Assumption-Based Runtime Verification with Partial Observability and Resets

(RV 2019 regular paper)

Alessandro Cimatti ${ }^{1}$ Chun Tian ${ }^{12}$ Stefano Tonetta ${ }^{1}$ \{cimatti, ctian, tonettas\}@fbk.eu
${ }^{1}$ Fondazione Bruno Kessler, Italy
${ }^{2}$ University of Trento, Italy

October 2019

Outline

(1) The idea

(2) The definition
(3) The algorithm

4 The tests

Runtime Verification (RV)

- A lightweight verification technique providing checking if a system under scrutiny (SUS) satisfies/violates a monitoring property.
- Focus on a single finite trace instead of all traces from SUS.
- Has an incremental fashion, outputting verdicts on each input state.
- Applicable to black box systems where a model is not available.
- Assumes full observability usually.

Assumption-Based Runtime Verification

However, one almost always knows something about the SUS, e.g.

- Models produced during the system design;
- Interaction with system operators (i.e. people) - domain knowledge.
- Mathematics/physical principles, e.g. $\varphi=(i \leqslant 5) \cup(i>10)$.

These knowledge may be leveraged to get better monitors.

Resettable Monitors

- Traditionally the monitor only evaluates $\llbracket u \models \varphi \rrbracket(=\llbracket u, 0 \vDash \varphi \rrbracket)$;
- The resettable monitor takes as input some reset signals that change the reference time of evaluating monitor properties, e.g.
from $\llbracket u, i \models \varphi \rrbracket$ to $\llbracket u, j \models \varphi \rrbracket(j>i)$;
- The execution history of SUS is preserved during resets, possible impacts to monitoring outputs:
(1) Under assumptions, the belief states after resets may be different with initial belief states;
(2) With past operators, historical inputs may change the initial evaluation of a monitoring property.

The Motivation

(1) Monotonic monitors: still meaningful after reaching conclusive verdicts (then being reset).
(2) Monitoring Past-Time LTL (to be explained).

Outline

(2) The definition

(3) The algorithm

(4) The tests

(Propositional) Linear Temporal Logic

Syntax $(p \in A P)$

$$
\varphi::=\operatorname{true}|p| \neg \varphi|\varphi \vee \varphi| \mathrm{X} \varphi|\varphi \mathrm{U} \varphi| \mathrm{Y} \varphi \mid \varphi \mathrm{S} \varphi
$$

- X stands for next, U for until, Y for previous, S for since.
- logical constants and operators like false, \wedge, \rightarrow and \leftrightarrow are used as syntactic sugars with the standard meaning.
- Abbreviations:

$$
\begin{aligned}
& \mathrm{F} \varphi \doteq \operatorname{true} \mathrm{U} \varphi \text { (eventually) } \\
& \mathrm{G} \varphi \doteq \neg \mathrm{~F} \neg \varphi \text { (globally) } \\
& \mathrm{O} \varphi \doteq \operatorname{true} \mathrm{~S} \varphi \text { (once) } \\
& \mathrm{H} \varphi \doteq \neg \mathrm{O} \neg \varphi \text { (historically) } .
\end{aligned}
$$

Recall: LTL_{3} semantics

- Three-valued semantics of LTL formula φ over a finite word $u \in \Sigma^{*}$:

$$
\llbracket u, i \vDash \varphi \rrbracket_{3}= \begin{cases}\top, & \text { if } \forall w \in \Sigma^{\omega} \cdot u \cdot w, i \neq \varphi \\ \perp, & \text { if } \forall w \in \Sigma^{\omega} \cdot u \cdot w, i \nLeftarrow \varphi \\ ?, & \text { otherwise }\end{cases}
$$

with $\llbracket u \models \varphi \rrbracket_{3}$ denoting $\llbracket u, 0 \models \varphi \rrbracket_{3}$.

