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Abstract. Safety-critical systems are becoming more com-
plex, both in the type of functionality they provide and in
the way they are demanded to interact with the environment.
Such growing complexity requires an adequate increase in
the capability of safety engineers to assess system safety, in-
cluding analyzing the behaviour of a system in degraded sit-
uations. Formal verification techniques, like symbolic model
checking, have the potential of dealing with such a complex-
ity and are now being used more often. However, existing
techniques have little tool support and therefore their use for
safety analysis remains limited.

In this paper we present FSAP/NuSMV-SA, a platform
which aims to improve the development cycle of complex
systems by providing a uniform environment that can be used
both at design time and for safety assessment. The platform
makes the modeling and safety assessment of complex sys-
tems easier by providing a facility for automatically augment-
ing a system model with failure modes, whose definitions are
retrieved from a predefined library. In this way, it is possible
to assess the system safety both in nominal conditions and
in user-specified degraded situations, that is, in the presence
of faults. Furthermore, the platform provides a pattern-based
definition of temporal logic formulas, which simplifies the
definition of safety requirements.

The platform consists of a graphical user interface
(FSAP) and an engine (NuSMV-SA) which is based on the
NuSMV model checker. The model checking engine provides
support for system simulation and standard model checking
capabilities, like property verification and the generation of
counterexamples. Furthermore, algorithms have been imple-
mented to automate the generation of artifacts that are typi-
cal of reliability analysis, for example fault trees. The plat-
form can derive fault trees automatically (for both monotonic
and non-monotonic systems) from the definition of the sys-
tem model and of the possible faults.

�
This work has been developed within the European-sponsored
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The interface of the platform has been designed to im-
prove usability for people that are not expert in formal verifi-
cation. The platform has been evaluated in collaboration with
an industrial partner and tested on some industrial case stud-
ies.

1 Introduction

Safety-critical systems are typically required to operate
not only in nominal conditions – i.e., when all of the
(sub)components of the system work as expected – but also
in degraded situations, that is, when some parts of the system
are not working properly. Guaranteeing this property typi-
cally requires systems to be engineered using development
processes in which safety is considered from the early stages
of development. In aeronautics for instance, safety require-
ments stating the (degraded) conditions under which systems
must remain operational are defined along with the other sys-
tem requirements. During system development, the develop-
ment activities are conducted in parallel with a set of safety
analysis activities that have the specific goal of identifying all
possible hazards. The identification of hazards, together with
their relevant causes, is necessary to assess whether the sys-
tem behaves as required in all operational conditions. These
activities are crucial for system certification to ensure that the
development process is able to guarantee the specific safety
level assigned to the system. In order to certify the system – a
necessary step for its deployment and use – the safety require-
ments must be demonstrated to hold. Safety analysis activi-
ties produce artifacts, such as fault trees and failure mode and
effect tables, that represent the combinations of failures caus-
ing the violation of safety requirements, the effect of failures
on the system, and the computation of the probability relevant
to the violation of the safety requirements.

Safety-critical systems are becoming more complex, both
in the type of functionality they provide and in the way they
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are demanded to interact with their environment. Such grow-
ing complexity requires an adequate increase in the capability
of safety engineers to assess system safety. Current informal
methodologies, like manual fault tree analysis (FTA) and fail-
ure mode and effect analysis (FMEA) [67], rely on the abil-
ity of the safety engineer to understand and to foresee the
system behaviour. As a consequence, these tasks are becom-
ing more time consuming and complex to perform. Emerging
techniques like formal methods [68], and in particular model
checking [25], are increasingly being used for the verification
of real-world safety-critical industrial applications (see, e.g.,
[18,21,24,42]). These methods allow a more thorough verifi-
cation of the system’s correctness with respect to the require-
ments, by using automated and (hopefully) exhaustive verifi-
cation procedures. The use of model checking techniques for
reliability and safety analysis, however, is still in its infancy.
Very often, existing techniques have little tool support. More-
over, even when these methods are applied, the information
linking the design and the safety assessment phases is often
carried out informally. The link between design and safety
analysis may be seen as an “over the wall process” [38].

In this paper we present the FSAP/NuSMV-SA platform1,
which is being developed at ITC-IRST. The platform con-
sists of two main components: FSAP (Formal Safety Anal-
ysis Platform), which provides a graphical front-end to the
user, and NuSMV-SA, based on the NuSMV [22,23] model
checker2, which provides the safety assessment capabilities.

FSAP/NuSMV-SA provides a uniform environment that
can be used for the design and safety assessment of com-
plex systems. The platform provides a facility for automat-
ically augmenting a system model with failure modes, whose
definition is retrieved from a predefined library. In this way,
it is possible to assess the system safety both in nominal
conditions and in user-specified degraded situations, that is,
in presence of faults. Furthermore, the platform provides a
pattern-based definition of temporal logic formulas, which
simplifies the definition of safety requirements.

The NuSMV-SA engine provides support for user-guided
or random simulation, as well as standard model checking ca-
pabilities like property verification and counterexample trace
generation. Furthermore, NuSMV-SA implements algorithms
that automate the generation of artifacts that are typical of
reliability analysis, like fault trees. The fault tree construc-
tion can be performed automatically both for monotonic sys-
tems and for non-monotonic ones (the difference being that
in the case of non-monotonic systems, events requiring that
system components do not fail can be part of the results of
the analysis). Additionally, NuSMV-SA can perform the so-
called failure ordering analysis [15]. The platform also pro-
vides a simple repository, which links the analyses that have
been performed to the model, thus helping the development
and safety analysis process in case of system changes.

The basic functions of the platform can be combined in
different ways. The possibility of using the same models for

1 http://sra.itc.it/tools/FSAP
2 http://nusmv.itc.it

design and safety analysis and the use of standard notations
to present safety analysis results (e.g., fault trees) provide a
high degree of flexibility in integrating the platform in differ-
ent development and safety analysis processes. It is possible,
for instance, to support an incremental approach, based on it-
erative releases of a given system model at different levels of
detail. Increasing the level of detail means refining the model,
or adding further failure modes and/or safety requirements
(see Section 5 for an example).

FSAP/NuSMV-SA provides a flexible environment that
can be used both by design engineers for the formal verifica-
tion of a system and by safety engineers to automate certain
phases of safety assessment. The major benefits are a tighter
integration between the design and the safety analysis teams,
and (partial) automation of the activities related to both veri-
fication and safety assessment. This, in turn, provides the op-
portunity to perform safety analyses faster and at the early
stages of the development process, thereby providing useful
feedback to drive the design/refinement process.

The FSAP/NuSMV-SA platform has been developed
within the ESACS3 project [16] (Enhanced Safety Assess-
ment for Complex Systems), a European-Union-sponsored
project in the area of safety analysis, involving several re-
search institutions and leading companies in the fields of
avionics and aerospace. Within the project, the industrial and
research partners have devised a methodology for guiding the
integration of formal techniques in the safety analysis pro-
cess. This methodology is supported by state-of-the-art and
commercial tools for system modeling and safety analysis.
The tools can be combined in (a limited set of) different con-
figurations that are tailored to the needs of the industrial part-
ners participating in the project. The different configurations
are collectively referred to by the name “ESACS platform”.
Both the methodology and the ESACS platform have been
tested on a set of industrial case studies. The FSAP/NuSMV-
SA platform has been evaluated in collaboration with Ale-
nia Aeronautica (the leading Italian company in the avionics
field), and Società Italiana Avionica (SIA).

