Model Checking at Scale: Automated Air Traffic Control Design Space Exploration

M. Gario*, A. Cimatti*, C. Mattarei*, S. Tonetta*, K. Y. Rozier †

gario@fbk.eu

Fondazione Bruno Kessler* Iowa State University[†]

2016-07-22

Increase the capacity of Air Traffic Control

NASA needs to **evaluate multiple issues** and points of view: Realizability, **Safety**, Cost, Social and Political Impact ...

Our scope: Function Allocation for Separation Assurance

- Separation Assurance: "avoid aircraft getting too close to each other" (Loss of Separation)
- Function Allocation: Which functions should be on-board and which ones on-ground?

Problem

NASA had some initial ideas of **possible** designs:

- Some were quite different from each other
- Each had several open choices
- \Rightarrow Large design space: thousands of designs

Problem

NASA had some initial ideas of **possible** designs:

- Some were quite different from each other
- Each had several open choices
- \Rightarrow Large design space: thousands of designs

Compare different designs considering:

- How good they are, i.e., what do they guarantee;
- Resilience to faults.
- \Rightarrow Apply formal methods to exhaustively analyze 1620 designs.

Contributions

Automatically generate, validate, and analyze the entire design space of 1620 configurations

Contributions

Automatically generate, validate, and analyze the entire design space of 1620 configurations

Industrial:

- Rich dataset of results that characterize each configuration
- Results were validated by NASA system designers:
 identify novel and known problems

Technical:

- Novel process combining existing technologies for Compositional + contract + parameteric design
- Publicly release a complex case-study of industrial interest (Artifact Eval)
- Proposals for analyzing the big amount of results

Related Work

Air Traffic Control and Formal Methods:

- Many works focusing on the implementation of a component (e.g., ACAS-X)
- Previous works limited to a few designs (e.g., Zhao-Rozier'15, Mattarei et al.'15)

Design Space Exploration:

- Mostly combinational: no memory
- Driven by a clearly defined cost function
- Software Product Lines: Not comparative and no faults

Process Overview

- 4 Phases:
 - 1. Design Space Definition
 - 2. System Modeling
 - 3. Configuration Analysis
 - 4. Data Analysis

Process Overview

- 4 Phases:
 - 1. Design Space Definition
 - 2. System Modeling
 - 3. Configuration Analysis
 - 4. Data Analysis

Design Space

Name	Possible Values	Size of Dimension	
SSEP TS SA	ATC, SELF, SATC	3	
SSEP SS SA	ATC, SELF, SATC	3	
Aircraft Mix	$\langle 4,0 angle$, $\langle 3,1 angle$, $\langle 2,2 angle$, $\langle 1,3 angle$, $\langle 0,4 angle$	5	
Info Sharing (GSEP-to-SSEP)	None, Current, Near, Mid, Far	5	
Info Sharing (SSEP-to-ATC)	None, Current, Near, Mid, Far	5	
Burdening Rules	Undef, GSEP, SSEP	3	
Com Steps	1, 2,	2	
ACDR Implementations	Simple, Asymmetric, Non-Receptive	3	
TOTAL	-	20250	

- 20250 Possible configurations
- NASA suggested to focus on a subset

Design Space

Name	Possible Values	Size of Dimension	
SSEP TS SA	ATC, SELF, SATC	3	
SSEP SS SA	ATC, SELF, SATC	3	
Aircraft Mix	$\langle 4,0 angle$, $\langle 3,1 angle$, $\langle 2,2 angle$, $\langle 1,3 angle$, $\langle 0,4 angle$	5	
Info Sharing (GSEP-to-SSEP)	None, Current, Near, Mid, Far	5 2	
Info Sharing (SSEP-to-ATC)	None, Current, Near, Mid, Far	5 2	
Burdening Rules	Undef, GSEP, SSEP	3	
Com Steps	1, 2,	2	
ACDR Implementations	Simple, Asymmetric, Non-Receptive	3	
TOTAL	-	20250 1620	

- 20250 Possible configurations
- NASA suggested to focus on a subset
- ▶ 1620 Configurations to analyze!

Process Overview

- 4 Phases:
 - 1. Design Space Definition
 - 2. System Modeling
 - 3. Configuration Analysis
 - 4. Data Analysis

Impossible to manually model 1.6k configurations! U Compositional + Parametric Model

Modeling: Components and Parameters

Use components to capture relevant aspects in isolation:

- Different implementations; or
- Tweak behavior with parameters

 \Rightarrow No need to modify the other components!