- $\llbracket u \models \varphi \rrbracket_{3}=\mathrm{T} / \perp$ if all extensions of u satisfy/violate φ;
- Monitor construction: ${ }^{1}$

$$
\mathcal{M}_{\varphi}(u)=\llbracket u \models \varphi \rrbracket_{3} .
$$

[^0]
ABRV-LTL semantics

Let $K \doteq\left\langle V_{K}, \Theta_{K}, \rho_{K}, \mathcal{J}_{K}\right\rangle$ be an FKS, φ be an LTL formula built from $A P$. Let $\psi(O) \in \Psi(O)^{*}$ be a finite sequence of Boolean formulae over $O \subseteq V_{K} \cup A P$. We also define

$$
\mathcal{L}^{K}(\psi(O)) \doteq\left\{w \in \mathcal{L}(K)\left|\forall i . i<|\psi(O)| \Rightarrow w_{i}\left(V_{K} \cup A P\right) \models \psi_{i}(O)\right\}\right.
$$

to be the set of runs in K which are compatible with $\psi(O)$.

Definition

The ABRV-LTL semantics of φ over $\psi(O)$ under K is defined as

$$
\llbracket \psi(O), i \neq \varphi \rrbracket_{4}^{K} \doteq \begin{cases}\times, & \text { if } \mathcal{L}^{K}(\psi(O))=\emptyset \\ \top^{\mathrm{a}}, & \text { if } \mathcal{L}^{K}(\psi(O)) \neq \emptyset \wedge \forall w \in \mathcal{L}^{K}(\psi(O)) . w, i \models \varphi \\ \perp^{\mathrm{a}}, & \text { if } \mathcal{L}^{K}(\psi(O)) \neq \emptyset \wedge \forall w \in \mathcal{L}^{K}(\psi(O)) . w, i \models \neg \varphi \\ ?, & \text { otherwise }\end{cases}
$$

ABRV-LTL verdicts (and the lattice)

$\mathbb{B}_{4} \doteq\left\{T^{\mathrm{a}}, \perp^{\mathrm{a}}, ?, \times\right\}:$

- conclusive true (T^{a}) (or true under assumption)
- conclusive false (\perp^{a}) (or false under assumption)
- inconclusive (?)
- out-of-model (\times)

The lattice

LTL_{3}
ABRV-LTL

The ABRV Framework

- The input is enriched with resets: $u \in(\Psi(O) \times \mathbb{B})^{*}$.
- Each input state is a pair of an observation and a Boolean representing the reset;
- Given a property ϕ and an assumption K, the problem of Assumption-based Runtime Verification $(A B R V)$ is to construct a function $\mathcal{M}_{\varphi}^{K}:(\Psi(O) \times \mathbb{B})^{*} \rightarrow \mathbb{B}_{4}$ such that

$$
\mathcal{M}_{\varphi}^{K}(u)=\llbracket \operatorname{OBS}(u), \operatorname{MRR}(u) \models \varphi \rrbracket_{4}^{K}
$$

where

- $\operatorname{OBS}(\cdot)$ (observations) is the projection of u from $\Psi(O) \times \mathbb{B}$ to $\Psi(O)$,
- $\operatorname{RES}(\cdot)$ (resets) is the projection of u (or u_{i}) from $\Psi(O) \times \mathbb{B}$ to \mathbb{B},
- $\operatorname{MRR}(u)$ (the most recent reset) is the maximal i such that $\operatorname{RES}\left(u_{i}\right)=T$.

Special Case: Runtime Verification of Past-Time LTL

Past-Time LTL (PtLTL) ${ }^{2}$: LTL with only past operators (Y, S).
Let $u=s_{1} s_{2} \cdot s_{n}$ and $u_{i}=s_{1} s_{2} \cdot s_{i}$:

$$
\begin{aligned}
u \models_{p} p & \Leftrightarrow p \in s_{n-1} \\
u \models_{p} \mathrm{Y} \varphi \Leftrightarrow & u_{n-1} \models_{p} \varphi(\text { if } n>1) \text { or } u \models_{p} \varphi(\text { if } n=1) \\
u \models_{p} \varphi \mathrm{~S} \psi \Leftrightarrow & u_{j} \models_{p} \psi(1 \leqslant j \leqslant n) \text { and } u_{i} \models_{p} \varphi(j<i \leqslant n)
\end{aligned}
$$

