
Assumption-Based Runtime Verification
of Infinite-State Systems

Alessandro Cimatti, Chun Tian, and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,ctian,tonettas}@fbk.eu

Abstract. Runtime Verification (RV) basically means monitoring an
execution trace of a system under scrutiny and checking if the trace
satisfies or violates a specification. In Assumption-Based Runtime Ver-
ification (ABRV), runtime monitors may be synthesized from not only
the specification but also a system model (either full or partial), which
represents the assumptions on which the input traces are expected to fol-
low. With assumptions the monitor can additionally check if the input
traces actually follow the assumptions. Some previous research has shown
that monitors under assumptions can be more precise or even predictive,
while non-monitorable specifications may become monitorable under as-
sumptions.
The question of synthesizing runtime monitors for finite-state systems
and propositional or first-order temporal logics, with or without assump-
tions, has mostly been answered by prior work. For monitoring infinite-
state systems, however, most existing approaches focus on supporting
parametric or first-order specifications while they cannot be easily ex-
tended to support assumptions.
This paper presents a general solution for ABRV of infinite-state systems
by a reduction of RV problems to LTL Model Checking (MC), which is
further based on Satisfiability Modulo Theories and other techniques.
When First-Order Quantifier Elimination (QE) is also available, the cor-
responding algorithm can be greatly optimized. This solution is general
because in theory any LTL MC (and QE) algorithms can be used, and the
supported types of infinite-state variables also depend on these under-
lying algorithms. In particular, the relatively expensive model checking
can be minimized by a modified version of Bounded Model Checking al-
gorithm which performs model checking incrementally on each input of
the monitor.

1 Introduction

Runtime Verification (RV) [15,20] is a lightweight verification technique aiming
at monitoring the execution trace of a system under scrutiny (SUS) and checking
if the trace satisfies or violates a specification. The central task in RV is monitor
synthesis, i.e. generating from the specification a runtime monitor, which takes
a run (execution trace) from the SUS and outputs verdicts for each states of the

2 A. Cimatti, C. Tian and S. Tonetta

run. Although a specification1 exists within the context of a system model, i.e.
the abstraction of the system being specified, the current taxonomy for classify-
ing RV tools [21] does not consider synthesizing runtime monitors from a system
model, in addition to the specification.

Assumption-Based Runtime Verification (ABRV) [13] extends the traditional
Runtime Verification (RV) [20, 29] by additionally assuming an underlying sys-
tem model that the input traces are expected to follow. The resulting runtime
monitor checks if, under the assumptions given by the model, the SUS execution
satisfies or violates the property (and additionally if the execution is compliant
with the assumption). Prior research [13,24,28] has shown that, for certain com-
binations of models and properties, assumption-based monitors are more precise
(i.e. arriving at a conclusion based on the assumption while traditional monitors
would be inconclusive), or even predictive (i.e. arriving at a conclusion before
the input trace actually says so). In particular, if the monitor would never have
reached a conclusive verdict, it might do so because of the assumption. Another
advantage of the assumption-based approach is the possibility of monitoring
properties over partially-observable systems, capturing as the assumption the
relationship between observable and internal states of the SUS.

The question of synthesizing runtime monitors for finite-state systems and
propositional temporal logics, with or without assumptions, has mostly been
answered by prior work [1, 4, 13]. In particular, for ABRV, there exist effective
automata-based approaches using Binary Decision Diagrams (BDD) [7] to rep-
resent belief states, i.e., the set of automata states where the system can be
according to a sequence of (partial) observations.

In the case of infinite-state systems, of which the state variables may have
infinite domains (such as integer, rational and real variables), the correspond-
ing RV problem (i.e. monitoring LTL) can be in theory resolved by evaluating
the property (Boolean) propositions over the non-Boolean variables. Going from
propositional to first-order temporal logic (or even further), existing work mostly
put a focus on supporting things like parametric specifications [34] or specifica-
tions with first-order quantifiers [23].

This paper presents a general new approach for ABRV of infinite-state sys-
tems (the related algorithms can also be applied to finite-state systems). Instead
of relying on BDDs, which is used by NuRV [14] (the previous tool implementa-
tion of ABRV), the idea is based on Satisfiability Modulo Theories (SMT) [2]. We
show how to reduce RV problems directly to SMT-based LTL Model Checking
(MC) problems, then solvable by model checkers like nuXmv [8]. This solution
is general because in theory any LTL MC (and QE) algorithms can be used, and
the supported types of infinite-state variables also depend on these underlying
algorithms. For the LTL semantics over finite traces, which is also the semantics
of monitoring outputs, our choice is still based on LTL3 [1] with respect to extra

1 According to [21], a specification is a concrete description of a property (a parti-
tion of traces) using a well-defined formalism (like LTL). However, this difference is
not very important here, and thus we use the words “property” and “specification”
interchangeably for the rest of this paper.

Assumption-Based RV of Infinite-State Systems 3

verdicts (out-of-model) due to RV assumptions. In comparison with other possi-
ble LTL semantics for RV purposes [3], it turns out that, with our choice, there
exists a simple and elegant reduction from RV to MC problems. If, additionally,
First-Order Quantifier Elimination [33] is also available (for the chosen first-order
theory), the corresponding algorithm can be greatly optimized, without seeing
the monotonically growing of SMT formulas during the monitoring. In this case,
the algorithm keeps track of a belief state, representing all states in which the
system can be according to the assumption after a sequence of observation. The
RV problem is then reduced to checking, after each observation, the emptiness
checking of symbolic automata with the belief states as initial conditions.

However, there are performance bottlenecks in MC- or SMT-based RV ap-
proaches, in comparison with BDD-based approaches, because both model check-
ing and quantifier elimination are computationally heavy. To this purpose, we
extend the basic RV-MC reductions with optimizations that perform (relatively
cheap) incomplete checks instead of the more expensive model checking calls.
One such optimization is to always check first the literal emptiness of the be-
lief state by SMT solvers, the other is to use the incomplete plain Bounded
Model Checking (BMC) [5], with improved encodings for the full class of LTL
properties [12], only for detecting counterexamples (the plain use). With these
significantly faster checks, the full IC3-based model checker [10] is now rarely
called (at most twice in each run).

To obtain some empirical results, we have implemented our algorithms in a
new version of NuRV, which is based on nuXmv and MathSAT SMT solver [11]
(MathSAT provides some quantifier elimination procedures). We present an ex-
perimental evaluation of the performance of the basic monitoring algorithms
and various optimizations. Results on the best optimized algorithm seem to be
promising for practical applications.

Outline of the paper. In Section 2 we recall some related concepts and definitions.
In Section 3, we describe an example of ABRV with infinite-state assumptions.
In Section 4 we give two basic RV algorithms and prove their correctness proofs.
Furthermore, Section 4.3 discusses various optimizations of the basic algorithms.
Some experimental evaluations and results are given in Section 5. Finally, we
discuss related work in Section 6 and conclude the paper in Section 7.

