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• In	this	example:	
262	Aircraft (not	on	a	traffic	peak)

• Expected	4	times current	traffic	
in	the	next	20	years

• Need	for	a	new	technology
able	to	manage	the	traffic	increase
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Air	Traffic	Control:	Current	Approach
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Air	Traffic	Control:	Current	Approach
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Air	Traffic	Control:	
Functional	Allocation	Questions
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Tactical	Separation Controller/ATC On-Ground	 ->	Distributed? On-Board?

Strategic	Separation Controller/ATC On-Ground	 ->	Distributed?	On-Board?11



NASA	project:	
NextGen of	the	Air	Traffic	Control

• Need	for	a	more	robust,	reliable,	and	safe
approach

• A	lot	of	different	perspectives	to	be	taken	into	
account	e.g.,	political	and	environmental	
impact,	cost	analysis,	usability,	safety,	…

• Different	function	allocations,	and	
implementations	need	to	be	analyzed
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NASA	NextGen of	ATC:
The	Functional	Allocation	Project

• Provide	a	partial	order over	the	set	of	ways	to	
allocate	system	functions,	from	a	safety point	
of	view

• Rely	on	a	Formal	Validation,	Verification,	and	
Safety	Assessment	approach,	based	on	
symbolic	model	checking

• Define	formal	model	and	system	requirements	
from	a	preliminary	design	of	the	system	
architecture
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NASA	NextGen of	ATC:
The	Functional	Allocation	Project

In	this	work
• Formal	modeling of	a	set	of	different	possible	
functional	allocations

• Adaptation	of	Formal	Validation,	Verification,	
and	Safety	Assessment to	compare	early	system	
designs

• Real-world	case	study	from	a	tight	collaboration	
with	"Flight	Dynamics,	Trajectory	and	Controls	
Branch”	of	NASA	Ames	
https://es-static.fbk.eu/projects/nasa-aac/

14



Formal	Modeling	for	Comparative	
Analysis



Functional	Allocation:	GSEP	and	SSEP

Collision	Avoidance Tactical	Separation Strategic Separation

TCAS/ACAS-X

ATC

Collision	Avoidance Tactical	Separation Strategic Separation

TCAS/ACAS-X

ATC Backup

CD&R OnBoard Primary

Current	Approach:
Only	Ground	Separated	Aircraft	(GSEP)

With	additional	distributed	Conflict	Detection	and	Resolution	(CD&R)	on-board:
Ground	and	Self	Separated	Aircraft	(SSEP)
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Formal	Modeling:
Conflict	Areas
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• Abstract	concrete	trajectories	with	Conflict	Areas	(CA)
• Two	aircraft	are	in	the	same	conflict	area	if	their	
trajectories	 intersect	in	a	given	interval	of	time	

• Example:	if	AC1 and	AC2 follow	TJ2 and	Tj3 they	are	in	
the	same	Conflict	Area
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Formal	Modeling:
Time	Windows
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• Four	different	time	windows:	
– Conflict	Avoidance:	Current
– Tactical	Separation:	Near	and	Mid
– Strategic	Separation:	Far

• The	passage	of	a	unit	of	time	causes	a	window	shifting
• A	Loss	of	Separation (LOS)	occurs	when	two	aircraft	are	in	the	same	

CA	in	the	current	time	window
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Formal	Modeling:
System	Components
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• GSEP:	Ground	Separated	Aircraft
• SSEP:	Self	Separated	Aircraft	with	
CD&R	(Conflict	Detection	and	Resolution)	on-board

• ADS-B:	Automatic	Dependent	Surveillance	Broadcast	

ADS-B	
In	and	Out

ADS-B	
Out	only
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Formal	Modeling:
Scenarios	Instantiation

Scenario	Code GSEPs SSEPs #Bool Vars

G 3 0 122
M1 3 1 185
M2 2 2 193
M3 1 3 201
S 0 3 146
ALL 3 3 353

• Non-Mixed	(only	G/SSEP)	and	Mixed	(both	G/SSEP)	
operations	considered

• Multiple	implementation	options	(Enabled	or	Disabled)
– GSEP-Far:	GSEPs	send	Far	intentions	over	ADS-B	Out
– SSEP-Far:	SSEPs	send	Far	intentions	to	ATC.	
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Formal	Validation	and	Verification
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Formal	Validation

• Pure	Airspace	as	Uncontrolled	System and	
CD&R	agents	(ATC,	and	CD&R	on-board)	as	Controllers

• Separated	Validation	for	Uncontrolled	System	and	Controllers
• All	37	properties	CTL	and	LTL	properties	validated	using	nuXmv

model	checker
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Formal	Verification

• 93	LTL	properties	verified,	using	nuXmv,	on	all	20	possible	
configurations	(of	the	controlled	system)	by	varying:
– Number	of	involved	GSEPs	and	SSEPs	aircraft
– Information	sharing	implementation

• Outcome:	table	representing	pass/fail	results
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Formal	Safety	Analysis



Yes No	+	Counterexample
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Formal	Validation	and	Verification
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Fault	Tree

