
Assumption-Based Runtime Verification
of Infinite-State Systems
(RV 2021 regular paper)

Alessandro Cimatti 1

Chun Tian 12

Stefano Tonetta 1

{cimatti,ctian,tonettas}@fbk.eu

1Fondazione Bruno Kessler, Italy

2University of Trento, Italy

October 12, 2021

1 / 31

Outline

Introduction

Preliminaries

Basic Algorithms

Optimized Algorithms

Experimental Evaluation

Conclusion

2 / 31

Runtime Verification (RV)

• Runtime monitors synthesized from a specification (or property);

• The monitor returns verdicts indicating if the input trace violates the property or not.

SUS Monitor

Monitor

Synthesis

ϕ(O)

u(O) {⊤,⊥, ?}

Mϕ

3 / 31

Assumption-Based Runtime Verification (ABRV)

• Runtime monitors may be synthesized from a system model (assumptions);

• The ABRV-LTL semantics (as monitor verdicts) is based on LTL3 semantics, adding one
more verdict: × (error or out-of-model);

• Partially observable traces are naturally supported;

• The monitors can be reset, to evaluate the specification at later positions of the trace.

SUS Monitor

Monitor

Synthesis

ϕ(V)

K(V,O)

u(O)
{⊤a,⊥a, ?,×}

MK
ϕ

Recovery

reset

4 / 31

ABRV of Infinite-State Systems

In 2019, the authors have given BDD-based algorithmsa and toolsb for ABRV of finite-state
systems. The present work is about ABRV of infinite-state systems.

aA. Cimatti, C. Tian, and S. Tonetta. Assumption-Based Runtime Verification with Partial Observability and Resets.

In LNCS 11757 - Runtime Verification (RV 2019), pages 165–184. Springer, 2019

bA. Cimatti, C. Tian, and S. Tonetta. NuRV: A nuXmv Extension for Runtime Verification.

In LNCS 11757 - Runtime Verification (RV 2019), pages 382–392. Springer, 2019

Main ideas

• Runtime Verification (RV) reduced to Model Checking (MC);

• First-Order Quantifier Elimination (QE) for forward image computation;

• Fast (incomplete) Bounded Model Checking (BMC) before full MC algorithms;

• Incremental BMC.

5 / 31

Outline

Introduction

Preliminaries

Basic Algorithms

Optimized Algorithms

Experimental Evaluation

Conclusion

6 / 31

Preliminaries (2)

Fair Transition System (FTS)

K =̇ ⟨V ,Θ, ρ,J ⟩

where V = {x1, . . . , xn} is a finite set of variables, Θ the initial condition, ρ the transition
relation, and J a (finite) set of justice conditions. (Θ, ρ and each element of J are
quantifier-free T -formulas.)

Linear Temporal Logic (LTL) or LTL Modulo Theory

φ ::= true
∣∣ α ∣∣ ¬φ ∣∣ φ ∨ φ ∣∣ Xφ ∣∣ φUφ

∣∣ Yφ ∣∣ φSφ

where the (quantifier-free) formula α is built by a set of variables V and a first-order signature
Σ, and is interpreted according to a Σ-theory T .

7 / 31

Preliminaries (3, ABRV)

Set of fair paths

LK (u) =̇
{
σ ∈ L(K)

∣∣ ∀i < |u|. σi |=T ui
}

ABRV-LTL semantics

Ju, i |= φKK4 =̇


×, if LK (u) = ∅
⊤a, if LK (u) ̸= ∅ and ∀w ∈ LK (u). w , i |= φ

⊥a, if LK (u) ̸= ∅ and ∀w ∈ LK (u). w , i |= ¬φ
? otherwise .

ABRV monitor

MK
φ (u) =̇ Ju, 0 |= φKK4 .

8 / 31

Preliminaries (4, ABRV illustration)

¬φ

φ

L(K)
Σω \ L(K)

u0 u1 u2 u3 u4

σ0

σ1

σ2

σ3

σ4

σ5

σ6

In this case,MK
φ (u0u1u2u3u4) = ⊤a.