2 Preliminaries

2.1 Satisfiability Modulo Theory

We work in the setting of Satisfiability Modulo Theory (SMT) [2] and LTL Mod-
ulo Theory (see, e.g., [9]). First-order formulas are built as usual by proposition
logic connectives, a given set of variables V and a first-order signature Σ, and
are interpreted according to a given Σ-theory T . We assume to be given the
definition of M, s |=T φ where M is a Σ structure, s is a value assignment to the
variables in V , and φ is a formula. Whenever M is clear from contexts we omit
it and simply s |=T φ. With slight abuse of notations, we also use an assignment

4 A. Cimatti, C. Tian and S. Tonetta

s = {x1 7→ v1, . . . , xn 7→ vn} to represent the corresponding formula, i.e., the
conjunction

∧
i(xi = vi). We sometimes write ϕ(V) or ϕ(V1, V2) instead of ϕ to

highlight that the free variables of formula ϕ belong to V or V1 ∪ V2, respec-
tively. Arbitrary first-order theories can be supported by our RV algorithm, as
long as the underlying SMT solver and model checker support them. For illus-
trating purposes, we only consider LRA, the theory of linear arithmetics with
real numbers.

2.2 First-Order Quantifier Elimination

First-order quantifier elimination [33] methods, which convert formulas into T -
equivalent quantifier-free formulas, are parts of many SMT solvers (e.g., Z3, Yices
and MathSAT) for checking the satisfiability of quantified formulas. Hereafter we
will omit the words “first-order” and only call it “quantifier elimination” or QE.
Formally speaking, if α(V1∪V2) is quantifier-free formula (of the theory T) built
by variables from the set V1 ∪ V2, the role of quantifier elimination is to convert
the first-order formula ∃V1.α(V1∪V2) into an T -equivalent formula β(V2), where
β is quantifier-free and is built by only variables from V2. Quantified elimination
is possible only for some first-order theories. In practice, for LRA, most SMT
solvers use methods like Fourier-Motzkin [27], Ferrante-and-Rackoff [22] or Loos-
and-Weispfenning [30]. Note that QE procedures do not guarentee any kind of
boundedness of the resulting formulas.

2.3 Fair Transition System

Infinite-state systems (used as RV assumptions) in this paper are described
as Fair Transition Systems (FTS) [32], denoted by ⟨V,Θ, ρ,J ⟩, where V =
{x1, . . . , xn} is a finite set of variables, Θ the initial condition, ρ the transition
relation, and J a (finite) set of justice conditions. (Θ, ρ and each element of
J are quantifier-free T -formulas.) Given an FTS K = ⟨V,Θ, ρ,J ⟩, a state s
of K is just a value assignment of variables in V . Any formula using variables
in V can be interpreted as the set of states satisfying the formula. Θ and each
J ∈ J are such formulas, while ρ is a formula about V and its primed ver-
sion V ′ = {x′1, . . . , x′n} indicating the relationship between the current and next
states. If s is an assignment to V , s′ is the corresponding assignment to V ′ such
that s′(v′) = s(v) for all v ∈ V .

The forward image of a set of states ψ(V) on ρ(V, V ′) is a formula

fwd(ψ(V), ρ(V, V ′))(V) =̇ (∃V. ρ(V, V ′) ∧ ψ(V))[V/V ′] (1)

where [V/V ′] denotes the substitution of (free) variables in V ′ with the corre-
sponding one in V . The existential quantifiers in forward images can be elimi-
nated by QE procedures.

A fair path σ = s0s1 · · · of K is an infinite sequence of states such that: (1)
s0 |=T Θ(V); (2) for each i, si ∪ s′i+1 |=T ρ(V, V ′); (3) for each J ∈ J there
are infinitely many i such that si |=T J(V). Let L(K) be the set of all fair
paths of K. Sometimes we write σi for the zero-indexed i-th element of σ, i.e.
σ = σ0σ1 A trace is a finite or infinite sequence of value assignments of V .

Assumption-Based RV of Infinite-State Systems 5

2.4 Linear Temporal Logic

In this paper, we consider properties specified in first-order quantifier-free Linear
Temporal Logic (LTL) [31] with both future and past operators. The set of LTL
formulas can be inductively defined as follows:

φ ::= true
∣∣ α ∣∣ ¬φ ∣∣ φ ∨ φ

∣∣ Xφ
∣∣ φUφ

∣∣ Yφ
∣∣ φSφ

where the (quantifier-free) formula α is built by a set of variables V and a first-
order signature Σ, and is interpreted according to a Σ-theory T . The temporal
operator X stands for next, U for until, Y for previous, and S for since. Other
logical constants and operators like false, ∧, → and ↔ are used as syntactic
abbreviations with their standard meanings in propositional logic. We also use
the metric operators Xn and F≤k here defined as an abbreviations: X0φ := φ,
Xk+1φ := XXkφ for k ≥ 0, and F≤kφ :=

∨
0≤i≤kX

iφ.
The semantics of LTL formulas over infinite traces are standard for proposi-

tional and temporal operators (see, e.g. [13] for the full definitions). For atoms
the semantics is reduced to the theory-specific semantics:

σ, i |= α(V, V ′) iff σi ∪ σ′
i+1 |=T α(V, V ′)

Any LTL formula can be translated into an equivalent FTS such that the set
of fair paths of the FTS, when projected to V , coincides with the set of infinite
traces satisfying the same LTL formula. Here we use essentially the same LTL
translation algorithm in [13] (Section 2) except that the atomic formulas are
translated syntactically as Boolean variables. Note that, for any LTL formula φ
and its negation ¬φ, their LTL translations (as FTS) only differ at the initial
conditions (this property is indeed leveraged in all our RV algorithms to be
presented in this paper).

2.5 Assumption-Based Runtime Verification

The definition of the ABRV problem and the related ABRV-LTL semantics
adopted in this paper are essentially the same as in the authors’ previous paper
for the finite-state case [13]. There are some minor changes for the support of
infinite-state systems and non-Boolean variables.

Let K be an FTS as the RV assumption on the behavior of the SUS. When
the SUS is partially observable, the monitor has only partial information on the
actual state of the SUS. For simplicity purposes we assume that the monitor
receives a sequence of value assignments for a subset O of all state variables V
of the FST K (see [13] for a more general setting). A trace over O, also called a
trace of observations, is a finite or infinite sequence of value assignments of O.

