
Assumption-Based Runtime Verification
with Partial Observability and Resets

(RV 2019 regular paper)

Alessandro Cimatti 1 Chun Tian 12 Stefano Tonetta 1

{cimatti,ctian,tonettas}@fbk.eu

1Fondazione Bruno Kessler, Italy

2University of Trento, Italy

October 2019

1 / 28

The idea

Outline

1 The idea

2 The definition

3 The algorithm

4 The tests

2 / 28

The idea

Runtime Verification (RV)

A lightweight verification technique providing checking if a system under scrutiny (SUS)
satisfies/violates a monitoring property.
Focus on a single finite trace instead of all traces from SUS.
Has an incremental fashion, outputting verdicts on each input state.
Applicable to black box systems where a model is not available.
Assumes full observability usually.

Monitor
Synthesis

Property 𝜑(𝑂)

SUS Monitor { ?, T, F }
Run 𝑢(𝑂)

3 / 28

The idea

Assumption-Based Runtime Verification

However, one almost always knows something about the SUS, e.g.

Models produced during the system design;
Interaction with system operators (i.e. people) — domain knowledge.
Mathematics/physical principles, e.g. ϕ = (i 6 5) U (i > 10).

These knowledge may be leveraged to get better monitors.

Monitor
Synthesis

Property 𝜑(𝑂, 𝑉)

Background
Model 𝐾(𝑉, 𝑂)

SUS Monitor

Recovery

Run 𝑢(𝑂)
{ ?, T, F, X }

Reset

4 / 28

The idea

Resettable Monitors

Traditionally the monitor only evaluates Ju |= ϕK (= Ju, 0 |= ϕK);

The resettable monitor takes as input some reset signals that change the reference time
of evaluating monitor properties, e.g.
from Ju, i |= ϕK to Ju, j |= ϕK (j > i);

The execution history of SUS is preserved during resets, possible impacts to monitoring
outputs:

1 Under assumptions, the belief states after resets may be different with initial belief states;
2 With past operators, historical inputs may change the initial evaluation of a monitoring

property.

The Motivation

1 Monotonic monitors: still meaningful after reaching conclusive verdicts (then being reset).

2 Monitoring Past-Time LTL (to be explained).

5 / 28

The definition

Outline

1 The idea

2 The definition

3 The algorithm

4 The tests

6 / 28

The definition

(Propositional) Linear Temporal Logic

Syntax (p ∈ AP)
ϕ ::= true

∣∣ p ∣∣ ¬ϕ ∣∣ ϕ ∨ ϕ ∣∣ Xϕ
∣∣ ϕUϕ

∣∣ Yϕ
∣∣ ϕSϕ

X stands for next, U for until, Y for previous, S for since.

logical constants and operators like false, ∧, → and ↔ are used as syntactic sugars with
the standard meaning.

Abbreviations:

Fϕ =̇ trueUϕ(eventually),

Gϕ =̇¬F¬ϕ(globally),

Oϕ =̇ true S ϕ(once),

Hϕ =̇¬O¬ϕ(historically).

7 / 28

The definition

Recall: LTL3 semantics

Three-valued semantics of LTL formula ϕ over a finite word u ∈ Σ∗:

Ju, i |= ϕK3 =

>, if ∀w ∈ Σω. u · w , i |= ϕ,

⊥, if ∀w ∈ Σω. u · w , i 6|= ϕ,

?, otherwise .

with Ju |= ϕK3 denoting Ju, 0 |= ϕK3.

Ju |= ϕK3 = >/⊥ if all extensions of u satisfy/violate ϕ;

Monitor construction:1

Mϕ(u) = Ju |= ϕK3 .

1A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. (2011)
8 / 28

The definition

ABRV-LTL semantics

Let K =̇ 〈VK ,ΘK , ρK ,JK 〉 be an fks, ϕ be an LTL formula built from AP. Let ψ(O) ∈ Ψ(O)∗ be a
finite sequence of Boolean formulae over O ⊆ VK ∪ AP. We also define

LK (ψ(O)) =̇
{
w ∈ L(K)

∣∣ ∀i . i < |ψ(O)| ⇒ wi (VK ∪ AP) |= ψi (O)
}

to be the set of runs in K which are compatible with ψ(O).