The rest of the paper is structured as follows. In Section 2
we give an overview of the ESACS methodology. In Section 3
we present the architecture of the system and in Section 4 we
provide a more detailed description of the functions and use
of FSAP/NuSMV-SA. In Section 5 we discuss our experience
on the use of the platform for safety assessment of systems
of industrial relevance. In Section 6 we discuss some related
work. Finally, in Section 7 we outline our future work and in
Section 8 we draw some conclusions.

2 The ESACS Methodology

In order to understand the typical scenario of use of
FSAP/NuSMV-SA we present, in this section, the ESACS
methodology. The main characteristic of the ESACS method-
ology, which is strongly tool-based, is the capability of inte-
grating the system design and the system safety assessment

3 http://www.esacs.org
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Fig. 1. ESACS methodology steps

processes by providing an environment in which formal no-
tations are the common and shared language between design
and safety analysis. The methodology, sketched in Figure 1,
is based on the steps described in the following subsections.

2.1 Model Capturing

The starting point of the ESACS methodology is a formal
model, that is, a model written in some formal language. The
formal model can be either written by the design engineer
or by the safety engineer. This alternative gives rise to two
different scenarios. In the first scenario, the formal model is
called system model (SM), it is written by the design engi-
neer, and it includes only the nominal behaviour of the sys-
tem. This model is used by the design engineer to verify the
functional requirements, and it is then passed to the safety
engineer for safety assessment. In order to validate the sys-
tem with respect to the safety requirements, the safety engi-
neers will enrich the behaviour of the SM by injecting failure
modes on the SM, as described in more details below4.

In the second scenario, the formal model is built directly
by the safety engineer and it is called formal safety model
(FoSaM). This model represents a formal view of the system
highlighting its safety characteristics. To write a FoSAM, the
safety engineer can browse a library of system components
(including both nominal and faulty behaviours) and a library
of architectural safety patterns. This second scenario occurs
during the early phases of the system life cycle, when there
are still no design models available, but only some system
specification. In this second scenario, the main goal is to as-
sess the system architecture.

2.2 Failure Mode Capturing and Model Extension

The second step of the methodology includes the failure
modes (FMs) capturing and the model extension phases.

4 Note that by fault injection we mean the extension of the system model
with a specification of the possible failure modes. We use this terminology,
which is standard in the ESACS project, even though it may not be fully
appropriate

When the system model (SM) is written by the design engi-
neer, it must be extended by injecting the failure modes, that
is, a specification of how the various components of the sys-
tem can fail. This step yields a model that we call extended
system model (ESM), in which all the components of the SM
can fail according to the specified failure modes. The failure
mode types to be injected into a SM can be stored and re-
trieved from a library of generic failure modes, the Generic
Failure Modes Library (GFML) and then automatically in-
jected into the formal system model through an extension fa-
cility.

2.3 Safety Requirements Capturing

As long as a SM/ESM or a FoSaM is available, it is possible
to verify its behaviour with respect to the desired functional
(nominal behaviour) and safety requirements (degraded be-
haviour). During the safety requirements capturing phase,
design and safety engineers define functional and safety re-
quirements that will be used at a later stage to assess the be-
haviour of the system. In particular the design engineer and/or
the safety engineer will verify the system either by writing the
system requirements using some formal notation (e.g., tem-
poral logic [36]) or by loading the basic safety requirements
from a Generic Safety Requirement Library (GSRL).

2.4 Model Analysis

This is the phase in which the behaviour of a system is as-
sessed against the functional and safety requirements. The
model analysis phase is performed by running formal veri-
fication tools (e.g., the NuSMV-SA model checker) on the
given system properties.

Model analysis includes two main verification tasks. In
the case of a system property, the model checking engine can
test validity of the property, and generate a counterexample
in case the system property is not verified. For instance, if we
consider a property that is required to hold for every possible
path of the system, the model checking engine will generate a
counterexample showing one particular path along which the
property has failed.
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In case of a safety requirement, the model checking en-
gine generates all possible minimal combinations of compo-
nents failures, called Minimal Cut Sets (MCS), that violate
the safety requirements. Minimal cut sets can be arranged in
the fault tree representation [67]. Fault trees provide a conve-
nient representation of the combination of events resulting in
the violation of a given top level event, and are usually repre-
sented in a graphical way, as a parallel or sequential combi-
nation of AND/OR logical gates.

2.5 Result Extraction and Analysis

During this phase, the results produced by the model analy-
sis phase are processed and presented in human-readable for-
mat. In particular, the result extraction phase is responsible
for displaying all the outputs automatically generated by the
model checking engine (e.g., simulation traces and minimal
cut sets) and to present results of safety analyses in formats
that are compatible with traditional fault tree analysis tools
used by safety engineers.

After discussing the ESACS methodology, in the follow-
ing section we will describe the FSAP/NuSMV-SA architec-
ture, whereas in Section 4 we will explain how the tool can
be used in the context of this methodology.

3 The FSAP/NuSMV-SA Architecture

FSAP/NuSMV-SA consists of two main components:

– FSAP (Formal Safety Analysis Platform) provides a
graphical user interface and a repository that can be used
by safety engineers and design engineers to share infor-
mation related to the system under development and the
analyses performed;

– NuSMV-SA, based on the NuSMV model checker, pro-
vides the core algorithms for formal verification.

FSAP/NuSMV-SA is implemented in C++ as a cross-
platform tool. As a result, it currently runs on Windows and
Linux platforms. FSAP, the graphical user interface, is based
on the FLTK5 cross-platform toolkit. All the data produced by
the platform are stored in XML format, and the correspond-
ing parser is based on the cross-platform Expat6 library.

NuSMV-SA, the engine, is an extension of the model
checking tool NuSMV [22], a symbolic model-checker de-
veloped at ITC-IRST. It originated from a re-engineering
and re-implementation of SMV [52]. NuSMV is a well
structured, open, flexible, and well-documented platform for
model checking, and it has been designed to be robust and
close to industrial standards.

NuSMV offers a textual input language to describe finite-
state machines. One can specify a system as a synchronous

5 http://www.fltk.org
6 http://expat.sourceforge.net

Mealy machine, or as an asynchronous network of nondeter-
ministic processes. The language provides for modular hier-
archical descriptions, and for the definition of reusable com-
ponents. The data types in the language are booleans, inte-
ger subsets, scalars, and fixed arrays (the integration of the
word and real data type is planned for future releases – see
also Section 7). System specifications are typically written
in NuSMV as temporal logic formulas, and efficient sym-
bolic algorithms (based on data structures like BDDs [17]
or satisfiability-based techniques [9]) are used to traverse the
model and check whether the specification holds or not.

Figure 2 shows the components of FSAP/NuSMV-SA
(the solid lines represent the data flow, whereas the dotted
ones represent the control flow, i.e. the dialogues which can
be activated). The different blocks composing the platform
are described in more detail below.

SAT Manager The SAT (Safety Analysis Task) manager is
the central module of the platform. It is used to store all the
information relevant to verification and safety assessment. It
contains references to the system model, failure modes, loca-
tion of the extended system model, safety requirements, and
analyses. From the SAT manager, it is possible to call all the
other components of the platform.

Model Capturing System models are written using the tex-
tual NuSMV input language. FSAP/NuSMV-SA provides
users with the possibility of using their preferred text editor
for editing the system model.

Failure Mode Editor & Fault Injector These are the modules
for defining failure modes and generating an extended system
model, respectively.

Safety Requirements Editor This is the module for enter-
ing safety requirements. Safety requirements are expressed
in temporal logic [36] (either LTL or CTL) and can be de-
fined by the user by choosing and instantiating patterns taken
from a library of requirements.