Convert PtLTL to ABRV-LTL (K is empty)

$$
\begin{array}{lll}
\llbracket u \models_{p} \varphi \rrbracket=\top & \leftrightarrow & \llbracket u,|u|-1 \models \varphi \rrbracket_{4}^{K}=\top^{\mathrm{a}}, \\
\llbracket u \models_{p} \varphi \rrbracket=\perp & \leftrightarrow & \llbracket u,|u|-1 \models \varphi \rrbracket_{4}^{K}=\perp^{\mathrm{a}} .
\end{array}
$$

$\operatorname{MRR}(u)=|u|$ or $\forall i . \operatorname{RES}\left(u_{i}\right)=T$.
${ }^{2}$ K. Havelund and G. Roșu. Synthesizing Monitors for Safety Properties.
In J.-P. Katoen and P. Stevens, editors, LNCS 2280 - Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2002), pages 342-356. Springer, Berlin, Heidelberg, June 2013

Outline

(1) The idea

(2) The definition
(3) The algorithm

4 The tests

Translating LTL to ω-automata (1)

Elementary Variables

$$
\begin{aligned}
\mathrm{el}(\text { true }) & =\emptyset, & \mathrm{el}(\mathrm{X} \phi) & =\left\{\mathrm{x}_{\phi}\right\} \cup \mathrm{el}(\phi), \\
\mathrm{el}(p) & =\{p\}, & \mathrm{el}(\phi \cup \psi) & =\left\{\mathrm{x}_{\phi \cup \psi}\right\} \cup \mathrm{el}(\phi) \cup \mathrm{el}(\psi), \\
\operatorname{el}(\neg \phi) & =\mathrm{el}(\phi), & \mathrm{el}(\mathrm{Y} \phi) & =\left\{\mathrm{Y}_{\phi}\right\} \cup \operatorname{el}(\phi), \\
\mathrm{el}(\phi \vee \psi) & =\operatorname{el}(\phi) \cup \mathrm{el}(\psi), & \mathrm{el}(\phi \mathrm{~S} \psi) & =\left\{\mathrm{Y}_{\phi} \mathrm{S}_{\psi}\right\} \cup \mathrm{el}(\phi) \cup \mathrm{el}(\psi) .
\end{aligned}
$$

Expansion Laws (for the $\times N F$ conversion)

$$
\psi \cup \phi \Leftrightarrow \phi \vee(\psi \wedge \mathrm{X}(\psi \cup \phi)), \quad \psi \mathrm{S} \phi \Leftrightarrow \phi \vee(\psi \wedge \mathrm{Y}(\psi \mathrm{~S} \phi)) .
$$

Example (Translating LTL to Propositional Logic $\chi(\cdot)$)

$$
\chi(p \cup q)=q \vee\left(p \wedge \mathrm{X}_{p \cup q}\right) .
$$

Translating LTL to ω-automata (2)

nUXMV's tableau construction: $T_{\varphi} \doteq\left\langle V_{\varphi}, \Theta_{\varphi}, \rho_{\varphi}, \mathcal{J}_{\varphi}\right\rangle$, where

- Set of Boolean variables: $V_{\varphi} \doteq \operatorname{el}(\varphi)$,
- Initial condition:

$$
\Theta_{\varphi} \doteq \chi(\varphi) \wedge \bigwedge_{\mathrm{Y}_{\psi} \in \mathrm{el}(\varphi)} \neg \mathrm{Y}_{\psi},
$$

- Transition relation:

$$
\rho_{\varphi} \doteq \bigwedge_{\mathrm{X}_{\psi} \in \operatorname{el}(\varphi)}\left(\mathrm{x}_{\psi} \leftrightarrow \chi^{\prime}(\psi)\right) \bigwedge_{\mathrm{Y}_{\psi} \in \mathrm{el}(\varphi)}\left(\chi(\psi) \leftrightarrow \mathrm{Y}_{\psi}^{\prime}\right)
$$

- Justice set (a fairness condition):

$$
\mathcal{J}_{\varphi} \doteq\left\{\chi(\psi \cup \phi) \rightarrow \chi(\phi) \mid \mathrm{X}_{\psi \cup \phi} \in \operatorname{el}(\varphi)\right\} .
$$

- Fair states:

$$
\mathcal{F}_{\varphi}^{K} \doteq\left\{s\left|T_{\varphi}, s\right|=\mathrm{E} \bigwedge_{\psi \in \mathcal{J}_{\varphi}} \mathrm{GF} \psi\right\} .
$$