Definition

The ABRV-LTL semantics of ϕ over ψ(O) under K is defined as

Jψ(O), i |= ϕKK4 =̇

×, if LK (ψ(O)) = ∅
>a, if LK (ψ(O)) 6= ∅ ∧ ∀w ∈ LK (ψ(O)). w , i |= ϕ

⊥a, if LK (ψ(O)) 6= ∅ ∧ ∀w ∈ LK (ψ(O)). w , i |= ¬ϕ
?, otherwise .

9 / 28

The definition

ABRV-LTL verdicts (and the lattice)

B4 =̇ {>a,⊥a, ?,×}:
conclusive true (>a) (or true under assumption)
conclusive false (⊥a) (or false under assumption)
inconclusive (?)
out-of-model (×)

The lattice

>

?

OO

��

⊥

LTL3

×

>a

66

⊥a

hh

?

hh 66

ABRV-LTL

10 / 28

The definition

The ABRV Framework

The input is enriched with resets: u ∈ (Ψ(O)× B)∗.

Each input state is a pair of an observation and a Boolean representing the reset;

Given a property φ and an assumption K , the problem of Assumption-based Runtime
Verification (ABRV) is to construct a function MK

ϕ : (Ψ(O)× B)∗ → B4 such that

MK
ϕ (u) = Jobs(u),mrr(u) |= ϕKK4

where

obs(·) (observations) is the projection of u from Ψ(O)× B to Ψ(O),
res(·) (resets) is the projection of u (or ui) from Ψ(O)× B to B,
mrr(u) (the most recent reset) is the maximal i such that res(ui) = >.

11 / 28

The definition

Special Case: Runtime Verification of Past-Time LTL

Past-Time LTL (PtLTL)2: LTL with only past operators (Y, S).
Let u = s1 s2 · sn and ui = s1 s2 · si :

u |=p p ⇔ p ∈ sn−1

u |=p Yϕ⇔ un−1 |=p ϕ (if n > 1) or u |=p ϕ (if n = 1)

u |=p ϕSψ ⇔ uj |=p ψ (1 6 j 6 n) and ui |=p ϕ (j < i 6 n)

Convert PtLTL to ABRV-LTL (K is empty)

Ju |=p ϕK = > ↔ Ju, |u| − 1 |= ϕKK4 = >a,

Ju |=p ϕK = ⊥ ↔ Ju, |u| − 1 |= ϕKK4 = ⊥a .

mrr(u) = |u| or ∀i .res(ui) = >.

2K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties.

In J.-P. Katoen and P. Stevens, editors, LNCS 2280 - Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2002), pages 342–356. Springer, Berlin, Heidelberg, June 2013 12 / 28

The algorithm

Outline

1 The idea

2 The definition

3 The algorithm

4 The tests

13 / 28

The algorithm

Translating LTL to ω-automata (1)

Elementary Variables

el(true) = ∅, el(Xφ) = {xφ} ∪ el(φ),

el(p) = {p}, el(φUψ) = {xφUψ} ∪ el(φ) ∪ el(ψ),

el(¬φ) = el(φ), el(Yφ) = {yφ} ∪ el(φ),

el(φ ∨ ψ) = el(φ) ∪ el(ψ), el(φSψ) = {yφSψ} ∪ el(φ) ∪ el(ψ) .

Expansion Laws (for the xNF conversion)

ψUφ⇔ φ ∨ (ψ ∧ X(ψUφ)), ψ Sφ⇔ φ ∨ (ψ ∧ Y(ψ Sφ)) .

Example (Translating LTL to Propositional Logic χ(·))

χ(p Uq) = q ∨ (p ∧ xpUq) .

14 / 28

The algorithm

Translating LTL to ω-automata (2)

nuXmv’s tableau construction: Tϕ =̇ 〈Vϕ,Θϕ, ρϕ,Jϕ〉, where

Set of Boolean variables: Vϕ =̇ el(ϕ),
Initial condition:

Θϕ =̇χ(ϕ) ∧
∧

yψ∈ el(ϕ)

¬yψ,

Transition relation:

ρϕ =̇
∧

xψ∈ el(ϕ)

(
xψ ↔ χ′(ψ)

)
∧
∧

yψ∈ el(ϕ)

(
χ(ψ)↔ y′ψ

)
,

Justice set (a fairness condition):

Jϕ =̇
{
χ(ψUφ)→χ(φ) | xψUφ ∈ el(ϕ)

}
.