Formal	Safety	Assessment

M[F ]

�(F) : M[F ] 6|= '

All	possible	assignments	to	F
such	that	M does	not	satisfy	ϕ

It is not possible to	
reach a	Loss of	
Separation. '
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Formal	Safety	Assessment:
Fault	Tree	Analysis

Loss	of	Separation

G1.apply_near G2.apply_near G1.apply_far G1.comm_atc_
partialG3.apply_near

• Fault	Tree	Analysis	as	Minimal	Cutsets Computation [Bozzano	et	al.	
CAV15]	via	xSAP

• CS={f1,…,fn}	is	a	cutset of	M,𝜑	if	there	exists	a	counterexample	𝜋 of	
M ⊨ 𝜑 that	triggers	f1,…,fn

• A	Cutset CS	is	Minimal	iff ∀	𝐶𝑆* ⊂ 𝐶𝑆, 𝐶𝑆′ is	not	a	cutset of	M,𝜑	

Top	Level	
Event	(TLE)
¬𝜑Basic	Fault

Minimal	Cutset
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Formal	Validation,	Verification,	and	
Safety	Assessment	Process

• Formal	Requirements	and	Model	Validation
– Outcome:	positive	results	for	all	checks

• Formal	Model	Verification
– Outcome:	table	where	the	cell	i,j expresses	whether	
the	configuration	i satisfies	or	not	the	property	j.	

• Formal	Safety	Assessment
– Outcome:	a	Fault	Tree	for	each	pair	of	configuration,	
property…	How	do	we	compare	them?
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Formal	Safety	Assessment:
Minimal	Cutsets Comparison

• Impact	on	the	“Loss	of	Separation”	when	varying	the	
sharing	of	GSEPs	Far	intentions	(GFar):
– Same	number	of	single	point	of	failure	(5)
– While	double	failure	increases	(¬GFar),	triple	failures	decreases

MCS
Cardinality

3GSEPs-1SSEP (M1) 2GSEPs-2SSEPs	(M2)
...

GFar ¬GFar GFar ¬GFar

0 0 0 0 0

…
1 5 5 5 5

2 12 15 12 16

3 33 24 35 23

… … … …
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Formal	Safety	Assessment:
Minimal	Cutsets Comparison

• Analyze	set	relations	between	Minimal	Cutsets i.e.,	MCS	are	
set	of	set	of	faults

• Compare	the	MCS	with	TLE	as	“LoS between	SSEP	and	GSEP”	
varying	GSEP-Far	 (GF)	information	sharing:
– MCS¬GF =	{<…>,	{FATC}}

FATC =	G.F_comm_ATC_tot,	S.F_comm_ATC_tot
– MCSGF =	{<…>,	{FATC,	ATC.F_mid_res},	

{FATC	,	ATC.F_far_res},
{FATC	,	G.F_comm_adsb},	
{FATC	,	S.cdr.F_future_resolve,	S.cdr.F_resolve_detection}
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Formal	Safety	Assessment:
Reliability	Function	Evaluation

• Set	relation	over	Minimal	Cutsets might	be	
inconclusive	i.e.,	two	sets	can	be	
incomparable

• From	Minimal	Cutsets to	Reliability	Function	
(P(TLE)	:	ℝ𝑛 ↦ ℝ)	[Bozzano	et	al.	ICECCS15],	
assuming	no	faults	dependency	

• Analyze	under	which	condition	one	Reliability	
Function	dominates	the	others
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Formal	Safety	Assessment:
Reliability	Function	Evaluation

• Loss	of	Separation	between	SSEPs	and	GSEPs	as	TLE,	varying	
P(failure	ATC)	and	P(failure	ADS-B).	Other	probability	of	failures	are	
fixed

• Still	conceptual	design,	thus	numerical	values	are	not	yet	defined
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Conclusion	and	Future	Works



Conclusion

• Modeling	of	a	real-world	case	study,	from	a	
conceptual architecture	description

• Application	and	tailoring	of	a	comprehensive	
Formal	Validation,	Verification,	and	Safety	
Assessment process	to	evaluate	different	
functional	allocations

• Collaboration	with	"Flight	Dynamics,	
Trajectory	and	Controls	Branch”	of	NASA	Ames	
to	support	decision	making
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Future	Works

• Extend	the	modeling	to	cope	with	the	whole	
set	of	Functional	Allocations	and	Scenarios	
i.e.,	>	1600

• Integration	with	Compositional	Modeling	and	
Verification

• Evaluation	of	overlapped	supervision i.e.,	
with	more	than	one	ATC

• Analysis	of	the	impact	of	Unmanned	
Autonomous	Systems
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Cristian	Mattarei	- mattarei@fbk.eu

Comparing	Different	Functional	Allocations	in	Automated	Air	
Traffic	Control	Design
• Modeling	with	Conflict	Areas	and	Time	Windows
• Formal	Validation	and	Verification,	controlled	and	

uncontrolled	system
• Safety	analysis	via	minimal	cutsets and	reliability	function	

computation
• Website:	https://es-static.fbk.eu/projects/nasa-aac/

Thank	you!