Validation

Increase confidence in auto-generated models

Validation of the components using **Contracts**:

- Contract of, e.g., Aircraft is decomposed into its components
- Focus on the implementation of the component in isolation
- \Rightarrow Smaller model to verify
- ⇒ Speed-up design loop

Process Overview

- 4 Phases:
 - 1. Design Space Definition
 - 2. System Modeling
 - 3. Configuration Analysis
 - 4. Data Analysis

Configuration Analysis

All steps of the analysis are performed automatically

Scalable and reproducible process!

 \downarrow

Tooling and Stats

Tools:

- OCRA: contract-based reasoning; mapping of implementation to components; instance generation.
- ► NUXMV: validation and verification of instances.
- ► xSAP: fault tree and reliability computation.

Statistical Info:

- 1620 Models
- 346 Properties per model (LTL/CTL/INVAR)
- ▶ 10¹⁰⁷ State-Space (Avg. per model)
- ► ≥ 90% of the models ≤ 1 hour for Validation (BDD-Based) and Fault Tree Computation.

Process Overview

- 4 Phases:
 - 1. Design Space Definition
 - 2. System Modeling
 - 3. Configuration Analysis
 - 4. Data Analysis

Data Analysis

Outcome of process:

- Big table linking each configuration to satisfied properties
- Set of fault trees for each configuration

	A	В	С	D	E	F	G	Н		J
1	ID 🔻	AC_MIX 🔽	SSEP_SA	GSEP_SSI 🔻	SSEP_AT	BURD 🕶	COM_	MAP	NO-LOS	NO-LOS-Near 💌
2	1	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	UNDEF	2	nominal_simple_cdr	True	True
3	2	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	UNDEF	2	nominal	True	True
4	3	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	UNDEF	2	nominal <u>nr_cdr</u>	True	True
5	4	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	UNDEF	1	nominal_simple_cdr	True	True
6	5	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	UNDEF	1	nominal	True	True
7	6	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	UNDEF	1	nominal <u>nr_cdr</u>	True	True
8	7	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	SSEP	2	nominal_simple_cdr	True	True
9	8	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	SSEP	2	nominal	True	True
10	9	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	SSEP	2	nominal <u>nr_cdr</u>	True	True
11	10	4_GSEP_0_SSEP	ATC_ATC	CURRENT	FAR	SSEP	1	nominal_simple_cdr	True	True

How to get insights from this data?

Data Analysis: Summarizing results

 How many configurations satisfy the given property?
 E.g., 1251 out of 1620 satisfy the No Loss of Separation (NO-LOS) property

Data Analysis: Summarizing results

- How many configurations satisfy the given property?
 E.g., 1251 out of 1620 satisfy the No Loss of Separation (NO-LOS) property
- How common are the X most common Single Point of Failure?

The **5 most common** single point of failure are shared by **more than 1000** configurations!

Data Analysis: Summarizing results

- How many configurations satisfy the given property?
 E.g., 1251 out of 1620 satisfy the No Loss of Separation (NO-LOS) property
- How common are the X most common Single Point of Failure?

The **5 most common** single point of failure are shared by **more than 1000** configurations!

 Synthesize region of parameters that satisfy a given property:
 E.g., For cardinality 1, NO-LOS:

 $(MIX = (4,0)) \lor (SSEP_TS_SA = ATC) \lor (SSEP_SS_SA = ATC)$

Data Analysis: Reliability + Sensitivity

Divide faults in 3 groups:

- x (e.g., ADS-B Network all components)
- y (e.g., Communication Layer)
- θ (e.g., all other faults)

Fix a failure probability for θ and a threshold τ , how many configurations have a reliability above τ for a given probability of x and y?

What happens when we change the probability of x and y?

Threshold=1e-04, Basic Probability=1e-08

Results Validation

- Selection of configuration validated by NASA experts
- Independently reproduced two known issues: side-walk and coincidental conflicts
- Discovered a problematic configuration, due to missing assumptions, when dealing with backup from ground

Conclusions

Automatically generate, validate, and analyze the entire design space of 1620 configurations

- Novel process combining existing technologies for Compositional + contract + parameteric design
- Publicly release a complex case-study of industrial interest
- Rich dataset of results that characterize each configuration + Techniques to analyze it
- Results were validated by NASA system designers:
 identify novel and known problems

Thank You! Questions?

 Models, tools and detailed results are available online: https://es-static.fbk.eu/projects/nasa-aac/

M. Gario, A. Cimatti, C. Mattarei, S. Tonetta, K. Y. Rozier gario@fbk.eu Model Checking at Scale: Automated Air Traffic Control Design Space Exploration