9 / 31

Outline

Introduction

Preliminaries

Basic Algorithms

Optimized Algorithms

Experimental Evaluation

Conclusion

10 / 31

ABRV reduced to Model Checking

Let c be a integer variable, Su = ⟨Vk ∪ {c},Θ, ρ, ∅⟩, where

Θ = (c = 0) ∧ u0, ρ =

|u|−1∧
i=0

(
(c = i)→ (c ′ = i + 1 ∧ u′i+1)

)
MK

φ (u) can be computed by two MC calls:

Model
Checking

O
ut

pu
t

u MK
φ (u)

JK × Su |= φK

JK × Su |= ¬φK

JK × Su |= φK JK × Su |= ¬φK MK
φ (u)

⊤ ⊤ ×
⊤ ⊥ ⊤a

⊥ ⊤ ⊥a

⊥ ⊥ ?
11 / 31

Model Checking reduced to ABRV

Computing JK |= φK by ABRV monitoring

Let ϵ be an empty trace, by ABRV definition we have

MK
φ (ϵ) =


⊤a, if JK |= φK = ⊤ (and JK |= ¬φK = ⊥),
⊥a, if JK |= φK = ⊥ (and JK |= ¬φK = ⊤),
? , if JK |= φK = JK |= ¬φK = ⊥ (counterexamples exist on both sides),

×, if JK |= φK = JK |= ¬φK = ⊤ (i.e. L(K) = ∅, an empty model K).

Thus JK |= φK = ⊤ iffMK
φ (ϵ) = ⊤a or × (usually the model in a MC problem is not empty).

Conclusion

ABRV with infinite-state assumptions is undecidable (because infinite-state MC is known to be
undecidable.)

12 / 31

Quantifier Elimination for Computing Belief States

(For an incremental monitoring algorithm ...)

Definition (forward image)

The forward image of a set of states ψ(V) on ρ(V ,V ′) is given by

fwd(ψ(V), ρ(V ,V ′))(V) =̇
(
∃V . ρ(V ,V ′) ∧ ψ(V)

)
[V /V ′]

where [V /V ′] denotes the substitution of (free) variables in V ′ with the corresponding one in V .

The need of QE procedures

First-order quantifier elimination (QE) can be involved to convert a forward image into an
equivalent quantifier-free formula that can be directly sent to SMT solvers, etc.

13 / 31

ABRV reduced to MC and QE (1)

Quantifier
Elimination

Model
Checking

O
ut

pu
t

u MK
φ (u)

rφ
JK × Tφ(rφ) |= falseK

r¬φ
JK × Tφ(r¬φ) |= falseK

¬JK × Tφ(rφ) |= falseK ¬JK × Tφ(r¬φ) |= falseK MK
φ (·)

⊤ ⊤ ?
⊤ ⊥ ⊤a

⊥ ⊤ ⊥a

⊥ ⊥ ×
14 / 31

Outline

Introduction

Preliminaries

Basic Algorithms

Optimized Algorithms

Experimental Evaluation

Conclusion

15 / 31

Basic Optimizations (1)

Basic optimization ideas

o1 If the monitor has already reached conclusive verdicts (⊤a or ⊥a), then for the runtime
verification of the next input state at most one MC call is need.

o2 Before calling model checkers to detect the emptiness of a belief state (w.r.t. fairness), an
SMT checking can be done first, to check if the belief state formula can be satisfied or not.

o3 When monitor2 is used as online monitor, the same LTL properties are sent to LTL model
checkers with different models and are internally translated into equivalent FTS.

o4 Call the faster but incomplete plain BMC (or any other MC procedure which only detects
counterexamples) before calling a unbounded model checker such as ic3ia.

Theorem

Assuming BMC always find the counterexample whenever it exists, IC3 IA is called at most
twice in the “online” version of monitor2 with all above optimizations.

16 / 31

Incremental BMC: The Idea

Basic observation

All models used for model checking in (non)emptiness checking JK × Tφ(rφ) |= falseK only
differ at the initial condition.

BMC encoding of belief states

The belief states after a sequence of observations u0u1 · · · un, denoted by bs(u0u1 · · · un), can
be inductively given by

bs(u0)(V) = I (V) ∧ u0(V),

bs(u0u1 · · · ui+1)(V) = fwd
(
bs(u0u1 · · · ui)(V),T (V ,V ′)

)
(V) ∧ ui+1(V)

Theorem (Equisatisfiability)

When k > 1, the SMT formulas I (V0) ∧ u0(V0) ∧
∧k−1

j=0

[
T (Vj ,Vj+1) ∧ uj+1(Vj+1)

]
and

bs(u0u1 · · · uk)(V) are equi-satisfiable.

