Assumption-Based Runtime Verification
with Partial Observability and Resets
(RV 2019 regular paper)

Alessandro Cimatti ! Chun Tian 12 Stefano Tonetta !

{cimatti,ctian,tonettas}@fbk.eu

1Fondazione Bruno Kessler, Italy

2University of Trento, Italy

October 2019

1/28

Outline

© The idea

2/28

Runtime Verification (RV)

o A lightweight verification technique providing checking if a system under scrutiny (SUS)
satisfies/violates a monitoring property.

Focus on a single finite trace instead of all traces from SUS.

Has an incremental fashion, outputting verdicts on each input state.
Applicable to black box systems where a model is not available.
Assumes full observability usually.

Property ¢ (0)

SUS

Monitor
Synthesis

Run u(0)
—> —>

Monitor

—>{? T F}

3/28

The idea

Assumption-Based Runtime Verification

However, one almost always knows something about the SUS, e.g.
@ Models produced during the system design;
@ Interaction with system operators (i.e. people) — domain knowledge.
e Mathematics/physical principles, e.g. ¢ = (i <5)U (i > 10).

These knowledge may be leveraged to get better monitors.

Monitor
Synthesis

Property ¢(0,V)

Background
Model K(V,0)

0 .
SUS R SO Monitor F—>{2TFX}

Reset T

4/28

Resettable Monitors

e Traditionally the monitor only evaluates [u = ¢] (= [u,0 E ¢]);

@ The resettable monitor takes as input some reset signals that change the reference time
of evaluating monitor properties, e.g.
from [u,i =] to [u,j = @] (G >i);

@ The execution history of SUS is preserved during resets, possible impacts to monitoring
outputs:

@ Under assumptions, the belief states after resets may be different with initial belief states;
@ With past operators, historical inputs may change the initial evaluation of a monitoring
property.
The Motivation
@ Monotonic monitors: still meaningful after reaching conclusive verdicts (then being reset).
@ Monitoring Past-Time LTL (to be explained).

5/28

Outline

© The definition

6/28

The definition

(Propositional) Linear Temporal Logic

Syntax (p € AP)

cp:::true‘p}ﬂw‘wVW‘XW‘QOUSMYSO{SOS(P J

@ X stands for next, U for until, Y for previous, S for since.

logical constants and operators like false, A, — and <> are used as syntactic sugars with
the standard meaning.
Abbreviations:

F ¢ =true U p(eventually),

G p =—F —p(globally),

O ¢ =true S p(once),

H ¢ = -0 —¢(historically).

7/28

The definition

Recall: LTL3 semantics

@ Three-valued semantics of LTL formula ¢ over a finite word u € X*:

T, fVweX u-w,ifE o,
lu,it=pls=< L, if Vw e X% u-w,ilE o,
7, otherwise .

with [u = ¢]3 denoting [u,0 = ¢]s.
o [ul=]z = T/L if all extensions of u satisfy/violate ¢;

@ Monitor construction:!

Mo(v) = [u=els -

'A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. (2011)
8/28

ABRV-LTL semantics

Let K =(Vk, Ok, pk, Jk) be an FKS, ¢ be an LTL formula built from AP. Let ¢(O) € ¥(O)* be a
finite sequence of Boolean formulae over O C Vi U AP. We also define

LXP(0)) = {w e L(K) | Vi. i < [(0)] = wi(Vk UAP) = ¢;(0)}
to be the set of runs in K which are compatible with ¢(O).
Definition

The ABRV-LTL semantics of ¢ over ¢)(O) under K is defined as

x, if LX((0)) =0
T2, if LX((0)) #0Avw € LK(W(0)). w,i o
L2, if LK((0)) # 0 AVYw € LK(1(0)). w,i = —p

7, otherwise .

