .
Then L(Bφ) = L(φ).

Lemma 2: Let φ be G (p → (r |→|→|→ p′)) where p and p′

are atoms and r is a SERE. Suppose to have an NFA Ar =
〈Σ, Q, q0, ρ, F 〉 such that L(Ar) = L(r). Let us consider the
ABA Aφ = 〈Σ, QA, qA0 , ρA, FA〉 where:
• QA := {qG, q¬p, qp′ , q>, q⊥} ∪Q
• QA0 := {qG}
• ρA(qG, `) := qG ∧ (ρA(q¬p, `) ∨ ρA(q0, `))

ρA(q¬p, `) :=
{
q> if p 6∈ `
q⊥ if p ∈ `

ρA(qp′ , `) :=
{
q> if p′ ∈ `
q⊥ if p′ 6∈ `

ρA(q>, `) := q>
ρA(q⊥, `) := q⊥

ρA(q, `) :=
{
ρ(q, `|A) ∧ ρA(p′, `) if ρ(q, `|A) ∩ F 6= ∅
ρ(q, `|A) if ρ(q, `|A) ∩ F = ∅

• FA := {qG, q>} ∪Q.
Then L(Aφ) = L(φ).

Proof: It is the classic construction from PSL to ABA.

Lemma 3: Let us consider the NGBA B′φ =
〈Σ, Q′, q′0, ρ′, {F ′}〉 where:

16

• Q′ := {(L,R) ∈ 2Q
A × 2Q

A\FA | R ⊆ L}
• Q′0 := {(L,R) ∈ Q′ | qG ∈ L}
• ρ′((L,R), `) := {(L′, R′ \ FA) |

L′ |=
∧
qL∈L ρ

A(qL, `),
if R = ∅, then R′ = L′,
if R 6= ∅, R′ ⊆ L′, R′ |=

⋂
qR∈R ρ

A(qR, `)}.
}

• F ′ := 2Q
A × {∅}.

Then L(B′φ) = L(Aφ).

Proof: It is the classic construction from ABA to NGBA
(with a slight variant for the initial condition).

Proof of Theorem 10: From B′φ, we can derive Bφ by
simplifying the state space and the transition relation. First,
notice that every reachable state of B′φ contains qG in the left
part. Thus, we take the projection of the state-space on the
sub-space {(L,R) ∈ Q′ | qG ∈ L}. The resulting NGBA is
B′′φ = 〈Σ, Q′′, q′′0 , ρ′′, {F ′′}〉 where:

• Q′′ := {(L,R) ∈ 2Q
A\{qG} × 2Q

A\FA | R ⊆ L}
• Q′′0 := Q′′

• ρ′′((L,R), `) := {(L′, R′ \ FA) |
L′ |= (ρA(q¬p, `) ∨ ρA(q0, `)) ∧

∧
qL∈L ρ

A(qL, `),
if R = ∅, then R′ = L′,
if R 6= ∅, R′ ⊆ L′, R′ |=

⋂
qR∈R ρ

A(qR, `)}.
}

• F ′ := 2Q
A\{qG} × {∅}.

It is easy to see that L(B′′φ) = L(B′φ).
Then, we remove q¬p, qp′ , q>, q⊥ by considering p and p′

as variables. In particular, if `|A = ` ∩ A,
ρA(q¬p, `) ∨ ρA(q0, `) ≡ p→ ρA(q0, `)

ρ(q, `|A)∧ρA(p′, `) ≡
{
ρ(q, `|A) if ρ(q, `|A) ∩ F = ∅
ρ(q, `|A) ∧ p′ if ρ(q, `|A) ∩ F 6= ∅

Finally, we can simplify the automaton and remove the right
part which is constantly empty. The fairness set now coincides
with the whole set of states. The resulting automaton is Bφ.