17 / 31

Incremental BMC: The algorithm (1)

New procedures

• init nonemptiness for creating a persistent SMT solver instance,

• update nonemptiness for checking nonemptiness of belief states after new observation,

• reset nonemptiness for resetting the SMT solver, cleaning up all existing observations.

function init nonemptiness(I , T)
e := new BMC solver with initial formula I and transition relation T
reset nonemptiness(e, I)
return e

procedure reset nonemptiness(e, I)
e.problem := I (V0); // the initial formula unrolled at time 0

e.observations := []; // an array holding observations

e.n := 0; // the number of observations

e.map := {}; // a hash map from time to (unused) observations

e.k := 0; // the number of unrolled transition relations

e.max k := max k ; // a local copy of max k
18 / 31

Incremental BMC: The algorithm (2)

function bmc monitor(K =̇ ⟨VK ,ΘK , ρK ,JK ⟩, φ, u, max k, window size)
Tφ =̇ ⟨Vφ,Θφ , ρφ,Jφ⟩ := ltl translation(φ)
T¬φ =̇ ⟨Vφ,Θ¬φ, ρφ,Jφ⟩ := ltl translation(¬φ)
V := VK ∪ Vφ
e1 := init nonemptiness(ΘK ∧Θφ , ρK ∧ ρφ)
e2 := init nonemptiness(ΘK ∧Θ¬φ, ρK ∧ ρφ)
for 0 < i < |u| do

b1 := update nonemptiness(e1, ui)
b2 := update nonemptiness(e2, ui)

if b1 ∧ b2 then return ? ; // inconclusive

else if b1 then return ⊤a; // conditionally true

else if b2 then return ⊥a; // conditionally false

else return ×; // out of model

19 / 31

Incremental BMC: The algorithm (3)

function update nonemptiness(e, o)
e.map[e.n] = o, e.observations[e.n ++] = o; // store new observation

for (k, v) : e.map do
if k ⩽ e.k then e.problem := e.problem ∧ v(Vi)
delete e.map[k] ;

result := ?
while e.k ⩽ e.max k and result =? do

i := e.k
if SMT(e.problem)= unsat then result := ⊥, break;
if SMT(e.problem ∧ [[F]]i)= sat then result = ⊤, break;
e.problem := e.problem ∧ e.T (Vi ,Vi+1)
if e.map[i + 1] exists then

e.problem := e.problem ∧ e.map[i + 1](Vi+1), delete e.map[i + 1]

e.k ++

e.max k ++; // increase the search bound for next calls

if e.k > window size or result =? then
r := compute belief states(e), reset nonemptiness(e, r)

if result = ⊤ or result = ⊥ then
return result

else
return ¬IC3 IA(⟨V , r , e.T ,JK ∪ Jφ⟩, false)

20 / 31

Incremental BMC: The algorithm (4)

function compute belief states(e)
r := e.I (V)
for i ← 0 to e.n do

if i = 0 then r := r ∧ e.observations[i](V);
else

r := quantifier elimination(V , r ∧ T (V ,V ′)) ∧ e.observations[i](V)

return r

Tool Implementation

The RV algorithms presented in this paper have been implemented in NuRV since version 1.6.0
(https://es.fbk.eu/tools/nurv/). (Currently we support 5 operating systems, 5 target
languages for monitor code generation, and network-based monitoring.)

21 / 31

https://es.fbk.eu/tools/nurv/

Outline

Introduction

Preliminaries

Basic Algorithms

Optimized Algorithms

Experimental Evaluation

Conclusion

22 / 31

Performance Tests on Dwyer’s LTL patterns (1)

Pattern 49

φ = G (q → (p → (¬r U (s ∧ ¬r ∧ X (¬r U t))))U (r ∨ G (p → (s ∧ XF t))))
(“s, t responds to p after q until r”),
with q := (0 ⩽ i), r := (0.0 ⩽ x), i ∈ [−500, 500] and x ∈ [−0.500, 0.500].

RV assumptions

“The p-transition (i.e., from ¬p to p) happens at most 4 times”

Other settings

The length of input traces increases from 1 to 30.

23 / 31

Performance Tests on Dwyer’s LTL patterns (2)

24 / 31

Outline

Introduction

Preliminaries

Basic Algorithms

Optimized Algorithms

Experimental Evaluation

Conclusion

25 / 31

Conclusions

Conclusions

• The ABRV framework has been extended in this paper to assumptions defined as
infinite-state system, using existing SMT, MC, QE techniques.

• We start from a trivial reduction from RV to MC, and eventually obtained an highly
optimized RV algorithm, based on Incremental BMC. (The final version is hundreds of
times faster than the initial one.)