Analysis Task Manager This is the module to define analysis
tasks. Analysis tasks are a convenient way to store the speci-
fication of the analyses. They are saved in the SAT manager
and can be retrieved across different sessions.

NuSMV-SA The safety analysis and verification capabilities
of NuSMV-SA are based on model checking techniques.
Model checking [25] is a well-established method for the for-
mal verification of temporal properties of finite-state concur-
rent systems [22,39,43,46].

Result Extraction and Displayers All the results produced
by the platform can be viewed using the result extraction in-
terface and the displayers. In particular, it is possible to view
counterexamples in textual, structured (XML), graphical, or
tabular fashion. Fault trees generated by the platform can be
viewed using commercial tools (e.g., FaultTree+7) or using a

7 http://www.isograph-software.com
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Fig. 2. The FSAP/NuSMV-SA components

displayer we especially developed within the project, and can
be exported into XML format.

4 Safety Analysis with FSAP/NuSMV-SA

In this section we give an overview of the FSAP/NuSMV-
SA environment, and, in particular, we discuss how the vari-
ous steps of the ESACS methodology, described in Section 2,

are supported and implemented by the different architectural
components of FSAP/NuSMV-SA, described in the previous
section. Being an extension of NuSMV, FSAP/NuSMV-SA
provides all the functionalities of NuSMV. Below however,
we will focus on the safety assessment capabilities which are
specific to FSAP/NuSMV-SA. In order to describe a typical
usage scenario of the platform, we will use a simple example,
namely a two-bit adder. The example is deliberately simple
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for illustration purposes. A discussion on more realistic case
studies can be found in Section 5.

4.1 Model Capturing

The system model definition provides an executable specifi-
cation (at a given level of abstraction) of the model of the sys-
tem under development. In particular, in the following exam-
ple we will focus on the scenario in which the system model is
built by the design engineer (see Section 2.1 for a discussion).
Currently, the system model can be entered using a text editor
(see Section 7 for a discussion on future improvements).

Let us consider the simple example, written in the syntax
of NuSMV [22], in Figure 3. It is composed of three modules.
The bit module models a component which takes an input
variable representing the value of a bit, and simply copies it
to an output variable. The adder module takes in input the
outputs of two bit module instances, and computes their sum
(modulo two). Finally, the main module defines the overall
system by instantiating an adder and two different bit compo-
nents whose inputs are random Boolean variables.

4.2 Failure Mode Capturing and Model Extension

In order to study the behaviour of the adder circuit in the
presence of degraded situations, failure mode definitions can
be added to the previous specification. In FSAP/NuSMV-SA,
failure modes are defined using a graphical user interface, in
which the safety engineer specifies which nodes of the system
model can fail, in what ways, and according to what parame-
ters. Figure 4 shows an example of the interface currently pro-
vided by FSAP/NuSMV-SA for defining failure modes. Fail-
ure modes are retrieved from a library, called Generic Failure
Mode Library (GFML, for short). The library contains the
specification of the behaviours induced by the failures and the
specification of the parameters (whose values must be set by
the user) that characterize the failures. The standard GFML
provides specification of failures like stuck-at, random out-
put, glitch, and inverted. The library can also be extended to
include user-defined failure modes.

Failure modes can be associated with variables defined in-
side modules of the NuSMV input model. In the adder case,
for instance, failure modes may include the adder output be-
ing stuck at a given value (zero or one), and an input bit cor-
ruption (inverted failure mode). Editing of a failure mode is
made easier by means of the data dictionary (see figure 5)
which allows the user to select the variable and the corre-
sponding NuSMV module to which the failure must be at-
tached.

Once the failure modes have been defined, they can be
automatically injected by FSAP/NuSMV-SA into the system
model. The result is the so-called extended system model, i.e,
a model in which some of the nodes can fail according to the
specification of the failure modes. As an example, consider
the inverted failure mode for the output of the bit module
in Figure 3. Injection of this failure mode produces the exten-
sion of the system model with a new piece of NuSMV code

(instantiated from the GFML) that is automatically inserted
into the extended system model. The new piece of code (see
Figure 6) replaces the old definition of the output variable
of the bit module by taking into account a possible corrup-
tion of the input bit. Specifically, the new piece of code de-
fines a variable output FailureMode, which models the
failure mode (either there is no failure, or the bit is corrupted).
Depending on the value of this variable, the code defines the
new output of the circuit as being the nominal one (variable
output nominal, which is the same as the old output) or
the corrupted one (variable output inverted, which is
simply the negation of the nominal output). The failure is as-
sumed to be permanent, that is, once the bit is corrupted, it
remains corrupted forever.

4.3 Safety Requirement Capturing

System model definition, failure mode definition and model
extension are just a part of the verification and safety assess-
ment process. Formal verification is carried out by defining
properties in the form of temporal specifications. The plat-
form supports Computation Tree Logic (CTL), Linear Tem-
poral Logic (LTL) and real-time Computation Tree Logic
(RTCTL) [36,37]. As an example, the following CTL prop-
erties may be specified for the adder example:

AG (random1 = 0 & random2 = 0 � adder.output = 0)

AG (random1 = 0 & random2 = 0 & adder.output != 0)
� (bit1.output FailureMode = inverted

�

bit2.output FailureMode = inverted)

The first one states that the output of the adder must be
zero whenever both input bits are zero (this is clearly not the
case in degraded situations), whereas the second one states
that whenever the sum of two zero input bits yields one, it is
the case that at least one of the two input bits is corrupted.
Requirements defined in this way can subsequently be ver-
ified via the underlying model checking verification engine
provided by NuSMV. Properties in FSAP/NuSMV-SA are de-
fined via a graphical user interface, in which users can enter
information such as type and severity of the safety require-
ment. Figure 7 shows how safety requirements are specified
by the user.

The input of safety requirements is simplified by the
safety pattern dialogue, which allows users to enter safety
requirements by choosing and instantiating formulas from a
set of predefined patterns. To start with, we introduced a set
of basic patterns (see Figure 8). This set of patterns includes
basic safety and liveness temporal properties which are fre-
quently used in verification. An extended and more structured
set of patterns will be integrated in future releases of the plat-
form (see Section 7 for a discussion).

Pattern instantiation is simplified by a data dictionary (see
Figure 5) and by a “keypad” that simplifies the input of data.
The safety pattern dialogue implements the concept of the
GSRL library (see Section 2.3) of the ESACS methodology.
For instance, the safety requirements described above are in-
stances of the pattern called “Safety” in the GSRL. According
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MODULE bit(input) MODULE main
VAR VAR

output : {0,1}; random1 : {0,1};
ASSIGN random2 : {0,1};

output := input; bit1 : bit(random1);
bit2 : bit(random2);

MODULE adder(bit1,bit2) adder : adder(bit1.output,bit2.output);
VAR

output : {0,1};
ASSIGN

output := (bit1 + bit2) mod 2;

Fig. 3. A NuSMV model for a two-bit adder

Fig. 4. Input of failure modes in FSAP

Fig. 5. Data dictionary
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VAR output_nominal : {0,1};
output_FailureMode : {no_failure, inverted};

ASSIGN output_nominal := input;
DEFINE output_inverted := ! output_nominal;
DEFINE output := case

output_FailureMode = no_failure : output_nominal;
output_FailureMode = inverted : output_inverted;

esac;
ASSIGN next(output_FailureMode) := case

output_FailureMode = no_failure : {no_failure, inverted};
output_FailureMode = inverted : inverted;

esac;

Fig. 6. Injecting a fault in the bit module

Fig. 7. Input of safety requirements in FSAP

Fig. 8. Safety Pattern Dialogue
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to our experience, the GSRL is an important (if not essential)
feature to help safety engineers, who may not be experts in
temporal logic, acquire confidence using LTL/CTL notations
to write safety requirements.