Fair states:
FK
ϕ =̇ {s | Tϕ, s |= E

∧
ψ∈Jϕ

GFψ} .

15 / 28

The algorithm

The Symbolic Monitoring Algorithm

1 function symbolic monitor(K =̇ 〈VK ,ΘK , ρK ,JK 〉, ϕ(AP), u ∈ (Ψ(O)× B)∗)
2 Tϕ =̇ 〈Vϕ,Θϕ, ρϕ,Jϕ〉 ←− ltl translation(ϕ);

3 T¬ϕ =̇ 〈Vϕ,Θ¬ϕ, ρϕ,Jϕ〉 ←− ltl translation(¬ϕ);

4 FK
ϕ ←− fair states(K ⊗ Tϕ);

5 FK
¬ϕ ←− fair states(K ⊗ T¬ϕ);

6 rϕ ←− ΘK ∧ Θϕ ∧ FK
ϕ ; /* no observation */

7 r¬ϕ ←− ΘK ∧ Θ¬ϕ ∧ FK
¬ϕ;

8 if |u| > 0 then /* first observation */

9 rϕ ←− rϕ ∧ obs(u0);

10 r¬ϕ ←− r¬ϕ ∧ obs(u0);

11 for 1 6 i < |u| do /* more observations */

12 if res(ui) = ⊥ then /* no reset */

13 rϕ ←− fwd(rϕ, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ obs(ui) ∧ FK
ϕ ;

14 r¬ϕ ←− fwd(r¬ϕ, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ obs(ui) ∧ FK
¬ϕ;

15 else /* with reset */

16 r ←− rϕ ∨ r¬ϕ;

17 rϕ ←− fwd(r, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ χ(ϕ) ∧ obs(ui) ∧ FK
ϕ ;

18 r¬ϕ ←− fwd(r, ρK ∧ ρϕ)(VK ∪ Vϕ) ∧ χ(¬ϕ) ∧ obs(ui) ∧ FK
¬ϕ;

19 if rϕ = r¬ϕ = ⊥ then return ×;
20 else if rϕ = ⊥ then return ⊥a;
21 else if r¬ϕ = ⊥ then return >a;
22 else return ?;

16 / 28

The algorithm

The Symbolic Algorithm: A Sample Run

Monitoring p U q assuming p 6= q

ϕ =̇ p U q ≡ q ∨ (p ∧ X(p U q))),

O = {p, q}, Vϕ = {p, q, x =̇xpUq},
Θϕ = q ∨ (p ∧ x), Θ¬ϕ = ¬(q ∨ (p ∧ x)),

ρϕ = x ↔ (q′ ∨ (p′ ∧ x ′)), Jϕ = J¬ϕ = >,
K = 〈O, p 6= q, p′ 6= q′, ∅〉, u = {p}{p} · · · {q}{q} · · · .

Executation
1 Initially (L6–7): rϕ ← Θϕ, r¬ϕ ← Θ¬ϕ;

2 Taking u0 = {p} (L9–10): rϕ = Θϕ ∧ (p ∧ ¬q) ≡ p ∧ ¬q ∧ x , r¬ϕ = Θ¬ϕ ∧ (p ∧ ¬q) ≡ p ∧ ¬q ∧ ¬x . (output is ?)

3 On next {p}, rϕ and r¬ϕ remain unchanged (L13–14), as ρϕ ∧ (p′ ∧ ¬q′) ≡ x ↔ x ′.

4 On next {q}, ρϕ ∧ (¬p′ ∧ q′) ≡ x ↔ >, and fwd(r¬ϕ, ρϕ)(Vϕ) ∧ (¬p′ ∧ q′) (L14) is unsatisfiable, i.e. r¬ϕ = ⊥.
(rϕ is still not empty, output is >a.)

5 Taking more {q} does not change the output, unless the assumption p 6= q is broken: rϕ = r¬ϕ = ⊥, output is ×.

17 / 28

The algorithm

Correctness Proof (Sketch)

The function symbolic monitor implements the monitor function MK
ϕ (·).