Possible concerns of the present approach

• The use of (slow) SMT solvers in performing (fast) runtime monitoring; (there is a
trade-off between the required speed of the monitor and the complexity of the assumptions)

• The boundedness of memory consumptions during runtime monitoring. (unbound in the
worst-case but better in practical)

26 / 31

Some Future Directions

• Better performances (including enginering level changes, e.g. 2x faster after paper
submission);

• More thoroughly tests on better RV benchmarks;

• More compact presentations of raw formulas (DBM, PPlite, ...);

• Attacking real-time temporal properties with timed assumptions;

• Code generation for infinite-state monitors (e.g. calling external SMT solvers by standard
interface like DIMACS).

27 / 31

Preliminaries (1)

Satisfiability Modulo Theory (SMT)

First-order formulas are built as usual by proposition logic connectives, a given set of variables
V and a first-order signature Σ, and are interpreted according to a given Σ-theory T .
SMT is the basis of infinite-state model checking algorithms used in this paper. Note: Tool
implementation and experimental evaluations are based on LRA (linear arithmetic of reals).

First-Order Quantifier Elimination (QE)

QE methods convert first-order formulas into T -equivalent quantifier-free formulas.
Formally speaking, if α(V1 ∪ V2) is quantifier-free formula (of the theory T) built by variables
from the set V1 ∪ V2, the role of quantifier elimination is to convert the first-order formula
∃V1.α(V1 ∪ V2) into an T -equivalent formula β(V2), where β is quantifier-free and is built by
only variables from V2.
MathSAT supports two QE procedures: Fourier-Motzkin and Loos-and-Weispfenning (LRA).

28 / 31

ABRV reduced to Model Checking (2)

function monitor1(K =̇ ⟨VK ,ΘK , ρK ,JK ⟩, φ, u)
Θ := ⊤, ρ := ⊤
if |u| > 0 then

Θ := (c = 0) ∧ u0
if |u| > 1 then

ρ :=

|u|−1∧
i=0

(
(c = i)→ (c ′ = i + 1 ∧ u′i+1)

)
Su := ⟨Vk ∪ {c},Θ, ρ, ∅⟩
b1 := model checking(K × Su, φ)
b2 := model checking(K × Su, ¬φ)
if b1 ∧ b2 then return ×; // out of model

else if b1 then return ⊤a; // conditionally true

else if b2 then return ⊥a; // conditionally false

else return ?; // inconclusive

29 / 31

ABRV reduced to MC and QE (2)

function monitor2(K =̇ ⟨VK ,ΘK , ρK ,JK ⟩, φ, u)
Tφ =̇ ⟨Vφ,Θφ , ρφ,Jφ⟩ := ltl translation(φ)
T¬φ =̇ ⟨Vφ,Θ¬φ, ρφ,Jφ⟩ := ltl translation(¬φ)
V := VK ∪ Vφ
⟨rφ, r¬φ⟩ := ⟨ΘK ∧Θφ,ΘK ∧Θ¬φ⟩
if |u| > 0 then
⟨rφ, r¬φ⟩ := ⟨rφ ∧ u0, r¬φ ∧ u0⟩

for 1 ⩽ i < |u| do
rφ := quantifier elimination(V , ρK ∧ ρφ ∧ rφ) ∧ ui
r¬φ := quantifier elimination(V , ρK ∧ ρφ ∧ r¬φ) ∧ ui

b1 := ¬model checking(⟨V , rφ, ρK ∧ ρφ,JK ∪ Jφ⟩, false)
b2 := ¬model checking(⟨V , r¬φ, ρK ∧ ρφ,JK ∪ Jφ⟩, false)
if b1 ∧ b2 then return ? ; // inconclusive

else if b1 then return ⊤a; // conditionally true

else if b2 then return ⊥a; // conditionally false

else return ×; // out of model

30 / 31

Basic Optimizations (2)

if o3 then F := ltl translation(
(∧

ψ∈JK∪Jφ
GFψ

)
→ false) ;

function check nonemptiness(r)
if o2 ∧ (SMT(r) = unsat) then return ⊥ ;
else

return ¬model checking(⟨V , r , ρK ∧ ρφ,JK ∪ Jφ⟩, o3 ? F : false)

function model checking(M, ψ)
if o4 then

if BMC(M, ψ) = ⊥ then return ⊥; // counterexample found

else // max k reached
return IC3 IA(M, ψ)

else return IC3 IA(M, ψ);

31 / 31

	Introduction
	Preliminaries
	Basic Algorithms
	Optimized Algorithms
	Experimental Evaluation
	Conclusion
	Appendix

	