4.4 Model Analysis

During this phase, formal verification and safety assessment
of the model are performed. The model under development is
tested against the safety requirements, and the results of the
analysis are conveniently displayed. Using the facilities pro-
vided by the NuSMV engine, it is possible to perform con-
strained or random simulation, and several kinds of formal
verification analyses. Every analysis task performed on the
system is stored by the SAT manager, and can subsequently
be accessed by the user at any time in order to view the cor-
responding results of the analysis. The user can also decide
to re-run an analysis task from scratch, if the results are not
up-to-date. The different kinds of analysis tasks supported by
the platform are discussed in more detail below.

4.4.1 Simulation

The FSAP/NuSMV-SA platform allows one to perform ran-
dom simulation of both the system model and the extended
system model, for a given number of steps. The simulation
may be guided by providing an additional set of constraints
on the system execution. The result of the simulation is a trace
that may be displayed either in textual format, imported in a
commercial spreadsheet, or displayed in graphical form.

4.4.2 Property Verification

Exhaustive property verification capabilities of the platform
are based on the underlying model checking engine. Both
CTL and LTL temporal logic formulas can be checked against
the (extended) system model. In addition, each property ver-
ification task may be equipped with a set of invariants which
may be added to the model in order to verify a given property
under particular hypotheses. The result of a property verifi-
cation task is either a system message stating that the prop-
erty does hold, or a counterexample trace, which may be dis-
played in the same way as simulation traces. At the moment,
the engine uses BDD-based model checking, but the integra-
tion of satisfiability-based model checking is ongoing, as dis-
cussed in Section 7.

4.4.3 Fault Tree Construction

Fault Tree Analysis (FTA) [47,56,67] is a safety assessment
strategy that complements exhaustive property verification.
It is a deductive, top-down method to analyze system design
and robustness. It usually involves specifying a top level event
(TLE hereafter) for the analysis (e.g., a failure state), and
identifying all possible sets of basic events (e.g., basic faults)
that may cause that TLE to occur. FTA allows one to identify
possible system reliability or safety problems and find out

root causes of equipment failures. Fault trees provide a con-
venient symbolic representation of the combination of events
resulting in the occurrence of the top event. They are usu-
ally represented in a graphical way, as a parallel or sequential
combination of AND/OR gates.

The FSAP/NuSMV-SA platform can be used for the au-
tomatic generation of fault trees starting from a given model
and TLE. Specifically, it is possibile to extract automati-
cally all collections of basic events (called minimal cut sets)
which can trigger the TLE. The extraction of minimal cut
sets is based on procedures for computing prime implicants
of Boolean functions [27,28,57,58] that internally use BDD
data structures.

More in detail, the procedure for generating a fault tree
works as follows. First, a forward reachability analysis of the
system model is performed. This amounts to performing a
fixpoint computation, starting from the set of initial states of
the system. Each iteration produces a new set of states which
is obtained by accumulating the states reachable using one
transition step, to the current set of states. In symbols, the
expression

���������
	���
� ���������

is computed, where
�

is a symbolic representation of the set
of initial states, and

� �
is the reflexive and transitive clo-

sure of the transition relation
�

. Once the reachability set is
computed, it is conjoined with a symbolic representation of
the states satisfying the TLE. The outcome of this computa-
tion is the set of reachable states of the system in which the
TLE occurs. Finally, all the system variables except the fail-
ure variables are existentially quantified away. In symbols,
the expression ���

� ������������� �"!��#�

is computed, where
�"!��

is a symbolic representation of the
set of states satisfying the TLE, and

�
� is the set of non-failure

variables of the model. The resulting expression is minimized
using the procedures for minimizations of Boolean functions
previously mentioned. After a final step of simplification, we
obtain the set of minimal cut sets. Some statistics on the total
number of minimal cut sets and their order (that is, the num-
ber of basic events composing a cut set) are also computed
by FSAP/NuSMV-SA. The generated cut sets are minimal, in
the sense that only failure events that are strictly necessary
for the top level event to occur are retained.

Each cut set produced by FSAP/NuSMV-SA represents a
situation in which the top level event has been violated ow-
ing to the occurrence of some failures. Under the hypothesis
that the system model does not violate the top level event,
such failures are the cause of the violation. The cut sets are a
static representation of the causes of the violation. However,
the starting model to which the fault tree computation algo-
rithms are applied, is a dynamic model. As a consequence,
the violation of the TLE can be due to complex interactions
caused by the various failing and non-failing components of
the system. The model checking algorithms (that is, the ones
for reachability analysis) take care of the dynamic part of the
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Fig. 9. A fault tree generated for the adder model

model, whereas the algorithms for extraction of the minimal
cut sets are based on combinatorial routines.

There are two ways in which NuSMV-SA can present dy-
namic information that is not visible within standard fault
trees. First, NuSMV-SA associates, to each cut set, a coun-
terexample trace that shows, step by step, how the top level
event is violated by the failures represented in the cut set. Sec-
ond, it is possible to perform the so-called failure ordering
analysis (discussed in Section 4.4.4), in order to investigate
the possible ordering (if any) between basic events inside a
minimal cut set. We refer the reader to Section 7 for a discus-
sion of the ongoing work on this topic.

Figure 9 shows an example of fault tree computed for the
adder model. It has been generated for the top level event

random1 = 0 & random2 = 0 & adder.output != 0

specifying a failure state in which both input bits are zero and
the output of the adder is different from zero. The fault tree
comprises three cut sets (the first one of them is a single fail-
ure, whereas the remaining two include three basic events).
The fault tree states that the top level event may occur, if and
only if either the output of the adder is stuck at one, or one
of the input bits (and only one) is corrupted (with the adder
working properly). We note that minimality of the generated
cut sets implies that the case in which both input bits and
the adder are failed is not considered (though causing the top
level event as well).

Finally, we note that the fault tree in Figure 9 shows an ex-
ample of non-monotonic (also known as non-coherent) fault
tree analysis, i.e., basic events requiring system components
not to fail can be part of the results of the analysis. The tradi-
tional monotonic (coherent) analysis (i.e., where only failure
events are considered) is also supported by FSAP/NuSMV-
SA (in this case, the resulting fault tree would be the same

as the one in Figure 9, except that all events labeled as non-
failure are removed). The choice between the different kinds
of analyses is left to the user.

4.4.4 Failure Ordering Analysis

In this section we briefly discuss an additional capability of
the FSAP/NuSMV-SA platform, namely the so-called fail-
ure ordering analysis. The algorithm for ordering analysis is
based on the same procedures for minimizations of Boolean
functions [27,28,57,58] used for fault tree computation. A
detailed description of the algorithm for ordering analysis is
beyond the scope of this paper. We refer the reader to [15] for
a description of the algorithm, its implementation and possi-
ble applications, whereas in the following we informally re-
call the main concepts.

In traditional FTA, cut sets are simply flat collections (i.e,
conjunctions) of events which can trigger a given TLE. How-
ever, there might be timing constraints enforcing a particular
event to happen before or after another one, in order for the
TLE to be triggered (i.e., the TLE would not show if the or-
der of the two events were swapped). Ordering constraints
can be due to a causality relation or a functional dependency
between events, for example, or caused by more complex in-
teractions involving the dynamics of a system. Whatever the
reason, failure ordering analysis can provide useful informa-
tion which can be used by the design and safety engineers to
fully understand the ultimate causes of a given system mal-
function, so that adequate countermeasures can be taken.