C. Correctness for the encoding of G (p→ (r ♦→♦→♦→ p′))

Theorem 11: Let φ be G (p → (r ♦→♦→♦→ p′)) where p and p′

are atoms and r is a SERE. Suppose to have an NFA Ar =
〈Σ, Q, q0, ρ, F 〉 such that L(Ar) = L(r). We build an NGBA
Bφ such that Bφ = 〈Σ, QB , qB0 , ρB , {FB}〉 where:
• QB := {(L,R) ∈ 2Q × 2Q | R ⊆ L}
• QB0 := QB

• ρB((L,R), `) := {(L′, R′) |
if ρ(q0, `|A) ∩ F = ∅, then L′ |= p→ ρ(q0, `|A),
else L′ |= p→ (ρ(q0, `|A) ∨ p′);
L′ |=

∧
qL∈L,ρ(qL,`|A)∩F=∅ ρ(qL, `|A),

L′ |=
∧
qL∈L,ρ(qL,`|A)∩F 6=∅ ρ(qL, `|A) ∨ p′,

if R = ∅, then R′ = L′,
else R′ ⊆ L′,
(`, R′) |=

∧
qR∈R,ρ(qR,`|A)∩F=∅ ρ(qR, `|A),

(`, R′) |=
∧
qR∈R,ρ(qR,`|A)∩F 6=∅ ρ(qR, `|A) ∨ p′.

}
• FB := 2Q × {∅}.

Then L(Bφ) = L(φ).

Lemma 4: Let φ be G (p → (r ♦→♦→♦→ p′)) where p and p′

are atoms and r is a SERE. Suppose to have an NFA Ar =
〈Σ, Q, q0, ρ, F 〉 such that L(Ar) = L(r). Let us consider the
ABA Aφ = 〈Σ, QA, qA0 , ρA, FA〉 where:
• QA := {qG, q¬p, qp′ , q>, q⊥} ∪Q
• QA0 := {qG}
• ρA(qG, `) := qG ∧ (ρA(q¬p, `) ∨ ρA(q0, `))

ρA(q¬p, `) :=
{
q> if p 6∈ `
q⊥ if p ∈ `

ρA(qp′ , `) :=
{
q> if p′ ∈ `
q⊥ if p′ 6∈ `

ρA(q>, `) := q>
ρA(q⊥, `) := q⊥

ρA(q, `) :=
{
ρ(q, `|A) ∨ ρA(p′, `) if ρ(q, `|A) ∩ F 6= ∅
ρ(q, `|A) if ρ(q, `|A) ∩ F = ∅

• FA := {qG, q>}.
Then L(Aφ) = L(φ).

Proof: It is the classic construction from PSL to ABA.

Lemma 5: Let us consider the NGBA B′φ =
〈Σ, Q′, q′0, ρ′, {F ′}〉 where:
• Q′ := {(L,R) ∈ 2Q

A × 2Q
A\FA | R ⊆ L}

• Q′0 := {(L,R) ∈ Q′ | qG ∈ L}
• ρ′((L,R), `) := {(L′, R′ \ FA) |

L′ |=
∧
qL∈L ρ

A(qL, `),
if R = ∅, then R′ = L′,
if R 6= ∅, R′ ⊆ L′, R′ |=

⋂
qR∈R ρ

A(qR, `)}.
}

• F ′ := 2Q
A × {∅}.

Then L(B′φ) = L(Aφ).

Proof: It is the classic construction from ABA to NGBA
(with a slight variant for the initial condition).

Proof of Theorem 11: From B′φ, we can derive Bφ by
simplifying the state space and the transition relation. First,
notice that every reachable state of B′φ contains qG in the left
part. Thus, we take the projection of the state-space on the
sub-space {(L,R) ∈ Q′ | qG ∈ L}. The resulting NGBA is
B′′φ = 〈Σ, Q′′, q′′0 , ρ′′, {F ′′}〉 where:

• Q′′ := {(L,R) ∈ 2Q
A\{qG} × 2Q

A\FA | R ⊆ L}
• Q′′0 := Q′′

• ρ′′((L,R), `) := {(L′, R′ \ FA) |
L′ |= (ρA(q¬p, `) ∨ ρA(q0, `)) ∧

∧
qL∈L ρ

A(qL, `),
if R = ∅, then R′ = L′ \ FA,
if R 6= ∅, then there exists S′ ⊆ L′ such that
S′ |=

∧
qR∈R ρ

A(qR, `) and R′ = S′ \ FA.
}

• F ′ := 2Q
A\{qG} × {∅}.