The Symbolic Monitoring Algorithm

function symbolic_monitor $\left(K \doteq\left\langle V_{K}, \Theta_{K}, \rho_{K}, \mathcal{J}_{K}\right\rangle, \varphi(A P), u \in(\Psi(O) \times \mathbb{B})^{*}\right)$

$$
T_{\varphi} \doteq\left\langle V_{\varphi}, \Theta_{\varphi}, \rho_{\varphi}, \mathcal{J}_{\varphi}\right\rangle \longleftarrow \text { ltl_translation }(\varphi) ;
$$

$$
T_{\neg \varphi} \doteq\left\langle V_{\varphi}, \Theta_{\neg \varphi}, \rho_{\varphi}, \mathcal{J}_{\varphi}\right\rangle \longleftarrow \text { ltl_translation }(\neg \varphi) ;
$$

$$
\mathcal{F}_{\varphi}^{K} \longleftarrow \text { fair_states }\left(K \otimes T_{\varphi}\right) ;
$$

$$
\mathcal{F}_{\neg \varphi}^{K} \longleftarrow \text { fair_states }\left(K \otimes T_{\neg \varphi}\right)
$$

$$
r_{\varphi} \longleftarrow \Theta_{K} \wedge \Theta_{\varphi} \wedge \mathcal{F}_{\varphi}^{K}
$$

/* no observation */

$$
r_{\neg \varphi} \longleftarrow \Theta_{K} \wedge \Theta_{\neg \varphi} \wedge \mathcal{F}_{\neg \varphi}^{K}
$$

$$
\begin{aligned}
& \text { if }|u|>0 \text { then } \\
& \mid \quad r_{\varphi} \longleftarrow r_{\varphi} \wedge \operatorname{OBS}\left(u_{0}\right) \text {; }
\end{aligned}
$$

$$
r_{\neg \varphi} \longleftarrow-r_{\neg \varphi} \wedge \operatorname{OBS}\left(u_{0}\right) ;
$$

for $1 \leqslant i<|u|$ do
/* more observations */
if $\operatorname{RES}\left(u_{i}\right)=\perp$ then

$$
r_{\varphi} \longleftarrow \operatorname{fwd}\left(r_{\varphi}, \rho_{K} \wedge \rho_{\varphi}\right)\left(V_{K} \cup V_{\varphi}\right) \wedge \operatorname{oBS}\left(u_{i}\right) \wedge \mathcal{F}_{\varphi}^{K}
$$

$$
r_{\neg \varphi} \longleftarrow \operatorname{fwd}\left(r_{\neg \varphi}, \rho_{K} \wedge \rho_{\varphi}\right)\left(V_{K} \cup V_{\varphi}\right) \wedge \operatorname{OBS}\left(u_{i}\right) \wedge \mathcal{F}_{\neg \varphi}^{K} ;
$$

else

$$
r \longleftarrow r_{\varphi} \vee r_{\neg \varphi} ;
$$

$$
r_{\varphi} \longleftarrow \operatorname{fwd}\left(r, \rho_{K} \wedge \rho_{\varphi}\right)\left(V_{K} \cup V_{\varphi}\right) \wedge \chi(\varphi) \wedge \operatorname{oBS}\left(u_{i}\right) \wedge \mathcal{F}_{\varphi}^{K}
$$

$$
r_{\neg \varphi} \longleftarrow \operatorname{fwd}\left(r, \rho_{K} \wedge \rho_{\varphi}\right)\left(V_{K} \cup V_{\varphi}\right) \wedge \chi(\neg \varphi) \wedge \mathrm{OBS}\left(u_{i}\right) \wedge \mathcal{F}_{\neg \varphi}^{K}
$$

if $r_{\varphi}=r_{\neg \varphi}=\perp$ then return \times;
else if $r_{\varphi}=\perp$ then return $\perp^{\text {a }}$;
else if $r_{\neg \varphi}=\perp$ then return $\mathrm{T}^{\text {a }}$;
else return ?;