Given a finite trace u over O, the set of fair paths compatible with u is defined
below: (roughly speaking, each ui is a subset of variable assignments of σi)

LK(u) =̇
{
σ ∈ L(K)

∣∣ ∀i < |u|. σi |=T ui
}
. (2)

6 A. Cimatti, C. Tian and S. Tonetta

The LTL semantics of φ over the finite trace u at index i, having four possible
values: conditionally true (⊤a), conditionally false (⊥a), inconclusive (?) and
out-of-model (×), is defined below:

Ju, i |= φKK4 =̇

×, if LK(u) = ∅
⊤a, if LK(u) ̸= ∅ and ∀w ∈ LK(u). w, i |= φ

⊥a, if LK(u) ̸= ∅ and ∀w ∈ LK(u). w, i |= ¬φ
? otherwise .

(3)

In the finite-state ABRV, we also consider a Boolean reset signal that is used
to reset the index used as reference to evaluate the property. In this paper, to
simplify the presentation, we omit this additional feature (although it is imple-
mented and supported by the tool implementation) and define the infinite-state
ABRV problem as the problem of constructing a function (as runtime monitor)
taking a finite trace u over O and returning an ABRV-LTL verdict:

MK
φ (u) =̇ Ju, 0 |= φKK4 . (4)

3 Motivating Example

In this section, we describe a use case of ABRV with an infinite-state assumption
using a simple example of a temperature controller. Consider a system that heats
the water in a tank until reaching the temperature of 100. The temperature is
represented by a real variable t. The internal state of the system, which may
be heating or not, is represented by the Boolean variable h. The command to
switch on the heating system is represented by s, while f represents a fault that
switches off the system permanently. Let us define a system model K with the
following formulas:

– Initial condition: t = 0 (the temperature is initially 0)
– Transition conditions (implicitly conjoined):

• t′ ≥ 0 ∧ t′ ≤ 100 (the temperature always remains between 0 and 100)
• h→ ((t = 100 ∧ t′ = 100) ∨ (10 ≤ t′ − t ≤ 20)) (if the system is heating,

the temperature increases by a rate between 10 and 20 or remains 100 if
it already reached that temperature)

• ¬h → ((t = 0 ∧ t′ = 0) ∨ (−20 ≤ t′ − t ≤ −10)) (if the system is not
heating, the temperature decreases by a rate between −20 and −10 or
remains 0 if it already reached that temperature)

• h → (h′ ↔ ¬f) (if the system is heating, it remains so unless there is a
fault)

• (¬h) → (h′ ↔ (s ∧ ¬f)) (if the system is not heating and is not faulty,
then it can be switched on with the command s)

• f → f ′ (the fault is permanent)

Suppose we can only observe the temperature and the switching command,
and that we want to monitor the following property: φ1 = G(s → F(t = 100))

Assumption-Based RV of Infinite-State Systems 7

(whenever the heating system is switched on, the temperature will eventually
reach the temperature of 100). The assumption that the system behaves accord-
ing to K can be exploited by the ABRV monitor to deduce things like, whenever
the temperature decreases there was a fault and so the temperature will never
reach the desired level. Thus the monitor can detect the violation of a property
which, without assumptions, would not be monitorable.

More specifically, consider the finite trace of observations u = {t 7→ 0, s 7→
⊤}, {t 7→ 20, s 7→ ⊥}, {t 7→ 10, s 7→ ⊤}. Since, without considering the assump-
tion, there is a continuation of u satisfying φ1 and one violating φ1, a standard
RV monitor is inconclusive (the output is ?). Considering K as assumption, all
fair paths of K compatible with u violate φ. Thus, Ju, 0 |= φ1KK4 = ⊥a.

As an additional example, consider a stronger property G(s → F≤7(t =
100)), i.e., whenever the heating system is switched on, the temperature will
reach 100 degree within 7 steps. In this case, from the assumption on the rates
of the temperature, the ABRV monitor can deduce that after a number of steps,
if the temperature is still low, it will not reach t = 100 in time. For example, if
after 4 steps, the temperature is still less than 40, even with the maximum rate,
it will not reach 100 in other 3 steps. Thus, at runtime the monitor can say that
the property is violated 3 steps in advance.

4 ABRV Algorithms for Infinite-State Systems

4.1 ABRV reduced to Model Checking

We first revisit the relationship between runtime verification and model checking,
as clarified in [28], to conceive a trivial solution ABRV based on calling a model
checker at every observation.

Given an FTS K as the RV assumption, a set of observable variables O,
an LTL formula φ as the monitoring property, and a finite trace u over O, let
Su be an FTS whose fair paths are those compatible with u (formally, an FTS
such that L(Su) = LU (u), where U = ⟨V,⊤,⊤, ∅⟩ is the FTS with an universal
language). Then we have by (4),

MK
φ (u) = Ju, i |= φKK4 =

×, if K × Su |= φ and K × Su |= ¬φ
⊤a, if K × Su |= φ and K × Su ̸|= ¬φ
⊥a, if K × Su ̸|= φ and K × Su |= ¬φ
?, otherwise .

(5)

From this equation, we can derive a simple monitor called monitor1, which
calls the model checker twice for each input state. It is also depicted in Fig. 1,
where the output is defined as in (5).

4.2 ABRV reduced to MC and quantifier elimination

In monitor1 the entire input trace (the prefix received so far) must be encoded
into a model (i.e. an FTS) Sµ, and obviously the model checker is called on

8 A. Cimatti, C. Tian and S. Tonetta

Model
Checking

O
ut

pu
t

u MK
φ (u)

JK × Su |= φK

JK × Su |= ¬φK

Fig. 1. ABRV reduced to MC

Quantifier
Elimination

Model
Checking

O
ut

pu
t

u MK
φ (u)

rφ
JK × Tφ(rφ) |= falseK

r¬φ
JK × Tφ(r¬φ) |= falseK

Fig. 2. ABRV reduced to MC and QE

increasingly bigger problems linear to the length of the trace prefix. In practice
monitor1 will be too slow after receiving even a small number of input states.
The key for getting a better RV algorithm is to find a way to maintain some
internal status which is updated by each input state in the trace. For automata-
based RV monitors, the status is the location of monitor automata. For rewriting-
based RV approaches, the status is the current form of the monitoring property
after rewriting.

Recall in the finite-state ABRV algorithm [13], the BDD-based symbolic mon-
itor keeps track of two belief states rφ and r¬φ as the possible internal locations
of automata K × Tφ and K × T¬φ (K is the RV assumption, Tφ and T¬φ are
LTL translations of φ and ¬φ, resp.), reachable with fair paths compatible with
the input trace.These states are updated at each input. Since previous input
states are not accessible by the algorithm, and the belief states as BDDs have
bounded memory consumption, the RV algorithm given in [13] is trace-length
independent [17], i.e. having bounded memory consumption (with also a time
complexity linear to the length of the trace prefix).