The ordering analysis phase can be tightly integrated with
fault tree analysis, as described below. Given a system model,
the verification process consists of the following phases. First
of all, a top level event to analyze is chosen (clearly, the anal-
ysis can be repeated for different top level events). Then, fault
tree analysis is run in order to compute the minimal cut sets
relative to the top level event. For each cut set, the ordering
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analysis module of the platform generates a so-called order-
ing information model and performs ordering analysis on it.

The outcome of the ordering analysis is currently dis-
played as a precedence graph, which shows the order among
events (if any) which must be fulfilled in order for the top
level event to occur. In the future, we plan to integrate the or-
dering analysis into the fault tree generation routines and use
a uniform notation based on dynamic fault trees (see Section
7 for more details).

4.5 Result Extraction and Analysis

During the result extraction analysis phase the results of the
analyses are displayed in a human-readable form and using
standard notations used by safety engineers. They are pro-
duced using formats that are compatible with traditional com-
mercial tools (e.g., fault tree analysis tools used by safety en-
gineers).

Every trace (either obtained as a result of a simulation
task or as a counterexample trace bound to the verification of
a system property or to a minimal cut set) can be displayed in
textual, structured (XML), graphical (using the gnuplot util-
ity), or in tabular fashion (the trace can be imported into com-
mercial spreadsheets). Fault trees generated by the platform
can be viewed using commercial tools (FaultTree+7) or using
a displayer we especially developed within the project (see an
example in Figure 9) and can be exported into XML format.
The result displayer (see Figure 10) allows the user to select
the results of an analysis task and display them in the desired
form.

5 Industrial Application of FSAP/NuSMV-SA

Within the ESACS project, FSAP/NuSMV-SA has been
tested on two industrial real-world case studies, chosen by the
industrial partners, to test the applicability of the techniques
described above in an industrial environment. Both case stud-
ies share the following characteristics:

– they are of industrial interest;
– they are heterogeneous systems comprising various types

of components like electromechanical components (e.g.,
control valves, relays), mechanical components (e.g.,
shafts, gearboxes, freewheels), electronic transducers
(e.g., speed sensors, pressure sensors), and electronic
controllers;

– they were considered of the right level of complexity
(medium/high) for the project purposes.

The first case study is derived from work by ONERA8

on the Hydraulic Boolean System of the Airbus A320 [8].
The model of the system, originally written in the Altar-
ica language [4], has been automatically translated into the
NuSMV language and verified, for the purposes of evaluating

8 http://www.cert.fr

the FSAP/NuSMV-SA capabilities, with the FSAP/NuSMV-
SA platform. The results obtained were in accordance with
the ones obtained by ONERA.

The second case study is the Secondary Power System,
described in [14]. It consists of a subsystem that drives the
hydraulic and electrical utilities of an aircraft. It is a safety-
critical system, in that it must prevent any power loss of the
utilities, even in presence of failures. To this aim, the default
lines driving the utilities are coupled with auxiliary lines. Two
computers are responsible for carrying out a recovery pro-
cedure consisting of driving the utilities using the auxiliary
lines, in case of failure of some component in the default
lines.

In the rest of this section we will focus on the Secondary
Power System case study, whereas we refer the reader to [8]
for more details on the other case study, studied by ONERA.
Modeling and testing of the case study have been conducted
as a joint collaboration between ITC-IRST, Alenia Aeronau-
tica (the owner of the case study), and Società Italiana Avion-
ica (SIA). Alenia Aeronautica is the leading Italian company
in the avionics field, and is among the major industrial com-
plexes in the world. Additional details on the case study can
be found in [14], a joint paper written with people from Ale-
nia and SIA. However, we note that, given the nature of the
case study and the non-disclosure agreement with the indus-
trial partner, it is not possible to provide any further details
regarding how the system works and its actual implementa-
tion in NuSMV.

As a general comment, we would like to remark that the
collaboration with Alenia/SIA was also intended as a way to
investigate and assess the use of techniques based on formal
methods in the industry. Although the introduction of these
techniques in the actual development cycle was not a realis-
tic goal for the ESACS project, we encouraged the use of the
platform in a way as similar as possible to the industrial prac-
tice. To this aim, we invited some people from Alenia/SIA
to “play” the role of the design or safety engineers, and we
had them use the platform in a way as close as possible to the
actual work practice. As discussed in Section 7, ITC-IRST is
currently taking part in a further EU-funded project, called
ISAAC9 (basically a continuation of the ESACS project, in-
volving a superset of the partners of ESACS), hence the as-
pects related to the impact on the actual work practice will be
further pushed and investigated in ISAAC.

The rest of this section is structured as follows. In Sec-
tion 5.1, we illustrate some issues related to modeling and to
the interaction with the industrial partners. In Section 5.2 we
discuss some issues related to verification of the model and
present some experimental results. Finally, in Section 5.3 we
sketch the resulting set of “lessons learned”.

5.1 Modeling

The modeling activity was an iterative (and interactive) pro-
cess, involving people from ITC-IRST and people from Ale-

9 http://www.cert.fr/isaac
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Fig. 10. The result displayer

nia/SIA. Alenia provided the written documentation related
to the case study. ITC-IRST was responsible for the actual
modeling in the NuSMV language, whereas some people
from Alenia/SIA, after an initial training period, were invited
to use the platform for checking the models. The role of the
people from Alenia/SIA was to provide feedback on the re-
sults obtained from the models, and also to use the case study
to assess the platform and provide a wish list of possible im-
provements and extensions.

The way we conceived the modeling activity was by pro-
ducing a set of models, described at different levels of detail,
from the less to the more detailed. As a result, the overall
set of models form a hierarchy in which each model has a
higher level of detail and complexity with respect to the pre-
vious ones. The advantage of using a hierarchy of models is
twofold. First, it can ease the modeling process: we model
the interaction between the different components, and then
we model the actual behaviour of each component in an in-
creasingly realistic way. Second, it can be seen as a way to
cope with the model scalability issues, that is, the inability of
the model checker to analyze the more detailed models.

The set of models we developed can be summarized as
follows:

model-1 this is the simplest model and is a sort of block dia-
gram. It is also representative of the first specification that
the safety engineer receives from the design engineer in
the standard development process. In our case, this model
included both the left and right hand side of the system
and a simplified model of the computers. The variables
used in the model are all Boolean and the components
were blocks which may be either working or not work-
ing. This model was used to perform a so-called block

reliability analysis of the case study, in order to analyze
the functional interactions between the components;

model-2 in this model, the behaviour of the components was
modeled in a more realistic manner, although the com-
puters were still simplified. The model included only one
side of the system (we exploited the symmetry of the sys-
tem to reason on the other side). The variables represent-
ing physical quantities were discretized, i.e., encoded by
means of integer variables in a suitable range;

model-3 this model is the same as “model-2”, except that the
computers are modeled in a realistic manner;

model-4 this is the same as “model-3”, with a more realis-
tic modeling of the mechanical components. In particular,
we modeled mechanical forces that must be propagated in
reverse (e.g., in case of an engine failure, the fault can
affect components that are further up in the functional
chain);

model-5 this model is the same as “model-2”, except that
both sides of the system are modeled;

model-6 this model is the same as “model-4”, except that
both sides of the system are modeled.

5.2 Verification

In this section we discuss some issues related to the verifi-
cation of the models outlined in the previous section and we
present some experimental results.