[4(0),i E ol =

9/28

ABRV-LTL verdicts (and the lattice)

By={T2 12 7, x}:

e conclusive true (T?) (or true under assumption)
conclusive false (L?) (or false under assumption)
inconclusive (7)
out-of-model (x)

The lattice

—~——

Ta/x\ﬁ
~

LTL3 ABRV-LTL

y
10/28

The ABRV Framework

@ The input is enriched with resets: u € (V(0O) x B)*.
@ Each input state is a pair of an observation and a Boolean representing the reset;

@ Given a property ¢ and an assumption K, the problem of Assumption-based Runtime
Verification (ABRV) is to construct a function ./\/lg: (V(0) x B)* — By such that

M (u) = [oBs(u), MRR(u) F @]

where

o OBS(-) (observations) is the projection of u from W(0O) x B to W(O),
o RES(-) (resets) is the projection of u (or u;) from W(O) x B to B,
e MRR(u) (the most recent reset) is the maximal i such that RES(u;) = T.

11/28

Special Case: Runtime Verification of Past-Time LTL

Past-Time LTL (PtLTL)?: LTL with only past operators (Y, S).
Let u =515 s, and u; = sy 5 -s;:

UubEpp © pEsp
uEp Yoo up1lEpp (ifn>1)oruk=, e (ifn=1)
ubpeSv e uiEp Y (I1<j<n)and ui =p ¢ (j <i<n)
Convert PtLTL to ABRV-LTL (K is empty)
[uEpel =T © [ulu-1F¢)f=T"
[ubpel =1 < [ulu-1F¢]f=1".

MRR(u) = |u| or Vi.RES(u;) = T.

2K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties.
In J.-P. Katoen and P. Stevens, editors, LNCS 2280 - Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2002), pages 342-356. Springer, Berlin, Heidelberg, June 2013 12/28

Outline

© The algorithm

13/28

Translating LTL to w-automata (1)

Elementary Variables

el(true) = 0, el(Xg) = {x4} Uel(e),
el(p) = {p}, el(@U1) = {Xpuu} Uel(9) Uel(®).
el(6) = el(9), el(Y8) = {¥,} Uel(9)
6V) = el(9) Uel(s), el(9S1) = {vosy} Uel() Uel(y) .

Expansion Laws (for the xNF conversion)

PUd oV (L AX(PUP)), $So= oV (PAY(YSH)) .

Example (Translating LTL to Propositional Logic x(+))

x(pUq) =qV (pAXpuq) -

14 /28

Translating LTL to w-automata (2)

NUXMV's tableau construction: T, =(V,,, O, py, J,), where
@ Set of Boolean variables: V, =el(yp),
@ Initial condition:

etp = X(QD) A /\ _'Ytba
Yy €el(e)
@ Transition relation:

pe= N\ (xu & X)) A A (@) & v)),
Xy€el(yp) Yy €el(p)

@ Justice set (a fairness condition):

To={x(¥ U @)= x(®) | Xpug € el(p)} -
o Fair states:
FE={s| T,,s =E \GFy} .
LISV
15/28

The algorithm

1
2

3

a

The Symbolic Monitoring Algorithm

function symbolicmonitor (K = (Vk, Ok, px, Tk), (AP), u € (W(0) x B)™)
Ty =(Vy,094,pp, Tp) <— 1tl translation(yp);

T-p =(Vp, 04, pp, Jp) +— 1tl_translation(—yp);
]:u’; «— fair_states(K ® Ty,);
‘7:5%7 +— fair_states(K ® Tﬁ(‘,);
ro +— Ok A0, A FK;
g — O ANOp AFK_;
if |u| > 0 then
ry +— ro A OBS(up);
r—p +— r—o A 0Bs(up);
for 1 < i< |u| do
if RES(u;) = L then
§ K.
ro «— fwd(rg, pc A pp)(Vik U Vo) A 0BS(uj) A F s
rp — twWd(rag, pk A po)(Vk U Vi) A oms(u) A FX;
else
r— ro V rg;
rp +— twd(r, px A pe)(Vik U Vip) A x(sp) A oBs(u;) A F;
rag — fwd(r, pi A pp) (Vi U Vip) A X(=p) A oms(u) A FK

if ro = r-o = L then return X;
else if r, = L then return 12
else if r—, = L then return T2,
else return 7;