The Symbolic Algorithm: A Sample Run

Monitoring $p \cup q$ assuming $p \neq q$

$$
\begin{aligned}
\varphi & \doteq p \cup q \equiv q \vee(p \wedge \mathrm{X}(p \cup q))), & & \\
O & =\{p, q\}, & & V_{\varphi}=\left\{p, q, x \doteq \mathrm{X}_{p \cup q}\right\}, \\
\Theta_{\varphi} & =q \vee(p \wedge x), & & \Theta_{\neg \varphi}=\neg(q \vee(p \wedge x)), \\
\rho_{\varphi} & =x \leftrightarrow\left(q^{\prime} \vee\left(p^{\prime} \wedge x^{\prime}\right)\right), & & \mathcal{J}_{\varphi}=\mathcal{J}_{\neg \varphi}=\mathrm{T}, \\
K & =\left\langle O, p \neq q, p^{\prime} \neq q^{\prime}, \emptyset\right\rangle, & & u=\{p\}\{p\} \cdots\{q\}\{q\} \cdots .
\end{aligned}
$$

Executation

(1) Initially (L6-7): $r_{\varphi} \leftarrow \Theta_{\varphi}, r_{\neg \varphi} \leftarrow \Theta_{\neg \varphi}$;
(2) Taking $u_{0}=\{p\}$ (L9-10): $r_{\varphi}=\Theta_{\varphi} \wedge(p \wedge \neg q) \equiv p \wedge \neg q \wedge x, r_{\neg \varphi}=\Theta_{\neg \varphi} \wedge(p \wedge \neg q) \equiv p \wedge \neg q \wedge \neg x$. (output is ?)
(3) On next $\{p\}, r_{\varphi}$ and $r_{\neg \varphi}$ remain unchanged (L13-14), as $\rho_{\varphi} \wedge\left(p^{\prime} \wedge \neg q^{\prime}\right) \equiv x \leftrightarrow x^{\prime}$.
(4) On next $\{q\}, \rho_{\varphi} \wedge\left(\neg p^{\prime} \wedge q^{\prime}\right) \equiv x \leftrightarrow T$, and fwd $\left(r_{\neg \varphi}, \rho_{\varphi}\right)\left(V_{\varphi}\right) \wedge\left(\neg p^{\prime} \wedge q^{\prime}\right)(\mathrm{L} 14)$ is unsatisfiable, i.e. $r_{\neg \varphi}=\perp$. (r_{φ} is still not empty, output is T^{a}.)
(5) Taking more $\{q\}$ does not change the output, unless the assumption $p \neq q$ is broken: $r_{\varphi}=r_{\neg \varphi}=\perp$, output is \times.

Correctness Proof (Sketch)

The function symbolic_monitor implements the monitor function $\mathcal{M}_{\varphi}^{K}(\cdot)$.

Proof.

(1) Some abbreviations:

$$
\begin{align*}
u \lesssim w & \Leftrightarrow \forall i . i<|u| \Rightarrow w_{i}\left(V_{k} \cup A P\right) \models \operatorname{OBS}\left(u_{i}\right)(O), \tag{1}\\
\mathcal{L}_{\varphi}^{K}(u) & \doteq\{w \in \mathcal{L}(K) \mid(w, \operatorname{MRR}(u) \models \varphi) \wedge u \lesssim w\}, \tag{2}\\
L_{\varphi}^{K}(u) & \doteq\left\{v\left|\exists w . v \cdot w \in \mathcal{L}_{\varphi}^{K}(u) \wedge\right| v|=|u|\} .\right. \tag{3}
\end{align*}
$$

(2) Reduced goal: $L_{\varphi}^{K}(u)=\emptyset \Rightarrow r_{\varphi}(u)=\emptyset \quad$ and $\quad L_{\neg \varphi}^{K}(u)=\emptyset \Rightarrow r_{\neg \varphi}(u)=\emptyset$.
(3) Loop invariants (by induction on the length of u):

$$
\begin{align*}
r_{\varphi}(u) & =\left\{s \mid \exists w \in \mathcal{L}\left(K \otimes T^{\varphi}\right) .(w, \operatorname{MRR}(u) \models \varphi) \wedge u \lesssim w \wedge w_{|u|}=s\right\} \tag{4}\\
r_{\neg \varphi}(u) & =\left\{s \mid \exists w \in \mathcal{L}\left(K \otimes T^{\neg \varphi}\right) .(w, \operatorname{MRR}(u) \models \neg \varphi) \wedge u \lesssim w \wedge w_{|u|}=s\right\}
\end{align*}
$$