The models of section 5.1 have been enriched automati-
cally with the definition of the relevant failure modes. Typi-
cally, failure modes were attached to each component of the
model. The definition of the failure modes was retrieved from
the GFML library available in FSAP. For instance, the list
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of failure modes included stuck-at failures (for valves) and
ramp-down failures to model the speed of mechanical com-
ponents (the speed can decrease down to a given value be-
cause of a fault).

The safety analysis tasks consisted of the generation of
two fault trees for different propositional properties, and in
the verification of two safety properties, expressed in CTL
temporal logic. The purpose of the analyses was to verify
whether the recovery procedure was carried out correctly.

In Figure 11 we report some experimental results. For
fairness, we ran each experiment (fault tree generation or
property verification) with a different invocation of the model
checker (the execution of a verification task may in fact ben-
efit from the successful completion of a previous task). For
each of the models of Section 5.1 we report the time (in sec-
onds) and memory (in Mb) used for compiling the model
(column COMP), generating one of the two fault trees (col-
umn FT) and verifying the two safety properties (columns
PROP1 and PROP2). The memory used for completing a ver-
ification task includes the memory used for compilation. We
do not report the results on the second fault tree, given that
they marginally differ from the results obtained for the first
one.

The experiments have been run on a 2-processor machine
equipped with Intel Xeon 3.00GHz, with 4Gb of memory,
running Linux RedHat 7.1 (only one processor was allowed
to run for each experiment). The time limit was set to 72
hours and the memory limit to 1Gb. In Figure 11, a ‘ � ’ in the
time or memory columns stands for a time-out or memory-
out, respectively. We ran NuSMV-SA version 2.3.0, with the
following command-line options: -reorder -dynamic
-thresh 500000 -coi. That is, we enabled dynamic
variable re-ordering, cone-of-influence reduction, and thresh-
old conjunctive partitioning.

We ran some further experiments after enabling the com-
putation of reachable states (option -f on the NuSMV-SA
command-line) for the verification of safety properties (the
computation of reachable states is used by default for the gen-
eration of fault trees). The results are given in Figure 12. Al-
though the results are not always consistent, it is evident that
enabling the computation of reachable states may in some
cases significantly improve the performance (e.g., in the case
of “model-3”). As a drawback, the computation of the reach-
able states may sometimes be unfeasible due to memory ex-
haustion (e.g, for “model-5”). The outcome of this set of ex-
periments suggests that there is room for improving the per-
formance of the model checker with proper tuning.

5.3 Results and Experience

In this section we discuss some results and experiences aris-
ing from the modeling activity and the interaction with the
people from Alenia/SIA. For each case study, the various
models were tested in order to highlight pros and cons of our
approach and to devise possible methodology and tool plat-
form improvements. The main criteria of the evaluation were

the effectiveness of the methodology to improve the integra-
tion of the design and safety activities on the system, and the
effectiveness of the tool in the implementation of the different
steps defined by the methodology. In the following we briefly
summarize the results of our evaluation.

Representational Issues One interesting aspect of the case
studies concerned the modeling of the various (sub)-
components. In particular, one of the most challenging mod-
eling issues has been the modeling of hydraulic and mechan-
ical components. For such systems, in fact, when reasoning
about degraded situations, the standard input/output model-
ing with functional blocks may be particularly difficult. For
instance, a leakage in a pipe may cause loss of pressure in the
whole pipe. As a second example, in certain situations (e.g.,
in case of an engine failure) mechanical forces have to be
propagated in reverse, therefore affecting functional blocks
that are further up in the functional chain. Particular care had
to be taken to address these issues. More generally, we think
that the use of hybrid system modeling tools may be very ef-
fective for such kind of models (see Section 7).

Integration of the Design and Safety Activities We experi-
enced that the ESACS approach effectively improves and en-
courages the interaction between design and safety engineers
as they, for instance, can speak the same unambiguous lan-
guage and share the same formal system model. In addition,
the safety evaluation of the system architecture could be per-
formed in the very early phases of system design, by simulat-
ing and proving properties of the system model.

Failure Mode Definition and Injection The facility for fail-
ure mode injection and system model extension experimented
during the different test cycles of the platform worked well,
but it is based on a library of generic failure modes specifi-
cally created for the ESACS purpose. As a consequence, the
library needs to be enriched in the future to include a taxon-
omy of the failure modes typical of the main kinds of com-
ponents (electronic, electric, mechanical, pneumatic compo-
nents and so on), tailored to the specific industrial needs.

System Property Definition The ESACS approach enables
the definition of different types of verification tasks on sys-
tem models, like reachability of a given state (e.g., compo-
nent failure) or the fulfillment of a given condition (e.g., out-
put from one component being a certain percentage under its
nominal value). The system properties can be written in LTL
or CTL temporal logic. Such formalisms may be difficult to
understand, especially by people who are not expert in formal
verification. The possibility of defining system properties by
instantiating a class of general-purpose safety patterns was
included in the platform as a response to the industrial part-
ners needs, and was particularly appreciated.

System Property Verification Performing model checking of
functional requirements on the system model often leads to
the state explosion problem. As a consequence, it was some-
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MODEL COMP FT PROP1 PROP2
TIME MEM TIME MEM TIME MEM TIME MEM

model-1 � 0.01 1 � 0.01 1 � 0.01 1 � 0.01 1
model-2 8 10 107 13 6 10 6 10
model-3 119 20 205 25 177576 28 174052 28
model-4 1356 63 6 63 1716 109 1695 109
model-5 760 52 - � 21603 52 21787 52
model-6 637 29 � - � - � -

Fig. 11. Experimental results

MODEL PROP1 PROP2
TIME MEM TIME MEM

model-1 � 0.01 1 � 0.01 1
model-2 149 18 148 18
model-3 944 45 940 45
model-4 1620 109 1598 109
model-5 - � - �
model-6 � - � -

Fig. 12. Additional experimental results, with computation of reachable states enabled

times necessary to scale the model down, for instance by ab-
stracting away certain characteristics of the design model. As
previously explained, one way was to cut the model by ex-
ploiting inherent symmetries in it. However, this approach
was not feasible for the most detailed models.

In order to mitigate the problem of state explosion, the
definition of a set of different models was particularly helpful,
as it has been possible to define specialised models for certain
properties. On the other hand, at the moment we are working
on improvements for the model checking tools which will
hopefully be able to ameliorate this problem (we discuss this
point further in Section 7).

Finally, from an industrial point of view, the possibility
of using simulation and exhaustive techniques to drive the
system into a particular state was particularly useful, for in-
stance, in order to show that a safety-critical state cannot be
reachable when failure modes are disabled.

Fault Tree Generation Automatic generation of fault trees
has been possible with satisfactory results only for the less
complex models, whereas with the more complex ones we
encountered difficulties due to the state explosion problem.
Nonetheless, the safety engineers judged the fault trees gen-
erated for the less complex models to be informative enough.

6 Related Work

The ESACS Methodology The FSAP/NuSMV-SA platform
has been developed within the ESACS3 project (Enhanced

Safety Assessment for Complex Systems), a European-
Union-sponsored project involving various research centers
and industries from the avionics sector. For a more detailed
description of the project goals and the industrial case studies
which have been investigated we refer the reader to [14,16].
Within the project, the ESACS methodology has been also
implemented in other platforms. We mention [8] for the plat-
form based on Altarica [4]; [1,30] for the platform based on
SCADE10; [55] for the platform based on STATEMATE11.