¬JK × Tφ(rφ) |= falseK ¬JK × Tφ(r¬φ) |= falseK MK
φ (·)

⊤ ⊤ ?
⊤ ⊥ ⊤a

⊥ ⊤ ⊥a

⊥ ⊥ ×

Table 1. Output Table of Fig. 2 and Algorithm 1

Assumption-Based RV of Infinite-State Systems 9

Algorithm 1: The RV monitor for infinite-state systems
1 function monitor2(K =̇ ⟨VK , ΘK , ρK ,JK⟩, φ, u)
2 Tφ =̇ ⟨Vφ, Θφ , ρφ,Jφ⟩ := ltl_translation(φ); // χ(φ) is in Θφ
3 T¬φ =̇ ⟨Vφ, Θ¬φ, ρφ,Jφ⟩ := ltl_translation(¬φ);
4 V := VK ∪ Vφ;
5 ⟨rφ, r¬φ⟩ := ⟨ΘK ∧Θφ, ΘK ∧Θ¬φ⟩;
6 if |u| > 0 then
7 ⟨rφ, r¬φ⟩ := ⟨rφ ∧ u0, r¬φ ∧ u0⟩;
8 for 1 ⩽ i < |u| do
9 rφ := quantifier_elimination(V , ρK ∧ ρφ ∧ rφ) ∧ ui;

10 r¬φ := quantifier_elimination(V , ρK ∧ ρφ ∧ r¬φ) ∧ ui;
11 b1 := ¬model_checking(⟨V, rφ, ρK ∧ ρφ,JK ∪ Jφ⟩, false);
12 b2 := ¬model_checking(⟨V, r¬φ, ρK ∧ ρφ,JK ∪ Jφ⟩, false);
13 if b1 ∧ b2 then return ? ; // inconclusive
14 else if b1 then return ⊤a; // conditionally true
15 else if b2 then return ⊥a; // conditionally false
16 else return ×; // out of model

The monitor monitor2 detailed in Algorithm 1 is very similar to the symbolic
algorithm given [13]. Instead of representing formulas as BDDs, now we directly
operate on raw formulas involving any type of variables. (However, in the worse
case these formulas have unbounded sizes.)

The inputs of the algorithm are the RV assumption K (as an FTS), the
monitoring property φ and a finite input trace u. See also Fig. 2, where K ×
Tφ(rφ) is an abbreviation of ⟨V, rφ, ρK ∧ ρφ,JK ∪ Jφ⟩. At first, φ and ¬φ are
translated into two FTS Tφ and T¬φ (line 2–3). The initial conditions of Tφ and
T¬φ, namely Θφ and Θ¬φ are respectively in the form χ(φ) ∧ ξ and ¬χ(φ) ∧ ξ,
where χ(φ) restricts the paths to satisfy φ and ξ initializes the encoding of past
operators.

Initially, the belief states rφ and r¬φ are the initial conditions of Tφ and
T¬φ, composed with the initial condition of K (line 5). The first input state u0
is directly intersected with belief states (line 7). The forward images of current
belief states are computed and then intersected with the current input state ui
(line 9–10).

The undefined function quantifier_elimination can be any (first-order)
quantifier elimination procedure (for more details, see Section 2.2) such that

quantifier_elimination(V , α(V ∪ V ′)) =̇ (∃V.α(V ∪V ′))[V/V ′] = β(V) (6)

where [V/V ′] substitutes the prefixed formula with all variables in V ′ to the cor-
responding variables in V . All variables in V must be eliminated from ∃V.α(V, V ′).
β(V) as the outcome of quantifier elimination is quantifier-free.

The main difference with the previous BDD-based algorithm (Algorithm 1
of [13]) is the treatment of fair states. For BDD-based FTS, the set of fair states
can be computed a priori (by algorithms like Emerson-Lei [19]) and intersected

10 A. Cimatti, C. Tian and S. Tonetta

with the belief states whenever they are computed. However, for infinite-state
FTS represented by raw formulas this is impossible. Thus rφ and r¬φ may have
non-fair states in them. To check their (non)emptiness w.r.t. fair states, we
leverage LTL model checking, by checking LTL formula false on the modelK×Tφ
(or K × T¬φ, resp.) with rφ (or r¬φ, resp.) as the initial condition (line 11–12).
Here is the idea: if the model checking returned ⊤ saying for all fair paths in
the input model the LTL property “false” holds (which is impossible), then the
only possibility is that the input model actually does not have any fair path, i.e.
the belief state is empty. The output of the monitor w.r.t. the model checking
results (line 13–16) is summarized in Table 1.

The correctness of Algorithm 1 is given by the following theorem: (the proof
is omitted due to page limits.)

Theorem 1. The function monitor2 given in Algorithm 1 correctly implements
the ABRV monitor MK

φ (·).

4.3 Optimizations

In this section, we present few simple optimizations that reduce unnecessary
(complete) MC calls, which are computationally expensive, or to replace them
with relatively-cheap incomplete MC calls, which can only be used to detect
counterexamples, e.g. the plain Bounded Model Checking (BMC). (Also note
that, for infinite-state systems, the property may be violated but no lasso-shaped
counterexample exists; in this case, neither BMC or the full IC3-IA algorithm
can find it.) The following 4 basic optimizations, namely o1–o4, are identified:

o1 If the monitor has already reached conclusive verdicts (⊤a or ⊥a), then for
the runtime verification of the next input state at most one MC call is need.
In fact, in this case, one of the belief states rφ or r¬φ becomes empty, while
empty belief states can only lead to empty belief states by forward image
computations. Furthermore, if the monitor has reached the verdict × (out-
of-model), then it will maintain the same verdict, thus in this case no more
MC (and QE) calls are necessary.

o2 Before calling model checkers to detect the emptiness of a belief state (w.r.t.
fairness), an SMT checking can be done first, to check if the belief state
formula can be satisfied or not. If the SMT solver returns UNSAT, then it
means the formula is equivalent to ⊥, then there is no need to further call
model checkers to detect its emptiness.

o3 When monitor2 is used as online monitor, the same LTL properties are sent
to LTL model checkers with different models and are internally translated
into equivalent FTS. The translation can be done just once as part of the
RV algorithm, if the involved model checkers can be modified to take pre-
translated tableaux instead of LTL properties.

o4 Some model checking algorithms such as IC3-IA are more effective in proving
properties, while others such as BMC can be used in practice to find coun-
terexamples. This optimization is to call the incomplete plain BMC (or any

Assumption-Based RV of Infinite-State Systems 11

other MC procedure which detects counterexamples) before calling a com-
plete model checker such as IC3-IA. Note that the BMC bound parameter
max_k can be chosen arbitrarily without hurting the correctness of the entire
RV algorithm: if the counterexample does exist but BMC fails to find it due
to a small max_k, the next complete MC call will still find it and lead to the
same monitoring output as in the algorithm without this BMC optimization.