4 Correctness of reset (Line 13):

$$
\begin{equation*}
r_{\varphi}(u) \vee r_{\neg \varphi}(u)=\left\{s \mid \exists w \in \mathcal{L}\left(K \otimes T_{0}^{\varphi}\right) . u \lesssim w \wedge w_{|u|}=s\right\} \quad \text { where } \quad T_{0}^{\varphi}=\left\langle V_{\varphi}, \bigwedge_{\mathrm{Y}_{p} \in \mathrm{el}(\varphi)} \neg \mathrm{Y}_{p}, \rho_{\varphi}, \mathcal{J}_{\varphi}\right\rangle \tag{5}
\end{equation*}
$$

Modifying/Extending the Algorithm

From Offline to Online Monitors

(1) Preparing initial belief states r_{φ} and $r_{\neg \varphi}$;
(2) LOOP start: taking just one input state s;
(3) Update belief states, getting new r_{φ} and $r_{\neg \varphi}$;
(9) Output a verdict in \mathbb{B}_{4}.

From Symbolic to Explicit-State Monitors

(1) Utilizing the canonicity of BDDs: each Boolean function (up to $=$) has an unique address in the memory;
(2) Constructing monitor automata for all possible inputs;
(3) Each location of the automaton represent a pair of BDDs: $\left(r_{\varphi}, r_{\neg \varphi}\right)$;
(9) Always terminates due to the finiteness of BDDs.

Outline

(1) The idea

(2) The definition
(3) The algorithm
(4) The tests

Experimental evaluation - The tool

The monitoring algorithm has been implemented in NuRV - an nUXmV extension for Runtime Verification ${ }^{3}$.

NuRV's features

- "Traditional" RV plus ABRV
- Offline vs. Online
- BDD-based v.s Code Generation
- Reactive vs. Deductive
- Code generation in various programming language;
- Code generation in SMV, allowing formal verifications of the correctness or other properties of the monitor.
${ }^{3}$ A. Cimatti, C. Tian, and S. Tonetta. NuRV: a nuXmv Extension for Runtime Verification.
In B. Finkbeiner and L. Mariani, editors, LNCS 11757 - Runtime Verification (RV 2019). Springer International Publishing, Porto, Portugal, Oct. 2019

Model checking SMV monitors

Used nUXMV to encode the following properties:

- The rough correctness (w/o resets):
(F M._true) $\rightarrow \varphi$ or (F M. _false) $\rightarrow \neg \varphi$;
- The monotonicity of monitors:

G M. _unknown V (M._unknown U M._concl);

- Comparison of two monitors (M1: with BI, M2: w/o BI):
$\neg \mathrm{F} \mathrm{BIv}$, where BIv : $=\left(\mathrm{M} 1 . _\right.$concl $\wedge \neg \mathrm{M} 2$. .concl).
- The correctness of resets:
$X^{n}\left(M . _r e s e t \wedge X(\neg\right.$ M. _reset U M. _true $\left.)\right) \rightarrow X^{n} \varphi$.

Observation

The full correctness of LTL monitors cannot be model checked by LTL itself. (Epistemic operator needed)

Tests on LTL patterns

We tested on Dwyer's 55 LTL patterns ${ }^{4}$:

- Collected from over 500 specifications from at least 35 different sources.
- 11 groups: Absence, Existence, Bounded Existence, Universality, Precedence, Response (2-causes-1, 1-cause-2), Precedence Chain (2-stimulus-1, 1-stimulus-2), Response Chain, Constrained Chain;
- 5 scopes: Globally, Before, After, Between, After-Until.

All these patterns can be successfully synthesized into working monitors (with or w/o BI); 500 random traces (each with 50 states) were used to compare the monitoring results.