It is easy to see that L(B′′φ) = L(B′φ).
Then, we remove q¬p, qp′ , q>, q⊥ by considering p and p′

as variables. In particular, if `|A = ` ∩ A,
ρA(q¬p, `) ∨ ρA(q0, `) ≡ p→ ρA(q0, `)

17

ρ(q, `|A)∨ρA(p′, `) ≡
{
ρ(q, `|A) if ρ(q, `|A) ∩ F = ∅
ρ(q, `|A) ∨ p′ if ρ(q, `|A) ∩ F 6= ∅

The resulting automaton is Bφ.

D. Proof of Rules for Simplification of Suffix Operators

Theorem 13: For each of the following rewriting rules, the
formula on the left is equivalent to the formula on the right:

{[0*]} ♦→♦→♦→ φ ⇒ False
{b} ♦→♦→♦→ φ ⇒ b ∧ φ

{r1 : r2} ♦→♦→♦→ φ ⇒ {r1} ♦→♦→♦→ ({r2} ♦→♦→♦→ φ)

{r1 ; r2} ♦→♦→♦→ φ ⇒† {r1} ♦→♦→♦→ X ({r2} ♦→♦→♦→ φ)
{r1 ||| r2} ♦→♦→♦→ φ ⇒ ({r1} ♦→♦→♦→ φ) ∨ ({r2} ♦→♦→♦→ φ)

{r ; b[*]} ♦→♦→♦→ φ ⇒‡ {r} ♦→♦→♦→ ((X b) U φ)

{b[*] ; r} ♦→♦→♦→ φ ⇒‡ b U ({r} ♦→♦→♦→ φ)

{[0*]} |→|→|→ φ ⇒ True
{b} |→|→|→ φ ⇒ b→ φ

{r1 : r2} |→|→|→ φ ⇒ {r1} |→|→|→ ({r2} |→|→|→ φ)

{r1 ; r2} |→|→|→ φ ⇒† {r1} |→|→|→ X ({r2} |→|→|→ φ)
{r1 ||| r2} |→|→|→ φ ⇒ ({r1} |→|→|→ φ) ∧ ({r2} |→|→|→ φ)

{r ; b[*]} |→|→|→ φ ⇒‡ {r} |→|→|→ ((X ¬b) R φ)

{b[*] ; r} |→|→|→ φ ⇒‡ ¬b R ({r} |→|→|→ φ)

Proof: We prove only the rules concerning the suffix
conjunction. The corresponding rules for the suffix implication
can be obtained with the equivalences r |→|→|→ φ⇔ ¬(r ♦→♦→♦→ ¬φ)
and φ1 R φ2 ⇔ ¬(¬φ1 U ¬φ2).
• For any PSL formula φ and infinite word w, w |=
{[0*]} ♦→♦→♦→ φ iff there exists i ≥ 0 such that w0..i |= [0*]
iff w |= False (because w0..i 6= ε).

• For any PSL formula φ, Boolean expression b, and infinite
word w, w |= {b} ♦→♦→♦→ φ iff there exists i ≥ 0 such that
w0..i |= b and wi.. |= φ iff w |= b ∧ φ (because i must
be 0).

• For any PSL formula φ, SERE r1 and r2, and infinite
word w, w |= {r1 : r2} ♦→♦→♦→ φ iff there exist 0 ≤ i ≤ j
such that w0..i |= r1, wi..j |= r2, and wj.. |= φ iff w |=
{r1} ♦→♦→♦→ ({r2} ♦→♦→♦→ φ)

• For any PSL formula φ, SERE r1 and r2, and infinite
word w, if ε 6∈ L(r1) and ε 6∈ L(r2), w |= {r1 ; r2} ♦→♦→♦→ φ
iff there exist 0 ≤ i < j such that w0..i |= r1, wi+1..j |=
r2, and wj.. |= φ iff there exists i ≥ 0 s.t. w0..i |= r1,
wi+1.. |= r2 ♦→♦→♦→ φ iff w |= {r1} ♦→♦→♦→ X ({r2} ♦→♦→♦→ φ)

• For any PSL formula φ, SERE r1 and r2, and infinite
word w, w |= {r1 ||| r2} ♦→♦→♦→ φ iff there exists i ≥ 0 s.t.
w0..i |= r1 ||| r2 and wi.. |= φ iff w |= {r1} ♦→♦→♦→ φ ∨
{r2} ♦→♦→♦→ φ