Algorithm 2: The optimized version of Algorithm 1
1 function monitor2_optimized(K =̇ ⟨VK , ΘK , ρK ,JK⟩, φ, u)
2 Tφ =̇ ⟨Vφ, Θφ , ρφ,Jφ⟩ := ltl_translation(φ); // χ(φ) is in Θφ
3 T¬φ =̇ ⟨Vφ, Θ¬φ, ρφ,Jφ⟩ := ltl_translation(¬φ);
4 V := VK ∪ Vφ;
5 ⟨rφ, r¬φ⟩ := ⟨ΘK ∧Θφ, ΘK ∧Θ¬φ⟩;
6 if o1 then b1 := b2 := ⊤ ;
7 if o3 then F := ltl_translation(

(∧
ψ∈JK∪Jφ

GFψ
)
→ false) ;

8 if |u| > 0 then
9 ⟨rφ, r¬φ⟩ := ⟨rφ ∧ u0, r¬φ ∧ u0⟩;

10 for 1 ⩽ i < |u| do
11 rφ := quantifier_elimination(V , ρK ∧ ρφ ∧ rφ) ∧ ui;
12 r¬φ := quantifier_elimination(V , ρK ∧ ρφ ∧ r¬φ) ∧ ui;
13 if o1 → b1 then b1 := check_nonemptiness(rφ) ;
14 if o1 → b2 then b2 := check_nonemptiness(r¬φ) ;
15 if b1 ∧ b2 then return ? ; // inconclusive
16 else if b1 then return ⊤a; // conditionally true
17 else if b2 then return ⊥a; // conditionally false
18 else return ×; // out of model

19 function check_nonemptiness(r)
20 if o2 ∧ (SMT(r) = unsat) then return ⊥ ;
21 else
22 return ¬model_checking(⟨V, r, ρK ∧ ρφ,JK ∪ Jφ⟩, o3 ? F : false)

23 function model_checking(M , ψ)
24 if o4 then
25 if BMC(M , ψ) = ⊥ then return ⊥; // counterexample found
26 else // max_k reached
27 return IC3_IA(M , ψ)

28 else return IC3_IA(M , ψ);

One may think that the calls of complete model checkers (IC3_IA) are a bot-
tleneck rendering the whole idea infeasible. In fact, given all above optimizations
we can prove that IC3_IA is called at most twice for each input trace:

12 A. Cimatti, C. Tian and S. Tonetta

Theorem 2. Assuming BMC always find the counterexample whenever it exists,
IC3_IA is called at most twice in the “online” version of Algorithm 2 with all
optimizations.

Proof. Without loss of generality, we analyze how the values of b1 and b2 change
during the verification of a typical trace:

1. Initially b1 = b2 = ⊤ (so that the verdict is ?). This means that both calls of
check_nonemptiness (at line 13–14) return ⊤, which further means that the
underlying call to model_checking (line 22) returns ⊥, i.e. BMC is involved
returning ⊥ (counterexamples found).

2. If the monitor maintains the current verdict (?), we have b1 = b2 = ⊤, and
two BMC calls are performed, each returning ⊥.

3. At the moment when the monitor firstly returns ⊤a, we have b1 = ⊤, b2 = ⊥,
i.e. the call to check_nonemptiness at line 14 returns ⊥. There are two
possibilities:
– The belief state r¬φ is literally ⊥ or unsatisfiable, detected by SMT

(line 20) due to [o2]. No call to IC3_IA in this case.
– The call to model_checking (line 22) returns ⊤, which means IC3_IA is

called once (after BMC fails to find a counterexample.)
4. If the monitor maintains the current verdict (⊤a), IC3_IA will not be called

again, because it is disabled by [o1] (at line 14) when b2 = ⊥.
5. At the moment when the monitor firstly returns ×, we have b1 = b2 = ⊥

(the value of b1 changed). check_nonemptiness returns ⊥ is line 13. Either
SMT is called (line 20) when rφ is unsatisfiable (due to [o2]), or IC3_IA is
called internally by model_checking (line 22) returning ⊤.

6. From now on, no BMC nor IC3_IA is called, as they are all disabled by [o1],
and the monitor maintains the verdict × (out of model).

Thus, in summary IC3_IA is called at most twice for any input trace. ⊓⊔

4.4 ABRV reduced to Model checking and Incremental BMC

Further optimizations can be done by leveraging the incrementality of Bounded
Model Checking occurred in Algorithm 2, where the function BMC are called
as incomplete preliminary steps before the full IC3_IA calls. In the following
discussions we assume the audience is familiar with the internal work of BMC
algorithms (otherwise see [5] and [12]).

We first define a BMC encoding of the belief states after a sequence of ob-
servations u0u1 · · ·un, denoted by bs(u0u1 · · ·un). These are inductively given
by

bs(u0)(V) = I(V) ∧ u0(V), (7)

bs(u0u1 · · ·ui+1)(V) = fwd
(
bs(u0u1 · · ·ui)(V), T (V, V ′)

)
(V) ∧ ui+1(V) . (8)

The following theorem shows the relation between the belief states and a
BMC encoding conjoined with the sequence of observations:

Assumption-Based RV of Infinite-State Systems 13

Theorem 3 (Equisatisfiability). When k > 1, the following two formulas

I(V0) ∧ u0(V0) ∧
k−1∧
j=0

[
T (Vj , Vj+1) ∧ uj+1(Vj+1)

]
, (9)

and
bs(u0u1 · · ·uk)(V) (10)

are equi-satisfiable.

Now comes the second part of this idea: there is also no need to restart BMC
inner loop from 0 (to the maximal bound k) after asserting a new observation.
This is because, whenever the BMC inner loop stops at a value k in the previous
call, all SMT formulas corresponding in steps i < k are UNSAT, and they are
still UNSAT after asserting anything new.2

In Algorithm 3 we gave the pseudo code of the optimized RV monitor based
on incremental BMC. There are several undefined functions (methods) used here
(to be given later in Algorithm 4 and 5):

– init_nonemptiness for creating a persistent SMT solver instance,
– update_nonemptiness for checking the nonemptiness of the belief states

after a new observation,
– reset_nonemptiness for resetting the SMT solver, cleaning up all existing

observations.

Here the code is given in object-oriented styles, with two instances of SMT solvers
created by init_nonemptiness. Others methods operates on these instances,
possibly with further arguments.

The correctness of Algorithm 3 (relative to the correctness of undefined
methods) can be seen by a comparison with Algorithm 1. Now the computa-
tion of belief states from a sequence of observations is done in a new function
compute_belief_states on the object, which holds a sequence of observations
asserted by each call of update_nonemptiness.

In Algorithm 4 the code of init_nonemptiness and reset_nonemptiness
are given. Note that, although new BMC solver instances are created from just
the initial condition and transition relation for simplification purposes, the actual
code also needs the translation of LTL property

(∧
ψ∈JK∪Jφ

GFψ
)
→ false

as in Algorithm 2. The unrolling of this translated formula at time i, as the
ending terms of BMC encodings, will be simply presented as [[F]]i in the related
code (update_nonemptiness). The BMC solver object has some extra member
variables, whose purposes are given in the comments of reset_nonemptiness.
Whenever SMT solving is needed, it is done on the member variable problem.