Proof.
1 Some abbreviations:

u . w ⇔ ∀i . i < |u| ⇒ wi (Vk ∪ AP) |= obs(ui)(O), (1)

LKϕ(u) =̇
{
w ∈ L(K) | (w ,mrr(u) |= ϕ) ∧ u . w

}
, (2)

LKϕ(u) =̇
{
v | ∃w . v · w ∈ LKϕ(u) ∧ |v | = |u|

}
. (3)

2 Reduced goal: LKϕ(u) = ∅ ⇒ rϕ(u) = ∅ and LK¬ϕ(u) = ∅ ⇒ r¬ϕ(u) = ∅.
3 Loop invariants (by induction on the length of u):

rϕ(u) =
{
s | ∃w ∈ L(K ⊗ Tϕ). (w ,mrr(u) |= ϕ) ∧ u . w ∧ w|u| = s

}
,

r¬ϕ(u) =
{
s | ∃w ∈ L(K ⊗ T¬ϕ). (w ,mrr(u) |= ¬ϕ) ∧ u . w ∧ w|u| = s

}
.

(4)

4 Correctness of reset (Line 13):

rϕ(u) ∨ r¬ϕ(u) =
{
s | ∃w ∈ L(K ⊗ Tϕ0). u . w ∧ w|u| = s

}
where Tϕ0 = 〈Vϕ,

∧
yp∈ el(ϕ)

¬yp , ρϕ,Jϕ〉 . (5)

18 / 28

The algorithm

Modifying/Extending the Algorithm

From Offline to Online Monitors

1 Preparing initial belief states rϕ and r¬ϕ;

2 LOOP start: taking just one input state s;

3 Update belief states, getting new rϕ and r¬ϕ;

4 Output a verdict in B4.

From Symbolic to Explicit-State Monitors

1 Utilizing the canonicity of BDDs: each Boolean function (up to =) has an unique address
in the memory;

2 Constructing monitor automata for all possible inputs;

3 Each location of the automaton represent a pair of BDDs: (rϕ, r¬ϕ);

4 Always terminates due to the finiteness of BDDs.

19 / 28

The tests

Outline

1 The idea

2 The definition

3 The algorithm

4 The tests

20 / 28

The tests

Experimental evaluation - The tool

The monitoring algorithm has been implemented in NuRV - an nuXmv extension for Runtime
Verification3.

NuRV’s features

“Traditional” RV plus ABRV

Offline vs. Online

BDD-based v.s Code Generation

Reactive vs. Deductive

Code generation in various programming language;

Code generation in SMV, allowing formal verifications of the correctness or other
properties of the monitor.

3A. Cimatti, C. Tian, and S. Tonetta. NuRV: a nuXmv Extension for Runtime Verification.

In B. Finkbeiner and L. Mariani, editors, LNCS 11757 - Runtime Verification (RV 2019). Springer International

Publishing, Porto, Portugal, Oct. 2019
21 / 28

The tests

Model checking SMV monitors

Used nuXmv to encode the following properties:

The rough correctness (w/o resets):
(F M. true)→ ϕ or (F M. false)→ ¬ϕ;

The monotonicity of monitors:
G M. unknown ∨ (M. unknown U M. concl);

Comparison of two monitors (M1: with BI, M2: w/o BI):
¬F BIv, where BIv := (M1. concl ∧ ¬ M2. concl).

The correctness of resets:
Xn (M. reset ∧ X (¬ M. reset U M. true))→ Xnϕ.

Observation

The full correctness of LTL monitors cannot be model checked by LTL itself. (Epistemic
operator needed)

22 / 28

The tests

Tests on LTL patterns

We tested on Dwyer’s 55 LTL patterns4:

Collected from over 500 specifications from at least 35 different sources.

11 groups: Absence, Existence, Bounded Existence, Universality, Precedence, Response
(2-causes-1, 1-cause-2), Precedence Chain (2-stimulus-1, 1-stimulus-2), Response Chain,
Constrained Chain;

5 scopes: Globally, Before, After, Between, After-Until.

All these patterns can be successfully synthesized into working monitors (with or w/o BI); 500
random traces (each with 50 states) were used to compare the monitoring results.