The works recently presented in [44,45] have a close sim-
ilarity with the present work and, more in general, with the
ESACS methodology. In particular, the idea of integrating the
traditional development activities with the safety analysis ac-
tivities, based on a formal model of the system, and the idea
of clearly separating the nominal model from the fault model,
using an automatic extension facility for merging them, are
ideas that have been pioneered by ESACS [16]. The authors
call this approach model-based safety analysis and present
a proposal for integrating it into the traditional “V” safety
assessment process. The approach is exemplified on a case
study modeled and analyzed using SCADE10 and Simulink
[29]. We also mention [53,65,66], which discuss the spec-
ification and validation of a Flight Guidance System and a
Flight Management System. This work shares with us and
the ESACS project the application field (i.e., avionics), and
the use of NuSMV as a target verification language (the pa-
per also considers the PVS theorem prover as alternative ver-

10 http://www.esterel-technologies.com
11 http://www.ilogix.com
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ification tool). An automatic translator from a specification
language called RSML to NuSMV is also provided.

Algorithms The safety analysis capabilities provided by the
platform include traditional fault tree generation [47,56,
67] together with formal verification capabilities typical of
model checking [22,25,39,43,46,52]. The algorithms for cut
set and prime implicant computation described in Section
4.4.3 are based on classical procedures for minimization of
Boolean functions, specifically on the implicit-search proce-
dure described in [27,28,57,58], which is based on Binary
Decision Diagrams (BDDs) [17]. This choice was quite nat-
ural, given that the NuSMV model checker makes a perva-
sive use of BDD data structures. The ordering analysis pro-
cedure described in Section 4.4.4 also makes use of these al-
gorithms (we refer the reader to [15] for a full description of
the procedure and of the related literature). Explicit-search
and satisfiability-based techniques for computation of prime
implicants are described for instance in [50].

Fault Tree Construction Our work shares some similarities
with the work in [59,64], which are both concerned with au-
tomatically proving the consistency of fault trees using model
checking techniques. The paper [64] presents a fault tree se-
mantics based on Clocked CTL (CCTL) and uses timed au-
tomata for system specification, whereas [59] presents a fault
tree semantics based on the Duration Calculus with Liveness
(DCL) and uses Phase Automata as an operational model.
The focus of both papers is on using model checking to val-
idate manually constructed fault trees (e.g., to detect incom-
pleteness of a fault tree due to an omitted cause for an haz-
ard). On the contrary, our approach is concerned with using
model checking for the automatic generation of a fault tree
starting from a formal specification of the system model.

Probabilistic Safety Assessment and Dynamic Fault Trees A
large amount of work has been done in the area of probabilis-
tic safety assessment (PSA) and in particular on dynamic reli-
ability [60]. Dynamic reliability is concerned with extending
the classical event or fault tree approaches to PSA by taking
into consideration the mutual interactions between the hard-
ware components of a plant and the physical evolution of
its process variables [51]. Examples of scenarios taken into
consideration are, e.g., human intervention, expert judgment,
the role of control/protection systems, the so-called failures
on demand (i.e., failure of a component to intervene), and
also the ordering of events during accident propagation. Dif-
ferent approaches to dynamic reliability include, e.g., state
transitions or Markov models [3,54], the dynamic event tree
methodology and the TRETA package of [26], and direct
simulation via Monte Carlo analysis [51,61]. Our approach,
which is concerned with the automatic generation of fault
trees, differs from the works cited above that are mostly con-
cerned with the evaluation of a given fault tree. Furthermore,
we use model checking to support automatic verification of
arbitrary CTL and LTL properties (in particular, both safety
and liveness properties).

Concerning ordering analysis, the work which is probably
closer to ours is [26], which describes dynamic event trees
as a convenient means to represent the timing and order of
intervention of sub-systems and their eventual failures. Our
approach can support simultaneous failures, whereas, at the
moment, we are working under the hypothesis of persistent
failures (i.e., no repair is possible).

Concerning fault tree evaluation, we mention DIFTree
(Dynamic Innovative Fault Tree) [49], a methodology for
the analysis of dynamic fault trees. It is implemented in the
Galileo tool [62]. The methodology is able to identify inde-
pendent sub-trees, translate them into suitable models, ana-
lyze them and integrate the results of the evaluation. Different
techniques can be used for the evaluation, e.g., BDD-based
techniques for the evaluation of static fault trees, and Markov
techniques or Monte Carlo simulation for dynamic fault trees.
The DIFTree methodology also includes techniques to model
coverage, that is, the probability that a system can automat-
ically recover from a fault, given that a failure occurs. Tech-
niques for incorporating coverage modeling [33] into a BDD-
based fault tree solution have been studied in [32].

Tools The Galileo12 tool [62], already mentioned, is a tool
for modeling and analysis of fault trees. It allows the user
to edit a fault tree in a textual or graphical format, and to
evaluate the fault tree using different techniques. In addition,
it supports different probability distributions for component
failures. Both the support for probability distributions and the
notation for dynamic gates used in Galileo [48] are features
that we would like to integrate into the FSAP/NuSMV-SA
platform (we refer the reader to Section 7 for more details).

Finally, we mention the SMART13 tool [19]. SMART is
a software package integrating various modeling formalisms
(e.g., stochastic Petri nets) into a single environment. The
analysis of the models can be performed using a variety
of evaluation techniques, ranging from CTL-based symbolic
model checking, for the computation of the state space and
for solving temporal logic queries, to numerical methods
and simulation, for performance and reliability measures.
The implementation of CTL-based model checking tech-
niques relies on Multi-valued Decision Diagrams (MDDs)
to store the state space, and makes use of advanced tech-
niques based on Kronecker encoding for the next state func-
tion and an efficient saturation algorithm. These techniques
have been shown to be very effective, both in terms of time
and space, for model checking asynchronous systems (with
loosely connected components) [20]. Although the models
used in ESACS are typically synchronous systems, it could
be worth evaluating the performance of the SMART tool on
them.

12 http://www.cs.virginia.edu/ � ftree
13 http://www.cs.ucr.edu/ � ciardo/SMART
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7 Future Work

At the moment, the platform is undergoing further develop-
ment, both at the level of the implementation and at the level
of provided functionalities. This further development is being
carried out as contribution to the ISAAC9 project (Improve-
ment of Safety Activities on Aeronautical Complex systems),
in which ITC-IRST is involved (the set of partners involved
in ISAAC is a superset of the ESACS partners). The goals of
ISAAC are, on the one hand, the investigation of some new
thematic areas, and on the other hand, the consolidation and
the further push of the ESACS experience and methodology
into the industrial practice [2]. In particular, future extensions
and improvements of the FSAP/NuSMV-SA platform will be
based on the feedback from the industrial partners. A list of
improvements and extensions to be addressed are discussed
below.

Failure Modes At the moment, all failures are assumed to be
permanent, that is, once a component fails, it remains failed
forever (once failed, always failed). In the future, we want
to overcome this limitation and be able to deal, for instance,
with transient failures. This extension may have an impact on
the failure mode definition, the analysis routines, and also the
result presentation aspects.

Furthermore, we are currently working on extending the
failure model with common cause failures. By common cause
failures we mean either simultaneous or cascading failures
which are due to a common cause, and therefore are not inde-
pendent. Future releases of the platform will enable the pos-
sibility to declare failure sets grouping common cause fail-
ures and to generate the corresponding fault tree in a suitable
format. Common cause analysis is one of the topics of the
ISAAC project.