/* no observation

/* first observation

/* more observations
/* no reset

/* with reset

*/
*/

16/28

The Symbolic Algorithm: A Sample Run

Monitoring p U g assuming p # q
p=pUqg=qV(pAX(pUq))),
O ={p,q}, Ve = {p, 4, x=Xpug},
O, =qV(pAx), Oy =(qV (pAx)),
pe=x (g V(P AX)), Jo=T-=T,
K=(0,p#q,p #4,0), u={pH{p} --{aHa} -

Executation
@ Initially (L6-7): ry, < Oy, r—yp < O
@ Taking up = {p} (L9-10): r, = O, A(PA—q) = pA=GAX, r~p =0O-, A(pA=q) =pA—qgA-x. (output is ?)
© On next {p}, r, and r—, remain unchanged (L13-14), as p, A (p' A —q') = x +> x'.

On next {q}, po A (=p' Aq') = x < T, and fwd(r-y, po)(Vy,) A (=p’ A q') (L14) is unsatisfiable, i.e. rn, = L.
® w1 Po)V »
(ryp is still not empty, output is T?.)

@ Taking more {q} does not change the output, unless the assumption p # q is broken: r, = r-, = L, output is x.

V.

17/28

The algorithm

Correctness Proof (Sketch)

The function symbolic_monitor implements the monitor function Mg()

Proof.

@ Some abbreviations:

uSw & Viii<lul= wj(VkxUAP) = 0Bs(u;)(0),
i) = {weL(K)| (w,Mrr(u) E @) AuSw},
Z() = {v|3w.v-we£g(u)/\|v\:\u|} .

@ Reduced goal: LK(u) =0=>ry(u) =0 and LK (u)=0= r-,(u)=0.
© Loop invariants (by induction on the length of u):

ro(u) = {s | 3w € LIK® T?). (w,MRR(U) E @) AuSwAwy, = s},

rep(u) = {s | 3w € LIK® T7%). (w, MRR(u) = =) A u S w A w, = s} .

@ Correctness of reset (Line 13):

ro(u) V r—p(u) = {s [Iw e LK@ T). usSw A wy = s} where T = (V¢,/\ﬁYp,p¢,j¢) .

Yp€ el(p)

1)
)
®3)

(4)

©)

18/ 28

Modifying/Extending the Algorithm

From Offline to Online Monitors
© Preparing initial belief states r, and r—;
@ LOOP start: taking just one input state s;
© Update belief states, getting new r, and r—;
@ Output a verdict in By.

From Symbolic to Explicit-State Monitors

@ Utilizing the canonicity of BDDs: each Boolean function (up to =) has an unique address
in the memory;

@ Constructing monitor automata for all possible inputs;
© Each location of the automaton represent a pair of BDDs: (r,, r-);

© Always terminates due to the finiteness of BDDs.

19/28

Outline

@ The tests

20/28

The tests

Experimental evaluation - The tool

The monitoring algorithm has been implemented in NuRV - an NUXMV extension for Runtime
Verification3.

NuRV's features

“Traditional” RV plus ABRV

Offline vs. Online

BDD-based v.s Code Generation

Reactive vs. Deductive

Code generation in various programming language;

Code generation in SMV, allowing formal verifications of the correctness or other
properties of the monitor.

A Cimatti, C. Tian, and S. Tonetta. NuRV: a nuXmv Extension for Runtime Verification.
In B. Finkbeiner and L. Mariani, editors, LNCS 11757 - Runtime Verification (RV 2019). Springer International
Publishing, Porto, Portugal, Oct. 2019
21/28

Model checking SMV monitors

Used NUXMV to encode the following properties:

@ The rough correctness (w/o resets):
(FM._true) — ¢ or (F M. _false) — —;

@ The monotonicity of monitors:
G M._unknown V (M._unknown U M. _concl);

e Comparison of two monitors (M1: with Bl, M2: w/o BI):
—F BIv, where BIv := (M1._concl A =M2._concl).

@ The correctness of resets:
X" (M. _reset A X (=M. _reset UM. _true)) — X"p.

Observation

The full correctness of LTL monitors cannot be model checked by LTL itself. (Epistemic
operator needed)

22/28

Tests on LTL patterns

We tested on Dwyer's 55 LTL patterns*:
@ Collected from over 500 specifications from at least 35 different sources.