The core of incremental BMC algorithm for RV, update_nonemptiness, is
finally given in Algorithm 5.
2 In the ideal case (when BMC stopped by having found a counterexample, and the

overall monitoring verdicts is conclusive), the monitor only needs to call SMT solver
once to decide the next monitoring output.

14 A. Cimatti, C. Tian and S. Tonetta

Algorithm 3: The optimized RV monitor based on incremental BMC
1 function bmc_monitor(K =̇ ⟨VK , ΘK , ρK ,JK⟩, φ, u, max_k, window_size)
2 Tφ =̇ ⟨Vφ, Θφ , ρφ,Jφ⟩ := ltl_translation(φ); // χ(φ) is in Θφ
3 T¬φ =̇ ⟨Vφ, Θ¬φ, ρφ,Jφ⟩ := ltl_translation(¬φ);
4 V := VK ∪ Vφ;
5 e1 := init_nonemptiness(ΘK ∧Θφ , ρK ∧ ρφ);
6 e2 := init_nonemptiness(ΘK ∧Θ¬φ, ρK ∧ ρφ);
7 if |u| > 0 then
8 b1 := update_nonemptiness(e1, u0);
9 b2 := update_nonemptiness(e2, u0);

10 for 1 ⩽ i < |u| do
11 b1 := update_nonemptiness(e1, ui);
12 b2 := update_nonemptiness(e2, ui);

13 if b1 ∧ b2 then return ? ; // inconclusive
14 else if b1 then return ⊤a; // conditionally true
15 else if b2 then return ⊥a; // conditionally false
16 else return ×; // out of model

17 function compute_belief_states(e)
18 r := e.I(V);
19 for i← 0 to e.n do
20 if i = 0 then r := r ∧ e.observations[i](V);
21 else
22 r := quantifier_elimination(V , r ∧ T (V, V ′))

∧ e.observations[i](V);

23 return r;

5 Experimental Evaluation

The RV algorithms presented in this paper have been implemented in NuRV [14]3.
The usefulness of RV assumptions has been explored in previous papers (see, e.g.,
Section 5 of [13]), thus the focus of experimental evaluations here is mainly at
the correctness and performance of ABRV algorithms for infinite-state systems.
All performance results are obtained on a MacBook Pro laptop with an 8-core
Intel Core i9 (2.3GHz).

The correctness of these RV algorithms, beside the related theorems and
proofs, lies also on the fact that, for each input trace (and RV assumptions) be-
ing tested, all five RV algorithms (monitor1, monitor1_optimized, monitor2,
monitor2_optimized, and bmc_monitor) give the same results (except that
monitor1 and monitor1_optimized only give the verdicts for the last state
of the input trace). Below we mainly focus on their (relative) performance.

3 The official site of NuRV is now at https://es-static.fbk.eu/tools/nurv/.

https://es-static.fbk.eu/tools/nurv/

Assumption-Based RV of Infinite-State Systems 15

Algorithm 4: Methods for checking (non)emptiness (part 1)
1 function init_nonemptiness(I, T)
2 e := new BMC solver with initial formula I and transition relation T ;
3 reset_nonemptiness(e, I);
4 return e;

5 procedure reset_nonemptiness(e, I)
6 e.problem := I(V0); // the initial formula unrolled at time 0
7 e.observations := []; // an array holding observations
8 e.n := 0; // the number of observations
9 e.map := {}; // a hash map from time to (unused) observations

10 e.k := 0; // the number of unrolled transition relations
11 e.max_k := max_k; // a local copy of max_k

5.1 Tests on the motivating example (Section 3)

The actual monitoring results on the motivating example in Section 3 are the
same with those expected. The total execution time for the offline monitoring
of the two sample properties on the three-state sample trace u is about: 2.3s
(monitor1_optimized), 13s (monitor2_optimized) and 0.9s (bmc_monitor).
Note that monitor1_optimized is faster than monitor2_optimized mostly be-
cause the input trace is very short and it only needs to output the verdict for
the last input state. On the other hand, the BMC search bound (max_k) in
bmc_monitor was set to 50, while the execution time can be shorten to 0.6s if
max_k were set to 30.

5.2 Tests on Dwyer’s LTL patterns

We use again Dwyer’s LTL patterns [18] (55 in total4) as the main LTL bench-
mark, which comes from a wide coverage of practical specifications and has a
good coverage on different kind of LTL properties. The original patterns involve
six Boolean variables p, q, r, s, t, z, and to adapt them for infinite-state scenarios
we have changed to use one integer variable i and one real variable x for the
replacements of q and r: q ↔ 0 ⩽ i and r ↔ 0.0 ⩽ x. Then we generated random
traces where i ∈ [−500, 500] and x ∈ [−0.500, 0.500] are uniformly chosen, such
that q and r become random in the original patterns. Furthermore, we choose a
model with fairness as the RV assumptions, in which the p-transition (i.e., from
¬p to p) happens at most 4 times. The purpose of this assumption is to force the
monitor to arrive at × verdicts at certain moments, so that the related monitors
could go through different verdicts as much as possible.

Fig. 3 gives the relative performance of all five RV algorithms on Pattern
49 (s, t responds to p after q until r, results are similar for other patterns), a
complex property for showing the performance of RV algorithms in practical. The
monitors are generated under the above chosen assumptions, which is expressed
4 See also https://matthewbdwyer.github.io/psp/patterns/ltl.html.

https://matthewbdwyer.github.io/psp/patterns/ltl.html

16 A. Cimatti, C. Tian and S. Tonetta

Algorithm 5: Methods for checking (non)emptiness (part 2)
1 function update_nonemptiness(e, o)
2 e.map[e.n] = o; // store new observation in the map
3 e.observations[e.n++] = o; // store new observation in the list
4 for (k, v) : e.map do
5 if k ⩽ e.k then
6 e.problem := e.problem ∧ v(Vi);
7 delete e.map[k];

8 result := ?;
9 while e.k ⩽ e.max_k and result =? do

10 i := e.k;
11 if SMT(e.problem)= unsat then
12 result := ⊥; // literally empty believe states
13 break

14 if SMT(e.problem ∧ [[F]]i)= sat then
15 result = ⊤; // counterexample found (nonempty)
16 break

17 e.problem := e.problem ∧ e.T (Vi, Vi+1);
18 if e.map[i+ 1] exists then
19 e.problem := e.problem ∧ e.map[i+ 1](Vi+1);
20 delete e.map[i+ 1];

21 e.k ++;

22 e.max_k ++; // increase the search bound for next calls
23 if e.k > window_size or result =? then
24 r := compute_belief_states(e);
25 reset_nonemptiness(e, r);

26 if result = ⊤ or result = ⊥ then
27 return result;

28 else
29 return ¬IC3_IA(⟨V, r, e.T,JK ∪ Jφ⟩, false);

as an infinite-state model. The length of input traces increases from 1 to 30. Each
plot represents the average time of a monitor spent on certain length of three
random traces. We found that 1) the optimizations on monitor1 and monitor2
indeed work; 2) bmc_monitor is about 10x faster than monitor2_optimized,
which is again about 10x faster than monitor1_optimized. Note that these
relative performance (“10x faster”) between different monitors is based middle-
sized traces: if the trace is too short, usually monitor1 is faster.