• For any PSL formula φ, SERE r, Boolean expression b,
and infinite word w, if ε 6∈ L(r) w |= {r ; b[*]} ♦→♦→♦→ φ iff
there exist 0 ≤ i ≤ j such that w0..i |= r, wi+1..j |= b[*],
and wj.. |= φ iff there exist 0 ≤ i ≤ j such that w0..i |= r,
wj.. |= φ, and for all i + 1 ≤ h ≤ j wh |= b iff there
exist 0 ≤ i ≤ j such that w0..i |= r, wj.. |= φ, and for
all i ≤ h < j wh.. |= X b iff w |= {r} ♦→♦→♦→ ((X b) U φ).

• For any PSL formula φ, SERE r, Boolean expression
b, and infinite word w, if ε 6∈ L(r), then w |=
{b[*] ; r} ♦→♦→♦→ φ iff there exist 0 ≤ i ≤ j such that
w0..i−1 |= b[*], wi..j |= r, and wj.. |= φ iff there exist
0 ≤ i ≤ j such that wi..j |= r, wj.. |= φ, and for all
0 ≤ h ≤ i− 1 wh |= b iff b U {r} ♦→♦→♦→ φ.

E. Proof of rule for Star Extraction

Let us consider the rule:

G (P → ({r[*]} |→|→|→ P ′)) ⇒ G (P → ({r} |→|→|→ (P ′ ∧ X P)))

We first note that the rule is not correct in the general case.
In fact, we rely on two assumptions:

1) the formula being transformed is in Suffix Operator
Normal Form (SONF);

2) the subformula we are replacing is a Suffix Operator
Subformula (SOS). This means that the input formula is
in the form φ∧φ′ where φ′ is the left-hand side of fig 4,
P and P ′ are fresh variables introduced in the SONF-
ization process; in particular P occurs only positively in
φ.

However, although the two formulas are not equivalent,
the transformation preserves the language with regards to the
original alphabet.

Formally stated, let φ and φ′ be resp. the left-hand and the
right-hand side of the rule. Then, if a word w satisfies φ, there
exists w′ satisfying φ′ such that the restrictions of w and w′

to the original alphabet (without P and P ′) are equal.
Theorem 14: Let A a set of propositions. Let ψ be an PSL

formula over A. Let ψ′ be the SONF of ψ over A′ = A∪AN
where AN is a set of new variables. Suppose ψ′ = G (P →
(r[*] |→|→|→ P ′))∧ϕ for some PSL formula ϕ, SERE r and vari-
ables P, P ′ ∈ AN . Let ψ′′ = G (P → ({r} |→|→|→ P ′∧X P))∧ϕ.
Then L(ψ′) = L(ψ′′).

Proof:
=⇒ Let Σ′ = 2A. We prove that if w ∈ Σ′ω and w |=

ψ′, there exists w′ ∈ Σ′ω such that w′ |= ψ′′ and
wi ∩ A = w′i ∩ A for every i ≥ 0.
Let w a word such that: w |= G (P →
(r[*] |→|→|→ P ′)) ∧ ϕ,
then we can construct w′ as follows

w′i :=

wi ∪ {P} if ∃j, 0 ≤ j < i, P |=b w

j ,
and wj..(i−1) |=r r[*]

wi otherwise

By construction, w′ |= G (P → ({r} |→|→|→ X P))
Since w |= G (P → (r[*] |→|→|→ P ′)) we deduce that
w′ |= G (P → ({r} |→|→|→ P ′))
Then w′ |= G (P → ({r} |→|→|→ P ′ ∧ X P))
also w′ |= ϕ because P occurs only positively in ϕ
Then w′ |= ψ′′

⇐= If w |= ψ′′, then w |= ψ′. In fact, suppose i ≥ 0
such that P |=b w

i and there exists j ≥ i such that
wi..j |=r r∗.
Then ∃h1, ..., hn such that wi..h1−1 |=r r,
wh1..h2−1 |=r r, . . . , whn..j |=r r.
Then P |=b w

h1 , P |=b w
h2 , . . . P |=b w

hn .
Then P ′ |=b w

j . Then w |= ψ′.