[^1]
Tests - The Value of Assumption

- Assumption: transitions to s-state occur at most 2 times: $((\neg s) \mathrm{W}(s \mathrm{~W}((\neg s) \mathrm{W}(s \mathrm{~W}(\mathrm{G} \neg s)))))$ $(\varphi \mathrm{W} \psi \doteq(\mathrm{G} \varphi) \vee(\varphi \mathrm{U} \psi))$
- Pattern 29: s responds to p after q until $r: G(q \wedge \neg r \rightarrow((p \rightarrow(\neg r \cup(s \wedge \neg r))) \mathrm{W} r))$.
- Pattern 49: s,t responds to p after q until r :

$$
\mathrm{G}(q \rightarrow(p \rightarrow(\neg r \cup(s \wedge \neg r \wedge \mathrm{X}(\neg r \mathrm{U} t)))) \mathrm{U}(r \vee \mathrm{G}(p \rightarrow(s \wedge \mathrm{XF} t))))
$$

Tests on a Factory Model (1)

Model variables:

- bottle_present[0-2]: there exists a bottle at position 0-2;
- bottle_ingr1 [0-2]: red ingredient in the bottle at position $0-2$;
- bottle_ingr2[0-2]: green ingredient in the bottle at position $0-2$;
- move_belt: the belt is moving;
- new_bottle: new bottle at position 0 before the belt starts to move.

Tests on a Factory Model (2)

- Whenever the belt is not moving and there is a bottle at position 2, both ingredients are filled in that bottle:

$$
\begin{aligned}
\varphi=G & ((\text { bottle_present }[2] \wedge \neg \text { move_belt }) \rightarrow \\
& (\text { bottle_ingr1[2] } \wedge \text { bottle_ingr2[2] }))
\end{aligned}
$$

- Two monitors: M1 (with BI), M2 (w/o BI).
- Model checking spec: $\neg \mathrm{FBIv}$, where BIv := (M1._concl $\wedge \neg$ M2 ._concl).
- Conclusion: the monitor M1 is predictive, it outputs \perp^{a} soon after the fault at position 0 .

Conclusions

- We propose ABRV - an extended RV framework where assumptions, partial observability and resets are supported;
- A new four-valued LTL semantics called ABRV-LTL extended from $L^{2} L_{3}$;
- A symbolic PLTL monitoring algorithm for ABRV;
- Under certain assumptions: 1) the resulting monitors are predictive;

2) some non-monitorable properties become monitorable.

Future directions

- ABRV with more expressive (temporal) logics: LTL + metric/epistemic operator(s); FOL (with quantifiers over time); MSOL (WS1S, WS2S);
- MC/SAT-based monitoring algorithms (when BDD is not applicable).

Question (independent of PLTL)
How to support Assumption/Partial-Observability/Resets in your RV tool/approach?

Backup: Fair Kripke Structure (FKS)

Let $\mathbb{B}=\{T, \perp\}$ denote the type of Boolean values, a set of Boolean formulae $\Psi(V)$ over a set of propositional variables $V=\left\{v_{1}, \ldots, v_{n}\right\}$, is the set of all well-formed formulae (wff) built from variables in V, propositional logical operators like \neg and \wedge, and parenthesis.

Definition

Let V be a set of Boolean variables, and $V^{\prime} \doteq\left\{v^{\prime} \mid v \in V\right\}$ be the set of next state variables (thus $V \cap V^{\prime}=\emptyset$). An fKs $K=\langle V, \Theta, \rho, \mathcal{J}\rangle$ is given by

- V, the set of Booleam variables,
- a set of initial states $\Theta(V) \in \Psi(V)$;
- a transition relation $\rho\left(V, V^{\prime}\right) \in \Psi\left(V \cup V^{\prime}\right)$,
- a set of Boolean formulae $\mathcal{J}=\left\{J_{1}(V), \ldots, J_{k}(V)\right\} \subseteq \Psi(V)$ called justice requirements.

The forward image of a set of states $\psi(V)$ on $\rho\left(V, V^{\prime}\right)$ is a Boolean formula $\operatorname{fwd}(\psi, \rho)(V) \doteq\left(\exists V . \rho\left(V, V^{\prime}\right) \wedge \psi(V)\right)\left[V / V^{\prime}\right]$, where [$\left.V / V^{\prime}\right]$ substitutes all (free) variables from V^{\prime} to V.

[^0]: ${ }^{1}$ A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. (2011)

[^1]: ${ }^{4}$ https://matthewbdwyer.github.io/psp/patterns/ltl.html