Fig. 4 additionally shows the relative performance between bmc_monitor and
monitor2_optimized. For each LTL pattern, the two monitors with the fairness
assumptions take 10 random traces as input, each with 50 states. The x- and y-
axes of each plot (identified by pattern ID) corresponds to the overall time spent

Assumption-Based RV of Infinite-State Systems 17

Fig. 3. Performance of five RV algorithms on Pattern 49

on the two monitors. For most patterns (and also on average), bmc_monitor is
about 10x faster than monitor2_optimized.

6 Related Work

Despite the vast literature on SAT- and SMT-based symbolic model checking [6],
currently there are only few works on applying SAT/SMT solvers to Runtime
Verification. One of the prominent approaches in this direction is the one on
Monitoring Modulo Theories (MMT) [16] for monitoring Temporal Data Logic
(TDL): propositional LTL extended with first-order quantifiers and theories.
MMT is implemented on top of the Z3 SMT solver. The SMT solver in MMT is
mainly to deal with first-order quantifiers of TDL. In [35], SMT solvers are used
to monitor partially synchronous distributed systems. In this work, SMT solvers
evaluate partially observable formulas that contain non-observable variables that
can have any possible value. However, in this work the SMT formula is generated
in highly domain-specific ways and is directly treated as the monitoring property,
without temporal extensions.

The relationship between MC and RV has been explored in previous research.
The value of models (as RV assumptions) in synthesizing better monitors was
first reported in [28]. Adapting existing model checkers for RV purposes is a
natural idea for reducing the costs of tool development from scratch. Similar
with NuRV (which is adapted from nuXmv), the DIVINE model checker was
adapted to perform runtime verification [26]. We consider the predictive feature
of ABRV monitors as a side effect of the assumption-based approach, but there
exist dedicated work on predictive semantics of runtime monitors, e.g. [36].

Belief states have been used in planning under partial observability. See, for
example, the work of in [25], from which we borrow the idea of representing them

18 A. Cimatti, C. Tian and S. Tonetta

Fig. 4. Performance of bmc_monitor and monitor2_optimized on all patterns

with symbolic formulas. To the best of our knowledge, our approach is the first
attempt to combine them with the evaluation of temporal properties for RV.

7 Conclusion

ABRV is a recently proposed framework for RV based on the definition of some
assumption on the SUS behavior, which is exploited by the runtime monitor
to achieve early detection, prediction and partial observability. The framework
has been extended in this paper to assumptions defined as infinite-state system,
where infinite-state belief states are represented as quantifier-free first-order for-
mulas and the emptiness checkings are reduced to SMT-based model checking.
We start from a trivial reduction from RV to MC, and eventually obtained an
highly optimized RV algorithm, based on Incremental BMC. The final version
is hundreds of times faster than the initial one.

As observed in [35], a “major question regarding the use of SMT solvers
in performing runtime monitoring is whether they are fast enough.” We argue
that, for some partially-observable systems, like planets explorers, where the
frequency of observations is low, there is a trade-off between the required speed
of the monitor and the complexity of the assumptions needed to reason on the
non-observable parts. In the future, we plan to investigate such trade-off in
realistic scenarios. We will also consider real-time temporal properties with timed
assumptions and address the problem of generating monitor’s code taking into
account infinite-state assumptions.

Assumption-Based RV of Infinite-State Systems 19

References

1. Arafat, O., Bauer, A., Leucker, M., Schallhart, C.: Runtime verification revis-
ited. Tech. Rep. Technical Report TUM-I0518, Technische Universität München,
München (2005)

2. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo
Theories. In: Handbook of Satisfiability, pp. 825–885. IOS Press (Jan 2009).
https://doi.org/10.3233/978-1-58603-929-5-825

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL Semantics for Run-
time Verification. Journal of Logic and Computation 20(3), 651–674 (Feb 2010).
https://doi.org/10.1093/logcom/exn075

4. Bauer, A., Leucker, M., Schallhart, C.: Runtime Verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology 20(4), 14–64 (Sep
2011). https://doi.org/10.1145/2000799.2000800

5. Biere, A., Cimatti, A., Clarke Jr, E.M., Strichman, O., Zhu, Y.: Bounded Model
Checking. In: Advances in Computers: Highly Dependable Software, pp. 117–148.
Academic Press (2003)

6. Biere, A., Cimatti, A., Clarke Jr, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: LNCS 1579 - Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 1999), pp. 193–207. Springer, Berlin, Heidelberg (Jun 2013).
https://doi.org/10.1007/3-540-49059-0_14

7. Bryant, R.E.: Binary decision diagrams. In: Handbook of Model Checking, pp.
191–217. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8_7

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: LNCS
8559 - Computer Aided Verification (CAV 2014), pp. 334–342. Springer, Cham (Jun
2014). https://doi.org/10.1007/978-3-319-08867-9_22

9. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: SMT-based satis-
fiability of first-order LTL with event freezing functions and metric operators. Inf.
Comput. 272, 104502 (2020). https://doi.org/10.1016/j.ic.2019.104502

10. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 Modulo Theories via Implicit
Predicate Abstraction. In: LNCS 8413 - Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2014), pp. 46–61. Springer, Berlin, Heidelberg
(Feb 2014). https://doi.org/10.1007/978-3-642-54862-8_4

11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: LNCS 7795 - Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2013), pp. 93–107. Springer, Berlin, Heidelberg (Feb 2013).
https://doi.org/10.1007/978-3-642-36742-7_7

12. Cimatti, A., Pistore, M., Roveri, M., Sebastiani, R.: Improving the Encoding of LTL
Model Checking into SAT. In: Cortesi, A. (ed.) LNCS 2294 - Verification, Model
Checking, and Abstract Interpretation (VMCAI 2002), pp. 196–207. Springer
Berlin Heidelberg, Berlin, Heidelberg (Apr 2002). https://doi.org/10.1007/3-540-
47813-2_14

13. Cimatti, A., Tian, C., Tonetta, S.: Assumption-Based Runtime Verification with
Partial Observability and Resets. In: LNCS 11757 - Runtime Verification (RV
2019), pp. 165–184. Springer (2019). https://doi.org/10.1007/978-3-030-32079-
9_10