4https://matthewbdwyer.github.io/psp/patterns/ltl.html
23 / 28

https://matthewbdwyer.github.io/psp/patterns/ltl.html

The tests

Tests - The Value of Assumption

Assumption: transitions to s-state occur at most 2 times: ((¬s) W (s W ((¬s) W (s W (G¬s)))))
(ϕWψ =̇ (Gϕ) ∨ (ϕUψ))

Pattern 29: s responds to p after q until r : G (q ∧ ¬r → ((p → (¬r U (s ∧ ¬r))) W r)).

Pattern 49: s,t responds to p after q until r :
G (q → (p → (¬r U (s ∧ ¬r ∧ X (¬r U t)))) U (r ∨ G (p → (s ∧ X F t))))

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

××

×

×

×

×

×

××

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

× ×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

0 10 20 30 40

0

10

20

30

40

Number of obs before verdict w/o BI

Pattern 29 (372 of 500 traces)

N
u
m
b
er

o
f
ob

s
b
ef
or
e
ve
rd
ic
t
w
it
h
B
I

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

× ×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

0 10 20 30 40

0

10

20

30

40

Number of obs before verdict w/o BI

Pattern 49 (288 of 500 traces)

N
u
m
b
er

o
f
ob

s
b
ef
or
e
ve
rd
ic
t
w
it
h
B
I

24 / 28

The tests

Tests on a Factory Model (1)

0 1 2

Model variables:

bottle present[0-2]: there exists a bottle at position 0–2;

bottle ingr1[0-2]: red ingredient in the bottle at position 0–2;

bottle ingr2[0-2]: green ingredient in the bottle at position 0–2;

move belt: the belt is moving;

new bottle: new bottle at position 0 before the belt starts to move.

25 / 28

The tests

Tests on a Factory Model (2)

0 1 2

Whenever the belt is not moving and there is a bottle at position 2, both ingredients are
filled in that bottle:

ϕ = G ((bottle present[2] ∧ ¬ move belt)→
(bottle ingr1[2] ∧ bottle ingr2[2]))

Two monitors: M1 (with BI), M2 (w/o BI).

Model checking spec: ¬F BIv, where BIv := (M1. concl ∧ ¬ M2. concl).

Conclusion: the monitor M1 is predictive, it outputs ⊥a soon after the fault at position 0.
26 / 28

The tests

Conclusions

We propose ABRV – an extended RV framework where assumptions,
partial observability and resets are supported;
A new four-valued LTL semantics called ABRV-LTL extended from LTL3;
A symbolic PLTL monitoring algorithm for ABRV;
Under certain assumptions: 1) the resulting monitors are predictive;
2) some non-monitorable properties become monitorable.

Future directions

ABRV with more expressive (temporal) logics: LTL + metric/epistemic operator(s);
FOL (with quantifiers over time); MSOL (WS1S, WS2S);

MC/SAT-based monitoring algorithms (when BDD is not applicable).

Question (independent of PLTL)

How to support Assumption/Partial-Observability/Resets in your RV tool/approach?

27 / 28

The tests

Backup: Fair Kripke Structure (FKS)

Let B = {>,⊥} denote the type of Boolean values, a set of Boolean formulae Ψ(V) over a set
of propositional variables V = {v1, . . . , vn}, is the set of all well-formed formulae (wff) built
from variables in V , propositional logical operators like ¬ and ∧, and parenthesis.

Definition

Let V be a set of Boolean variables, and V ′ =̇ {v ′ | v ∈ V } be the set of next state variables
(thus V ∩ V ′ = ∅). An fks K = 〈V ,Θ, ρ,J 〉 is given by

V , the set of Booleam variables,

a set of initial states Θ(V) ∈ Ψ(V);

a transition relation ρ(V ,V ′) ∈ Ψ(V ∪ V ′),

a set of Boolean formulae J = {J1(V), . . . , Jk(V)} ⊆ Ψ(V) called justice requirements.

The forward image of a set of states ψ(V) on ρ(V ,V ′) is a Boolean formula
fwd(ψ, ρ)(V) =̇

(
∃V . ρ(V ,V ′) ∧ ψ(V)

)
[V /V ′], where [V /V ′] substitutes all (free) variables

from V ′ to V .
28 / 28

	The idea
	The definition
	The algorithm
	The tests