@ 11 groups: Absence, Existence, Bounded Existence, Universality, Precedence, Response
(2-causes-1, 1-cause-2), Precedence Chain (2-stimulus-1, 1-stimulus-2), Response Chain,
Constrained Chain;

@ 5 scopes: Globally, Before, After, Between, After-Until.

All these patterns can be successfully synthesized into working monitors (with or w/o Bl); 500
random traces (each with 50 states) were used to compare the monitoring results.

“https://matthewbdwyer.github.io/psp/patterns/1tl.html
23/28

https://matthewbdwyer.github.io/psp/patterns/ltl.html

Tests - The Value of Assumption

@ Assumption: transitions to s-state occur at most 2 times: ((—s)W (sW ((—s) W (s W (G —s)))))
(PWe=(Gp) V (pU))

@ Pattern 29: s responds to p after g until r: G(gA —r— ((p— (-r U (s A=r)))Wr)).

@ Pattern 49: s,t responds to p after g until r:
Glg—=(p—= (—rU(sA-rAX(=rUt)))U(rvG(p— (s AXFt))))

Pattern 29 (372 of 500 traces) Pattern 49 (288 of 500 traces)

erdict with BI
erdict with BI

of obs before v¢
of obs before v

Number
Number

24 /28

The tests

Tests on a Factory Model (1)

Model variables:
@ bottle present[0-2]: there exists a bottle at position 0-2;
@ bottle_ingri[0-2]: red ingredient in the bottle at position 0-2;
@ bottle_ingr2[0-2]: green ingredient in the bottle at position 0-2;

@ move_belt: the belt is moving;

@ new_bottle: new bottle at position O before the belt starts to move.

25 /28

The tests

Tests on a Factory Model (2)

@ Whenever the belt is not moving and there is a bottle at position 2, both ingredients are
filled in that bottle:

¢ = G((bottle_present[2] A —move_belt) —
(bottle_ingri[2] A bottle_ingr2[2]))

e Two monitors: M1 (with Bl), M2 (w/o BI).
@ Model checking spec: —F BIv, where BIv := (M1._concl A =M2._concl).
@ Conclusion: the monitor M1 is predictive, it outputs 1 ?® soon after the fault at position 0.

26 /28

The tests

Conclusions

@ We propose ABRV — an extended RV framework where assumptions,
partial observability and resets are supported;

@ A new four-valued LTL semantics called ABRV-LTL extended from LTLs;
@ A symbolic PLTL monitoring algorithm for ABRV;

@ Under certain assumptions: 1) the resulting monitors are predictive;
2) some non-monitorable properties become monitorable.

Future directions

e ABRV with more expressive (temporal) logics: LTL + metric/epistemic operator(s);
FOL (with quantifiers over time); MSOL (WS1S, WS2S);

e MC/SAT-based monitoring algorithms (when BDD is not applicable).

Question (independent of PLTL)

How to support Assumption/Partial-Observability/Resets in your RV tool/approach?

27/28

Backup: Fair Kripke Structure (FKS)

Let B ={T, L} denote the type of Boolean values, a set of Boolean formulae W(V') over a set
of propositional variables V' = {v1,..., vy}, is the set of all well-formed formulae (wff) built
from variables in V/, propositional logical operators like = and A, and parenthesis.
Definition
Let V be a set of Boolean variables, and V' ={v' | v € V'} be the set of next state variables
(thus VN V' =0). An Fks K = (V,0,p,J) is given by

@ V/, the set of Booleam variables,

@ a set of initial states ©(V) € W(V),

@ a transition relation p(V, V') e ¥(V U V),

@ a set of Boolean formulae J = {/i(V),..., k(V)} C W(V) called justice requirements.

v

The forward image of a set of states ¢)(V) on p(V, V') is a Boolean formula
fwd (v, p)(V) = (V. p(V, V') Ap(V))[V/ V'], where [V / V'] substitutes all (free) variables
from V' to V.

28/28

	The idea
	The definition
	The algorithm
	The tests