14. Cimatti, A., Tian, C., Tonetta, S.: NuRV: A nuXmv Extension for Runtime Veri-
fication. In: LNCS 11757 - Runtime Verification (RV 2019), pp. 382–392. Springer
(2019). https://doi.org/10.1007/978-3-030-32079-9_23

https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-10575-8_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1016/j.ic.2019.104502
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/3-540-47813-2_14
https://doi.org/10.1007/3-540-47813-2_14
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_23

20 A. Cimatti, C. Tian and S. Tonetta

15. Colin, S., Mariani, L.: Run-Time Verification. In: LNCS 3472 - Model-Based Test-
ing of Reactive Systems, pp. 525–555. Springer, Berlin, Heidelberg (Jan 2008).
https://doi.org/10.1007/11498490_24

16. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Interna-
tional Journal on Software Tools for Technology Transfer 18(2), 205–225 (2015).
https://doi.org/10.1007/s10009-015-0380-3

17. Du, X., Liu, Y., Tiu, A.: Trace-Length Independent Runtime Monitoring
of Quantitative Policies in LTL. In: Bjørner, N., de Boer, F. (eds.) LNCS
9109 - FM 2015: Formal Methods, pp. 231–247. Springer, Cham (May 2015).
https://doi.org/10.1007/978-3-319-19249-9_15

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications
for Finite-State Verification. In: Proceedings of the 21st International Confer-
ence on Software Engineering. pp. 411–420. ACM Press, New York, USA (1999).
https://doi.org/10.1145/302405.302672

19. Emerson, E.A., Lei, C.L.: Temporal Reasoning Under Generalized Fairness Con-
straints. In: LNCS 210 - Theoretical Aspects of Computer Science (STACS 1986),
pp. 21–36. Springer, Berlin, Heidelberg (1986). https://doi.org/10.1007/3-540-
16078-7_62

20. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime veri-
fication. Engineering Dependable Software Systems 34, 141–175 (2013).
https://doi.org/10.3233/978-1-61499-207-3-141

21. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A Taxonomy for Classify-
ing Runtime Verification Tools. In: Colombo, C., Leucker, M. (eds.) LNCS
11237 - Runtime Verification (RV 2018), pp. 241–262. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7_14

22. Ferrante, J., Rackoff, C.: A Decision Procedure for the First Order Theory of
Real Addition with Order. SIAM Journal on Computing 4(1), 69–76 (Mar 1975).
https://doi.org/10.1137/0204006

23. Havelund, K., Peled, D.A.: Runtime Verification: From Propositional to First-
Order Temporal Logic. In: LNCS 11237 - Runtime Verification (RV 2018), pp.
90–112. Springer, Cham (Oct 2018). https://doi.org/10.1007/978-3-030-03769-7_7

24. Henzinger, T.A., Saraç, N.E.: Monitorability Under Assumptions. In: Deshmukh,
J., Nickovic, D. (eds.) LNCS 12399 - Runtime Verification (RV 2020), pp. 3–18.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-60508-7_1

25. Hoffmann, J., Brafman, R.I.: Contingent planning via heuristic forward search witn
implicit belief states. In: Biundo, S., Myers, K.L., Rajan, K. (eds.) Proceedings
of the Fifteenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2005), June 5-10 2005, Monterey, California, USA. pp. 71–80. AAAI
(2005), http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php

26. Kejstová, K., Rockai, P., Barnat, J.: From Model Checking to Runtime Verification
and Back. In: LNCS 10548 - Runtime Verification (RV 2017), pp. 225–240. Springer,
Cham (Aug 2017). https://doi.org/10.1007/978-3-319-67531-2_14

27. Khachiyan, L.: Fourier–Motzkin Elimination Method. In: Encyclope-
dia of Optimization, pp. 1074–1077. Springer US, Boston, MA (2009).
https://doi.org/10.1007/978-0-387-74759-0_187

28. Leucker, M.: Sliding between Model Checking and Runtime Verification. In: LNCS
7687 - Runtime Verification (RV 2012), pp. 82–87. Springer, Berlin, Heidelberg
(Jan 2013). https://doi.org/10.1007/978-3-642-35632-2_10

https://doi.org/10.1007/11498490_24
https://doi.org/10.1007/s10009-015-0380-3
https://doi.org/10.1007/978-3-319-19249-9_15
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/3-540-16078-7_62
https://doi.org/10.1007/3-540-16078-7_62
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1137/0204006
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-60508-7_1
http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php
https://doi.org/10.1007/978-3-319-67531-2_14
https://doi.org/10.1007/978-0-387-74759-0_187
https://doi.org/10.1007/978-3-642-35632-2_10

Assumption-Based RV of Infinite-State Systems 21

29. Leucker, M., Schallhart, C.: A brief account of runtime verification.
The Journal of Logic and Algebraic Programming 78(5), 293–303 (2009).
https://doi.org/10.1016/j.jlap.2008.08.004

30. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The computer
journal 36(5), 450–462 (1993), https://dblp.org/rec/journals/cj/LoosW93

31. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag New York (1992). https://doi.org/10.1007/978-1-
4612-0931-7

32. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer-
Verlag New York (1995). https://doi.org/10.1007/978-1-4612-4222-2

33. Marcja, A., Toffalori, C.: Quantifier Elimination. In: A Guide to Classical
and Modern Model Theory, pp. 43–83. Springer Netherlands, Dordrecht (2003).
https://doi.org/10.1007/978-94-007-0812-9_2

34. Reger, G., Rydeheard, D.E.: From First-order Temporal Logic to Parametric Trace
Slicing. In: LNCS 9333 - Runtime Verification (RV 2015). Springer (Sep 2015).
https://doi.org/10.1007/978-3-319-23820-3

35. Tekken Valapil, V., Yingchareonthawornchai, S., Kulkarni, S., Torng, E., Demirbas,
M.: Monitoring Partially Synchronous Distributed Systems Using SMT Solvers. In:
Lahiri, S., Reger, G. (eds.) LNCS 10548 - Runtime Verification (RV 2017), pp. 277–
293. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_17

36. Zhang, X., Leucker, M., Dong, W.: Runtime Verification with Predictive Semantics.
In: LNCS 7226 - NASA Formal Methods (NFM 2012), pp. 418–432. Springer,
Berlin, Heidelberg (Mar 2012). https://doi.org/10.1007/978-3-642-28891-3_37

https://doi.org/10.1016/j.jlap.2008.08.004
https://dblp.org/rec/journals/cj/LoosW93
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-4222-2
https://doi.org/10.1007/978-94-007-0812-9_2
https://doi.org/10.1007/978-3-319-23820-3
https://doi.org/10.1007/978-3-319-67531-2_17
https://doi.org/10.1007/978-3-642-28891-3_37

	Assumption-Based Runtime Verification of Infinite-State Systems

	