Furthermore, we plan to enrich the GFML. First, we want
to include a richer taxonomy of failure modes (see discus-
sion in Section 5.3), tailored to the industrial needs. Second,
we would also like to support probabilistic evaluation of fault
trees (see paragraph on quantitative analysis below). One pos-
sibility to achieve this goal would be to create a component
library associating stochastic failure distributions to compo-
nents, together with failure modes.

Failure Ordering Analysis Concerning failure ordering anal-
ysis, we want to improve the current notation of the outcome
of the analysis, which is presented in the form of precedence
graphs. We would like to use notations for dynamic gates
and integrate the results of ordering analysis into the dis-
played fault tree. In this way a uniform notation would be
used throughout the platform. An example of notation for dy-
namic gates and their formal semantics is the one used in the
Galileo tool (see [48]).

Hierarchical Fault Trees At the moment, the fault trees gen-
erated by our platform are flat, that is, they simply collect the
cut sets (or prime implicants). This might be a concern, es-
pecially when the number of computed cut sets is large (for

instance, in the Hydraulic Boolean System case study, men-
tioned in Section 5, the prime implicants for one of the safety
requirements are more than 200). In order to improve read-
ability, we are investigating techniques for restructuring the
fault tree. By restructuring, we mean the possibility to group
common parts of the tree by introducing intermediate levels
(gates). We call these trees hierarchical fault trees. Different
techniques will be considered, for instance user-guided re-
structuring or automatic restructuring based on logical equiv-
alences.

Safety Patterns Regarding the safety patterns described in
Section 4.3, we plan to include a more comprehensive and
structured set of patterns in future releases of the platform.
In particular, we are considering the structure described in
[35]14). The intent is to support a comprehensive set of pat-
terns that occur frequently in the specification of concurrent
and reactive systems.

Quantitative Analysis We plan to extend our framework to
deal with probabilistic assessment. Although not illustrated
in this paper, associating fixed probabilistic estimates to ba-
sic events and evaluating the resulting fault tree is straightfor-
ward (see, for instance, [28]). Evaluation of probabilities also
allows one to exclude minimal cut sets below a certain prob-
ability threshold, if desired. However, more work needs to be
done in order to support more complex probabilistic dynam-
ics (see, e.g., [31]). A possibility would be to include sam-
ple probabilistic distributions like the ones used in DIFTree
[49] (see also the paragraph on failures modes above). Con-
cerning common cause failures (see again the paragraph on
failures modes) techniques for evaluating the fault tree using
BDD-based methods have been investigated in [63].

Usability/Expressiveness An important issue which is re-
lated to usability of the platform is the enhancement of the
input language. We plan to design and implement a graphical
input language, which could serve as an interface between
the underlying, textual, NuSMV input language, and the final
user. This feature is considered of primary importance by the
industrial partners.

Second, as mentioned in Section 3, the input language
supported by NuSMV will be enriched in the near future, by
including the real data type as a primitive type. This exten-
sion will increase the level of expressiveness of the language,
and will enable a more faithful modeling of the dynamics of
a complex system. Namely, it would be possible to model
the physical quantities of a given system using real functions
(e.g., to model the mechanical forces, as mentioned in Sec-
tion 5.3). Furthermore, we might have a more realistic mod-
eling of time, which, at the moment, is modeled by an abstract
transition step. One possibility we are considering is to model
systems as hybrid automata [40,41]. An alternative possibil-
ity is to use the model of time based on calendar automata
described in [34].

14 See also http://patterns.projects.cis.ksu.edu
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Given that having real variables makes the resulting mod-
els infinite-state, a way is needed to deal with this additional
complexity. Specifically, we are planning to use satisfiability-
based techniques. In our experience, these techniques can
also help relieve the state explosion problem. This is ex-
plained in more detail in the next paragraph.

Efficiency As discussed in Section 5, the state explosion
problem may prevent the completion of the analysis tasks
on the most complex models. In order to alleviate this prob-
lem, we are currently integrating the possibility of using
satisfiability-based techniques [9] inside the platform. The
possibility of using a satisfiability engine for property veri-
fication is already supported by the NuSMV model checker,
whereas the satisfiability-based algorithms for generating
fault trees are currently under development. Satisfiability-
based techniques are useful for exploring an initial segment
of the state space. BDD-based techniques work by saturat-
ing sets of states, as opposed to satisfiability-based tech-
niques that are tipically used to find single traces of bounded
lenght. Further traces can be found after ruling out the already
discovered ones, by properly modifying the temporal for-
mula to be verified. Typically, satisfiability-based techniques
are very effective for incomplete verification (bug hunting).
However, the use of induction techniques can make their
use competitive also for exhaustive verification. In the fu-
ture, we also plan to combine BDD-based and satisfiability-
based techniques for computing fault trees. The idea is to use
satisfiability-based techniques to find a subset of the mini-
mal cut sets, use them to simplify the model, and finally use
BDD-based techniques to find the remaining cut sets.

An additional way to alleviate the state-explosion prob-
lem is to modify the system model. According to our ex-
perience (see Section 5.3) the state explosion problem was
mainly due to the use of discretized integer variables, which
we used to implement the dynamics of physical variables. An
alternative to discretization is to model physical quantities
directly as real functions, and model systems as hybrid au-
tomata. This is not only a way to increase the expressiveness
of the model (as explained in the previous paragraph), but it
is also a way to deal with the state explosion problem. In fact,
verification of systems modeled as hybrid automata can be
efficiently performed using decision procedures for combi-
nations of Boolean and mathematical reasoning. In particular,
we plan to experiment with MATHSAT [5,7,10–13]. MATH-
SAT is a satisfiability-based decision procedure, developed at
ITC-IRST, which is able to combine Boolean reasoning with
reasoning on more complex theories like (integer or real) lin-
ear arithmetic, equality and uninterpreted functions, and their
combinations. The integration of MATHSAT into NuSMV is
part of the current tool development plan. Preliminary results
of the application of MATHSAT to the verification of hybrid
systems (see [6]) suggest that this approach is promising.

8 Conclusions

In this paper we have presented the FSAP/NuSMV-SA safety
analysis platform. The verification engine of the platform is
based on the NuSMV model checker [22]. FSAP/NuSMV-
SA can be used as a tool to assist the safety analysis process
from the early phases of system design to the safety assess-
ment phase. It provides a uniform environment that can be
used both by design engineers for the formal verification of
a system and by safety engineers to automate certain phases
of safety assessment. The major benefits are a tight integra-
tion between the design and the safety teams, and the mecha-
nization of (some of) the activities related to verification and
safety analysis.

The main functionalities provided by FSAP/NuSMV-SA
include model construction facilities (e.g., automatic failure
injection based on a library of predefined failure modes), ex-
haustive property verification capabilities typical of model
checking, and automatic fault tree generation. Fault tree gen-
eration can be performed both in the case of monotonic sys-
tems (computation of minimal cut sets) and in the case of
non-monotonic ones (computation of prime implicants). Fur-
thermore, the results provided by fault tree generation can
be conveniently integrated by the so-called failure ordering
analysis that allows the user to extract ordering constraints
which hold between basic events in a given cut set.

At the moment, the platform is undergoing further devel-
opment as a contribution to the ISAAC project. The industrial
evaluation of the platform will be carried on, in collaboration
with Alenia Aeronautica and SIA. A particular emphasis will
be put on aspects related to the usability for people that are
not expert in formal verification, and to the introduction of
the tool in the actual work practice.

The FSAP/NuSMV-SA platform is available for eval-
uation from http://sra.itc.it/tools/FSAP. The
download is currently password protected; the password can
be obtained by contacting the authors.
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